Increasing the Complexity of Computational Protein Modeling Methodologies for Functional Applications in Biology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
RECENT ADVANCES in BIOLOGY, BIOPHYSICS, BIOENGINEERING and COMPUTATIONAL CHEMISTRY
RECENT ADVANCES in BIOLOGY, BIOPHYSICS, BIOENGINEERING and COMPUTATIONAL CHEMISTRY Proceedings of the 5th WSEAS International Conference on CELLULAR and MOLECULAR BIOLOGY, BIOPHYSICS and BIOENGINEERING (BIO '09) Proceedings of the 3rd WSEAS International Conference on COMPUTATIONAL CHEMISTRY (COMPUCHEM '09) Puerto De La Cruz, Tenerife, Canary Islands, Spain December 14-16, 2009 Recent Advances in Biology and Biomedicine A Series of Reference Books and Textbooks Published by WSEAS Press ISSN: 1790-5125 www.wseas.org ISBN: 978-960-474-141-0 RECENT ADVANCES in BIOLOGY, BIOPHYSICS, BIOENGINEERING and COMPUTATIONAL CHEMISTRY Proceedings of the 5th WSEAS International Conference on CELLULAR and MOLECULAR BIOLOGY, BIOPHYSICS and BIOENGINEERING (BIO '09) Proceedings of the 3rd WSEAS International Conference on COMPUTATIONAL CHEMISTRY (COMPUCHEM '09) Puerto De La Cruz, Tenerife, Canary Islands, Spain December 14-16, 2009 Recent Advances in Biology and Biomedicine A Series of Reference Books and Textbooks Published by WSEAS Press www.wseas.org Copyright © 2009, by WSEAS Press All the copyright of the present book belongs to the World Scientific and Engineering Academy and Society Press. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the Editor of World Scientific and Engineering Academy and Society Press. All papers of the present volume were peer reviewed -
ISMB 2008 Toronto
ISMB 2008 Toronto The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Linial, Michal, Jill P. Mesirov, B. J. Morrison McKay, and Burkhard Rost. 2008. ISMB 2008 Toronto. PLoS Computational Biology 4(6): e1000094. Published Version doi:10.1371/journal.pcbi.1000094 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:11213310 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Message from ISCB ISMB 2008 Toronto Michal Linial1,2, Jill P. Mesirov1,3, BJ Morrison McKay1*, Burkhard Rost1,4 1 International Society for Computational Biology (ISCB), University of California San Diego, La Jolla, California, United States of America, 2 Sudarsky Center, The Hebrew University of Jerusalem, Jerusalem, Israel, 3 Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America, 4 Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, United States of America the integration of students, and for the of ISMB. One meeting in South Asia support of young leaders in the field. (InCoB; http://incob.binfo.org.tw/) has ISMB has also become a forum for already been sponsored by ISCB, and reviewing the state of the art in the many another one in North Asia is going to fields of this growing discipline, for follow. ISMB itself has also been held in introducing new directions, and for an- Australia (2003) and Brazil (2006). -
Classifying Transport Proteins Using Profile Hidden Markov Models And
Classifying Transport Proteins Using Profile Hidden Markov Models and Specificity Determining Sites Qing Ye A Thesis in The Department of Computer Science and Software Engineering Presented in Partial Fulfillment of the Requirements for the Degree of Master of Computer Science (MCompSc) at Concordia University Montréal, Québec, Canada April 2019 ⃝c Qing Ye, 2019 CONCORDIA UNIVERSITY School of Graduate Studies This is to certify that the thesis prepared By: Qing Ye Entitled: Classifying Transport Proteins Using Profile Hidden Markov Models and Specificity Determining Sites and submitted in partial fulfillment of the requirements for the degree of Master of Computer Science (MCompSc) complies with the regulations of this University and meets the accepted standards with respect to originality and quality. Signed by the Final Examining Committee: Chair Dr. T.-H. Chen Examiner Dr. T. Glatard Examiner Dr. A. Krzyzak Supervisor Dr. G. Butler Approved by Martin D. Pugh, Chair Department of Computer Science and Software Engineering 2019 Amir Asif, Dean Faculty of Engineering and Computer Science Abstract Classifying Transport Proteins Using Profile Hidden Markov Models and Specificity Determining Sites Qing Ye This thesis develops methods to classifiy the substrates transported across a membrane by a given transmembrane protein. Our methods use tools that predict specificity determining sites (SDS) after computing a multiple sequence alignment (MSA), and then building a profile Hidden Markov Model (HMM) using HMMER. In bioinformatics, HMMER is a set of widely used applications for sequence analysis based on profile HMM. Specificity determining sites (SDS) are the key positions in a protein sequence that play a crucial role in functional variation within the protein family during the course of evolution. -
