Introducing Foldit Education Mode

Total Page:16

File Type:pdf, Size:1020Kb

Introducing Foldit Education Mode correspondence Introducing Foldit Education Mode To the Editor — In its twelve years online, scored using the Rosetta force field2, with that walk the student through a standard Foldit has become a frequently used the players collaborating and competing to set of topics in biochemistry education teaching tool for biochemistry at the attain the best-scoring protein structure. (Fig. 1a), including atomic interactions, the college level, despite not providing premade The concept is that, if hundreds or hydrophobic effect, amino acids, primary content specifically for education. Here thousands of players all work to create a structure, secondary structure, tertiary we introduce Foldit Education Mode, protein structure, there is a higher chance structure, protein folding pathways and in which students proceed through a that one of them may find the correct fold. ligand binding. Many of the puzzles start by self-guided tutorial of standard concepts The interactive nature of Foldit and its allowing the student to explore the puzzle in protein biochemistry via a series of accessibility to non-scientist audiences as a sandbox, thus becoming familiar interactive three-dimensional biochemistry quickly attracted the interest of educators3–6, with it before starting the tutorial. In each puzzles. Education Mode could be used despite Foldit not providing material that is puzzle, students click through a tutorial independently or as a central component explicitly tailored for science education. We on the topic that guides them through the of a science class. With many classrooms have recently introduced Custom Contests7, conceptual basis of the puzzle (Fig. 1b). staying in remote mode this autumn, Foldit a feature that allows educators to create, Then, students solve the puzzle by achieving Education Mode offers a unique and free administer and grade their own Foldit a prespecified Foldit score. In many levels, online option for classes worldwide and is puzzles to fit their curriculum, but Custom this score is modified to provide a bonus available for download at our new educator’s Contests do not provide pre-made content that rewards specific outcomes, such as page: https://fold.it/educator. to teach standard topics in biochemistry. rewarding the creation of hydrogen bonds Foldit is a free citizen science The need for online learning in a puzzle that judges β-sheet formation. biochemistry computer game1. In the most opportunities has vastly increased in recent Along the way, students learn Foldit tools basic Foldit puzzles, players try to fold a months due to the COVID-19 pandemic, that will allow them to complete more protein into its proper three-dimensional and we have responded by creating Foldit advanced puzzles. These are a mixture of structure, starting from an unfolded peptide. Education Mode. Currently, Education protein design puzzles (Fig. 1c), folding The players’ structures are immediately Mode consists of 29 puzzles split into 9 tiers puzzles (Fig. 1d) and sequence alignment ab d Non-covalent interactions and sidechains (5 puzzles) Primary structure (3 puzzles) Foldit Automating tools (2 puzzles) Secondary structure c e (8 puzzles) Sequence defines fold (5 puzzles) Tertiary structure (3 puzzles) Folding and binding (3 puzzles) Fig. 1 | Foldit Education Mode. a, A flowchart depicting the current topics and number of puzzles within Foldit Education Mode. b, Wiggle puzzle, showing a tutorial bubble example. Students click back or next to proceed through the tutorials within each puzzle. c, An example of a protein design puzzle, “Primary Structure,” in which students are asked to choose amino acids that optimize the protein’s stability. d, An example of a protein folding puzzle, “Tertiary Structure,” in which students are given a protein with preformed secondary structure and are asked to fold it into a stable tertiary structure. e, An example of a sequence alignment puzzle. In this puzzle, “Alignin’ Sequences,” students are asked to align the sequence of a protein to that of a protein of known structure to enable structural threading. NATURE STRUCTURAL & MOLECULAR BIOLOGY | VOL 27 | SEPTEMBER 2020 | 769–770 | www.nature.com/nsmb 769 correspondence puzzles (Fig. 1e), which are used to teach written assignments (for example, the 3Department of Chemistry & Biochemistry and the different topics. “Primary Structure” and “Tertiary Structure” Knoebel Institute for Healthy Aging, University of