<<

Reference list Flowering Time/Floral Transition

August 27, 2018, 5000 references

Afzal M, Alghamdi SS, Habib ur Rahman M, Ahmad A, Farooq T, Alam M, Khan IA, Ullah H, Nasim W, Fahad S: Current status and future possibilities of molecular genetics techniques in Brassica napus. Biotechnol Lett 2018, 40(3):479-492.

Dixon LE, Farre A, Finnegan EJ, Orford S, Griffiths S, Boden SA: Developmental responses of bread wheat to changes in ambient temperature following deletion of a locus that includes FLOWERING LOCUS T1. Cell Environ 2018.

Austen EJ, Weis AE: What drives selection on flowering time? An experimental manipulation of the inherent correlation between genotype and environment. Evolution 2015, 69(8):2018-2033.

Bennetzen JL, Wang X: Relationships between Gene Structure and Genome Instability in Flowering . Mol Plant 2018, 11(3):407-413.

Cai Y, Chen L, Liu X, Guo C, Sun S, Wu C, Jiang B, Han T, Hou W: CRISPR/Cas9- mediated targeted mutagenesis of GmFT2a delays flowering time in soya bean. Plant Biotechnol J 2018, 16(1):176-185.

Chen Q, Payyavula RS, Chen L, Zhang J, Zhang C, Turgeon R: FLOWERING LOCUS T mRNA is synthesized in specialized companion cells in Arabidopsisand Maryland Mammoth tobacco leaf veins. Proceedings of the National Academy of Sciences 2018.

Shah S, Weinholdt C, Jedrusik N, Molina C, Zou J, Grosse I, Schiessl S, Jung C, Emrani N: Whole-transcriptome analysis reveals genetic factors underlying flowering time regulation in rapeseed (Brassica napus L.). Plant Cell Environ 2018, 41(8):1935-1947.

Drost H-G, Gabel A, Liu J, Quint M, Grosse I: myTAI: evolutionary transcriptomics with R. Bioinformatics 2018, 34(9):1589-1590.

Fung-Uceda J, Lee K, Seo PJ, Polyn S, De Veylder L, Mas P: The Circadian Clock Sets the Time of DNA Replication Licensing to Regulate Growth in Arabidopsis. Dev Cell 2018, 45(1):101-113 e104.

Endo M, Yoshida M, Sasaki Y, Negishi K, Horikawa K, Daimon Y, Kurotani KI, Notaguchi M, Abe M, Araki T: Reevaluation of florigen transport kinetics with separation of function mutations that uncouple flowering initiation and long-distance transport. Plant Cell Physiol 2018.

Gao R, Wang Y, Gruber MY, Hannoufa A: miR156/SPL10 Modulates Lateral Root Development, Branching and Leaf Morphology in Arabidopsis by Silencing AGAMOUS- LIKE 79. Front Plant Sci 2018, 8(2226).

Huang F, Liu T, Wang J, Hou X: Isolation and functional characterization of a floral repressor, BcFLC2, from Pak-choi (Brassica rapa ssp. chinensis). Planta 2018.

Liu C, Qu X, Zhou Y, Song G, Abiri N, Xiao Y, Liang F, Jiang D, Hu Z, Yang D: OsPRR37 confers an expanded regulation of the diurnal rhythms of the transcriptome and photoperiodic flowering pathways in rice. Plant Cell Environ 2018, 41(3):630-645. Diaz-Manzano FE, Cabrera J, Ripoll JJ, Del Olmo I, Andres MF, Silva AC, Barcala M, Sanchez M, Ruiz-Ferrer V, de Almeida-Engler J, Yanofsky MF, Pineiro M, Jarillo JA, Fenoll C, Escobar C (2018) A role for the gene regulatory module microRNA172/TARGET OF EARLY ACTIVATION TAGGED 1/FLOWERING LOCUS T (miRNA172/TOE1/FT) in the feeding sites induced by Meloidogyne javanica in Arabidopsis thaliana. New Phytol. 217: 813-827

Eom H, Park SJ, Kim MK, Kim H, Kang H, Lee I (2018) TAF15b, involved in the autonomous pathway for flowering, represses transcription of FLOWERING LOCUS C. Plant J. 93: 79-91

Wu W, Zhang Y, Zhang M, Zhan X, Shen X, Yu P, Chen D, Liu Q, Sinumporn S, Hussain K, Cheng S, Cao L (2018) The rice CONSTANS-like protein OsCOL15 suppresses flowering by promoting Ghd7 and repressing RID1. Biochem. Biophys. Res. Commun. 495: 1349-1355

Adeyemo OS, Chavarriaga P, Tohme J, Fregene M, Davis SJ, Setter TL (2017) Overexpression of Arabidopsis FLOWERING LOCUS T (FT) gene improves floral development in cassava (Manihot esculenta, Crantz). PLoS ONE 12: e0181460

Ahmed S, Ariyaratne M, Patel J, Howard AE, Kalinoski A, Phuntumart V, Morris PF (2017) Altered expression of polyamine transporters reveals a role for spermidine in the timing of flowering and other developmental response pathways. Plant Sci. 258: 146-155

Alqudah AM, Schnurbusch T (2017) Heading Date Is Not Flowering Time in Spring Barley. Front. Plant Sci. 8

Badouin H, Gouzy J, Grassa CJ, Murat F, Staton SE, Cottret L, Lelandais-Briere C, Owens GL, Carrere S, Mayjonade B, Legrand L, Gill N, Kane NC, Bowers JE, Hubner S, Bellec A, Berard A, Berges H, Blanchet N, Boniface MC, Brunel D, Catrice O, Chaidir N, Claudel C, Donnadieu C, Faraut T, Fievet G, Helmstetter N, King M, Knapp SJ, Lai Z, Le Paslier MC, Lippi Y, Lorenzon L, Mandel JR, Marage G, Marchand G, Marquand E, Bret- Mestries E, Morien E, Nambeesan S, Nguyen T, Pegot-Espagnet P, Pouilly N, Raftis F, Sallet E, Schiex T, Thomas J, Vandecasteele C, Vares D, Vear F, Vautrin S, Crespi M, Mangin B, Burke JM, Salse J, Munos S, Vincourt P, Rieseberg LH, Langlade NB (2017) The sunflower genome provides insights into oil metabolism, flowering and Asterid evolution. Nature 546: 148-152

Bartrina I, Jensen H, Novak O, Strnad M, Werner T, Schmülling T (2017) Gain-of- function mutants of the Arabidopsis cytokinin receptors AHK2 and AHK3 regulate plant organ size, flowering time and plant longevity. Plant Physiology 173, 1783-1797 http://www.plantphysiol.org/content/early/2017/01/17/pp.16.01903

Bhakta MS, Gezan SA, Clavijo Michelangeli JA, Carvalho M, Zhang L, Jones JW, Boote KJ, Correll MJ, Beaver J, Osorno JM, Colbert R, Rao I, Beebe S, Goanzalez A, Ricaurte J, Vallejos CE (2017) A Predictive Model for Time-to-Flowering in the Common Bean Based on QTL and Environmental Variables. G3 (Bethesda)

Bloomer RH, Dean C (2017) Fine-tuning timing: natural variation informs the mechanistic basis of the switch to flowering in Arabidopsis thaliana. J. Exp. Bot.

Bonnafous F, Fievet G, Blanchet N, Boniface MC, Carrere S, Gouzy J, Legrand L, Marage G, Bret-Mestries E, Munos S, Pouilly N, Vincourt P, Langlade N, Mangin B (2017) Comparison of GWAS models to identify non-additive genetic control of flowering time in sunflower hybrids. Theor. Appl. Genet.

Brambilla V, Fornara F (2017) Y flowering? Regulation and activity of CONSTANS and CCT-domain proteins in Arabidopsis and crop . Biochim. Biophys. Acta 1860: 655-660

Bull SE, Alder A, Barsan C, Kohler M, Hennig L, Gruissem W, Vanderschuren H (2017) FLOWERING LOCUS T Triggers Early and Fertile Flowering in Glasshouse Cassava (Manihot esculenta Crantz). Plants (Basel) 6

Campos-Rivero G, Osorio-Montalvo P, Sanchez-Borges R, Us-Camas R, Duarte-Ake F, De-la-Pena C (2017) signaling in flowering: An epigenetic point of view. J. Plant Physiol. 214: 16-27

Catorci A, Piermarteri K, Penksza K, Hazi J, Tardella FM (2017) Filtering effect of temporal niche fluctuation and amplitude of environmental variations on the trait-related flowering patterns: lesson from sub-Mediterranean grasslands. Sci Rep 7: 12034

Cebrino J, Garcia-Castano JL, Dominguez-Vilches E, Galan C (2017) Spatio-temporal flowering patterns in Mediterranean Poaceae. A community study in SW Spain. Int. J. Biometeorol.

Chaturvedi AK, Bahuguna RN, Shah D, Pal M, Jagadish SVK (2017) High temperature stress during flowering and grain filling offsets beneficial impact of elevated CO2 on assimilate partitioning and sink-strength in rice. Sci Rep 7: 8227

Chen J, Li R, Xia Y, Bai G, Guo P, Wang Z, Zhang H, Siddique KHM (2017a) Development of EST-SSR markers in flowering Chinese cabbage (Brassica campestris L. ssp. chinensis var. utilis Tsen et Lee) based on de novo transcriptomic assemblies. PLoS ONE 12: e0184736

Chen L, Dong F, Cai J, Xin Q, Fang C, Liu L, Wan L, Yang G, Hong D (2017b) A 2.833- kb Insertion in BnFLC.A2 and Its Homeologous Exchange with BnFLC.C2 during Breeding Selection Generated Early-flowering Rapeseed. Mol. Plant

Chen L, Zhang B, Li Q (2017c) Pollinator-mediated selection on flowering phenology and floral display in a distylous herb alpicola. Sci Rep 7: 13157

Chen L, Zhang L, Yu D (2017d) Transcription factor WRKY75 interacts with DELLA proteins to affect flowering. Plant Physiol.

Chen Y, Shen Q, Lin R, Zhao Z, Shen C, Sun C (2017e) De novo transcriptome analysis in Dendrobium and identification of critical genes associated with flowering. Plant Physiol. Biochem. 119: 319-327

Cheng JZ, Zhou YP, Lv TX, Xie CP, Tian CE (2017) Research progress on the autonomous flowering time pathway in Arabidopsis. Physiol. Mol. Biol. Plants 23: 477- 485

Cho Y, Yu CY, Nakamura Y, Kanehara K (2017) Arabidopsis dolichol kinase AtDOK1 is involved in flowering time control. J. Exp. Bot. 68: 3243-3252 Cortes-Flores J, Hernandez-Esquivel KB, Gonzalez-Rodriguez A, Ibarra-Manriquez G (2017) Flowering phenology, growth forms, and pollination syndromes in tropical dry forest species: Influence of phylogeny and abiotic factors. Am. J. Bot. 104: 39-49

Costa JH, Dos Santos CP, da Cruz Saraiva KD, Arnholdt-Schmitt B (2017) A Step-by- Step Protocol for Classifying AOX Proteins in Flowering Plants. Methods Mol. Biol. 1670: 225-234

Cui M, Jia B, Liu H, Kan X, Zhang Y, Zhou R, Li Z, Yang L, Deng D, Yin Z (2017a) Genetic Mapping of the Leaf Number above the Primary Ear and Its Relationship with Plant Height and Flowering Time in Maize. Front. Plant Sci. 8: 1437

Cui Z, Tong A, Huo Y, Yan Z, Yang W, Yang X, Wang XX (2017b) SKIP controls flowering time via the alternative splicing of SEF pre-mRNA in Arabidopsis. BMC Biol 15: 80

Daccord N, Celton JM, Linsmith G, Becker C, Choisne N, Schijlen E, van de Geest H, Bianco L, Micheletti D, Velasco R, Di Pierro EA, Gouzy J, Rees DJG, Guerif P, Muranty H, Durel CE, Laurens F, Lespinasse Y, Gaillard S, Aubourg S, Quesneville H, Weigel D, van de Weg E, Troggio M, Bucher E (2017) High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development. Nat. Genet. 49: 1099-1106

Diaz-Manzano FE, Cabrera J, Ripoll JJ, Del Olmo I, Andres MF, Silva AC, Barcala M, Sanchez M, Ruiz-Ferrer V, de Almeida-Engler J, Yanofsky MF, Pineiro M, Jarillo JA, Fenoll C, Escobar C (2017) A role for the gene regulatory module microRNA172/TARGET OF EARLY ACTIVATION TAGGED 1/FLOWERING LOCUS T (miRNA172/TOE1/FT) in the feeding sites induced by Meloidogyne javanica in Arabidopsis thaliana. New Phytol.

Dittmar EL, Schemske DW (2017) The edaphic environment mediates flowering-time differentiation between adjacent populations of Leptosiphon parviflorus. J. Hered.

Dombrowski N, Schlaeppi K, Agler MT, Hacquard S, Kemen E, Garrido-Oter R, Wunder J, Coupland G, Schulze-Lefert P (2017) Root microbiota dynamics of perennial Arabis alpina are dependent on soil residence time but independent of flowering time. Isme Journal 11: 43-55

Dombrowski N, Schlaeppi K, Agler MT, Hacquard S, Kemen E, Garrido-Oter R, Wunder J, Coupland G, Schulze-Lefert P (2017) Root microbiota dynamics of perennial Arabis alpina are dependent on soil residence time but independent of flowering time. ISME J 11: 43-55. http://www.nature.com/ismej/journal/v11/n1/full/ismej2016109a.html

Drost HG, Janitza P, Grosse I, Quint M (2017) Cross-kingdom comparison of the developmental hourglass. Curr Opin Genet Dev. 2017 Mar 24;45:69-75. http://www.sciencedirect.com/science/article/pii/S0959437X16302040

Du A, Tian W, Wei M, Yan W, He H, Zhou D, Huang X, Li S, Ouyang X (2017) The DTH8-Hd1 Module Mediates Day-Length-Dependent Regulation of Rice Flowering. Mol. Plant 10: 948-961

Duffy KJ, Johnson SD (2017) Specialized mutualisms may constrain the geographical distribution of flowering plants. Proc Biol Sci 284 Durand JB, Allard A, Guitton B, van de Weg E, Bink M, Costes E (2017) Predicting Flowering Behavior and Exploring Its Genetic Determinism in an Apple Multi-family Population Based on Statistical Indices and Simplified Phenotyping. Front. Plant Sci. 8: 858

Ewas M, Khames E, Ziaf K, Shahzad R, Nishawy E, Ali F, Subthain H, Amar MH, Ayaad M, Ghaly O, Luo J (2017) The Tomato DOF Daily Fluctuations 1, TDDF1 acts as flowering accelerator and protector against various stresses. Sci Rep 7: 10299

Farhi J, Tian G, Fang H, Maxwell D, Xing T, Tian L (2017) Histone deacetylase HD2D is involved in regulating plant development and flowering time in Arabidopsis. Plant Signal. Behav. 12: e1300742

Ferradas Y, Martinez O, Rey M, Gonzalez MV (2017) Identification and expression analysis of photoreceptor genes in kiwifruit leaves under natural daylength conditions and their relationship with other genes that regulate photoperiodic flowering. J. Plant Physiol. 213: 108-121

Fiers M, Hoogenboom J, Brunazzi A, Wennekes T, Angenent GC, Immink RGH (2017) A plant-based chemical genomics screen for the identification of flowering inducers. Plant Methods 13: 78

Foley S,Gosai SJ, Wang D, Selamoglu N, Solitti AC, Köster T, Steffen A, Lyons E, Daldal F, Garcia BA, Staiger D, Deal RB, Gregory BD (2017). A global view of RNA- protein interactions reveals novel root hair cell fate regulators. Developmental Cell 41, 204-220.e5. http://www.sciencedirect.com/science/article/pii/S1534580717302022

Galpern P, Johnson SA, Retzlaff JL, Chang D, Swann J (2017) Reduced abundance and earlier collection of bumble bee workers under intensive cultivation of a mass-flowering prairie crop. Ecol Evol 7: 2414-2422

Gao C, Qi S, Liu K, Li D, Jin C, Duan S, Zhang M, Chen M (2017a) Functional characterization of Brassica napus DNA topoisomerase Ialpha-1 and its effect on flowering time when expressed in Arabidopsis thaliana. Biochem. Biophys. Res. Commun. 486: 124-129

Gao D, Chu Y, Xia H, Xu C, Heyduk K, Abernathy B, Ozias-Akins P, Leebens-Mack JH, Jackson SA (2017b) Horizontal transfer of non-LTR retrotransposons from arthropods to flowering plants. Mol. Biol. Evol.

Gao R, Gruber MY, Amyot L, Hannoufa A (2017c) SPL13 regulates shoot branching and flowering time in Medicago sativa. Plant Mol. Biol.