BIOGRAPHICAL SKETCH NAME: Berger
BIOGRAPHICAL SKETCH NAME: Berger, Bonnie eRA COMMONS USER NAME (credential, e.g., agency login): BABERGER POSITION TITLE: Simons Professor of Mathematics and Professor of Electrical Engineering and Computer Science EDUCATION/TRAINING (Begin with baccalaureate or other initial professional education, such as nursing, include postdoctoral training and residency training if applicable. Add/delete rows as necessary.) EDUCATION/TRAINING DEGREE Completion (if Date FIELD OF STUDY INSTITUTION AND LOCATION applicable) MM/YYYY Brandeis University, Waltham, MA AB 06/1983 Computer Science Massachusetts Institute of Technology SM 01/1986 Computer Science Massachusetts Institute of Technology Ph.D. 06/1990 Computer Science Massachusetts Institute of Technology Postdoc 06/1992 Applied Mathematics A. Personal Statement Advances in modern biology revolve around automated data collection and sharing of the large resulting datasets. I am considered a pioneer in the area of bringing computer algorithms to the study of biological data, and a founder in this community that I have witnessed grow so profoundly over the last 26 years. I have made major contributions to many areas of computational biology and biomedicine, largely, though not exclusively through algorithmic innovations, as demonstrated by nearly twenty thousand citations to my scientific papers and widely-used software. In recognition of my success, I have just been elected to the National Academy of Sciences and in 2019 received the ISCB Senior Scientist Award, the pinnacle award in computational biology. My research group works on diverse challenges, including Computational Genomics, High-throughput Technology Analysis and Design, Biological Networks, Structural Bioinformatics, Population Genetics and Biomedical Privacy. I spearheaded research on analyzing large and complex biological data sets through topological and machine learning approaches; e.g. -
BIOINFORMATICS Doi:10.1093/Bioinformatics/Btq499
Vol. 26 ECCB 2010, pages i409–i411 BIOINFORMATICS doi:10.1093/bioinformatics/btq499 ECCB 2010 Organization CONFERENCE CHAIR B. Comparative Genomics, Phylogeny, and Evolution Yves Moreau, Katholieke Universiteit Leuven, Belgium Martijn Huynen, Radboud University Nijmegen Medical Centre, The Netherlands PROCEEDINGS CHAIR Yves Van de Peer, Ghent University & VIB, Belgium Jaap Heringa, Free University of Amsterdam, The Netherlands C. Protein and Nucleotide Structure LOCAL ORGANIZING COMMITTEE Anna Tramontano, University of Rome ‘La Sapienza’, Italy Jan Gorodkin, University of Copenhagen, Denmark Yves Moreau, Katholieke Universiteit Leuven, Belgium Jaap Heringa, Free University of Amsterdam, The Netherlands D. Annotation and Prediction of Molecular Function Gert Vriend, Radboud University, Nijmegen, The Netherlands Yves Van de Peer, University of Ghent & VIB, Belgium Nir Ben-Tal, Tel-Aviv University, Israel Kathleen Marchal, Katholieke Universiteit Leuven, Belgium Fritz Roth, Harvard Medical School, USA Jacques van Helden, Université Libre de Bruxelles, Belgium Louis Wehenkel, Université de Liège, Belgium E. Gene Regulation and Transcriptomics Antoine van Kampen, University of Amsterdam & Netherlands Jaak Vilo, University of Tartu, Estonia Bioinformatics Center (NBIC) Zohar Yakhini, Agilent Laboratories, Tel-Aviv & the Tech-nion, Peter van der Spek, Erasmus MC, Rotterdam, The Netherlands Haifa, Israel STEERING COMMITTEE F. Text Mining, Ontologies, and Databases Michal Linial (Chair), Hebrew University, Jerusalem, Israel Alfonso Valencia, National -
The 4Th Bologna Winter School: Hot Topics in Structural Genomics†