Although the tutorial is self-guided puzzles), instructors may consider skipping Denver, Denver, CO, USA. and can be used by anyone interested in the version in Education Mode and ✉e-mail: [email protected] learning biochemistry, it was specifically downloading a Custom Contest version created for class use. Instructors can of the puzzle instead. Moreover, we note Published online: 17 August 2020 choose to skip puzzles as needed and can that Education Mode is a different release https://doi.org/10.1038/s41594-020-0485-6 supplement with puzzles from the standard from standard Foldit, and playing standard Foldit tutorials if desired. Several of the science puzzles will require switching to the References puzzles have already been used in class, with main release of Foldit. 1. Cooper, S. et al. Nature 466, 756–760 (2010). accompanying written assignments that can Finally, we are making this 2. Alford, R. F. et al. J. Chem. Teory Comput. 13, 3031–3048 (2017). 3. Farley, P. C. Biochem. Mol. Biol. Educ. 41, 56–57 (2013). be downloaded at our educator’s webpage announcement before Education Mode has 4. Franco, J. J. Chem. Educ. 89, 1543–1546 (2012). (https://fold.it/educator). Students are undergone stringent educational testing, due 5. Stockman, B. J. et al. J. Chem. Educ. 91, 451–454 (2014). also able to use the in-game chat function to the urgent need for such tools right now. 6. Achterman, R. R. J. Microbiol. Biol. Educ. 20, 20.3.63 (2019). to discuss their puzzles in real time We welcome all feedback on how to improve 7. Dsilva, L. et al. Biochem. Mol. Biol. Educ. 47, 133–139 (2019). with other students in their class or the Education Mode. ❐ with their instructor. Acknowledgements Some important notes: students are Josh Aaron Miller 1, Firas Khatib 2, We thank Kimberly Cortes, Ashley Vater and 3 1 Irina Makarevitch for their prerelease input and currently unable to turn in their puzzles Haley Hammond , Seth Cooper and Jeff Flatten, Zoran Popović, Henry Solberg, Rocco Moretti, 3 ✉ for grading through the Foldit client, and Scott Horowitz David Baker and Jens Meiler for aid with Foldit support. the instructor does not have access to their 1Khoury College of Computer Sciences, Northeastern This work was supported by NIH R00 GM120388. solutions. These features are available University, Boston, MA, USA. 2Department of in Custom Contests; thus, for larger and Computer and Information Science, University of Competing interests more involved puzzles with accompanying Massachusetts Dartmouth, Dartmouth, MA, USA. The authors declare no competing interests. 770 NATURE STRUCTURAL & MOLECULAR BIOLOGY | VOL 27 | SEPTEMBER 2020 | 769–770 | www.nature.com/nsmb.
Recommended publications
  • Alberto Cisneros, Amanda M. Duran, Jessica A. Finn, Darwin
    This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes. Current Topic pubs.acs.org/biochemistry Protocols for Molecular Modeling with Rosetta3 and RosettaScripts † ‡ ‡ § ‡ ∥ ‡ ⊥ ‡ ∥ Brian J. Bender, , Alberto Cisneros, III, , Amanda M. Duran, , Jessica A. Finn, , Darwin Fu, , ‡ # ‡ ∥ ‡ ∥ ‡ § Alyssa D. Lokits, , Benjamin K. Mueller, , Amandeep K. Sangha, , Marion F. Sauer, , ‡ § ‡ ∥ ‡ † ‡ § ∥ ⊥ # Alexander M. Sevy, , Gregory Sliwoski, , Jonathan H. Sheehan, Frank DiMaio,@ Jens Meiler, , , , , , ‡ ∥ and Rocco Moretti*, , † Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-6600, United States ‡ Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240-7917, United States § Chemical and Physical Biology Program, Vanderbilt University, Nashville, Tennessee 37232-0301, United States ∥ Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States ⊥ Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee 37232-2561, United States # Neuroscience Program, Vanderbilt University, Nashville, Tennessee 37235, United States @Department of Biochemistry, University of Washington, Seattle, Washington 98195, United States *S Supporting Information ABSTRACT: Previously, we published an article providing an overview of the Rosetta suite of biomacromolecular modeling software and a series of step-by-step tutorials [Kaufmann, K. W., et al. (2010) Biochemistry 49, 2987−2998]. The overwhelming positive response to this publication we received motivates us to here share the next iteration of these tutorials that feature de novo folding, comparative modeling, loop construction, protein docking, small molecule docking, and protein design. This updated and expanded set of tutorials is needed, as since 2010 Rosetta has been fully redesigned into an object-oriented protein modeling program Rosetta3.