Gnan S, Marsh T, Kover PX (2017) photosynthetic contribution to fitness releases Arabidopsis thaliana plants from trade-off constraints on early flowering. PLoS ONE 12: e0185835

Goralogia GS, Liu TK, Zhao L, Panipinto PM, Groover ED, Bains YS, Imaizumi T (2017) CYCLING DOF FACTOR 1 represses transcription through the TOPLESS co-repressor to control photoperiodic flowering in Arabidopsis. Plant J. 92: 244-262 Gotz KP, Erekul O, Wutzke KD, Koca YO, Aksu T (2017) 15N allocation into wheat grains (Triticum aestivum L.) influenced by sowing rate and water supply at flowering under a Mediterranean climate. Isotopes Environ Health Stud 53: 274-285

Gould BA, Stinchcombe JR (2017) Population genomic scans suggest novel genes underlie convergent flowering time evolution in the introduced range of Arabidopsis thaliana. Mol. Ecol. 26: 92-106

Grab H, Blitzer EJ, Danforth B, Loeb G, Poveda K (2017) Temporally dependent pollinator competition and facilitation with mass flowering crops affects yield in co- blooming crops. Sci Rep 7: 45296

Henriques R, Wang H, Liu J, Boix M, Huang LF, Chua NH (2017) The antiphasic regulatory module comprising CDF5 and its antisense RNA FLORE links the circadian clock to photoperiodic flowering. New Phytol. 216: 854-867

Hoffmann C, Kockerling J, Biancu S, Gramm T, Michl G, Entling MH (2017) Can Flowering Greencover Crops Promote Biological Control in German Vineyards? Insects 8

Huang X, Lei Y, Guan H, Hao Y, Liu H, Sun G, Chen R, Song S (2017) Transcriptomic analysis of the regulation of stalk development in flowering Chinese cabbage (Brassica campestris) by RNA sequencing. Sci Rep 7: 15517

Human ZR, Crous CJ, Roets F, Venter SN, Wingfield MJ, de Beer ZW (2017) Biodiversity and ecology of flower-associated actinomycetes in different flowering stages of Protea repens. Antonie Leeuwenhoek

Ikeda Y, Pelissier T, Bourguet P, Becker C, Pouch-Pelissier MN, Pogorelcnik R, Weingartner M, Weigel D, Deragon JM, Mathieu O (2017) Arabidopsis proteins with a transposon-related domain act in gene silencing. Nat. Commun. 8: 15122

Jamann TM, Sood S, Wisser RJ, Holland JB (2017) High-Throughput Resequencing of Maize Landraces at Genomic Regions Associated with Flowering Time. PLoS ONE 12: e0168910

Jarvis DE, Ho YS, Lightfoot DJ, Schmöckel SM, Li B, Borm TJA, Ohyanagi H, Mineta K, Michell CT, Saber N, Kharbatia NM, Rupper RR, Sharp AR, Dally N, Boughton BA, Woo YH, Gao G, Schijlen EGWM, Guo X, Momin AA, Negrão S, Al-Babili S, Gehring C, Roessner U, Jung C, Murphy K, Arold ST, Gojobori T, Linden CGvd, van Loo EN, Jellen EN, Maughan PJ, Tester M (2017). The genome of Chenopodium quinoa. Nature 542: 307-312 http://www.nature.com/nature/journal/v542/n7641/full/nature21370.html

Jian Y, Xu C, Guo Z, Wang S, Xu Y, Zou C (2017) Maize (Zea mays L.) genome size indicated by 180-bp knob abundance is associated with flowering time. Sci Rep 7: 5954

Jung C (2017) Flowering time regulation: Agrochemical control of flowering. Nature plants 3: 17045

Keller SR, Chhatre VE, Fitzpatrick MC (2017) Influence of Range Position on Locally Adaptive Gene-Environment Associations in Populus Flowering Time Genes. J. Hered. Kiefer C, Severing E, Karl R, Bergonzi S, Koch M, Tresch A, Coupland G (2017) Divergence of annual and perennial species in the Brassicaceae and the contribution of cis-acting variation at FLC orthologues. Mol. Ecol. 26: 3437-3457

Kiseleva AA, Potokina EK, Salina EA (2017) Features of Ppd-B1 expression regulation and their impact on the flowering time of wheat near-isogenic lines. BMC Plant Biol. 17: 172

Ko D, Helariutta Y (2017) Shoot-Root Communication in Flowering Plants. Curr. Biol. 27: R973-R978

Köster T, Marondedze C, Meyer K, Staiger D (2017) RNA-binding proteins revisited – the emerging Arabidopsis mRNA interactome. Trends in Plant Science 22, 512-526. http://www.sciencedirect.com/science/article/pii/S1360138517300493

Kurokura T, Samad S, Koskela E, Mouhu K, Hytonen T (2017) Fragaria vesca CONSTANS controls photoperiodic flowering and vegetative development. J. Exp. Bot. 68: 4839-4850

Kushanov FN, Buriev ZT, Shermatov SE, Turaev OS, Norov TM, Pepper AE, Saha S, Ulloa M, Yu JZ, Jenkins JN, Abdukarimov A, Abdurakhmonov IY (2017) QTL mapping for flowering-time and photoperiod insensitivity of cotton Gossypium darwinii Watt. PLoS ONE 12: e0186240

Leeggangers H, Rosilio-Brami T, Bigas-Nadal J, Rubin N, van Dijk ADJ, Nunez de Caceres Gonzalez FF, Saadon-Shitrit S, Nijveen H, Hilhorst HWM, Immink RGH, Zaccai M (2017) Tulipa gesneriana and Lilium longiflorum PEBP Genes and Their Putative Roles in Flowering Time Control. Plant Cell Physiol.

Leydon AR, Weinreb C, Venable E, Reinders A, Ward JM, Johnson MA (2017) The Molecular Dialog between Reproductive Partners Defined by SNP- Informed RNA-Sequencing. Plant Cell 29: 984-1006

Li S, Cao Y, He J, Zhao T, Gai J (2017a) Detecting the QTL-allele system conferring flowering date in a nested association mapping population of soybean using a novel procedure. Theor. Appl. Genet. 130: 2297-2314

Li Y, Wang H, Li X, Liang G, Yu D (2017b) Two DELLA-interacting proteins bHLH48 and bHLH60 regulate flowering under long-day conditions in Arabidopsis thaliana. J. Exp. Bot. 68: 2757-2767

Li YF, Zhang MF, Zhang M, Jia GX (2017c) Analysis of global gene expression profiles during the flowering initiation process of Lilium x formolongi. Plant Mol. Biol. 94: 361- 379

Lin YL, Tsay YF (2017) Influence of differing nitrate and nitrogen availability on flowering control in Arabidopsis. J. Exp. Bot. 68: 2603-2609

Liu C, Chang C, Fei Y, Li F, Wang Q, Zhai G, Lei J (2017a) Cadmium accumulation in edible flowering cabbages in the Pearl River Delta, China: Critical soil factors and enrichment models. Environ. Pollut. Liu M, Lei L, Miao F, Powers C, Zhang X, Deng J, Tadege M, Carver BF, Yan L (2017b) The STENOFOLIA gene from Medicago alters leaf width, flowering time and chlorophyll content in transgenic wheat. Plant Biotechnol. J.

Liu W, Jiang B, Ma L, Zhang S, Zhai H, Xu X, Hou W, Xia Z, Wu C, Sun S, Wu T, Chen L, Han T (2017c) Functional diversification of Flowering Locus T homologs in soybean: GmFT1a and GmFT2a/5a have opposite roles in controlling flowering and maturation. New Phytol.

Liu X, Lister DL, Zhao Z, Petrie CA, Zeng X, Jones PJ, Staff RA, Pokharia AK, Bates J, Singh RN, Weber SA, Motuzaite Matuzeviciute G, Dong G, Li H, Lu H, Jiang H, Wang J, Ma J, Tian D, Jin G, Zhou L, Wu X, Jones MK (2017d) Journey to the east: Diverse routes and variable flowering times for wheat and barley en route to prehistoric China. PLoS ONE 12: e0187405

Liu Y, Ke L, Wu G, Xu Y, Wu X, Xia R, Deng X, Xu Q (2017e) miR3954 is a trigger of phasiRNAs that affects flowering time in citrus. Plant J. 92: 263-275

Liu Y, Zhao Q, Meng N, Song H, Li C, Hu G, Wu J, Lin S, Zhang Z (2017f) Over- expression of EjLFY-1 Leads to an Early Flowering Habit in Strawberry (Fragaria x ananassa) and Its Asexual Progeny. Front. Plant Sci. 8: 496

Lockhart J (2017) Flowering Versus Runnering: Uncovering the Protein Behind a Trait That Matters in Strawberry. Plant Cell 29: 2080-2081

Lu X, Li J, Chen H, Hu J, Liu P, Zhou B (2017) RNA-seq analysis of apical meristem reveals integrative regulatory network of ROS and chilling potentially related to flowering in Litchi chinensis. Sci Rep 7: 10183

Lucero LE, Manavella PA, Gras DE, Ariel FD, Gonzalez DH (2017) Class I and Class II TCP Transcription Factors Modulate SOC1-Dependent Flowering at Multiple Levels. Mol. Plant

Luo R, Yao X, Liu X, Zhang Y, Ying X (2017) Evaluation of the Nitric Oxide and Nitrite Scavenging Capability, N-Nitrosamine Formation Inhibitory Activity, and Optimization of Ultrasound-Assisted Aqueous Two-Phase System Extraction of Total Saponins from Coreopsis tinctoria Flowering Tops by Response Surface Methodology. Appl. Biochem. Biotechnol.

Lutz U, Nussbaumer T, Spannagel M, Diener J, Mayer KF, Schwechheimer C (2017). Natural haplotypes of FLM non-coding sequences fine-tune flowering time in ambient spring temperatures in Arabidopsis. Elife 2017 Mar 15;6. pii: e22114. https://elifesciences.org/articles/22114

Mable BK, Hagmann J, Kim ST, Adam A, Kilbride E, Weigel D, Stift M (2017) What causes mating system shifts in plants? Arabidopsis lyrata as a case study. Heredity (Edinb) 118: 52-63

Mallikarjuna BP, Samineni S, Thudi M, Sajja SB, Khan AW, Patil A, Viswanatha KP, Varshney RK, Gaur PM (2017) Molecular Mapping of Flowering Time Major Genes and QTLs in Chickpea (Cicer arietinum L.). Front. Plant Sci. 8: 1140 Mao T, Li J, Wen Z, Wu T, Wu C, Sun S, Jiang B, Hou W, Li W, Song Q, Wang D, Han T (2017) Association mapping of loci controlling genetic and environmental interaction of soybean flowering time under various photo-thermal conditions. BMC Genomics 18: 415

Marcolino-Gomes J, Nakayama TJ, Molinari HBC, Basso MF, Henning LMM, Fuganti- Pagliarini R, Harmon FG, Nepomuceno AL (2017) Functional Characterization of a Putative Glycine max ELF4 in Transgenic Arabidopsis and Its Role during Flowering Control. Front. Plant Sci. 8: 618

Masalia RR, Bewick AJ, Burke JM (2017) Connectivity in gene coexpression networks negatively correlates with rates of molecular evolution in flowering plants. PLoS ONE 12: e0182289

Melzer R (2017) Regulation of flowering time: a splicy business. J. Exp. Bot. 68: 5017- 5020

Mizunaga Y, Kudo G (2017) A linkage between flowering phenology and fruit-set success of alpine plant communities with reference to the seasonality and pollination effectiveness of bees and flies. Oecologia 185: 453-464

Monnahan PJ, Kelly JK (2017) The Genomic Architecture of Flowering Time Varies Across Space and Time in Mimulus guttatus. Genetics 206: 1621-1635

Muqaddasi QH, Brassac J, Borner A, Pillen K, Roder MS (2017) Genetic Architecture of Anther Extrusion in Spring and Winter Wheat. Front. Plant Sci. 8: 754

Murat F, Armero A, Pont C, Klopp C, Salse J (2017) Reconstructing the genome of the most recent common ancestor of flowering plants. Nat. Genet. 49: 490-496

Nasim Z, Fahim M, Ahn JH (2017) Possible Role of MADS AFFECTING FLOWERING 3 and B-BOX DOMAIN PROTEIN 19 in Flowering Time Regulation of Arabidopsis Mutants with Defects in Nonsense-Mediated mRNA Decay. Front. Plant Sci. 8: 191

Navarro JAR, Wilcox M, Burgueno J, Romay C, Swarts K, Trachsel S, Preciado E, Terron A, Delgado HV, Vidal V, Ortega A, Banda AE, Montiel NOG, Ortiz-Monasterio I, Vicente FS, Espinoza AG, Atlin G, Wenzl P, Hearne S, Buckler ES (2017) Corrigendum: A study of allelic diversity underlying flowering-time adaptation in maize landraces. Nat. Genet. 49: 970

Okada R, Nemoto Y, Endo-Higashi N, Izawa T (2017) Synthetic control of flowering in rice independent of the cultivation environment. Nature plants 3: 17039

Orth C., Niemann N., Hennig L., Essen L.-O., Batschauer A. (2017). Hyperactivity of the Arabidopsis cryptochrome 1 (cry1) L407F mutant is caused by a structural alteration close to the cry1 ATP-binding site. J.Biol. Chem. jbc.M117.788869 http://www.jbc.org/content/early/2017/06/20/jbc.M117.788869.abstract

Otto LG, Mondal P, Brassac J, Preiss S, Degenhardt J, He S, Reif JC, Sharbel TF (2017) Use of genotyping-by-sequencing to determine the genetic structure in the medicinal plant chamomile, and to identify flowering time and alpha-bisabolol associated SNP-loci by genome-wide association mapping. BMC Genomics 18: 599 Pajon M, Febres VJ, Moore GA (2017) Expression patterns of flowering genes in leaves of 'Pineapple' sweet orange [Citrus sinensis (L.) Osbeck] and pummelo (Citrus grandis Osbeck). BMC Plant Biol. 17: 146

Peters B, Aidley J, Cadzow M, Twell D, Brownfield L (2017) Identification of Cis- Regulatory Modules that Function in the Male Germline of Flowering Plants. Methods Mol. Biol. 1669: 275-293

Qin C, Chen W, Shen J, Cheng L, Akande F, Zhang K, Yuan C, Li C, Zhang P, Shi N, Cheng Q, Liu Y, Jackson S, Hong Y (2017a) A Virus-Induced Assay for Functional Dissection and Analysis of Monocot and Dicot Flowering Time Genes. Plant Physiol. 174: 875-885

Qin Z, Bai Y, Wu L (2017b) Flowering on Time: Multilayered Restrictions on FT in Plants. Mol. Plant 10: 1365-1367

Ram JP, Rajasekar N (2017) A Novel Flower Pollination Based Global Maximum Power Point Method for Solar Maximum Power Point Tracking. Ieee T Power Electr 32: 8486- 8499

Ridge S, Deokar A, Lee R, Daba K, Macknight RC, Weller JL, Tar'an B (2017) The Chickpea Early Flowering 1 (Efl1) Locus Is an Ortholog of Arabidopsis ELF3. Plant Physiol. 175: 802-815

Ritter A, Inigo S, Fernandez-Calvo P, Heyndrickx KS, Dhondt S, Shi H, De Milde L, Vanden Bossche R, De Clercq R, Eeckhout D, Ron M, Somers DE, Inze D, Gevaert K, De Jaeger G, Vandepoele K, Pauwels L, Goossens A (2017) The transcriptional repressor complex FRS7-FRS12 regulates flowering time and growth in Arabidopsis. Nat. Commun. 8: 15235

Rockwell NC, Lagarias JC (2017) Phytochrome diversification in cyanobacteria and eukaryotic algae. Curr. Opin. Plant Biol. 37: 87-93

Romero Navarro JA, Willcox M, Burgueno J, Romay C, Swarts K, Trachsel S, Preciado E, Terron A, Delgado HV, Vidal V, Ortega A, Banda AE, Montiel NO, Ortiz-Monasterio I, Vicente FS, Espinoza AG, Atlin G, Wenzl P, Hearne S, Buckler ES (2017) A study of allelic diversity underlying flowering-time adaptation in maize landraces. Nat. Genet. 49: 476-480

Ruiz JM, Marin-Guirao L, Garcia-Munoz R, Ramos-Segura A, Bernardeau-Esteller J, Perez M, Sanmarti N, Ontoria Y, Romero J, Arthur R, Alcoverro T, Procaccini G (2017) Experimental evidence of warming-induced flowering in the Mediterranean seagrass Posidonia oceanica. Mar. Pollut. Bull.

Sadeghi-Tehran P, Sabermanesh K, Virlet N, Hawkesford MJ (2017) Automated Method to Determine Two Critical Growth Stages of Wheat: Heading and Flowering. Front. Plant Sci. 8: 252

Salome PA (2017) Know Your Histone (Zip) Code: Flowering Time and Phosphorylation of Histone H2A on Serine 95. Plant Cell 29: 2084-2085

Sawettalake N, Bunnag S, Wang Y, Shen L, Yu H (2017) DOAP1 Promotes Flowering in the Orchid Dendrobium Chao Praya Smile. Front. Plant Sci. 8: 400 Schiessl S, Hüttel B, Kühn D, Reinhardt R, Snowdon RJ (2017). Post-polyploidisation morphotype diversification associates with gene copy-number variation. Scientific Reports 7, 41845, doi: 10.1038/srep41845 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5292959/

Schiessl S, Hüttel B, Kühn D, Reinhardt R, Snowdon RJ (2017). Targeted deep sequencing of flowering regulators in Brassica napus reveals extensive copy number variation. Scientific Data 4: 170013, doi: 10.1038/sdata.2017.13 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5349243/

Schwartz CJ, Lee J, Amasino R (2017) Variation in shade-induced flowering in Arabidopsis thaliana results from FLOWERING LOCUS T allelic variation. PLoS ONE 12: e0187768

Sharif J, Koseki H (2017) No Winter Lasts Forever: Polycomb Complexes Convert Epigenetic Memory of Cold into Flowering. Dev. Cell 42: 563-564

Sharma N, Ruelens P, D'Hauw M, Maggen T, Dochy N, Torfs S, Kaufmann K, Rohde A, Geuten K (2017) A Flowering Locus C Homolog Is a Vernalization-Regulated Repressor in Brachypodium and Is Cold Regulated in Wheat. Plant Physiol. 173: 1301-1315

Shen G, Niu J, Deng Z (2017) Abscisic acid treatment alleviates cadmium toxicity in purple flowering stalk (Brassica campestris L. ssp. chinensis var. purpurea Hort.) seedlings. Plant Physiol. Biochem. 118: 471-478

Shibuta M, Abe M (2017) FE Controls the Transcription of Downstream Flowering Regulators Through Two Distinct Mechanisms in Leaf Phloem Companion Cells. Plant Cell Physiol. 58: 2017-2025

Shojaei E, Mirzaie-Asl A, Mahmoudi SB, Nazeri S (2017) Identification of Sugar Beet Flowering Genes Based on Arabidopsis Homologous Genes. J Agr Sci Tech-Iran 19: 719- 729

Soares EA, Werth EG, Madronero LJ, Ventura JA, Rodrigues SP, Hicks LM, Fernandes PM (2017) Label-free quantitative proteomic analysis of pre-flowering PMeV-infected Carica papaya L. J Proteomics 151: 275-283

Song K, Kim HC, Shin S, Kim KH, Moon JC, Kim JY, Lee BM (2017) Transcriptome Analysis of Flowering Time Genes under Drought Stress in Maize Leaves. Front. Plant Sci. 8: 267

Srivastava R, Upadhyaya HD, Kumar R, Daware A, Basu U, Shimray PW, Tripathi S, Bharadwaj C, Tyagi AK, Parida SK (2017) A Multiple QTL-Seq Strategy Delineates Potential Genomic Loci Governing Flowering Time in Chickpea. Front. Plant Sci. 8: 1105

Steffen A, Staiger D (2017) Chromatin marks and ambient temperature-dependent flowering strike up a novel liaison. Genome Biology, 2017 18:119 https://doi.org/10.1186/s13059-017-1259-2

Stein A, Coriton O, Rousseau-Gueutin M, Samans B, Schiessl SV, Obermeier C, Parkin IAP, Chévre AM, Snowdon RJ (2017). Mapping of homoeologous chromosome exchanges influencing quantitative trait variation in Brassica napus. Plant Biotechnol J. http://onlinelibrary.wiley.com/doi/10.1111/pbi.12732/abstract