Comparative and Functional Genomics Comp Funct Genom 2003; 4: 394–396. Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cfg.314 Conference Report The 4th Bologna Winter School: hot topics in structural genomics† Rita Casadio* Department of Biology/CIRB, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy *Correspondence to: Abstract Rita Casadio, Department of Biology/CIRB, University of The 4th Bologna Winter School on Biotechnologies was held on 9–15 February Bologna, Via Irnerio 42, 40126 2003 at the University of Bologna, Italy, with the specific aim of discussing recent Bologna, Italy. developments in bioinformatics. The school provided an opportunity for students E-mail: [email protected] and scientists to debate current problems in computational biology and possible solutions. The course, co-supported (as last year) by the European Science Foundation program on Functional Genomics, focused mainly on hot topics in structural genomics, including recent CASP and CAPRI results, recent and promising genome- Received: 3 June 2003 wide predictions, protein–protein and protein–DNA interaction predictions and Revised: 5 June 2003 genome functional annotation. The topics were organized into four main sections Accepted: 5 June 2003 (http://www.biocomp.unibo.it). Published in 2003 by John Wiley & Sons, Ltd. Predictive methods in structural Predictive methods in functional genomics genomics • Contemporary challenges in structure prediction • Prediction of protein function (Arthur Lesk, and the CASP5 experiment (John Moult, Uni- University of Cambridge, Cambridge, UK). versity of Maryland, Rockville, MD, USA). • Microarray data analysis and mining (Raf- • Contemporary challenges in structure prediction faele Calogero, University of Torino, Torino, (Anna Tramontano, University ‘La Sapienza’, Italy). -
Advances in Rosetta Protein Structure Prediction on Massively Parallel Systems
UC San Diego UC San Diego Previously Published Works Title Advances in Rosetta protein structure prediction on massively parallel systems Permalink https://escholarship.org/uc/item/87g6q6bw Journal IBM Journal of Research and Development, 52(1) ISSN 0018-8646 Authors Raman, S. Baker, D. Qian, B. et al. Publication Date 2008 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Advances in Rosetta protein S. Raman B. Qian structure prediction on D. Baker massively parallel systems R. C. Walker One of the key challenges in computational biology is prediction of three-dimensional protein structures from amino-acid sequences. For most proteins, the ‘‘native state’’ lies at the bottom of a free- energy landscape. Protein structure prediction involves varying the degrees of freedom of the protein in a constrained manner until it approaches its native state. In the Rosetta protein structure prediction protocols, a large number of independent folding trajectories are simulated, and several lowest-energy results are likely to be close to the native state. The availability of hundred-teraflop, and shortly, petaflop, computing resources is revolutionizing the approaches available for protein structure prediction. Here, we discuss issues involved in utilizing such machines efficiently with the Rosetta code, including an overview of recent results of the Critical Assessment of Techniques for Protein Structure Prediction 7 (CASP7) in which the computationally demanding structure-refinement process was run on 16 racks of the IBM Blue Gene/Le system at the IBM T. J. Watson Research Center. We highlight recent advances in high-performance computing and discuss future development paths that make use of the next-generation petascale (.1012 floating-point operations per second) machines. -
Precise Assembly of Complex Beta Sheet Topologies from De Novo 2 Designed Building Blocks