    [Show full text]
  • Jonathan Sheehan
    1 Jonathan H. Sheehan, Ph.D. Director, Program in Personalized Structural Biology / Precision Medicine Research Associate Professor Phone (W): 615-936-2516 Center for Structural Biology and Dept. of Biochemistry Phone (H): 615-673-9457 Vanderbilt University PMB 407917 Fax: 615-936-2211 5137 BIOSCI/MRB III [email protected] 465 21st Ave. South http://structbio.vanderbilt.edu/~sheehajh/ Nashville, TN 37232-8725 DOB: 1/29/1966, New Haven, CT Education 1984 - 1988 Harvard College (Cambridge, MA), A.B. with honors, Classics Summer 1987 Aegean Institute (Galatas, Greece) with honors in Greek and classical drama 2000 - 2006 Ph.D. Biochemistry, Vanderbilt University. Mentor: Walter Chazin Dissertation Title: Probing functional diversity of EF-hand calcium-binding proteins through mutant design and structural analysis 2006 - 2008 Postdoctoral Training: Vanderbilt University. Mentor: Jens Meiler Academic Appointments 1990 - 1995 Research Asst. in Jim Forman©s lab, Immunology at UTSW Med. Ctr., Dallas, TX 1995 - 1996 Research Asst. in the Embryonic Stem Cell Core Lab at VUMC 1996 - 1997 Research Asst. in Mark Magnuson©s lab, Molecular Physiol. and Biophys., VUMC 1997 - 2000 Manager of Dave Piston©s Cell Imaging Core Lab at VUMC 2009 - 2011 Research Instructor, Dept. of Biochemistry and V.U. Center for Structural Biology 2011 - 2016 Research Assistant Professor, Dept. of Biochemistry and Ctr. for Structural Biology 2016 - present Research Associate Professor, Dept. of Biochemistry and Ctr. for Structural Biology 2016 - present Program Director in Personalized Structural Biology / Precision Medicine Employment (other than academic appointments) 1989 - 1990 Peace Corps Volunteer, building potable water systems in Cañar, Ecuador Teaching June 2007 Vanderbilt University Center for Structural Biology Workshop: Molecular Visualization Tools and Analysis (with Eric Dawson) Aug.
    [Show full text]
  • Foldit Gamers Improve Protein Design Through Crowdsourcing 25 January 2012, by Bob Yirka
    Foldit gamers improve protein design through crowdsourcing 25 January 2012, by Bob Yirka chemical reactions. In earlier versions of the Foldit game, players were simply given existing proteins to play with and asked to find the minimal energy state for them by folding them in optimum ways, this latest version has gone much farther by giving players the opportunity to come up with a whole new protein design. To create the new design, gamers were given a Image: Nature Biotechnology (2012) simple beginning structure and some basic ideas doi:10.1038/nbt.2109 about the goal of the new protein, in this case to serve as a better catalyst for a class of Diels-Alder reactions, which are used to synthesize many commercial products. After offering some ideas (PhysOrg.com) -- Gamers on Foldit have such as remodeling certain sections to make them succeeded in improving the catalyst abilities of an behave in certain ways, the gamers went to work enzyme, making it 18-fold more active than the folding the proteins using the tools at hand. original version. The idea is the brainchild of University of Washington scientist Zoran Popovic The first go-round proved mostly futile, with few who is director of the Center for Game Science, gamers coming up with good improvements. To and biochemist David Baker. Together they have improve the results, the team took the best foldings created the Foldit site which is a video game from the first round and fed them back into the application that allows players to work with protein game allowing gamers to improve on them.