Storchova H (2017) The Role of Non-Coding RNAs in Cytoplasmic Male Sterility in Flowering Plants. Int J Mol Sci 18

Su Y, Wang S, Zhang F, Zheng H, Liu Y, Huang T, Ding Y (2017) Phosphorylation of Histone H2A at Serine 95: A Plant-Specific Mark Involved in Flowering Time Regulation and H2A.Z Deposition. Plant Cell 29: 2197-2213

Swarts K, Gutaker RM, Benz B, Blake M, Bukowski R, Holland J, Kruse-Peeples M, Lepak N, Prim L, Romay MC, Ross-Ibarra J, Sanchez-Gonzalez JJ, Schmidt C, Schuenemann VJ, Krause J, Matson RG, Weigel D, Buckler ES, Burbano HA (2017) Genomic estimation of complex traits reveals ancient maize adaptation to temperate North America. Science 357: 512-515

Taylor JL, Massiah A, Kennedy S, Hong Y, Jackson SD (2017a) FLC expression is down- regulated by cold treatment in Diplotaxis tenuifolia (wild rocket), but flowering time is unaffected. J. Plant Physiol. 214: 7-15

Taylor MA, Cooper MD, Sellamuthu R, Braun P, Migneault A, Browning A, Perry E, Schmitt J (2017b) Interacting effects of genetic variation for seed dormancy and flowering time on phenology, life history, and fitness of experimental Arabidopsis thaliana populations over multiple generations in the field. New Phytol. 216: 291-302

Teixido AL, Guzman B, Staggemeier VG, Valladares F (2017) Phylogeny determines flower size-dependent sex allocation at flowering in a hermaphroditic family. Plant Biol. (Stuttg.) 19: 963-972

Tenreira T, Lange MJP, Lange T, Bres C, Labadie M, Monfort A, Hernould M, Rothan C, Denoyes B (2017) A Specific Gibberellin 20-Oxidase Dictates the Flowering-Runnering Decision in Diploid Strawberry. Plant Cell 29: 2168-2182

Tiedge K, Lohaus G (2017) Nectar sugars and amino acids in day- and night-flowering Nicotiana species are more strongly shaped by pollinators' preferences than organic acids and inorganic ions. PLoS ONE 12: e0176865

Torres M, Pierantozzi P, Searles P, Rousseaux MC, Garcia-Inza G, Miserere A, Bodoira R, Contreras C, Maestri D (2017) Olive Cultivation in the Southern Hemisphere: Flowering, Water Requirements and Oil Quality Responses to New Crop Environments. Front. Plant Sci. 8: 1830

Tränkner, C., Pfeiffer, N., Kirchhoff, M., Kopisch-Obuch, F.J., van Dijk, H., Schilhabel, M., et al. (2017). Deciphering the complex nature of bolting time regulation in Beta vulgaris. Theoretical and Applied Genetics 130(8), 1649-1667. doi: 10.1007/s00122-017- 2916-2.

Trenner J, Poeschl Y, Grau J, Gogol-Döring A, Quint M, Delker C (2017). Auxin-induced expression divergence between Arabidopsis species may originate within the TIR1/AFB/AUX/IAA-ARF module. J Exp Bot. 2017 Jan 1;68(3):539-552. https://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erw457 Uhrenfeldt L, Martinsen B, Jorgensen LB, Sorensen EE (2017) The state of Danish nursing ethnographic research: flowering, nurtured or malnurtured - a critical review. Scand J Caring Sci

Verma S, Zurn JD, Salinas N, Mathey MM, Denoyes B, Hancock JF, Finn CE, Bassil NV, Whitaker VM (2017) Clarifying sub-genomic positions of QTLs for flowering habit and fruit quality in U.S. strawberry (Fragariaxananassa) breeding populations using pedigree- based QTL analysis. Horticulture research 4: 17062

Vicente J, Mendiondo GM, Movahedi M, Peirats-Llobet M, Juan YT, Shen YY, Dambire C, Smart K, Rodriguez PL, Charng YY, Gray JE, Holdsworth MJ (2017) The Cys-Arg/N- End Rule Pathway Is a General Sensor of Abiotic Stress in Flowering Plants. Curr. Biol. 27: 3183-3190 e3184

Voogd C, Brian LA, Wang T, Allan AC, Varkonyi-Gasic E (2017) Three FT and multiple CEN and BFT genes regulate maturity, flowering, and vegetative phenology in kiwifruit. J. Exp. Bot. 68: 1539-1553

Wagner L, Schmal C, Staiger D, Danisman S (2017). The Plant Leaf Movement Analyser (PALMA) - a simple tool for the analysis of periodic cotyledon and leaf movement in Arabidopsis thaliana. Plant Methods 13, 2 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5209843/

Wang H, Li Y, Pan J, Lou D, Hu Y, Yu D (2017a) The bHLH Transcription Factors MYC2, MYC3, and MYC4 Are Required for Jasmonate-Mediated Inhibition of Flowering in Arabidopsis. Mol. Plant 10: 1461-1464

Wang H, Xu C, Liu X, Guo Z, Xu X, Wang S, Xie C, Li WX, Zou C, Xu Y (2017b) Development of a multiple-hybrid population for genome-wide association studies: theoretical consideration and genetic mapping of flowering traits in maize. Sci Rep 7: 40239

Wang H, Zhong S, Tao Z, Dai J, Ge Q (2017c) Changes in flowering phenology of woody plants from 1963 to 2014 in North China. Int. J. Biometeorol.

Wang HM, Tong CG, Jang S (2017d) Current progress in orchid flowering/flower development research. Plant Signal. Behav. 12: e1322245

Watanabe S, Tsukamoto C, Oshita T, Yamada T, Anai T, Kaga A (2017) Identification of quantitative trait loci for flowering time by a combination of restriction site-associated DNA sequencing and bulked segregant analysis in soybean. Breed. Sci. 67: 277-285

Weber K, Burow M (2017) Nitrogen - essential macronutrient and signal controlling flowering time. Physiol. Plant

Wei Q, Ma C, Xu Y, Wang T, Chen Y, Lu J, Zhang L, Jiang CZ, Hong B, Gao J (2017) Control of chrysanthemum flowering through integration with an aging pathway. Nat. Commun. 8: 829

Woznicki TL, Sonsteby A, Aaby K, Martinsen BK, Heide OM, Wold AB, Remberg SF (2017) Ascorbate pool, sugars and organic acids in black currant (Ribes nigrum L.) berries are strongly influenced by genotype and post-flowering temperature. J. Sci. Food Agric. 97: 1302-1309 Wu Q, Liu X, Yin D, Yuan H, Xie Q, Zhao X, Li X, Zhu L, Li S, Li D (2017a) Constitutive expression of OsDof4, encoding a C2-C2 zinc finger transcription factor, confesses its distinct flowering effects under long- and short-day photoperiods in rice (Oryza sativa L.). BMC Plant Biol. 17: 166

Wu W, Zhang Y, Zhang M, Zhan X, Shen X, Yu P, Chen D, Liu Q, Sinumporn S, Hussain K, Cheng S, Cao L (2017b) The rice CONSTANS-like protein OsCOL15 suppresses flowering by promoting Ghd7 and repressing RID1. Biochem. Biophys. Res. Commun.

Wu W, Zheng XM, Chen D, Zhang Y, Ma W, Zhang H, Sun L, Yang Z, Zhao C, Zhan X, Shen X, Yu P, Fu Y, Zhu S, Cao L, Cheng S (2017c) OsCOL16, encoding a CONSTANS- like protein, represses flowering by up-regulating Ghd7 expression in rice. Plant Sci. 260: 60-69

Wu Y, Li QJ (2017) Phenotypic selection on flowering phenology and pollination efficiency traits between Primula populations with different pollinator assemblages. Ecol Evol 7: 7599-7608

Xin R, Zhu L, Salome PA, Mancini E, Marshall CM, Harmon FG, Yanovsky MJ, Weigel D, Huq E (2017) SPF45-related splicing factor for phytochrome signaling promotes photomorphogenesis by regulating pre-mRNA splicing in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 114: E7018-E7027

Xu C, Zhang Y, Yu Y, Li Y, Wei S (2017) Suppression of Arabidopsis flowering by near- null magnetic field is mediated by auxin. Bioelectromagnetics

Yan Z, Jia J, Yan X, Shi H, Han Y (2017) Arabidopsis KHZ1 and KHZ2, two novel non- tandem CCCH zinc-finger and K-homolog domain proteins, have redundant roles in the regulation of flowering and senescence. Plant Mol. Biol. 95: 549-565

Yeoh SH, Satake A, Numata S, Ichie T, Lee SL, Basherudin N, Muhammad N, Kondo T, Otani T, Hashim M, Tani N (2017) Unravelling proximate cues of mass flowering in the tropical forests of South-East Asia from gene expression analyses. Mol. Ecol. 26: 5074- 5085

Yi H, Li X, Lee SH, Nou IS, Lim YP, Hur Y (2017) Natural variation in CIRCADIAN CLOCK ASSOCIATED 1 is associated with flowering time in Brassica rapa. Genome 60: 402-413

Yuan HY, Saha S, Vandenberg A, Bett KE (2017) Flowering and Growth Responses of Cultivated Lentil and Wild Lens Germplasm toward the Differences in Red to Far-Red Ratio and Photosynthetically Active Radiation. Front. Plant Sci. 8: 386

Zhang GZ, Jin SH, Li P, Jiang XY, Li YJ, Hou BK (2017a) Ectopic expression of UGT84A2 delayed flowering by indole-3-butyric acid-mediated transcriptional repression of ARF6 and ARF8 genes in Arabidopsis. Plant Cell Rep. 36: 1995-2006

Zhang X, Zuo B, Song Z, Wang W, He Y, Liu Y, Cai D (2017b) Breeding and study of two new photoperiod- and thermo-sensitive genic male sterile lines of polyploid rice (Oryza sativa L.). Sci Rep 7: 14744 Zhao C, Xu W, Song X, Dai W, Dai L, Zhang Z, Qiang S (2017) Early flowering and rapid grain filling determine early maturity and escape from harvesting in weedy rice. Pest Manag. Sci.

Zheng Z, Yang X, Fu Y, Zhu L, Wei H, Lin X (2017) Overexpression of PvPin1, a Bamboo Homolog of PIN1-Type Parvulin 1, Delays Flowering Time in Transgenic Arabidopsis and Rice. Front. Plant Sci. 8: 1526

Zhu YJ, Fan YY, Wang K, Huang DR, Liu WZ, Ying JZ, Zhuang JY (2017) Rice Flowering Locus T 1 plays an important role in heading date influencing yield traits in rice. Sci Rep 7: 4918

Zhu W, Hu B, Becker C, Dogan ES, Berendzen KW, Weigel D, Liu C (2017) Altered chromatin compaction and histone methylation drive non-additive gene expression in an interspecific Arabidopsis hybrid. Genome Biol. 18: 157

Pucker B, Holtgräwe D, Rosleff Sörensen T, Stracke R, Viehöver P, Weisshaar B (2016). A De Novo Genome Sequence Assembly of the Arabidopsis thaliana Accession Niederzenz-1 Displays Presence/Absence Variation and Stron Synteny. PLoS One. 2016 Oct 6;11(10):e0164321 doi: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0164321

Lewinski M, Hallmann A, Staiger D (2016). Genome-wide identification and phylogenetic analysis of plant RNA binding proteins comprising both RNA recognition motifs and contiguous glycine residues. Mol Genet Genomics 291, 763-773 https://link.springer.com/article/10.1007%2Fs00438-015-1144-1

Simpson CG, Fuller J, Calixto CPG, McNicol J, Booth C, Brown JWS, Staiger D (2016). Monitoring Alternative Splicing Changes in Arabidopsis Circadian Clock Genes. Methods in Molecular Biology 1398, 119-132. https://link.springer.com/protocol/10.1007%2F978- 1-4939-3356-3_11

Tal I, Zhang Y, Jørgensen ME, Pisanty O, Barbosa IC, Zourelidou M, Regnault T, Crocoll C, Olsen CE, Weinstain R, Schwechheimer C, Halkier BA, Nour-Eldin HH, Estelle M, Shani E. (2016). The Arabidopsis NPF3 protein is a GA transporter. Nat Commun. 2016 May 3;7:11486. https://www.nature.com/articles/ncomms11486

Drost HG, Bellstädt J, Ó'Maoiléidigh DS, Silva AT, Gabel A, Weinholdt C, Ryan PT, Dekkers BJ, Bentsink L, Hilhorst HW, Ligterink W, Wellmer F, Grosse I, Quint M (2016). Post-embryonic Hourglass Patterns Mark Ontogenetic Transitions in Plant Development. Mol Biol Evol. 2016 May;33(5):1158-63. https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msw039

Tränkner C, Lemnian IM, Emrani N, Pfeiffer N, Tiwari SP, Kopisch-Obuch FJ, Vogt SH, Müller AE, Schilhabel M, Jung C, Grosse I (2016) A Detailed Analysis of the BR1 Locus Suggests a New Mechanism for Bolting after Winter in Sugar Beet (Beta vulgaris L.). Frontiers in Plant Science 7: 1662 https://doi.org/10.3389/fpls.2016.01662

Maurer A, Sannemann W, Leon J, Pillen K (2016). Estimating parent-specific QTL effects through cumulating linked identity-by-state SNP effects in multiparental populations. Heredity (Edinb) http://www.nature.com/hdy/journal/vaop/ncurrent/full/hdy2016121a.html Hyun Y, Richter R, Vincent C, Martinez-Gallegos R, Porri A, Coupland G (2016) Multi- layered Regulation of SPL15 and Cooperation with SOC1 Integrate Endogenous Flowering Pathways at the Arabidopsis Shoot Meristem. Dev. Cell 37: 254-266

Sun P, Miao H, Yu X, Jia C, Liu J, Zhang J, Wang J, Wang Z, Wang A, Xu B, Jin Z (2016) A Novel Role for Banana MaASR in the Regulation of Flowering Time in Transgenic Arabidopsis. PLoS ONE 11 (8):e0160690. doi:doi:10.1371/journal.pone.0160690

Zhao XY, Hong P, Wu JY, Chen XB, Ye XG, Pan YY, Wang J, Zhang XS (2016) The tae-miR408-Mediated Control of TaTOC1 Genes Transcription Is Required for the Regulation of Heading Time in Wheat. Plant Physiol 170 (3):1578-1594. doi:10.1104/pp.15.01216

Zhao C, Takeshima R, Zhu J, Xu M, Sato M, Watanabe S, Kanazawa A, Liu B, Kong F, Yamada T, Abe J (2016) A recessive allele for delayed flowering at the soybean maturity locus E9 is a leaky allele of FT2a, a FLOWERING LOCUS T ortholog. BMC Plant Biol 16:20. doi:10.1186/s12870-016-0704-9

Xu L, Hu K, Zhang Z, Guan C, Chen S, Hua W, Li J, Wen J, Yi B, Shen J, Ma C, Tu J, Fu T (2016) Genome-wide association study reveals the genetic architecture of flowering time in rapeseed (Brassica napus L.). DNA Research: An International Journal for Rapid Publication of Reports on Genes and Genomes 23 (1):43-52. doi:10.1093/dnares/dsv035

Xu D, Zhu D, Deng XW (2016) The role of COP1 in repression of photoperiodic flowering. F1000Research 5:F1000 Faculty Rev-1178. doi:10.12688/f1000research.7346.1

Wu Z, Ietswaart R, Liu F, Yang H, Howard M, Dean C (2016) Quantitative regulation of FLC via coordinated transcriptional initiation and elongation. Proceedings of the National Academy of Sciences 113 (1):218-223. doi:10.1073/pnas.1518369112

Wei J, Choi H, Jin P, Wu Y, Yoon J, Lee Y-S, Quan T, An G GL2-type homeobox gene Roc4 in rice promotes flowering time preferentially under long days by repressing Ghd7. Plant Sci. doi:http://dx.doi.org/10.1016/j.plantsci.2016.07.012

Wei FJ, Tsai YC, Wu HP, Huang LT, Chen YC, Chen YF, Wu CC, Tseng YT, Hsing YI (2016) Both Hd1 and Ehd1 are important for artificial selection of flowering time in cultivated rice. Plant Sci 242:187-194. doi:10.1016/j.plantsci.2015.09.005

Wang Y, Gu Y, Gao H, Qiu L, Chang R, Chen S, He C (2016) Molecular and geographic evolutionary support for the essential role of GIGANTEAa in soybean domestication of flowering time. BMC Evol Biol 16 (1):1-13. doi:10.1186/s12862-016-0653-9

Wang N, Chen B, Xu K, Gao G, Li F, Qiao J, Yan G, Li J, Li H, Wu X (2016) Association mapping of flowering time QTLs and insight into their contributions to rapeseed growth habits. Front Plant Sci 7. doi:10.3389/fpls.2016.00338

Shibaya T, Hori K, Ogiso-Tanaka E, Yamanouchi U, Shu K, Kitazawa N, Shomura A, Ando T, Ebana K, Wu J, Yamazaki T, Yano M (2016) Hd18, encoding histone acetylase related to Arabidopsis FLOWERING LOCUS D, is involved in the control of flowering time in rice. Plant Cell Physiol. doi:10.1093/pcp/pcw105 Qüesta JI, Song J, Geraldo N, An H, Dean C (2016) Arabidopsis transcriptional repressor VAL1 triggers Polycomb silencing at FLC during vernalization. Science 353 (6298):485- 488. doi:10.1126/science.aaf7354

Preston JC, Zhong J, McKeown M, den Bakker M, Friedman J (2016) Comparative Transcriptomics Indicates a Role for SHORT VEGETATIVE PHASE (SVP) Genes in Mimulus guttatus Vernalization Response. G3: Genes|Genomes|Genetics 6 (5):1239-1249. doi:10.1534/g3.115.026468

Muterko A, Kalendar R, Salina E (2016) Novel alleles of the VERNALIZATION1 genes in wheat are associated with modulation of DNA curvature and flexibility in the promoter region. BMC Plant Biol 16 (Suppl 1):9. doi:10.1186/s12870-015-0691-2

Lee Y-S, Yi J, An G (2016) OsPhyA modulates rice flowering time mainly through OsGI under short days and Ghd7 under long days in the absence of phytochrome B. Plant Mol Biol:1-15. doi:10.1007/s11103-016-0474-7

Kang MY, Kwon HY, Kim NY, Sakuraba Y, Paek NC (2015) CONSTITUTIVE PHOTOMORPHOGENIC 10 (COP10) Contributes to Floral Repression under Non- Inductive Short Days in Arabidopsis. Int J Mol Sci 16 (11):26493-26505. doi:10.3390/ijms161125969