1 Precise Assembly of Complex Beta Sheet Topologies from de novo 2 Designed Building Blocks. 3 Indigo Chris King*†, James Gleixner†, Lindsey Doyle§, Alexandre Kuzin‡, John F. Hunt‡, Rong Xiaox, 4 Gaetano T. Montelionex, Barry L. Stoddard§, Frank Dimaio†, David Baker† 5 † Institute for Protein Design, University of Washington, Seattle, Washington, United States 6 ‡ Biological Sciences, Northeast Structural Genomics Consortium, Columbia University, New York, New York, United 7 States 8 x Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Northeast Struc- 9 tural Genomics Consortium, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States 10 § Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States 11 12 ABSTRACT 13 Design of complex alpha-beta protein topologies poses a challenge because of the large number of alternative packing 14 arrangements. A similar challenge presumably limited the emergence of large and complex protein topologies in evo- 15 lution. Here we demonstrate that protein topologies with six and seven-stranded beta sheets can be designed by inser- 16 tion of one de novo designed beta sheet containing protein into another such that the two beta sheets are merged to 17 form a single extended sheet, followed by amino acid sequence optimization at the newly formed strand-strand, strand- 18 helix, and helix-helix interfaces. Crystal structures of two such designs closely match the computational design models. 19 Searches for similar structures in the SCOP protein domain database yield only weak matches with different beta sheet 20 connectivities. A similar beta sheet fusion mechanism may have contributed to the emergence of complex beta sheets 21 during natural protein evolution. -
I S C B N E W S L E T T
ISCB NEWSLETTER FOCUS ISSUE {contents} President’s Letter 2 Member Involvement Encouraged Register for ISMB 2002 3 Registration and Tutorial Update Host ISMB 2004 or 2005 3 David Baker 4 2002 Overton Prize Recipient Overton Endowment 4 ISMB 2002 Committees 4 ISMB 2002 Opportunities 5 Sponsor and Exhibitor Benefits Best Paper Award by SGI 5 ISMB 2002 SIGs 6 New Program for 2002 ISMB Goes Down Under 7 Planning Underway for 2003 Hot Jobs! Top Companies! 8 ISMB 2002 Job Fair ISCB Board Nominations 8 Bioinformatics Pioneers 9 ISMB 2002 Keynote Speakers Invited Editorial 10 Anna Tramontano: Bioinformatics in Europe Software Recommendations11 ISCB Software Statement volume 5. issue 2. summer 2002 Community Development 12 ISCB’s Regional Affiliates Program ISCB Staff Introduction 12 Fellowship Recipients 13 Awardees at RECOMB 2002 Events and Opportunities 14 Bioinformatics events world wide INTERNATIONAL SOCIETY FOR COMPUTATIONAL BIOLOGY A NOTE FROM ISCB PRESIDENT This newsletter is packed with information on development and dissemination of bioinfor- the ISMB2002 conference. With over 200 matics. Issues arise from recommendations paper submissions and over 500 poster submis- made by the Society’s committees, Board of sions, the conference promises to be a scientific Directors, and membership at large. Important feast. On behalf of the ISCB’s Directors, staff, issues are defined as motions and are discussed EXECUTIVE COMMITTEE and membership, I would like to thank the by the Board of Directors on a bi-monthly Philip E. Bourne, Ph.D., President organizing committee, local organizing com- teleconference. Motions that pass are enacted Michael Gribskov, Ph.D., mittee, and program committee for their hard by the Executive Committee which also serves Vice President work preparing for the conference. -
Bioengineering Professor Trey Ideker Wins 2009 Overton Prize
Bioengineering Professor Trey Ideker Wins 2009 Overton Prize March 13, 2009 Daniel Kane University of California, San Diego bioengineering professor Trey Ideker-a network and systems biology pioneer-has won the International Society for Computational Biology's Overton Prize. The Overton prize is awarded each year to an early-to-mid-career scientist who has already made a significant contribution to the field of computational biology. Trey Ideker is an Associate Professor of Bioengineering at UC San Diego's Jacobs School of Engineering, Adjunct Professor of Computer Science, and member of the Moores UCSD Cancer Center. He is a pioneer in using genome-scale measurements to construct network models of cellular processes and disease. His recent research activities include development of software and algorithms for protein network analysis, network-level comparison of pathogens, and genome-scale models of the response to DNA-damaging agents. "Receiving this award is a wonderful honor and helps to confirm that the work we have been doing for the past several years has been useful to people," said Ideker. "This award also provides great recognition to UC San Diego which has fantastic bioinformatics programs both at the undergraduate and graduate level. I could never have done it without the help of some really first-rate bioinformatics and bioengineering graduate students," said Ideker. Ideker is on the faculty of the Jacobs School of Engineering's Department of Bioengineering, which ranks 2nd in the nationfor biomedical engineering, according to the latest US News rankings. The bioengineering department has ranked among the top five programs in the nation every year for the past decade. -