    [Show full text]
  • Increasing Public Involvement in Structural Biology
    Structure Commentary Increasing Public Involvement in Structural Biology Seth Cooper,1,* Firas Khatib,2 and David Baker2 1Department of Computer Science 2Department of Biochemistry University of Washington, Seattle, WA 98195, USA *Correspondence: [email protected] http://dx.doi.org/10.1016/j.str.2013.08.009 Public participation in scientific research can be a powerful supplement to more-traditional approaches. We discuss aspects of the public participation project Foldit that may help others interested in starting their own projects. It is now easier than ever for the public to We’re very excited about the possibility Openness to Collaboration get involved in science. The Internet has for games and other forms of public in a Variety of Forms made it feasible for research groups to involvement in science to help advance The core of the project has been a very easily connect with people all over the the field. To our knowledge, there have fruitful collaboration between the Com- world. Personal computers have also been a few other projects actively puter Science and Engineering Depart- become powerful enough to run compu- involving the public in structural biology, ment and the Biochemistry Department tationally intensive programs, giving the and we look forward to many more in at the University of Washington. Both public the opportunity to contribute to the future. Structural biology problems departments were able to bring their scientific research. Volunteer computing involving the analysis of existing mole- knowledge and skills together to make a allows the public to share their spare cules and the design of new ones are successful team.
    [Show full text]
  • Cheminfo - Qualitative Analysis of Machine Learning Models for Activation of HSD Involved in Alzheimer’S Disease
    Bcl::ChemInfo - Qualitative Analysis Of Machine Learning Models For Activation Of HSD Involved In Alzheimer’s Disease Mariusz Butkiewicz, Edward W. Lowe, Jr., Jens Meiler Abstract— In this case study, a ligand-based virtual high type 10 (HSD) has been found in elevated concentrations in throughput screening suite, bcl::ChemInfo, was applied to the hippocampi of Alzheimer’s disease patients. HSD may screen for activation of the protein target 17-beta play a role in the degradation of neuroprotective agents. The hydroxysteroid dehydrogenase type 10 (HSD) involved in inhibition of HSD has been indicated as a possible mean’s of Alzheimer’s Disease. bcl::ChemInfo implements a diverse set treating Alzheimer's disease. Dysfunctions in human 17 beta- of machine learning techniques such as artificial neural hydroxysteroid dehydrogenases result in disorders of biology networks (ANN), support vector machines (SVM) with the of reproduction and neuronal diseases, the enzymes are also extension for regression, kappa nearest neighbor (KNN), and involved in the pathogenesis of various cancers. HSD has a decision trees (DT). Molecular structures were converted into high affinity for amyloid proteins. Thus, it has been proposed a distinct collection of descriptor groups involving 2D- and 3D- that HSD may contribute to the amyloid plaques found in autocorrelation, and radial distribution functions. A confirmatory high-throughput screening data set contained Alzheimer's patients [2]. Furthermore, HSD degrades over 72,000 experimentally validated compounds, available neuroprotective agents like allopregnanolone which may lead through PubChem. Here, the systematical model development to memory loss. Therefore, it has been postulated that was achieved through optimization of feature sets and inhibition of HSD may help lessen the symptoms associated algorithmic parameters resulting in a theoretical enrichment of with Alzheimer's.