Irwin JA, Soumpourou E, Lister C, Ligthart JD, Kennedy S, Dean C (2016) Nucleotide polymorphism affecting FLC expression underpins heading date variation in horticultural brassicas. Plant J. doi:10.1111/tpj.13221

Hwang S-G, Kim J-H, Jang CS (2016) A major QTL and a candidate gene for heading date in an early maturing rice mutant induced by gamma ray irradiation. Genes & Genomics 38 (8):747-756. doi:10.1007/s13258-016-0419-1

Huo H, Wei S, Bradford KJ (2016) DELAY OF GERMINATION1 (DOG1) regulates both seed dormancy and flowering time through microRNA pathways. Proceedings of the National Academy of Sciences. doi:10.1073/pnas.1600558113

Hou C-J, Yang C-H (2016) Comparative analysis of the pteridophyte Adiantum MFT ortholog reveals the specificity of combined FT/MFT C and N terminal interaction with FD for the regulation of the downstream gene AP1. Plant Mol Biol 91 (4):563-579. doi:10.1007/s11103-016-0489-0

Halliwell J, Borrill P, Gordon A, Kowalczyk R, Pagano ML, Saccomanno B, Bentley AR, Uauy C, Cockram J (2016) Systematic Investigation of FLOWERING LOCUS T-Like Poaceae Gene Families Identifies the Short-Day Expressed Flowering Pathway Gene, TaFT3 in Wheat (Triticum aestivum L.). Front Plant Sci 7:857. doi:10.3389/fpls.2016.00857

Guedira M, Xiong M, Hao YF, Johnson J, Harrison S, Marshall D, Brown-Guedira G (2016) Heading Date QTL in Winter Wheat (Triticum aestivum L.) Coincide with Major Developmental Genes VERNALIZATION1 and PHOTOPERIOD1. PLoS ONE 11 (5):e0154242. doi:10.1371/journal.pone.0154242

Grogan SM, Brown-Guedira G, Haley SD, McMaster GS, Reid SD, Smith J, Byrne PF (2016) Allelic Variation in Developmental Genes and Effects on Winter Wheat Heading Date in the U.S. Great Plains. PLoS ONE 11 (4):e0152852. doi:10.1371/journal.pone.0152852

Graeff M, Straub D, Eguen T, Dolde U, Rodrigues V, Brandt R, Wenkel S (2016) MicroProtein-Mediated Recruitment of CONSTANS into a TOPLESS Trimeric Complex Represses Flowering in Arabidopsis. PLoS Genet 12 (3):e1005959. doi:10.1371/journal.pgen.1005959

Grabowski PP, Evans J, Daum C, Deshpande S, Barry KW, Kennedy M, Ramstein G, Kaeppler SM, Buell CR, Jiang Y, Casler MD (2016) Genome-wide associations with flowering time in switchgrass using exome-capture sequencing data. New Phytol:n/a-n/a. doi:10.1111/nph.14101

Franks SJ, Perez-Sweeney B, Strahl M, Nowogrodzki A, Weber JJ, Lalchan R, Jordan KP, Litt A (2015) Variation in the flowering time orthologs BrFLC and BrSOC1 in a natural population of Brassica rapa. PeerJ 3:e1339. doi:10.7717/peerj.1339

Fe D, Cericola F, Byrne S, Lenk I, Ashraf BH, Pedersen MG, Roulund N, Asp T, Janss L, Jensen CS, Jensen J (2015) Genomic dissection and prediction of heading date in perennial ryegrass. BMC Genomics 16 (1):921. doi:10.1186/s12864-015-2163-3

Du Y, He W, Deng C, Chen X, Gou L, Zhu F, Guo W, Zhang J, Wang T (2016) Flowering-Related RING Protein 1 (FRRP1) Regulates Flowering Time and Yield Potential by Affecting Histone H2B Monoubiquitination in Rice (Oryza sativa). PLoS ONE 11 (3):e0150458. doi:10.1371/journal.pone.0150458

Driedonks N, Rieu I, Vriezen WH (2016) Breeding for plant heat tolerance at vegetative and reproductive stages. Plant Reproduction 29:67-79. doi:10.1007/s00497-016-0275-9

Castede S, Campoy JA, Le Dantec L, Quero-Garcia J, Barreneche T, Wenden B, Dirlewanger E (2015) Mapping of Candidate Genes Involved in Bud Dormancy and Flowering Time in Sweet Cherry (Prunus avium). PLoS ONE 10 (11):e0143250. doi:10.1371/journal.pone.0143250

Zumajo-Cardona C, Pabon-Mora N (2016) Evolution of the APETALA2 Gene Lineage in Seed Plants. Mol Biol Evol 33 (7):1818-1832. doi:10.1093/molbev/msw059

Zhao X, Huang L, Zhang X, Wang J, Yan D, Li J, Tang L, Li X, Shi T (2016) Construction of high-density genetic linkage map and identification of flowering-time QTLs in orchardgrass using SSRs and SLAF-seq. Sci Rep 6:29345. doi:10.1038/srep29345

Zhang X, Zhai H, Wang Y, Tian X, Zhang Y, Wu H, Lu S, Yang G, Li Y, Wang L, Hu B, Bu Q, Xia Z (2016) Functional conservation and diversification of the soybean maturity gene E1 and its homologs in legumes. Sci Rep 6:29548. doi:10.1038/srep29548

Zhang X, Meng L, Liu B, Hu Y, Cheng F, Liang J, Aarts MG, Wang X, Wu J (2015) A transposon insertion in FLOWERING LOCUS T is associated with delayed flowering in Brassica rapa. Plant Sci 241:211-220. doi:10.1016/j.plantsci.2015.10.007

Zhang S, Zhang D, Fan S, Du L, Shen Y, Xing L, Li Y, Ma J, Han M (2016) Effect of exogenous GA3 and its inhibitor paclobutrazol on floral formation, endogenous hormones, and flowering-associated genes in 'Fuji' apple (Malus domestica Borkh.). Plant Physiol Biochem 107:178-186. doi:10.1016/j.plaphy.2016.06.005

Zhang S, Lan Q, Gao X, Yang B, Cai C, Zhang T, Zhou B (2016) Mapping of genes for flower-related traits and QTLs for flowering time in an interspecific population of Gossypium hirsutum x G. darwinii. J Genet 95 (1):197-201

Zhang L, Liu G, Jia J, Zhao G, Xia C, Zhang L, Li F, Zhang Q, Dong C, Gao S, Han L, Guo X, Zhang X, Wu J, Liu X, Kong X (2015) The wheat MYB-related transcription factor TaMYB72 promotes flowering in rice. J Integr Plant Biol. doi:10.1111/jipb.12461

Zhang C, Liu J, Zhao T, Gomez A, Li C, Yu C, Li H, Lin J, Yang Y, Liu B, Lin C (2016) A Drought-Inducible Transcription Factor Delays Reproductive Timing in Rice. Plant Physiol 171 (1):334-343. doi:10.1104/pp.16.01691

Zhai H, Ning W, Wu H, Zhang X, Lu S, Xia Z (2016) DNA-binding protein phosphatase AtDBP1 acts as a promoter of flowering in Arabidopsis. Planta 243 (3):623-633. doi:10.1007/s00425-015-2433-y

Zavala-Gonzalez EA, Rodriguez-Cazorla E, Escudero N, Aranda-Martinez A, Martinez- Laborda A, Ramirez-Lepe M, Vera A, Lopez-Llorca LV (2016) Arabidopsis thaliana root colonization by the nematophagous fungus Pochonia chlamydosporia is modulated by jasmonate signaling and leads to accelerated flowering and improved yield. New Phytol. doi:10.1111/nph.14106

Yu Y, Liu Z, Wang L, Kim SG, Seo PJ, Qiao M, Wang N, Li S, Cao X, Park CM, Xiang F (2016) WRKY71 accelerates flowering via the direct activation of FLOWERING LOCUS T and LEAFY in Arabidopsis thaliana. Plant J 85 (1):96-106. doi:10.1111/tpj.13092

Yu K, Wang X, Chen F, Chen S, Peng Q, Li H, Zhang W, Hu M, Chu P, Zhang J, Guan R (2016) Genome-wide transcriptomic analysis uncovers the molecular basis underlying early flowering and apetalous characteristic in Brassica napus L. Sci Rep 6:30576. doi:10.1038/srep30576

Yu D, Hu Y, Wang H, Pan J, Li Y, Lou D (2016) The DELLA-CONSTANS transcription factor cascade integrates gibberelic acid and photoperiod signaling to regulate flowering. Plant Physiol. doi:10.1104/pp.16.00891

Yu CW, Chang KY, Wu K (2016) Genome-Wide Analysis of Gene Regulatory Networks of the FVE-HDA6-FLD Complex in Arabidopsis. Front Plant Sci 7:555. doi:10.3389/fpls.2016.00555

Yamagishi N, Kume K, Hikage T, Takahashi Y, Bidadi H, Wakameda K, Saitoh Y, Yoshikawa N, Tsutsumi K (2016) Identification and functional analysis of SVP ortholog in herbaceous perennial plant Gentiana triflora: Implication for its multifunctional roles. Plant Sci 248:1-7. doi:10.1016/j.plantsci.2016.04.003

Xu F, Li T, Xu PB, Li L, Du SS, Lian HL, Yang HQ (2016) DELLA proteins physically interact with CONSTANS to regulate flowering under long days in Arabidopsis. FEBS Lett 590 (4):541-549. doi:10.1002/1873-3468.12076 Wolabu TW, Zhang F, Niu L, Kalve S, Bhatnagar-Mathur P, Muszynski MG, Tadege M (2016) Three FLOWERING LOCUS T-like genes function as potential florigens and mediate photoperiod response in sorghum. New Phytol 210 (3):946-959. doi:10.1111/nph.13834

Weng L, Bai X, Zhao F, Li R, Xiao H (2016) Manipulation of flowering time and branching by overexpression of the tomato transcription factor SlZFP2. Plant Biotechnol J. doi:10.1111/pbi.12584

Wang W, Franklin SB, Lu Z, Rude BJ (2016) Delayed Flowering in Bamboo: Evidence from Fargesia qinlingensis in the Qinling Mountains of China. Front Plant Sci 7:151. doi:10.3389/fpls.2016.00151

Wada T, Tominaga-Wada R (2015) CAPRICE family genes control flowering time through both promoting and repressing CONSTANS and FLOWERING LOCUS T expression. Plant Sci 241:260-265. doi:10.1016/j.plantsci.2015.10.015

Vidigal DS, Marques AC, Willems LA, Buijs G, Mendez-Vigo B, Hilhorst HW, Bentsink L, Pico FX, Alonso-Blanco C (2016) Altitudinal and climatic associations of seed dormancy and flowering traits evidence adaptation of annual life cycle timing in Arabidopsis thaliana. Plant Cell Environ 39 (8):1737-1748. doi:10.1111/pce.12734

Takeshima R, Hayashi T, Zhu J, Zhao C, Xu M, Yamaguchi N, Sayama T, Ishimoto M, Kong L, Shi X, Liu B, Tian Z, Yamada T, Kong F, Abe J (2016) A soybean quantitative trait locus that promotes flowering under long days is identified as FT5a, a FLOWERING LOCUS T ortholog. J Exp Bot. doi:10.1093/jxb/erw283

Szabo B, Vincze E, Czucz B (2016) Flowering phenological changes in relation to climate change in Hungary. Int J Biometeorol. doi:10.1007/s00484-015-1128-1

Sun X, Zhang Z, Wu J, Cui X, Feng D, Wang K, Xu M, Zhou L, Han X, Gu X, Lu T (2016) The Oryza sativa Regulator HDR1 Associates with the Kinase OsK4 to Control Photoperiodic Flowering. PLoS Genet 12 (3):e1005927. doi:10.1371/journal.pgen.1005927

Sun P, Miao H, Yu X, Jia C, Liu J, Zhang J, Wang J, Wang Z, Wang A, Xu B, Jin Z (2016) A Novel Role for Banana MaASR in the Regulation of Flowering Time in Transgenic Arabidopsis. PLoS ONE 11 (8):e0160690. doi:10.1371/journal.pone.0160690

Sun LM, Zhang JZ, Hu CG (2016) Characterization and Expression Analysis of PtAGL24, a SHORT VEGETATIVE PHASE/AGAMOUS-LIKE 24 (SVP/AGL24)-Type MADS-Box Gene from Trifoliate Orange (Poncirus trifoliata L. Raf.). Front Plant Sci 7:823. doi:10.3389/fpls.2016.00823

Sheng P, Wu F, Tan J, Zhang H, Ma W, Chen L, Wang J, Wang J, Zhu S, Guo X, Wang J, Zhang X, Cheng Z, Bao Y, Wu C, Liu X, Wan J (2016) A CONSTANS-like transcriptional activator, OsCOL13, functions as a negative regulator of flowering downstream of OsphyB and upstream of Ehd1 in rice. Plant Mol Biol. doi:10.1007/s11103-016-0506-3

Sharma N, Xin R, Kim DH, Sung S, Lange T, Huq E (2016) NO FLOWERING IN SHORT DAY (NFL) is a bHLH transcription factor that promotes flowering specifically under short-day conditions in Arabidopsis. Development 143 (4):682-690. doi:10.1242/dev.128595

Serrano-Mislata A, Fernandez-Nohales P, Domenech MJ, Hanzawa Y, Bradley D, Madueno F (2016) Separate elements of the TERMINAL FLOWER 1 cis-regulatory region integrate pathways to control flowering time and shoot meristem identity. Development. doi:10.1242/dev.135269

Sanchez-Bermejo E, Balasubramanian S (2016) Natural variation involving deletion alleles of FRIGIDA modulate temperature-sensitive flowering responses in Arabidopsis thaliana. Plant Cell Environ 39 (6):1353-1365. doi:10.1111/pce.12690

Pegoraro L, Cafasso D, Rinaldi R, Cozzolino S, Scopece G (2016) Habitat preference and flowering-time variation contribute to reproductive isolation between diploid and autotetraploid Anacamptis pyramidalis. J Evol Biol. doi:10.1111/jeb.12930

Paytuvi Gallart A, Hermoso Pulido A, Anzar Martinez de Lagran I, Sanseverino W, Aiese Cigliano R (2016) GREENC: a Wiki-based database of plant lncRNAs. Nucleic Acids Res 44 (D1):D1161-1166. doi:10.1093/nar/gkv1215

Panchy N, Lehti-Shiu M, Shiu SH (2016) Evolution of Gene Duplication in Plants. Plant Physiol 171 (4):2294-2316. doi:10.1104/pp.16.00523

Pajoro A, Verhage L, Immink RG (2016) Plasticity versus Adaptation of Ambient- Temperature Flowering Response. Trends Plant Sci 21 (1):6-8. doi:10.1016/j.tplants.2015.11.015

Nemoto Y, Nonoue Y, Yano M, Izawa T (2016) Hd1,a CONSTANS ortholog in rice, functions as an Ehd1 repressor through interaction with monocot-specific CCT-domain protein Ghd7. Plant J 86 (3):221-233. doi:10.1111/tpj.13168

Nelson MN, Ksiazkiewicz M, Rychel S, Besharat N, Taylor CM, Wyrwa K, Jost R, Erskine W, Cowling WA, Berger JD, Batley J, Weller JL, Naganowska B, Wolko B (2016) The loss of vernalization requirement in narrow-leafed lupin is associated with a deletion in the promoter and de-repressed expression of a Flowering Locus T (FT) homologue. New Phytol. doi:10.1111/nph.14094

Nakamichi N, Takao S, Kudo T, Kiba T, Wang Y, Kinoshita T, Sakakibara H (2016) Improvement of Arabidopsis Biomass and Cold, Drought and Salinity Stress Tolerance by Modified Circadian Clock-Associated PSEUDO-RESPONSE REGULATORs. Plant Cell Physiol 57 (5):1085-1097. doi:10.1093/pcp/pcw057

Meir M, Ransbotyn V, Raveh E, Barak S, Tel-Zur N, Zaccai M (2016) Dormancy release and flowering time in Ziziphus jujuba Mill., a "direct flowering" fruit tree, has a facultative requirement for chilling. J Plant Physiol 192:118-127. doi:10.1016/j.jplph.2016.02.002

McCaw ME, Wallace JG, Albert PS, Buckler ES, Birchler JA (2016) Fast-Flowering Mini-Maize: Seed to Seed in 60 Days. Genetics. doi:10.1534/genetics.116.191726

Mahrez W, Shin J, Munoz-Viana R, Figueiredo DD, Trejo-Arellano MS, Exner V, Siretskiy A, Gruissem W, Kohler C, Hennig L (2016) BRR2a Affects Flowering Time via FLC Splicing. PLoS Genet 12 (4):e1005924. doi:10.1371/journal.pgen.1005924 Liu Y, Yang J, Yang M (2015) [Pathways of flowering regulation in plants]. Sheng Wu Gong Cheng Xue Bao 31 (11):1553-1566

Liu XR, Pan T, Liang WQ, Gao L, Wang XJ, Li HQ, Liang S (2016) Overexpression of an Orchid (Dendrobium nobile) SOC1/TM3-Like Ortholog, DnAGL19, in Arabidopsis Regulates HOS1-FT Expression. Front Plant Sci 7:99. doi:10.3389/fpls.2016.00099

Liu X, Zhang J, Abuahmad A, Franks RG, Xie DY, Xiang QY (2016) Analysis of two TFL1 homologs of dogwood species (Cornus L.) indicates functional conservation in control of transition to flowering. Planta 243 (5):1129-1141. doi:10.1007/s00425-016- 2466-x

Liu B, Wei G, Shi J, Jin J, Shen T, Ni T, Shen WH, Yu Y, Dong A (2016) SET DOMAIN GROUP 708, a histone H3 lysine 36-specific methyltransferase, controls flowering time in rice (Oryza sativa). New Phytol 210 (2):577-588. doi:10.1111/nph.13768

Liu B, Berr A, Chang C, Liu C, Shen WH, Ruan Y (2016) Interplay of the histone methyltransferases SDG8 and SDG26 in the regulation of transcription and plant flowering and development. Biochim Biophys Acta 1859 (4):581-590. doi:10.1016/j.bbagrm.2016.02.003

Li YX, Li C, Bradbury PJ, Liu X, Lu F, Romay CM, Glaubitz JC, Wu X, Peng B, Shi Y, Song Y, Zhang D, Buckler ES, Zhang Z, Li Y, Wang T (2016) Identification of genetic variants associated with maize flowering time using an extremely large multi-genetic background population. Plant J 86 (5):391-402. doi:10.1111/tpj.13174