A Glance Into the Evolution of Template-Free Protein Structure Prediction Methodologies Arxiv:2002.06616V2 [Q-Bio.QM] 24 Apr 2
A glance into the evolution of template-free protein structure prediction methodologies Surbhi Dhingra1, Ramanathan Sowdhamini2, Frédéric Cadet3,4,5, and Bernard Offmann∗1 1Université de Nantes, CNRS, UFIP, UMR6286, F-44000 Nantes, France 2Computational Approaches to Protein Science (CAPS), National Centre for Biological Sciences (NCBS), Tata Institute for Fundamental Research (TIFR), Bangalore 560-065, India 3University of Paris, BIGR—Biologie Intégrée du Globule Rouge, Inserm, UMR_S1134, Paris F-75015, France 4Laboratory of Excellence GR-Ex, Boulevard du Montparnasse, Paris F-75015, France 5DSIMB, UMR_S1134, BIGR, Inserm, Faculty of Sciences and Technology, University of La Reunion, Saint-Denis F-97715, France Abstract Prediction of protein structures using computational approaches has been explored for over two decades, paving a way for more focused research and development of algorithms in com- parative modelling, ab intio modelling and structure refinement protocols. A tremendous suc- cess has been witnessed in template-based modelling protocols, whereas strategies that involve template-free modelling still lag behind, specifically for larger proteins (> 150 a.a.). Various improvements have been observed in ab initio protein structure prediction methodologies over- time, with recent ones attributed to the usage of deep learning approaches to construct protein backbone structure from its amino acid sequence. This review highlights the major strategies undertaken for template-free modelling of protein structures while discussing few tools devel- arXiv:2002.06616v2 [q-bio.QM] 24 Apr 2020 oped under each strategy. It will also briefly comment on the progress observed in the field of ab initio modelling of proteins over the course of time as seen through the evolution of CASP platform. -
The Myth of Junk DNA
The Myth of Junk DNA JoATN h A N W ells s eattle Discovery Institute Press 2011 Description According to a number of leading proponents of Darwin’s theory, “junk DNA”—the non-protein coding portion of DNA—provides decisive evidence for Darwinian evolution and against intelligent design, since an intelligent designer would presumably not have filled our genome with so much garbage. But in this provocative book, biologist Jonathan Wells exposes the claim that most of the genome is little more than junk as an anti-scientific myth that ignores the evidence, impedes research, and is based more on theological speculation than good science. Copyright Notice Copyright © 2011 by Jonathan Wells. All Rights Reserved. Publisher’s Note This book is part of a series published by the Center for Science & Culture at Discovery Institute in Seattle. Previous books include The Deniable Darwin by David Berlinski, In the Beginning and Other Essays on Intelligent Design by Granville Sewell, God and Evolution: Protestants, Catholics, and Jews Explore Darwin’s Challenge to Faith, edited by Jay Richards, and Darwin’s Conservatives: The Misguided Questby John G. West. Library Cataloging Data The Myth of Junk DNA by Jonathan Wells (1942– ) Illustrations by Ray Braun 174 pages, 6 x 9 x 0.4 inches & 0.6 lb, 229 x 152 x 10 mm. & 0.26 kg Library of Congress Control Number: 2011925471 BISAC: SCI029000 SCIENCE / Life Sciences / Genetics & Genomics BISAC: SCI027000 SCIENCE / Life Sciences / Evolution ISBN-13: 978-1-9365990-0-4 (paperback) Publisher Information Discovery Institute Press, 208 Columbia Street, Seattle, WA 98104 Internet: http://www.discoveryinstitutepress.com/ Published in the United States of America on acid-free paper.