    [Show full text]
  • Algorithm Discovery by Protein Folding Game Players
    Algorithm discovery by protein folding game players Firas Khatiba, Seth Cooperb, Michael D. Tykaa, Kefan Xub, Ilya Makedonb, Zoran Popovićb, David Bakera,c,1, and Foldit Players aDepartment of Biochemistry; bDepartment of Computer Science and Engineering; and cHoward Hughes Medical Institute, University of Washington, Box 357370, Seattle, WA 98195 Contributed by David Baker, October 5, 2011 (sent for review June 29, 2011) Foldit is a multiplayer online game in which players collaborate As the players themselves understand their strategies better than and compete to create accurate protein structure models. For spe- anyone, we decided to allow them to codify their algorithms cific hard problems, Foldit player solutions can in some cases out- directly, rather than attempting to automatically learn approxi- perform state-of-the-art computational methods. However, very mations. We augmented standard Foldit play with the ability to little is known about how collaborative gameplay produces these create, edit, share, and rate gameplay macros, referred to as results and whether Foldit player strategies can be formalized and “recipes” within the Foldit game (10). In the game each player structured so that they can be used by computers. To determine has their own “cookbook” of such recipes, from which they can whether high performing player strategies could be collectively invoke a variety of interactive automated strategies. Players can codified, we augmented the Foldit gameplay mechanics with tools share recipes they write with the rest of the Foldit community or for players to encode their folding strategies as “recipes” and to they can choose to keep their creations to themselves. share their recipes with other players, who are able to further mod- In this paper we describe the quite unexpected evolution of ify and redistribute them.
    [Show full text]
  • A Deep Reinforcement Learning Neural Network Folding Proteins
    DeepFoldit - A Deep Reinforcement Learning Neural Network Folding Proteins Dimitra Panou1, Martin Reczko2 1University of Athens, Department of Informatics and Telecommunications 2Biomedical Sciences Research Center “Alexander Fleming” ABSTRACT Despite considerable progress, ab initio protein structure prediction remains suboptimal. A crowdsourcing approach is the online puzzle video game Foldit [1], that provided several useful results that matched or even outperformed algorithmically computed solutions [2]. Using Foldit, the WeFold [3] crowd had several successful participations in the Critical Assessment of Techniques for Protein Structure Prediction. Based on the recent Foldit standalone version [4], we trained a deep reinforcement neural network called DeepFoldit to improve the score assigned to an unfolded protein, using the Q-learning method [5] with experience replay. This paper is focused on model improvement through hyperparameter tuning. We examined various implementations by examining different model architectures and changing hyperparameter values to improve the accuracy of the model. The new model’s hyper-parameters also improved its ability to generalize. Initial results, from the latest implementation, show that given a set of small unfolded training proteins, DeepFoldit learns action sequences that improve the score both on the training set and on novel test proteins. Our approach combines the intuitive user interface of Foldit with the efficiency of deep reinforcement learning. KEYWORDS: ab initio protein structure prediction, Reinforcement Learning, Deep Learning, Convolution Neural Networks, Q-learning 1. ALGORITHMIC BACKGROUND Machine learning (ML) is the study of algorithms and statistical models used by computer systems to accomplish a given task without using explicit guidelines, relying on inferences derived from patterns. ML is a field of artificial intelligence.
    [Show full text]
  • Games As a Platform for Student Participation in Authentic Scientific Research
    Games as a Platform for Student Participation in Authentic Scientific Research Rikke Magnussen1, Sidse Damgaard Hansen2, Tilo Planke2 and Jacob Friis Sherson2 AU Ideas Center for Community Driven Research, CODER 1ResearchLab: ICT and Design for Learning, Department of Communication, Aalborg University, Denmark 2Department of Physics and Astronomy, Aarhus University, Denmark [email protected] [email protected] [email protected] [email protected] Abstract: This paper presents results from the design and testing of an educational version of Quantum Moves, a Scientific Discovery Game that allows players to help solve authentic scientific challenges in the effort to develop a quantum computer. The primary aim of developing a game-based platform for student-research collaboration is to investigate if and how this type of game concept can strengthen authentic experimental practice and the creation of new knowledge in science education. Researchers and game developers tested the game in three separate high school classes (Class 1, 2, and 3). The tests were documented using video observations of students playing the game, qualitative interviews, and qualitative and quantitative questionnaires. The focus of the tests has been to study players' motivation and their experience of learning through participation in authentic scientific inquiry. In questionnaires conducted in the two first test classes students found that the aspects of doing “real scientific research” and solving physics problems were the more interesting aspects of playing the game. However, designing a game that facilitates professional research collaboration while simultaneously introducing quantum physics to high school students proved to be a challenge. A collaborative learning design was implemented in Class 3, where students were given expert roles such as experimental and theoretical physicists.