Li YH, Wu QS, Huang X, Liu SH, Zhang HN, Zhang Z, Sun GM (2016) Molecular Cloning and Characterization of Four Genes Encoding Ethylene Receptors Associated with Pineapple (Ananas comosus L.) Flowering. Front Plant Sci 7:710. doi:10.3389/fpls.2016.00710

Li S, Yue W, Wang M, Qiu W, Zhou L, Shou H (2016) Mutation of OsGIGANTEA Leads to Enhanced Tolerance to Polyethylene Glycol-Generated Osmotic Stress in Rice. Front Plant Sci 7:465. doi:10.3389/fpls.2016.00465

Li M, An F, Li W, Ma M, Feng Y, Zhang X, Guo H (2016) DELLA proteins interact with FLC to repress flowering transition. J Integr Plant Biol 58 (7):642-655. doi:10.1111/jipb.12451

Li L, Li X, Liu Y, Liu H (2016) Flowering responses to light and temperature. Sci China Life Sci 59 (4):403-408. doi:10.1007/s11427-015-4910-8

Li D, Wang X, Zhang X, Chen Q, Xu G, Xu D, Wang C, Liang Y, Wu L, Huang C, Tian J, Wu Y, Tian F (2016) The genetic architecture of leaf number and its genetic relationship to flowering time in maize. New Phytol 210 (1):256-268. doi:10.1111/nph.13765

Lee YS, Yi J, An G (2016) OsPhyA modulates rice flowering time mainly through OsGI under short days and Ghd7 under long days in the absence of phytochrome B. Plant Mol Biol 91 (4-5):413-427. doi:10.1007/s11103-016-0474-7

Lazare S, Zaccai M (2016) Flowering pathway is regulated by bulb size in Lilium longiflorum (Easter lily). Plant Biol (Stuttg) 18 (4):577-584. doi:10.1111/plb.12440 Kwak JS, Son GH, Kim SI, Song JT, Seo HS (2016) Arabidopsis HIGH PLOIDY2 Sumoylates and Stabilizes Flowering Locus C through Its E3 Ligase Activity. Front Plant Sci 7:530. doi:10.3389/fpls.2016.00530

Kryvokhyzha D, Holm K, Chen J, Cornille A, Glemin S, Wright SI, Lagercrantz U, Lascoux M (2016) The influence of population structure on gene expression and flowering time variation in the ubiquitous weed Capsella bursa-pastoris (Brassicaceae). Mol Ecol 25 (5):1106-1121. doi:10.1111/mec.13537

Kiseleva AA, Shcherban AB, Leonova IN, Frenkel Z, Salina EA (2016) Identification of new heading date determinants in wheat 5B chromosome. BMC Plant Biol 16 Suppl 1:8. doi:10.1186/s12870-015-0688-x

Kinmonth-Schultz HA, Tong X, Lee J, Song YH, Ito S, Kim SH, Imaizumi T (2016) Cool night-time temperatures induce the expression of CONSTANS and FLOWERING LOCUS T to regulate flowering in Arabidopsis. New Phytol 211 (1):208-224. doi:10.1111/nph.13883

Kim W, Kim HE, Jun AR, Jung MG, Jin S, Lee JH, Ahn JH (2016) Structural determinants of miR156a precursor processing in temperature-responsive flowering in Arabidopsis. J Exp Bot 67 (15):4659-4670. doi:10.1093/jxb/erw248

Jordan CY, Ally D, Hodgins KA (2015) When can stress facilitate divergence by altering time to flowering? Ecol Evol 5 (24):5962-5973. doi:10.1002/ece3.1821

Jeong HJ, Yang J, Cho LH, An G (2016) OsVIL1 controls flowering time in rice by suppressing OsLF under short days and by inducing Ghd7 under long days. Plant Cell Rep 35 (4):905-920. doi:10.1007/s00299-015-1931-5

Jagadish SV, Bahuguna RN, Djanaguiraman M, Gamuyao R, Prasad PV, Craufurd PQ (2016) Implications of High Temperature and Elevated CO2 on Flowering Time in Plants. Front Plant Sci 7:913. doi:10.3389/fpls.2016.00913

Ivanicova Z, Jakobson I, Reis D, Safar J, Milec Z, Abrouk M, Dolezel J, Jarve K, Valarik M (2016) Characterization of new allele influencing flowering time in bread wheat introgressed from Triticum militinae. N Biotechnol 33 (5 Pt B):718-727. doi:10.1016/j.nbt.2016.01.008

Hyun KG, Oh JE, Park J, Noh YS, Song JJ (2016) Structural Analysis of FRIGIDA Flowering-Time Regulator. Mol Plant 9 (4):618-620. doi:10.1016/j.molp.2015.11.009

Hwang YH, Kim SK, Lee KC, Chung YS, Lee JH, Kim JK (2016) Functional conservation of rice OsNF-YB/YC and Arabidopsis AtNF-YB/YC proteins in the regulation of flowering time. Plant Cell Rep 35 (4):857-865. doi:10.1007/s00299-015- 1927-1

Hou CJ, Yang CH (2016) Comparative analysis of the pteridophyte Adiantum MFT ortholog reveals the specificity of combined FT/MFT C and N terminal interaction with FD for the regulation of the downstream gene AP1. Plant Mol Biol 91 (4-5):563-579. doi:10.1007/s11103-016-0489-0

Hoenicka H, Lehnhardt D, Briones V, Nilsson O, Fladung M (2016) Low temperatures are required to induce the development of fertile flowers in transgenic male and female early flowering poplar (Populus tremula L.). Tree Physiol 36 (5):667-677. doi:10.1093/treephys/tpw015

Hart R, Georgian EM, Salick J (2016) Fast and Cheap in the Fall: Phylogenetic determinants of late flowering phenologies in Himalayan Rhododendron. Am J Bot 103 (2):198-206. doi:10.3732/ajb.1500440

Gould BA, Stinchcombe JR (2016) Population genomic scans suggest novel genes underlie convergent flowering time evolution in the introduced range of Arabidopsis thaliana. Mol Ecol. doi:10.1111/mec.13643

Fu X, Li C, Liang Q, Zhou Y, He H, Fan LM (2016) CHD3 chromatin-remodeling factor PICKLE regulates floral transition partially via modulating LEAFY expression at the chromatin level in Arabidopsis. Sci China Life Sci 59 (5):516-528. doi:10.1007/s11427- 016-5021-x

Franks SJ, Kane NC, O'Hara NB, Tittes S, Rest JS (2016) Rapid genome-wide evolution in Brassica rapa populations following drought revealed by sequencing of ancestral and descendant gene pools. Mol Ecol 25 (15):3622-3631. doi:10.1111/mec.13615

Fernandez V, Takahashi Y, Le Gourrierec J, Coupland G (2016) Photoperiodic and thermosensory pathways interact through CONSTANS to promote flowering at high temperature under short days. Plant J 86 (5):426-440. doi:10.1111/tpj.13183

Endo M, Araki T, Nagatani A (2016) Tissue-specific regulation of flowering by photoreceptors. Cell Mol Life Sci 73 (4):829-839. doi:10.1007/s00018-015-2095-8

Dombrowski N, Schlaeppi K, Agler MT, Hacquard S, Kemen E, Garrido-Oter R, Wunder J, Coupland G, Schulze-Lefert P (2016) Root microbiota dynamics of perennial Arabis alpina are dependent on soil residence time but independent of flowering time. The ISME journal. doi:10.1038/ismej.2016.109

Dissanayaka A, Rodriguez TO, Di S, Yan F, Githiri SM, Rodas FR, Abe J, Takahashi R (2016) Quantitative trait locus mapping of soybean maturity gene E5. Breed Sci 66 (3):407-415. doi:10.1270/jsbbs.15160

Digel B, Tavakol E, Verderio G, Tondelli A, Xu X, Cattivelli L, Rossini L, von Korff M (2016) Photoperiod1 (Ppd-H1) controls leaf size. Plant Physiol. doi:10.1104/pp.16.00977

Daba K, Warkentin TD, Bueckert R, Todd CD, Tar'an B (2016) Determination of Photoperiod-Sensitive Phase in Chickpea (Cicer arietinum L.). Front Plant Sci 7:478. doi:10.3389/fpls.2016.00478

Daba K, Deokar A, Banniza S, Warkentin TD, Tar'an B (2016) QTL mapping of early flowering and resistance to ascochyta blight in chickpea. Genome 59 (6):413-425. doi:10.1139/gen-2016-0036

Czesnick H, Lenhard M (2016) Antagonistic control of flowering time by functionally specialized poly(A) polymerases in Arabidopsis thaliana. Plant J. doi:10.1111/tpj.13280

Cuevas HE, Zhou C, Tang H, Khadke PP, Das S, Lin YR, Ge Z, Clemente T, Upadhyaya HD, Hash CT, Paterson AH (2016) The Evolution of Photoperiod-Insensitive Flowering in Sorghum, A Genomic Model for Panicoid Grasses. Mol Biol Evol. doi:10.1093/molbev/msw120

Cho LH, Yoon J, Pasriga R, An G (2016) Homodimerization of Ehd1 Is Required to Induce Flowering in Rice. Plant Physiol 170 (4):2159-2171. doi:10.1104/pp.15.01723

Carbognani M, Bernareggi G, Perucco F, Tomaselli M, Petraglia A (2016) Micro-climatic controls and warming effects on flowering time in alpine snowbeds. Oecologia. doi:10.1007/s00442-016-3669-3

Cao L, Yu N, Li J, Qi Z, Wang D, Chen L (2016) Heritability and Reversibility of DNA Methylation Induced by in vitro Grafting between Brassica juncea and B. oleracea. Sci Rep 6:27233. doi:10.1038/srep27233

Burghardt LT, Runcie DE, Wilczek AM, Cooper MD, Roe JL, Welch SM, Schmitt J (2016) Fluctuating, warm temperatures decrease the effect of a key floral repressor on flowering time in Arabidopsis thaliana. New Phytol 210 (2):564-576. doi:10.1111/nph.13799

Burgarella C, Chantret N, Gay L, Prosperi JM, Bonhomme M, Tiffin P, Young ND, Ronfort J (2016) Adaptation to climate through flowering phenology: a case study in Medicago truncatula. Mol Ecol 25 (14):3397-3415. doi:10.1111/mec.13683

Boureau L, How-Kit A, Teyssier E, Drevensek S, Rainieri M, Joubes J, Stammitti L, Pribat A, Bowler C, Hong Y, Gallusci P (2016) A CURLY LEAF homologue controls both vegetative and reproductive development of tomato plants. Plant Mol Biol 90 (4- 5):485-501. doi:10.1007/s11103-016-0436-0

Bouche F, D'Aloia M, Tocquin P, Lobet G, Detry N, Perilleux C (2016) Integrating roots into a whole plant network of flowering time genes in Arabidopsis thaliana. Sci Rep 6:29042. doi:10.1038/srep29042

Austen EJ, Weis AE (2016) The causes of selection on flowering time through male fitness in a hermaphroditic annual plant. Evolution 70 (1):111-125. doi:10.1111/evo.12823

Austen EJ, Weis AE (2016) Estimating selection through male fitness: three complementary methods illuminate the nature and causes of selection on flowering time. Proc Biol Sci 283 (1825):20152635. doi:10.1098/rspb.2015.2635

Ashworth MB, Walsh MJ, Flower KC, Vila-Aiub MM, Powles SB (2016) Directional selection for flowering time leads to adaptive evolution in Raphanus raphanistrum (Wild radish). Evol Appl 9 (4):619-629. doi:10.1111/eva.12350

Artlip TS, Wisniewski ME, Arora R, Norelli JL (2016) An apple rootstock overexpressing a peach CBF gene alters growth and flowering in the scion but does not impact cold hardiness or dormancy. Horticulture research 3:16006. doi:10.1038/hortres.2016.6

Alvarez MA, Tranquilli G, Lewis S, Kippes N, Dubcovsky J (2016) Genetic and physical mapping of the earliness per se locus Eps-A (m) 1 in Triticum monococcum identifies EARLY FLOWERING 3 (ELF3) as a candidate gene. Funct Integr Genomics 16 (4):365- 382. doi:10.1007/s10142-016-0490-3 Alter P, Bircheneder S, Zhou LZ, Schluter U, Gahrtz M, Sonnewald U, Dresselhaus T (2016) Flowering Time Regulated Genes in Maize Include the transcription factor ZmMADS1. Plant Physiol. doi:10.1104/pp.16.00285

Allard A, Bink MC, Martinez S, Kelner JJ, Legave JM, di Guardo M, Di Pierro EA, Laurens F, van de Weg EW, Costes E (2016) Detecting QTLs and putative candidate genes involved in budbreak and flowering time in an apple multiparental population. J Exp Bot 67 (9):2875-2888. doi:10.1093/jxb/erw130

Ahn JH (2016) Flowering time: Have florigen, will travel. Nature plants 2 (6):16081. doi:10.1038/nplants.2016.81

Yang H, Howard M, Dean C (2016) Physical coupling of activation and derepression activities to maintain an active transcriptional state at FLC. Proceedings of the National Academy of Sciences. doi:10.1073/pnas.1605733113

Wallace JG, Zhang X, Beyene Y, Semagn K, Olsen M, Prasanna BM, Buckler ES (2016) Genome-wide Association for Plant Height and Flowering Time across 15 Tropical Maize Populations under Managed Drought Stress and Well-Watered Conditions in Sub-Saharan Africa. Crop Sci. doi:10.2135/cropsci2015.10.0632

Zhang C, Zhang H, Zhan Z, Liang Y (2016) Molecular cloning, expression analysis and subcellular localization of LEAFY in carrot (Daucus carota L.). Mol Breed 36 (7):1-9. doi:10.1007/s11032-016-0510-y

Ying L, Chen H, Cai W (2014) BnNAC485 is involved in abiotic stress responses and flowering time in Brassica napus. Plant Physiol Biochem 79:77-87. doi:10.1016/j.plaphy.2014.03.004

Yeoh CC, Balcerowicz M, Zhang L, Jaudal M, Brocard L, Ratet P, Putterill J (2013) Fine Mapping Links the FTa1 Flowering Time Regulator to the Dominant Spring1 Locus in Medicago. PLoS ONE 8 (1):e53467. doi:10.1371/journal.pone.0053467

Valverde F (2011) CONSTANS and the evolutionary origin of photoperiodic timing of flowering. J Exp Bot 62 (8):2453-2463. doi:10.1093/jxb/erq449

Stanton-Geddes J, Paape T, Epstein B, Briskine R, Yoder J, Mudge J, Bharti AK, Farmer AD, Zhou P, Denny R, May GD, Erlandson S, Yakub M, Sugawara M, Sadowsky MJ, Young ND, Tiffin P (2013) Candidate Genes and Genetic Architecture of Symbiotic and Agronomic Traits Revealed by Whole-Genome, Sequence-Based Association Genetics in Medicago truncatula. PLoS ONE 8 (5):e65688. doi:10.1371/journal.pone.0065688

Pierre J-B, Huguet T, Barre P, Huyghe C, Julier B (2008) Detection of QTLs for flowering date in three mapping populations of the model legume species Medicago truncatula. Theor Appl Genet 117 (4):609-620. doi:10.1007/s00122-008-0805-4

Mitchell-Olds T, Schmitt J (2006) Genetic mechanisms and evolutionary significance of natural variation in Arabidopsis. Nature 441 (7096):947-952. doi:10.1038/nature04878

Laurie RE, Diwadkar P, Jaudal M, Zhang L, Hecht V, Wen J, Tadege M, Mysore KS, Putterill J, Weller JL, Macknight RC (2011) The Medicago FLOWERING LOCUS T Homolog, MtFTa1, Is a Key Regulator of Flowering Time. Plant Physiol 156 (4):2207- 2224. doi:10.1104/pp.111.180182 Hu S, Dong G, Xu J, Su Y, Shi Z, Ye W, Li Y, Li G, Zhang B, Hu J, Qian Q, Zeng D, Guo L (2013) A point mutation in the zinc finger motif of RID1/EHD2/OsID1 protein leads to outstanding yield-related traits in japonica rice variety Wuyunjing 7. Rice (N Y) 6 (1):24. doi:10.1186/1939-8433-6-24

Pearce S, Kippes N, Chen A, Debernardi JM, Dubcovsky J (2016) RNA-seq studies using wheat PHYTOCHROME B and PHYTOCHROME C mutants reveal shared and specific functions in the regulation of flowering and shade-avoidance pathways. BMC Plant Biol 16:141. doi:10.1186/s12870-016-0831-3

Lee Y-S, Lee D-Y, Cho L-H, An G (2014) Rice miR172 induces flowering by suppressing OsIDS1 and SNB, two AP2 genes that negatively regulate expression of Ehd1 and florigens. Rice 7:31. doi:10.1186/s12284-014-0031-4

Xu D, Jiang Y, Li J, Lin F, Holm M, Deng XW (2016) BBX21, an Arabidopsis B-box protein, directly activates HY5 and is targeted by COP1 for 26S proteasome-mediated degradation. Proceedings of the National Academy of Sciences. doi:10.1073/pnas.1607687113

Zhao R, Sun H-L, Mei C, Wang X-J, Yan L, Liu R, Zhang X-F, Wang X-F, Zhang D-P (2011) The Arabidopsis Ca(2+) -dependent protein kinase CPK12 negatively regulates abscisic acid signaling in seed germination and post-germination growth. New Phytol 192. doi:10.1111/j.1469-8137.2011.03793.x

Young ND, Debellé F, Oldroyd GED, Geurts R, Cannon SB, Udvardi MK, Benedito VA, Mayer KFX, Gouzy J, Schoof H, Van de Peer Y, Proost S, Cook DR, Meyers BC, Spannagl M, Cheung F, De Mita S, Krishnakumar V, Gundlach H, Zhou S, Mudge J, Bharti AK, Murray JD, Naoumkina MA, Rosen B, Silverstein KAT, Tang H, Rombauts S, Zhao PX, Zhou P (2011) The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature 480. doi:10.1038/480162a

Yoder JB, Stanton-Geddes J, Zhou P, Briskine R, Young ND, Tiffin P (2014) Genomic signature of adaptation to climate in medicago truncatula. Genetics 196. doi:10.1534/genetics.113.159319

Yoder JB, Briskine R, Mudge J, Farmer A, Paape T, Steele K, Weiblen GD, Bharti AK, Zhou P, May GD, Young ND, Tiffin P (2013) Phylogenetic Signal Variation in the Genomes of Medicago (Fabaceae). Syst Biol 62. doi:10.1093/sysbio/syt009

Weinl S, Kudla J (2009) The CBL-CIPK Ca(2+)-decoding signaling network: function and perspectives. New Phytol 184. doi:10.1111/j.1469-8137.2009.02938.x

Wang G (2005) Agricultural drought in a future climate: results from 15 global climatemodels participating in the IPCC 4th assessment. Clim Dyn 25. doi:10.1007/s00382-005-0057-9

Turner TL, Bourne EC, Wettberg Von EJ, Hu TT, Nuzhdin SV (2010) Population resequencing reveals local adaptation of Arabidopsis lyrata to serpentine soils. Nat Genet 42. doi:10.1038/ng.515

Triky-Dotan S, Yermiyahu U, Katan J, Gamliel A (2005) Development of crown and root rot disease of tomato under irrigation with saline water. Phytopathology 95. doi:10.1094/phyto-95-1438 Toomajian C, Hu TT, Aranzana MJ, Lister C, Tang C, Zheng H, Zhao K, Calabrese P, Dean C, Nordborg M (2006) A nonparametric test reveals selection for rapid flowering in the Arabidopsis genome. PLoS Biol 4. doi:10.1371/journal.pbio.0040137

Team R (2009) R: a language and environment for statistical computing.

Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci U S A 100. doi:10.1073/pnas.1530509100

Stinchcombe JR, Rutter MT, Burdick DS, Tiffin P, Rausher MD, Mauricio R (2002) Testing for environmentally induced bias in phenotypic estimates of natural selection: theory and practice. Am Nat 160. doi:10.1086/342069

Stanton ML, Roy BA, Thiede DA (2007) Evolution in stressful environments. I. Phenotypic variability, phenotypic selection, and response to selection in five distinct environmental stresses. Evolution 54. doi:10.1111/j.0014-3820.2000.tb00011.x

Siol M, Prosperi JM, Bonnin I, Ronfort J (2008) How multilocus genotypic pattern helps to understand the history of selfing populations: a case study in Medicago truncatula. Heredity 100. doi:10.1038/hdy.2008.5

Siol M, Bonnin I, Olivieri I, Prosperi JM, Ronfort J (2007) Effective population size associated with self-fertilization: lessons from temporal changes in allele frequencies in the selfing annual Medicago truncatula. J Evol Biol 20. doi:10.1111/j.1420- 9101.2007.01409.x

Seeholzer S, Tsuchimatsu T, Jordan T, Bieri S, Pajonk S, Yang W, Jahoor A, Shimizu KK, Keller B, Schulze-Lefert P (2010) Diversity at the Mla powdery mildew resistance locus from cultivated barley reveals sites of positive selection. Mol Plant Microbe Interact 23. doi:10.1094/mpmi-23-4-0497

Rozema J, Flowers T (2008) Crops for a salinized world. Science 322. doi:10.1126/science.1168572

Renaut S, Owens GL, Rieseberg LH (2013) Shared selective pressure and local genomic landscape lead to repeatable patterns of genomic divergence in sunflowers. Mol Ecol 23. doi:10.1111/mec.12600

Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155

Pierre J-B, Bogard M, Herrmann D, Huyghe C, Julier B (2010) A CONSTANS-like gene candidate that could explain most of the genetic variation for flowering date in Medicago truncatula. Mol Breeding 28. doi:10.1007/s11032-010-9457-6

Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59. doi:10.1146/annurev.arplant.59.032607.092911

Munguía-Rosas MA, Ollerton J, Parra-Tabla V, De-Nova JA (2011) Meta-analysis of phenotypic selection on flowering phenology suggests that early flowering plants are favoured. Ecol Lett 14. doi:10.1111/j.1461-0248.2011.01601.x McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20. doi:10.1101/gr.107524.110

López M, Tejera NA, Lluch C (2009) Validamycin A improves the response of Medicago truncatula plants to salt stress by inducing trehalose accumulation in the root nodules. J Plant Physiol 166. doi:10.1016/j.jplph.2008.12.011

López M, Tejera NA, Iribarne C, Lluch C, Herrera-Cervera JA (2008) Trehalose and trehalase in root nodules of Medicago truncatulaand Phaseolus vulgarisin response to salt stress. Physiol Plant 134. doi:10.1111/j.1399-3054.2008.01162.x

Li R, Zhang J, Wu G, Wang H, Chen Y, Wei J (2012) HbCIPK2, a novel CBL-interacting protein kinase from halophyte Hordeum brevisubulatum, confers salt and osmotic stress tolerance. Plant Cell Environ 35. doi:10.1111/j.1365-3040.2012.02511.x

Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25. doi:10.1093/bioinformatics/btp324

Li D, Zhang Y, Hu X, Shen X, Ma L, Su Z, Wang T, Dong J (2011) Transcriptional profiling of Medicago truncatula under salt stress identified a novel CBF transcription factor MtCBF4 that plays an important role in abiotic stress responses. BMC Plant Biol 11. doi:10.1186/1471-2229-11-109

Levene H (1953) Genetic equilibrium when more than one ecological niche is available. Am Nat 87. doi:10.1086/281792

Lesins K, Lesins I (1979) Medicago (Leguminosae), a Taxogenetic Study. Dr. W. Junk Publishers, The Hague. doi:10.1007/978-94-009-9634-2

Leimu R, Fischer M (2008) A meta-analysis of local adaptation in plants. PLoS ONE 3. doi:10.1371/journal.pone.0004010

Lazrek F, Roussel V, Ronfort J, Cardinet G, Chardon F, Aouani ME, Huguet T (2009) The use of neutral and non-neutral SSRs to analyse the genetic structure of a Tunisian collection of Medicago truncatula lines and to reveal associations with eco-environmental variables. Genetica 135. doi:10.1007/s10709-008-9285-3

Lande R, Arnold S (1983) The measurement of selection on correlated characters. Evolution 37. doi:10.2307/2408842

Lajeunesse MJ, Forbes MR (2002) Host range and local parasite adaptation. P R Soc B 269. doi:10.1098/rspb.2001.1943

Krishnamurthy N, Brown DP, Kirshner D, Sjölander K (2006) PhyloFacts: an online structural phylogenomic encyclopedia for protein functional and structural classification. Genome Biol 7. doi:10.1186/gb-2006-7-9-r83

Kawecki TJ, Ebert D (2004) Conceptual issues in local adaptation. Ecol Lett 7. doi:10.1111/j.1461-0248.2004.00684.x Kawecki TJ (1994) Accumulation of deleterious mutations and the evolutionary cost of being a generalist. Am Nat 144. doi:10.1086/285709

Jones JDG, Dangl JL (2006) The plant immune system. Nature 444. doi:10.1038/nature05286

Hubbard KE, Nishimura N, Hitomi K, Getzoff ED, Schroeder JI (2010) Early abscisic acid signal transduction mechanisms: newly discovered components and newly emerging questions. Genes Dev 24. doi:10.1101/gad.1953910

Howe GA, Jander G (2008) Plant Immunity to Insect Herbivores. Annu Rev Plant Biol 59. doi:10.1146/annurev.arplant.59.032607.092825

Hoekstra HE, Coyne JA (2007) The locus of evolution: Evo devo and the genetics of adaptation. Evolution 61. doi:10.1111/j.1558-5646.2007.00105.x

Hoeksema JD, Forde SE (2008) A meta-analysis of factors affecting local adaptation between interacting species. Am Nat 171. doi:10.1086/527496

Hereford J (2009) A quantitative survey of local adaptation and fitness trade-offs. Am Nat 173. doi:10.1086/597611

Goudet J (2005) HIERFSTAT, a package for R to compute and test hierarchical F- statistics. Mol Ecol Notes 5. doi:10.1111/j.1471-8286.2004.00828.x

Ge L-F, Chao D-Y, Shi M, Zhu M-Z, Gao J-P, Lin H-X (2008) Overexpression of the trehalose-6-phosphate phosphatase gene OsTPP1 confers stress tolerance in rice and results in the activation of stress responsive genes. PLANTA 228. doi:10.1007/s00425- 008-0729-x

Friesen ML, von Wettberg EJ, Badri M, Moriuchi KS, Barhoumi F, Chang PL, Cuellar- Ortiz S, Cordeiro MA, Vu WT, Arraouadi S, Djébali N, Zribi K, Badri Y, Porter SS, Aouani ME, Cook DR, Strauss SY, Nuzhdin SV (2014) The ecological genomic basis of salinity adaptation in Tunisian Medicago truncatula. BMC Genomics 15 (1):1-18. doi:10.1186/1471-2164-15-1160

Friesen M, Wettberg Von EJ (2010) Adapting genomics to study the evolution and ecology of agricultural systems. Curr Opin Plant Biol 13. doi:10.1016/j.pbi.2009.11.003

Friesen M, Cordeiro MA, Penmetsa RV, Badri M, Huguet T, Aouani ME, Cook DR, Nuzhdin SV (2010) Population genomic analysis of Tunisian Medicago truncatula reveals candidates for local adaptation. Plant J 63. doi:10.1111/j.1365-313X.2010.04267.x

Fournier Level A, Korte A, Cooper MD, Nordborg M, Schmitt J, Wilczek AM (2011) A Map of local adaptation in Arabidopsis thaliana. Sci (New York, NY) 334. doi:10.1126/science.1209271

Flowers TJ, Hajibagheri MA, Clipson NJW (1986) Halophytes. Q Rev Biol 61. doi:10.1086/415032

Fischer MC, Rellstab C, Tedder A, Zoller S, Gugerli F, Shimizu KK, Holderegger R, Widmer A (2013) Population genomic footprints of selection and associations with climate in natural populations of Arabidopsis hallerifrom the Alps. Mol Ecol 22. doi:10.1111/mec.12521

Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14. doi:10.1111/j.1365- 294X.2005.02553.x

Ellison CE, Hall C, Kowbel D, Welch J, Brem RB, Glass NL, Taylor JW (2011) Population genomics and local adaptation in wild isolates of a model microbial eukaryote. Proc Natl Acad Sci U S A 108. doi:10.1073/pnas.1014971108

Dunham JP, Friesen M (2013) A cost-effective method for high-throughput construction of illumina sequencing libraries. CSH Protoc 2013. doi:10.1101/pdb.prot074187

Datta RS, Meacham C, Samad B, Neyer C, Sjolander K (2009) Berkeley PHOG: PhyloFacts orthology group prediction web server. Nucleic Acids Res 37. doi:10.1093/nar/gkp373

Cordeiro MA, Moriuchi KS, Fotinos TD, Miller KE, Nuzhdin SV, Wettberg Von EJ, Cook DR (2014) Population differentiation for germination and early seedling root growth traits under saline conditions in the annual legume Medicago truncatula (Fabaceae). Am J Bot 101. doi:10.3732/ajb.1300285

Clausen J, Hiesey WM (1958) Genetic Structure of Ecological Races (Experimental Studies on the Nature of Species, Vol. 4). Carnegie Institution of Washington, Washington

Castro BM, Moriuchi KS, Friesen M, Badri M, Nuzhdin SV, Strauss SY, Cook DR, Wettberg Von E (2013) Parental environments and interactions with conspecifics alter salinity tolerance of offspring in the annual Medicago truncatula. J Ecol 101. doi:10.1111/1365-2745.12125

Branca A, Paape TD, Zhou P, Briskine R, Farmer AD, Mudge J, Bharti AK, Woodward JE, May GD, Gentzbittel L, Ben C, Denny R, Sadowsky MJ, Ronfort J, Bataillon T, Young ND, Tiffin P (2011) Whole-genome nucleotide diversity, recombination, and linkage disequilibrium in the model legume Medicago truncatula. Proc Natl Acad Sci U S A 108. doi:10.1073/pnas.1104032108

Blanquart F, Kaltz O, Nuismer SL, Gandon S (2013) A practical guide to measuring local adaptation. Ecol Lett 16. doi:10.1111/ele.12150

Bierne N, Welch J, Loire E, Bonhomme F, David P (2011) The coupling hypothesis: why genome scans may fail to map local adaptation genes. Mol Ecol 20. doi:10.1111/j.1365- 294X.2011.05080.x

Benedito V, Torres Jerez I, Murray J, Andriankaja A, Allen S, Kakar K, Wandrey M, Verdier J, Zuber H, Ott T, Moreau S, Niebel A, Frickey T, Weiller G, He J, Dai X, Zhao P, Tang Y, Udvardi M (2008) A gene expression atlas of the model legume Medicago truncatula. Plant J 55. doi:10.1111/j.1365-313X.2008.03519.x

Beerli P, Palczewski M (2010) Unified framework to evaluate panmixia and migration direction among multiple sampling locations. Genetics 185. doi:10.1534/genetics.109.112532 Baxter I, Brazelton JN, Yu D, Huang YS, Lahner B, Yakubova E, Li Y, Bergelson J, Borevitz JO, Nordborg M, Vitek O, Salt DE (2010) A coastal cline in sodium accumulation in Arabidopsis thaliana is driven by natural variation of the sodium transporter AtHKT1;1. PLoS Genet 6. doi:10.1371/journal.pgen.1001193

Bari R, Jones J (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69. doi:10.1007/s11103-008-9435-0

Badri M, Ilahi H, Huguet T, Aouani ME (2007) Quantitative and molecular genetic variation in sympatric populations of Medicago laciniata and M. truncatula (Fabaceae): relationships with eco-geographical factors. Genet Res 89. doi:10.1017/s0016672307008725

Axelsson E, Ratnakumar A, Arendt M-L, Maqbool K, Webster MT, Perloski M, Liberg O, Arnemo JM, Hedhammar Å, Lindblad-Toh K (2013) The genomic signature of dog domestication reveals adaptation to a starch-rich diet. Nature 495. doi:10.1038/nature11837

Arraouadi S, Badri M, Zitoun A, Huguet T, Aouani M (2011) Analysis of NaCl stress response in Tunisian and reference lines of Medicago truncatula. Russ J Plant Physiol 58. doi:10.1134/s1021443711020026

Arraouadi S, Badri M, Taamalli W, Huguet T, Aouani ME (2011) Variability salt stress response analysis of Tunisian natural populations of Medicago truncatula (Fabaceae) using salt response index (SRI) ratio. Afr J Biotechnol 10

The state of the world's land and water resources for food and agriculture: Managing systems at risk. 2011, http://www.fao.org/docrep/017/i1688e/i1688e.pdf.

Gehan MA, Greenham K, Mockler TC, McClung CR (2015) Transcriptional networks — crops, clocks, and abiotic stress. Curr Opin Plant Biol 24:39-46. doi:http://dx.doi.org/10.1016/j.pbi.2015.01.004

Zhu J, Pearce S, Burke A, See DR, Skinner DZ, Dubcovsky J, Garland-Campbell K (2014) Copy number and haplotype variation at the VRN-A1 and central FR-A2 loci are associated with frost tolerance in hexaploid wheat. Theor Appl Genet 127 (5):1183-1197. doi:10.1007/s00122-014-2290-2

Yuan S, Zhang Z-W, Zheng C, Zhao Z-Y, Wang Y, Feng L-Y, Niu G, Wang C-Q, Wang J-H, Feng H, Xu F, Bao F, Hu Y, Cao Y, Ma L, Wang H, Kong D-D, Xiao W, Lin H-H, He Y (2016) Arabidopsis cryptochrome 1 functions in nitrogen regulation of flowering. Proceedings of the National Academy of Sciences. doi:10.1073/pnas.1602004113

Kim HM, Lee JH, Kim A-Y, Park SH, Ma SH, Lee S, Joung YH (2016) Heterologous expression of an RNA-binding protein affects flowering time as well as other developmental processes in . Mol Breed 36 (6):1-15. doi:10.1007/s11032-016- 0494-7

Kippes N, Chen A, Zhang X, Lukaszewski AJ, Dubcovsky J (2016) Development and characterization of a spring hexaploid wheat line with no functional VRN2 genes. Theor Appl Genet 129 (7):1417-1428. doi:10.1007/s00122-016-2713-3 Liu L, Farrona S, Klemme S, Turck FK (2014) Post-fertilization expression of FLOWERING LOCUS T suppresses reproductive reversion. Front Plant Sci 5:164. doi:10.3389/fpls.2014.00164

Boden SA, Cavanagh C, Cullis BR, Ramm K, Greenwood J, Jean Finnegan E, Trevaskis B, Swain SM (2015) Ppd-1 is a key regulator of inflorescence architecture and paired spikelet development in wheat. Nature plants 1:14016. doi:10.1038/nplants.2014.16

Li X, Liu H, Wang M, Liu H, Tian X, Zhou W, Lu T, Wang Z, Chu C, Fang J, Bu Q (2015) Combinations of Hd2 and Hd4 genes determine rice adaptability to Heilongjiang Province, northern limit of China. J Integr Plant Biol 57 (8):698-707. doi:10.1111/jipb.12326

Ma Y, Shabala S, Li C, Liu C, Zhang W, Zhou M (2015) Quantitative Trait Loci for Salinity Tolerance Identified under Drained and Waterlogged Conditions and Their Association with Flowering Time in Barley (Hordeum vulgare L.). PLoS ONE 10 (8):e0134822. doi:10.1371/journal.pone.0134822

Huang JZ, Lin CP, Cheng TC, Huang YW, Tsai YJ, Cheng SY, Chen YW, Lee CP, Chung WC, Chang BC, Chin SW, Lee CY, Chen FC (2016) The genome and transcriptome of Phalaenopsis yield insights into floral organ development and flowering regulation. PeerJ 4:e2017. doi:10.7717/peerj.2017

Krannich CT, Maletzki L, Kurowsky C, Horn R (2015) Network Candidate Genes in Breeding for Drought Tolerant Crops. Int J Mol Sci 16 (7):16378-16400. doi:10.3390/ijms160716378

Körber N, Bus A, Li J, Parkin IAP, Wittkop B, Snowdon RJ, Stich B (2016) Agronomic and seed quality traits dissected by genome-wide association mapping in Brassica napus. Front Plant Sci 7. doi:10.3389/fpls.2016.00386

Lee J-H, Park C-M (2015) Integration of photoperiod and cold temperature signals into flowering genetic pathways in Arabidopsis. Plant Signal Behav 10 (11):e1089373. doi:10.1080/15592324.2015.1089373

Zhao XY, Liu MS, Li JR, Guan CM, Zhang XS (2005) The wheat TaGI1, involved in photoperiodic flowering, encodesan Arabidopsis GI ortholog. Plant Mol Biol 58 (1):53- 64. doi:10.1007/s11103-005-4162-2

Yang Y, Fu D, Zhu C, He Y, Zhang H, Liu T, Li X, Wu C (2015) The RING-Finger Ubiquitin Ligase HAF1 Mediates Heading date 1 Degradation during Photoperiodic Flowering in Rice. Plant Cell. doi:10.1105/tpc.15.00320