    [Show full text]
  • Final Draft.Docx
    Three-Dimensional Modeling of Chicken Anemia Virus VP3 and Porcine Circovirus Type 1 VP3 A Major Qualifying Project Submitted to the faculty of WORCESTER POLYTECHNIC INSTITUTE in partial fulfillment of the requirements for the Degree of Bachelor of Science in Biochemistry and Chemistry by: __________________________ Sam Eisenberg __________________________________________ Lee Hermsdorf-Krasin __________________________ Curtis Innamorati September 12th, 2013 Approved: _________________________________ Dr. Destin Heilman, Advisor Department of Chemistry and Biochemistry, WPI Abstract The third viral protein (VP3) of the Chicken Anemia Virus (Apoptin) and Porcine Circovirus Type 1 (PCV1VP3) have potential therapeutic cancer killing properties. Though advances have been made in understanding their apoptotic mechanisms, the reasons behind their cancer cell selectivity have thus far eluded researchers. Further, researchers have been unable to isolate and crystallize these proteins, and this lack of a known structure greatly contributes to the difficulty of studying their selectivity. In the past decade protein prediction algorithms have made great strides in the ability to accurately predict secondary and tertiary structures of proteins. This project aimed to generate possible functional models of these proteins using the available prediction techniques. One significant and well defined function of these proteins is their ability to specifically localize to the cell nucleus or cytoplasm. In order to link and evaluate the results generated from tertiary structure predictions with possible mechanisms for localization, experiments regarding the activity of nuclear export signals in the proteins were performed. The generated models strongly suggest that a conformational change plays a significant role regarding the localization of Apoptin and that the export capabilities of PCV1VP3 are CRM1-dependent.
    [Show full text]
  • 11: Catchup II Machine Learning and Real-World Data (MLRD)
    11: Catchup II Machine Learning and Real-world Data (MLRD) Ann Copestake Lent 2019 Last session: HMM in a biological application In the last session, we used an HMM as a way of approximating some aspects of protein structure. Today: catchup session 2. Very brief sketch of protein structure determination: including gamification and Monte Carlo methods (and a little about AlphaFold). Related ideas are used in many very different machine learning applications . What happens in catchup sessions? Lecture and demonstrated session scheduled as in normal session. Lecture material is non-examinable. Time for you to catch-up in demonstrated sessions or attempt some starred ticks. Demonstrators help as usual. Protein structure Levels of structure: Primary structure: sequence of amino acid residues. Secondary structure: highly regular substructures, especially α-helix, β-sheet. Tertiary structure: full 3-D structure. In the cell: an amino acid sequence (as encoded by DNA) is produced and folds itself into a protein. Secondary and tertiary structure crucial for protein to operate correctly. Some diseases thought to be caused by problems in protein folding. Alpha helix Dcrjsr - Own work, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=9131613 Bovine rhodopsin By Andrei Lomize - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=34114850 found in the rods in the retina of the eye a bundle of seven helices crossing the membrane (membrane surfaces marked by horizontal lines) supports a molecule of retinal, which changes structure when exposed to light, also changing the protein structure, initiating the visual pathway 7-bladed propeller fold (found naturally) http://beautifulproteins.blogspot.co.uk/ Peptide self-assembly mimic scaffold (an engineered protein) http://beautifulproteins.blogspot.co.uk/ Protein folding Anfinsen’s hypothesis: the structure a protein forms in nature is the global minimum of the free energy and is determined by the animo acid sequence.