Vondras AM, Gouthu S, Schmidt JA, Petersen A-R, Deluc LG (2016) The contribution of flowering time and seed content to uneven ripening initiation among fruits within Vitis vinifera L. cv. Pinot noir clusters. Planta:1-12. doi:10.1007/s00425-016-2474-x

Takahashi Y, Shimamoto K (2011) Heading date 1 (Hd1), an ortholog of Arabidopsis CONSTANS, is a possible target of human selection during domestication to diversify flowering times of cultivated rice. Genes Genet Syst 86 (3):175-182 Suarez-Lopez P, Wheatley K, Robson F, Onouchi H, Valverde F, Coupland G (2001) CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 410 (6832):1116-1120. doi:10.1038/35074138

Srikanth A, Schmid M (2011) Regulation of flowering time: all roads lead to Rome. Cell Mol Life Sci 68 (12):2013-2037. doi:10.1007/s00018-011-0673-y

Soy J, Leivar P, González-Schain N, Martín G, Diaz C, Sentandreu M, Al-Sady B, Quail PH, Monte E (2016) Molecular convergence of clock and photosensory pathways through PIF3–TOC1 interaction and co-occupancy of target promoters. Proceedings of the National Academy of Sciences. doi:10.1073/pnas.1603745113

Schiessl S, Iniguez-Luy F, Qian W, Snowdon RJ (2015) Diverse regulatory factors associate with flowering time and yield responses in winter-type Brassica napus. BMC Genomics 16 (1):737. doi:10.1186/s12864-015-1950-1

Sawa M, Nusinow DA, Kay SA, Imaizumi T (2007) FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis. Science 318 (5848):261-265. doi:10.1126/science.1146994

Sawa M, Kay SA (2011) GIGANTEA directly activates Flowering Locus T in Arabidopsis thaliana. Proc Natl Acad Sci U S A 108 (28):11698-11703. doi:10.1073/pnas.1106771108

Kovalchuk N, Chew W, Sornaraj P, Borisjuk N, Yang N, Singh R, Bazanova N, Shavrukov Y, Guendel A, Munz E, Borisjuk L, Langridge P, Hrmova M, Lopato S (2016) The homeodomain transcription factor TaHDZipI-2 from wheat regulates frost tolerance, flowering time and spike development in transgenic barley. New Phytol:n/a-n/a. doi:10.1111/nph.13919

Kobayashi Y, Kaya H, Goto K, Iwabuchi M, Araki T (1999) A pair of related genes with antagonistic roles in mediating flowering signals. Science 286 (5446):1960-1962. doi:10.1126/science.286.5446.1960

Kim MY, Shin JH, Kang YJ, Shim SR, Lee SH (2012) Divergence of flowering genes in soybean. J Biosci 37 (5):857-870

Itoh H, Nonoue Y, Yano M, Izawa T (2010) A pair of floral regulators sets critical day length for Hd3a florigen expression in rice. Nat Genet 42 (7):635-U115. doi:10.1038/ng.606

Hayama R, Yokoi S, Tamaki S, Yano M, Shimamoto K (2003) Adaptation of photoperiodic control pathways produces short-day flowering in rice. Nature 422 (6933):719-722. doi:10.1038/nature01549

Hanzawa Y, Money T, Bradley D (2005) A single amino acid converts a repressor to an activator of flowering. Proc Natl Acad Sci U S A 102 (21):7748-7753. doi:DOI 10.1073/pnas.0500932102

Dunford RP, Griffiths S, Christodoulou V, Laurie DA (2005) Characterisation of a barley (Hordeum vulgare L.) homologue of the Arabidopsis flowering time regulator GIGANTEA. Theor Appl Genet 110 (5):925-931. doi:10.1007/s00122-004-1912-5 Cao D, Li Y, Wang J, Nan H, Wang Y, Lu S, Jiang Q, Li X, Shi D, Fang C, Yuan X, Zhao X, Li X, Liu B, Kong F (2015) GmmiR156b overexpression delays flowering time in soybean. Plant Mol Biol:1-11. doi:10.1007/s11103-015-0371-5

Amasino R (2010) Seasonal and developmental timing of flowering. Plant J 61 (6):1001- 1013. doi:10.1111/j.1365-313X.2010.04148.x

Zheng B, Chenu K, Chapman SC (2016) Velocity of temperature and flowering time in wheat - assisting breeders to keep pace with climate change. Glob Chang Biol 22 (2):921- 933. doi:10.1111/gcb.13118

Trachsel S, Sun D, SanVicente FM, Zheng H, Atlin GN, Suarez EA, Babu R, Zhang X (2016) Identification of QTL for Early Vigor and Stay-Green Conferring Tolerance to Drought in Two Connected Advanced Backcross Populations in Tropical Maize (Zea mays L.). PLoS ONE 11 (3):e0149636. doi:10.1371/journal.pone.0149636

Maurer A, Draba V, Pillen K (2016) Genomic dissection of plant development and its impact on thousand grain weight in barley through nested association mapping. J Exp Bot 67 (8):2507-2518. doi:10.1093/jxb/erw070

Kazan K, Lyons R (2016) The link between flowering time and stress tolerance. J Exp Bot 67 (1):47-60. doi:10.1093/jxb/erv441

Niu L, Fu C, Lin H, Wolabu TW, Wu Y, Wang Z-Y, Tadege M (2016) Control of floral transition in the bioenergy crop switchgrass. Plant, Cell & Environment:n/a-n/a. doi:10.1111/pce.12769

Lee Y-S, Yi J, Jung K-H, An G (2016) Comparison of rice flowering-time genes under paddy conditions. J Plant Biol 59 (3):238-246. doi:10.1007/s12374-016-0029-0

Wu C, Wang M, Cheng Z, Meng H (2016) Response of garlic (Allium sativum L.) bolting and bulbing to temperature and photoperiod treatments. Biology Open 5 (4):507-518. doi:10.1242/bio.016444

Yu X, Duan X, Zhang R, Fu X, Ye L, Kong H, Xu G, Shan H (2016) Prevalent Exon- Intron Structural Changes in the APETALA1/FRUITFULL, SEPALLATA, AGAMOUS- LIKE6, and FLOWERING LOCUS C MADS-Box Gene Subfamilies Provide New Insights into Their Evolution. Front Plant Sci 7:598. doi:10.3389/fpls.2016.00598

Park M-J, Kwon Y-J, Gil K-E, Park C-M (2016) LATE ELONGATED HYPOCOTYL regulates photoperiodic flowering via the circadian clock in Arabidopsis. BMC Plant Biol 16:114. doi:10.1186/s12870-016-0810-8

Chakrabortee S, Kayatekin C, Newby GA, Mendillo ML, Lancaster A, Lindquist S (2016) Luminidependens (LD) is an Arabidopsis protein with prion behavior. Proceedings of the National Academy of Sciences 113 (21):6065-6070. doi:10.1073/pnas.1604478113

Izawa TT-s, JP), Okada, Ryo (Tsukuba-shi, JP), Endo, Naokuni (Tsukuba-shi, JP), Nemoto, Yasue (Tsukuba-shi, JP), Takamizo, Tadashi (Nasushiobara-shi, JP), Tsuzuki, Shoko (Toyota-shi, JP), Nishimura, Satoru (Toyota-shi, JP) (2016) POACEAE PLANT WHOSE FLOWERING TIME IS CONTROLLABLE. United States Patent, Wang T, Sun M-Y, Wang X-S, Li W-B, Li Y-G (2016) Over-Expression of GmGIa- Regulated Soybean miR172a Confers Early Flowering in Transgenic Arabidopsis thaliana. International Journal of Molecular Sciences 17 (5):645. doi:10.3390/ijms17050645

Tang M, Tao Y-B, Xu Z-F (2016) Ectopic expression of Jatropha curcas APETALA1 (JcAP1) caused early flowering in Arabidopsis, but not in Jatropha. PeerJ 4:e1969. doi:10.7717/peerj.1969

Honjo M, Nunome T, Kataoka S, Yano T, Hamano M, Yamazaki H, Yamamoto T, Morishita M, Yui S (2015) Simple sequence repeat markers linked to the everbearing flowering gene in long-day and day-neutral of the octoploid cultivated strawberry Fragaria × ananassa. Euphytica 209 (2):291-303. doi:10.1007/s10681-015- 1626-6

Mahrez W, Shin J, MuÒoz-Viana R, Figueiredo DD, Trejo-Arellano MS, Exner V, Siretskiy A, Gruissem W, Kˆhler C, Hennig L (2016) BRR2a Affects Flowering Time via FLC Splicing. PLoS Genet 12 (4):e1005924. doi:10.1371/journal.pgen.1005924

Liu X, Zhang J, Abuahmad A, Franks RG, Xie D-Y, Xiang Q-Y (2016) Analysis of two TFL1 homologs of dogwood species (Cornus L.) indicates functional conservation in control of transition to flowering. Planta 243 (5):1129-1141. doi:10.1007/s00425-016- 2466-x

Zhu S, Zheng X, Dai Q, Tang S, Liu T (2016) Identification of quantitative trait loci for flowering time traits in ramie (Boehmeria nivea L. Gaud). Euphytica:1-8. doi:10.1007/s10681-016-1692-4

Drost H-G, Bellstädt J, Ó'Maoiléidigh DS, Silva AT, Gabel A, Weinholdt C, Ryan PT, Dekkers BJW, Bentsink L, Hilhorst HWM, Ligterink W, Wellmer F, Grosse I, Quint M (2016) Post-embryonic Hourglass Patterns Mark Ontogenetic Transitions in Plant Development. Mol Biol Evol 33 (5):1158-1163. doi:10.1093/molbev/msw039

Zhou ZK, Jiang Y, Wang Z, Gou ZH, Lyu J, Li WY (2015) Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat Biotechnol 33. doi:10.1038/nbt.3096

Yang Q, Li Z, Li WQ, Ku LX, Wang C, Ye JR (2013) CACTA-like transposable element in ZmCCT attenuate photoperiod sensitivity and accelerated the postdomestication spread of maize. Proc Natl Acad Sci U S A 110. doi:10.1073/pnas.1310949110

Xu ML, Xu ZH, Liu BH, Kong FJ, Tsubokura Y, Watanabe S (2013) Genetic variation in four maturity genes affects photoperiod insensitivity and PHYA-regulated post-flowering responses of soybean. BMC Plant Biol 13. doi:10.1186/1471-2229-13-91

Xu DH, Abe J, Gai JY, Shimamoto Y (2002) Diversity of chloroplast DNA SSRs in wild and cultivated soybeans: evidence for multiple origins of cultivated soybean. Theor Appl Genet 105. doi:10.1007/s00122-002-0972-7

Xie QG, Lou P, Hermand V, Aman R, Park HJ, Yun DJ (2015) Allelic polymorphism of GIGANTEA is responsible for naturally occurring variation in circadian period in Brassica rapa. Proc Natl Acad Sci U S A 112 Wen ZX, Ding YL, Zhao TJ, Gai JY (2009) Genetic diversity and peculiarity of annual wild soybean (G. soja Sieb. et Zucc.) from various eco-regions in China. Theor Appl Genet 119. doi:10.1007/s00122-009-1045-y

Watanabe S, Xia ZJ, Hideshima R, Tsubokura Y, Sato S, Yamanaka N (2011) A map- based cloning strategy employing a residual heterozygous line reveals that the GIGANTEA gene is involved in soybean maturity and flowering. Genetics 188. doi:10.1534/genetics.110.125062

Watanabe S, Harada K, Abe J (2012) Genetic and molecular bases of photoperiod responses of flowering in soybean. Breed Sci 61. doi:10.1270/jsbbs.61.531

Tsubokura Y, Watanabe S, Xia ZJ, Kanamori H, Yamagata H, Kaga A (2014) Natural variation in the genes responsible for maturity loci E1, E2, E3 and E4 in soybean. Ann Bot 113. doi:10.1093/aob/mct269

Tsiantis M (2011) A transposon in tb1 drove maize domestication. Nat Genet 43. doi:10.1038/ng.986

Tian ZX, Wang XB, Lee R, Li YH, Specht JE, Nelson RL (2010) Artificial selection for determinate growth habit in soybean. Proc Natl Acad Sci U S A 107. doi:10.1073/pnas.1000088107

Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25. doi:10.1093/nar/25.24.4876

Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28. doi:10.1093/molbev/msr121

Sun LJ, Miao ZY, Cai CM, Zhang DJ, Zhao MX, Wu YY (2015) GmHs1-1, encoding a calcineurin-like protein, controls hard-seededness in soybean. Nat Genet 47. doi:10.1038/ng.3339

Olsen KM, Wendel JF (2013) A bountiful harvest: genomic insights into crop domestication phenotypes. Annu Rev Plant Biol 64. doi:10.1146/annurev-arplant-050312- 120048

Morrell PL, Clegg MT (2007) Genetic evidence for a second domestication of barley (Hordeum vulgare) east of the fertile crescent. Proc Natl Acad Sci U S A 104. doi:10.1073/pnas.0611377104

Mizoguchi T, Wright L, Fujiwara S, Cremer F, Lee K, Onouchi H (2005) Distinct roles of GIGANTEA in promoting flowering and regulating circadian rhythms in Arabidopsis. Plant Cell 17. doi:10.1105/tpc.105.033464

Matsuoka Y, Vigouroux Y, Goodman MM, Sanchez GJ, Buckler E, Doebley J (2002) A single domestication for maize shown by multilocus microsatellite genotyping. Proc Natl Acad Sci U S A 99. doi:10.1073/pnas.052125199 Liu BH, Fujita T, Yan ZH, Sakamoto S, Xu D, Abe J (2007) QTL mapping of domestication-related traits in soybean (Glycine max). Ann Bot 100. doi:10.1093/aob/mcm149

Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25. doi:10.1093/bioinformatics/btp187

Li ZL, Nelson RL (2001) Genetic diversity among soybean accessions from three countries measured by RAPDs. Crop Sci 41. doi:10.2135/cropsci2001.4141337x

Li YH, Zhou G, Ma J, Jiang W, Jin LG, Zhang Z (2014) De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits. Nat Biotechnol 32. doi:10.1038/nbt.2979

Li YH, Li W, Zhang C, Yang L, Chang RZ, Gaut BS (2010) Genetic diversity in domesticated soybean (Glycine max) and its wild progenitor (Glycine soja) for simple sequence repeat and single-nucleotide polymorphism loci. New Phytol 188. doi:10.1111/j.1469-8137.2010.03344.x

Li F, Zhang XM, Hu RB, Wu FQ, Ma JH, Meng Y (2013) Identification and molecular characterization of FKF1 and GI homologous genes in soybean. PLoS ONE 8. doi:10.1371/journal.pone.0079036

Lee GA, Crawford GW, Liu L, Sasaki Y, Chen XX (2011) Archaeological soybean (Glycine max) in East Asia: does size matter? PLoS ONE 6. doi:10.1371/journal.pone.0026720

Lam HM, Xu X, Liu X, Chen WB, Yang GH, Wong FL (2011) Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat Genet 42. doi:10.1038/ng.715

Kim MY, Lee S, Van K, Kim TH, Jeong SC, Choi IY (2010) Whole-genome sequencing and intensive analysis of the undomesticated soybean (Glycine soja Sieb. and Zucc.) genome. Proc Natl Acad Sci U S A 107. doi:10.1073/pnas.1009526107

Kardailsky I, Shukla VK, Ahn JH, Dagenais N, Christensen SK, Nguyen JT (1999) Activation tagging of the floral inducer FT. Science 286. doi:10.1126/science.286.5446.1962

Jung JH, Seo YH, Seo PJ, Reyes JL, Yun J, Chua NH (2007) The GIGANTEA-regulated microRNA172 mediates photoperiodic flowering independent of CONSTANS in Arabidopsis. Plant Cell 19. doi:10.1105/tpc.107.054528

Jones H, Leigh FJ, Mackay I, Bower MA, Smith LM, Charles MP (2008) Population- based resequencing reveals that the flowering time adaptation of cultivated barley originated east of the Fertile Crescent. Mol Biol Evol 25. doi:10.1093/molbev/msn167

Jiang BJ, Nan HY, Gao YF, Tang LL, Yue YL, Lu SJ (2014) Allelic combination of soybean maturity Loci E1, E2, E3 and E4 result in diversity of maturity and adaptation to different latitudes. PLoS ONE 9. doi:10.1371/journal.pone.0106042 Izawa T, Mihara M, Suzuki Y, Gupta M, Itoh H, Nagano AJ (2011) Os-GIGANTEA confers robust diurnal rhythms on the global transcriptome of rice in the field. Plant Cell 23. doi:10.1105/tpc.111.083238

Hyten DL, Song QJ, Zhu YL, Choi IY, Nelson RL, Costa JM (2006) Impacts of genetic bottlenecks on soybean genome diversity. Proc Natl Acad Sci U S A 103. doi:10.1073/pnas.0604379103

Higuchi Y, Sage-Ono K, Sasaki R, Ohtsuki N, Hoshino A, Iida S (2011) Constitutive expression of the GIGANTEA ortholog affects circadian rhythms and suppresses one-shot induction of flowering in Pharbitis nil, a typical short-day plant. Plant Cell Physiol 52. doi:10.1093/pcp/pcr023

Hecht V, Knowles CL, Vander-Schoor JK, Liew LC, Jones SE, Lambert MJ (2007) Pea LATE BLOOMER1 is a GIGANTEA ortholog with roles in photoperiodic flowering, deetiolation and transcriptional regulation of circadian clock gene homologs. Plant Physiol 144. doi:10.1104/pp.107.096818

Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41

Guo J, Wang YS, Song C, Zhou JF, Qiu LJ, Huang HW (2010) A single origin and moderate bottleneck during domestication of soybean (Glycine max): implication from microsatellites and nucleotide sequences. Ann Bot 106. doi:10.1093/aob/mcq125

Fowler S, Lee K, Onouchi H, Samach A, Richardson K, Morris B (1999) GIGANTEA: a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains. EMBO J 18. doi:10.1093/emboj/18.17.4679

Dong YS, Zhuang BC, Zhao LM, Sun H, He MY (2001) The genetic diversity of annual wild soybeans grown in China. Theor Appl Genet 103. doi:10.1007/s001220000522

Dong Y, Yang X, Liu J, Wang BH, Liu BL, Wang YZ (2014) Pod shattering resistance associated with domestication is mediated by a NAC gene in soybean. Nat Commun 5

Doebley JF, Gaut BS, Smith BD (2006) The molecular genetics of crop domestication. Cell 127. doi:10.1016/j.cell.2006.12.006