    [Show full text]
  • Advances in Rosetta Protein Structure Prediction on Massively Parallel Systems
    UC San Diego UC San Diego Previously Published Works Title Advances in Rosetta protein structure prediction on massively parallel systems Permalink https://escholarship.org/uc/item/87g6q6bw Journal IBM Journal of Research and Development, 52(1) ISSN 0018-8646 Authors Raman, S. Baker, D. Qian, B. et al. Publication Date 2008 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Advances in Rosetta protein S. Raman B. Qian structure prediction on D. Baker massively parallel systems R. C. Walker One of the key challenges in computational biology is prediction of three-dimensional protein structures from amino-acid sequences. For most proteins, the ‘‘native state’’ lies at the bottom of a free- energy landscape. Protein structure prediction involves varying the degrees of freedom of the protein in a constrained manner until it approaches its native state. In the Rosetta protein structure prediction protocols, a large number of independent folding trajectories are simulated, and several lowest-energy results are likely to be close to the native state. The availability of hundred-teraflop, and shortly, petaflop, computing resources is revolutionizing the approaches available for protein structure prediction. Here, we discuss issues involved in utilizing such machines efficiently with the Rosetta code, including an overview of recent results of the Critical Assessment of Techniques for Protein Structure Prediction 7 (CASP7) in which the computationally demanding structure-refinement process was run on 16 racks of the IBM Blue Gene/Le system at the IBM T. J. Watson Research Center. We highlight recent advances in high-performance computing and discuss future development paths that make use of the next-generation petascale (.1012 floating-point operations per second) machines.
    [Show full text]
  • Efforts to Establish a Federally Supported Rosetta Center
    Efforts to establish a federally supported Rosetta center Jens Meiler Associate Professor Vanderbilt University Departments of Chemistry, Pharmacology, and Biomedical Informatics Center for Structural Biology, Institute of Chemical Biology NIH Biomedical Technology Research Center (BTRC) . 12/02/2008 – 1st pre-proposal submission . 20 pages of scientific and organizational description . Scored well but not yet invited for full application . 10/08/2009 – 2nd pre-proposal submission . 23 pages of scientific and organizational description . Scored excellent and was invited for full application . 09/28/2010 – 1st full proposal submission . 176 pages of 357 pages of scientific and organizational description . 03/22/2011 – NIH site visit . Scored mediocre and was not yet funded . … more to come … 18 August 2011 RosettaBTRC Review 2 RosettaCommons Consortium of 16 Laboratories Maintains Rosetta Code . Maintains core code functionality of Rosetta . Releases software semi-annually . Basis the BTRC will build upon core Andrew Leaver- Fay UNC RosettaCon 2009, Leavenworth, WA, USA 8:20 am 8:40 am Andrew Leaver‐Fay: Rosetta software development 18 August 2011 RosettaBTRC Review 3 TR&D1: Develop, Integrate, and Test Rosetta Scoring and Sampling . Feature Database and Testing System . Comparative analysis of Sampling for Energy Function Improvement Efficiency core Phil Bradley, David Baker, Brian Kuhlman, Ora Furman, FHCRC UW UNC HUJ 8:40 am 9:10 am Phil Bradley: TR&D1 ‐Rosetta scoring and sampling 18 August 2011 RosettaBTRC Review 4 TR&D2: Integrate Novel Methods for Design of Biological Function . Robotics-Inspired Conformational . Problem-Targeted Refinement of Designs Sampling with High-Order Energy Functions c o r e . Scaffolding Epitopes core and Binding Sites Tanja Kortem- Bill Schief, Jim Havranek, Jeff Gray, me, UCSF SCRIPPS Wash U JHU 9:10 am 9:30 am Jim Havranek: TR&D2 ‐Design of Function 18 August 2011 RosettaBTRC Review 5 DBP1: HIV Host-Pathogen Interactions, Nevan Krogan, UCSF .
    [Show full text]