Cockram J, Jones H, Leigh FJ, O’Sullivan D, Powell W, Laurie DA (2007) Control of flowering time in temperate cereals: genes, domestication, and sustainable productivity. J Exp Bot 58. doi:10.1093/jxb/erm042

Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium- mediated transformation of Arabidopsis thaliana. Plant J 16. doi:10.1046/j.1365-313x.1998.00343.x

Cheng CY, Motohashi R, Tsuchimoto S, Fukuta Y, Ohtsubo H, Ohtsubo E (2003) Polyphyletic origin of cultivated rice: based on the interspersion pattern of SINEs. Mol Biol Evol 20. doi:10.1093/molbev/msg004

Blackman BK, Rasmussen DA, Strasburg JL, Raduski AR, Burke JM, Knapp SJ (2011) Contributions of flowering time genes to sunflower domestication and improvement. Genetics 187. doi:10.1534/genetics.110.121327 Graeff M (2016) MicroProteins in the regulation of flowering time. Eberhard-Karls Universität, Tübingen

Liu SN, Zhu LF, Lin XC, Ma LY (2016) Overexpression of the repressor gene PvFRI-L from Phyllostachys violascens delays flowering time in transgenic Arabidopsis thaliana. Biol Plant:1-9. doi:10.1007/s10535-016-0614-6

Ding C, Wang Y, You S, Liu Z, Wang S, Ding Y (2015) Digital gene expression analysis reveals nitrogen fertilizer increases panicle size by repressing Hd3a signaling in rice. Plant Growth Regul 79 (1):47-54. doi:10.1007/s10725-015-0108-0

Xu J, Dai H (2016) Brassica napus Cycling Dof Factor1 (BnCDF1) is involved in flowering time and freezing tolerance. Plant Growth Regul:1-8. doi:10.1007/s10725-016- 0168-9

Shivaraj SM, Singh A (2016) Sequence variation in Brassica AP2 and analysis of interaction of AP2-miR172 regulatory module. Plant Cell Tiss Organ Cult 125 (2):191- 206. doi:10.1007/s11240-015-0938-5

Li C, Dubcovsky J (2008) Wheat FT protein regulates VRN1 transcription through interactions with FDL2. Plant J 55 (4):543-554. doi:10.1111/j.1365-313X.2008.03526.x

Kim S-K, Park H-Y, Jang YH, Lee KC, Chung YS, Lee JH, Kim J-K (2015) OsNF-YC2 and OsNF-YC4 proteins inhibit flowering under long-day conditions in rice. Planta 243 (3):563-576. doi:10.1007/s00425-015-2426-x

Jeong HJ, Yang J, Cho L-H, An G (2016) OsVIL1 controls flowering time in rice by suppressing OsLF under short days and by inducing Ghd7 under long days. Plant Cell Rep 35 (4):905-920. doi:10.1007/s00299-015-1931-5

Allard A, Bink MCAM, Martinez S, Kelner J-J, Legave J-M, di Guardo M, Di Pierro EA, Laurens F, van de Weg EW, Costes E (2016) Detecting QTLs and putative candidate genes involved in budbreak and flowering time in an apple multiparental population. J Exp Bot. doi:10.1093/jxb/erw130

Li Y-x, Li C, Bradbury PJ, Liu X, Lu F, Romay MC, Glaubitz JC, Wu X, Peng B, Shi Y, Song Y, Zhang D, Buckler ES, Zhang Z, Li Y, Wang T (2016) Identification of genetic variants associated with maize flowering time using an extremely large multi-genetic background population. Plant J:n/a-n/a. doi:10.1111/tpj.13174

Yao Q-Y, Huang H, Tong Y, Xia E-H, Gao L-Z (2016) Transcriptome Analysis Identifies Candidate Genes Related to Triacylglycerol and Pigment Biosynthesis and Photoperiodic Flowering in the Ornamental and Oil-Producing Plant, Camellia reticulata (Theaceae). Front Plant Sci 7:163. doi:10.3389/fpls.2016.00163

Ergon Å, Melby TI, Höglind M, Rognli OA (2016) Vernalization Requirement and the Chromosomal VRN1-Region can Affect Freezing Tolerance and Expression of Cold- Regulated Genes in Festuca pratensis. Front Plant Sci 7:207. doi:10.3389/fpls.2016.00207

Tan J, Jin M, Wang J, Wu F, Sheng P, Cheng Z, Wang J, Zheng X, Chen L, Wang M, Zhu S, Guo X, Zhang X, Liu X, Wang C, Wang H, Wu C, Wan J (2016) OsCOL10, a CONSTANS-like gene, functions as a flowering-time repressor downstream of Ghd7 in rice. Plant Cell Physiol. doi:10.1093/pcp/pcw025 Zhou W, Wu S, Ding M, Li J, Shi Z, Wei W, Guo J, Zhang H, Jiang Y, Rong J (2016) Mapping of Ppd-B1, a Major Candidate Gene for Late Heading on Wild Emmer Chromosome Arm 2BS and Assessment of Its Interactions with Early Heading QTLs on 3AL. PLoS ONE 11 (2):e0147377. doi:10.1371/journal.pone.0147377

Kinmonth-Schultz HA, Tong X, Lee J, Song YH, Ito S, Kim S-H, Imaizumi T (2016) Cool night-time temperatures induce the expression of CONSTANS and FLOWERING LOCUS T to regulate flowering in Arabidopsis. New Phytol:n/a-n/a. doi:10.1111/nph.13883

Kumar G, Arya P, Gupta K, Randhawa V, Acharya V, Singh AK (2016) Comparative phylogenetic analysis and transcriptional profiling of MADS-box gene family identified DAM and FLC-like genes in apple (Malusx domestica). Sci Rep-Uk 6:20695. doi:10.1038/srep20695

Lewsey MG, Hardcastle TJ, Melnyk CW, Molnar A, Valli A, Urich MA, Nery JR, Baulcombe DC, Ecker JR (2016) Mobile small RNAs regulate genome-wide DNA methylation. Proceedings of the National Academy of Sciences 113 (6):E801-E810. doi:10.1073/pnas.1515072113

Preston JC, Jorgensen SA, Orozco R, Hileman LC (2016) Paralogous SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes differentially regulate leaf initiation and reproductive phase change in petunia. Planta 243:429-440. doi:10.1007/s00425-015-2413-2

Zhang L, Yu H, Lin S, Gao Y (2016) Molecular Characterization of FT and FD Homologs from Eriobotrya deflexa Nakai forma koshunensis. Front Plant Sci 7:8. doi:10.3389/fpls.2016.00008

Huang S, Weigel D, Beachy RN, Li J (2016) A proposed regulatory framework for genome-edited crops. Nat Genet 48 (2):109-111. doi:10.1038/ng.3484 http://www.nature.com/ng/journal/v48/n2/abs/ng.3484.html#supplementary-information

Muiño JM, de Bruijn S, Pajoro A, Geuten K, Vingron M, Angenent GC, Kaufmann K (2016) Evolution of DNA-Binding Sites of a Floral Master Regulatory Transcription Factor. Mol Biol Evol 33 (1):185-200. doi:10.1093/molbev/msv210

Bouché F, Lobet G, Tocquin P, Périlleux C (2016) FLOR-ID: an interactive database of flowering-time gene networks in Arabidopsis thaliana. Nucleic Acids Res 44 (Database issue):D1167-D1171. doi:10.1093/nar/gkv1054

Xu L, Hu K, Zhang Z, Guan C, Chen S, Hua W, Li J, Wen J, Yi B, Shen J, Ma C, Tu J, Fu T (2015) Genome-wide association study reveals the genetic architecture of flowering time in rapeseed (Brassica napus L.). DNA Res. doi:10.1093/dnares/dsv035

Richardson KL, Hellier BC, Sinha K (2015) Characterization of wild Beta populations in and adjacent to sugar beet fields in the Imperial Valley, California. Genet Resour Crop Evol 63 (2):305-314. doi:10.1007/s10722-015-0250-6

Silva CS, Puranik S, Round A, Brennich M, Jourdain A, Parcy F, Hugouvieux V, Zubieta C (2015) Evolution of the Plant Reproduction Master Regulators LFY and the MADS Transcription Factors: The Role of Protein Structure in the Evolutionary Development of the Flower. Front Plant Sci 6:1193. doi:10.3389/fpls.2015.01193

Dondup D, Dong G, Xu D, Zhang L, Zha S, Yuan X, Tashi N, Zhang J, Guo G (2016) Allelic variation and geographic distribution of vernalization genes HvVRN1 and HvVRN2 in Chinese barley germplasm. Mol Breed 36 (1):1-10. doi:10.1007/s11032-016- 0434-6

Cao K, Cui L, Zhou X, Ye L, Zou Z, Deng S (2015) Four Tomato FLOWERING LOCUS T-Like Proteins Act Antagonistically to Regulate Floral Initiation. Front Plant Sci 6:1213. doi:10.3389/fpls.2015.01213

Preston JC, Jorgensen SA, Orozco R, Hileman LC (2015) Paralogous SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes differentially regulate leaf initiation and reproductive phase change in petunia. Planta 243 (2):429-440. doi:10.1007/s00425-015-2413-2

Vergara R, Noriega X, Parada F, Dantas D, Pérez FJ (2015) Relationship between endodormancy, FLOWERING LOCUS T and cell cycle genes in Vitis vinifera. Planta 243 (2):411-419. doi:10.1007/s00425-015-2415-0

Sim S-C, Kim M, Chung S-M, Park Y (2016) Assessing the genetic variation in cultivated tomatoes (Solanum lycopersicum L.) using genome-wide single nucleotide polymorphisms. Hortic Environ Biotechnol 56 (6):800-810. doi:10.1007/s13580-015- 0107-0

Qi X, Townsley B, Aguilar-Martínez JA, Yin L, Gao X, Hou L, Gao M, Li M (2016) Cloning and characterization of the LFY homologue from Chinese cabbage (Brassica rapa subsp. pekinensis). Hortic Environ Biotechnol 56 (6):821-829. doi:10.1007/s13580-015- 0066-5

Ma D, Li X, Guo Y, Chu J, Fang S, Yan C, Noel JP, Liu H (2016) Cryptochrome 1 interacts with PIF4 to regulate high temperature-mediated hypocotyl elongation in response to blue light. Proceedings of the National Academy of Sciences 113 (1):224-229. doi:10.1073/pnas.1511437113

Müller NA, Wijnen CL, Srinivasan A, Ryngajllo M, Ofner I, Lin T, Ranjan A, West D, Maloof JN, Sinha NR, Huang S, Zamir D, Jimenez-Gomez JM (2016) Domestication selected for deceleration of the circadian clock in cultivated tomato. Nat Genet 48 (1):89- 93. doi:10.1038/ng.3447 http://www.nature.com/ng/journal/v48/n1/abs/ng.3447.html#supplementary-information

Burghardt LT, Runcie DE, Wilczek AM, Cooper MD, Roe JL, Welch SM, Schmitt J (2015) Fluctuating, warm temperatures decrease the effect of a key floral repressor on flowering time in Arabidopsis thaliana. New Phytol:n/a-n/a. doi:10.1111/nph.13799

Samineni S, Kamatam S, Thudi M, Varshney R, Gaur P (2016) Vernalization response in chickpea is controlled by a major QTL. Euphytica 207 (2):453-461. doi:10.1007/s10681- 015-1571-4 Hébrard C, Peterson DG, Willems G, Delaunay A, Jesson B, Lefèbvre M, Barnes S, Maury S (2016) Epigenomics and bolting tolerance in sugar beet genotypes. J Exp Bot 67 (1):207-225. doi:10.1093/jxb/erv449

Zikhali M, Wingen LU, Griffiths S (2016) Delimitation of the Earliness per se D1 (Eps- D1) flowering gene to a subtelomeric chromosomal deletion in bread wheat (Triticum aestivum). J Exp Bot 67 (1):287-299. doi:10.1093/jxb/erv458

Shu K, Chen Q, Wu Y, Liu R, Zhang H, Wang S, Tang S, Yang W, Xie Q (2016) ABSCISIC ACID-INSENSITIVE 4 negatively regulates flowering through directly promoting Arabidopsis FLOWERING LOCUS C transcription. J Exp Bot 67 (1):195-205. doi:10.1093/jxb/erv459

Sasaki E, Zhang P, Atwell S, Meng D, Nordborg M (2015) "Missing" G x E Variation Controls Flowering Time in Arabidopsis thaliana. PLoS Genet 11 (10):e1005597. doi:10.1371/journal.pgen.1005597

Li W, Wang T, Zhang Y, Li Y (2015) Overexpression of soybean miR172c confers water deficit and salt tolerance but ABA sensitivity in transgenic Arabidopsis thaliana. J Exp Bot. doi:10.1093/jxb/erv450

Kazan K, Lyons R (2015) The link between flowering time and stress tolerance. J Exp Bot. doi:10.1093/jxb/erv441

Greenham K, McClung CR (2015) Integrating circadian dynamics with physiological processes in plants. Nat Rev Genet 16 (10):598-610. doi:10.1038/nrg3976

Chen W, Qin Q, Zhang C, Zheng Y, Wang C, Zhou M, Cui Y (2015) DhEFL2, 3 and 4, the three EARLY FLOWERING4-like genes in a Doritaenopsis hybrid regulate floral transition. Plant Cell Rep. doi:10.1007/s00299-015-1848-z

Zeng HY, Lu YT, Yang XM, Xu YH, Lin XC (2015) Ectopic expression of the BoTFL1- like gene of Bambusa oldhamii delays blossoming in Arabidopsis thaliana and rescues the tfl1 mutant phenotype. Genet Mol Res 14 (3):9306-9317. doi:10.4238/2015.August.10.11

Wang Y, Feng L, Zhu Y, Li Y, Yan H, Xiang Y (2015) Comparative genomic analysis of the WRKY III gene family in populus, grape, arabidopsis and rice. Biol Direct 10:48. doi:10.1186/s13062-015-0076-3

Wang X, Pang C, Wei H, Yu S (2015) Involvement of cotton gene GhFPF1 in the regulation of shade avoidance responses in Arabidopsis thaliana. Plant Signal Behav 10 (9):e1062195. doi:10.1080/15592324.2015.1062195

Cao D, Li Y, Wang J, Nan H, Wang Y, Lu S, Jiang Q, Li X, Shi D, Fang C, Yuan X, Zhao X, Liu B, Kong F (2015) GmmiR156b overexpression delays flowering time in soybean. Plant Mol Biol 89 (4-5):353-363. doi:10.1007/s11103-015-0371-5

Upadhyaya HD, Bajaj D, Das S, Saxena MS, Badoni S, Kumar V, Tripathi S, Gowda CL, Sharma S, Tyagi AK, Parida SK (2015) A genome-scale integrated approach aids in genetic dissection of complex flowering time trait in chickpea. Plant Mol Biol 89 (4- 5):403-420. doi:10.1007/s11103-015-0377-z Nie S, Xu L, Wang Y, Huang D, Muleke EM, Sun X, Wang R, Xie Y, Gong Y, Liu L (2015) Identification of bolting-related microRNAs and their targets reveals complex miRNA-mediated flowering-time regulatory networks in radish (Raphanus sativus L.). Sci Rep 5:14034. doi:10.1038/srep14034

Nguyen AT, Nishijima R, Kajimura T, Murai K, Takumi S (2015) Quantitative trait locus analysis for flowering-related traits using two F2 populations derived from crosses between Japanese common wheat cultivars and synthetic hexaploids. Genes Genet Syst 90 (2):89-98. doi:10.1266/ggs.90.89

Lazaro A, Mouriz A, Pineiro M, Jarillo JA (2015) Red Light-Mediated Degradation of CONSTANS by the E3 Ubiquitin Ligase HOS1 Regulates Photoperiodic Flowering in Arabidopsis. Plant Cell 27 (9):2437-2454. doi:10.1105/tpc.15.00529

Kapos P, Xu F, Meinnel T, Giglione C, Li X (2015) N-terminal modifications contribute to flowering time and immune response regulations. Plant Signal Behav 10 (10):e1073874. doi:10.1080/15592324.2015.1073874

Guo G, Xu K, Zhang X, Zhu J, Lu M, Chen F, Liu L, Xi ZY, Bachmair A, Chen Q, Fu YF (2015) Extensive Analysis of GmFTL and GmCOL Expression in Northern Soybean Cultivars in Field Conditions. PLoS ONE 10 (9):e0136601. doi:10.1371/journal.pone.0136601

Zheng B, Chenu K, Chapman SC (2015) Velocity of temperature and flowering time in wheat - Assisting breeders to keep pace with climate change. Glob Chang Biol. doi:10.1111/gcb.13118

Zhai Q, Zhang X, Wu F, Feng H, Deng L, Xu L, Zhang M, Wang Q, Li C (2015) Transcriptional Mechanism of Jasmonate Receptor COI1-Mediated Delay of Flowering Time in Arabidopsis. Plant Cell 27 (10):2814-2828. doi:10.1105/tpc.15.00619

Raman H, Raman R, Coombes N, Song J, Prangnell R, Bandaranayake C, Tahira R, Sundaramoorthi V, Killian A, Meng J, Dennis ES, Balasubramanian S (2015) Genome- wide association analyses reveal complex genetic architecture underlying natural variation for flowering time in canola. Plant Cell Environ. doi:10.1111/pce.12644

Lu J, Suo H, Yi R, Ma Q, Nian H (2015) Glyma11g13220, a homolog of the vernalization pathway gene VERNALIZATION 1 from soybean [Glycine max (L.) Merr.], promotes flowering in Arabidopsis thaliana. BMC Plant Biol 15:232. doi:10.1186/s12870-015- 0602-6

Lee JH, Park CM (2015) Integration of photoperiod and cold temperature signals into flowering genetic pathways in Arabidopsis. Plant Signal Behav 10 (11):e1089373. doi:10.1080/15592324.2015.1089373

Zikhali M, Wingen LU, Griffiths S (2015) Delimitation of the Earliness per se D1 (Eps- D1) flowering gene to a subtelomeric chromosomal deletion in bread wheat (Triticum aestivum). J Exp Bot. doi:10.1093/jxb/erv458

Shu K, Chen Q, Wu Y, Liu R, Zhang H, Wang S, Tang S, Yang W, Xie Q (2015) ABSCISIC ACID-INSENSITIVE 4 negatively regulates flowering through directly promoting Arabidopsis FLOWERING LOCUS C transcription. J Exp Bot. doi:10.1093/jxb/erv459 Jensen LM, Jepsen HS, Halkier BA, Kliebenstein DJ, Burow M (2015) Natural variation in cross-talk between glucosinolates and onset of flowering in Arabidopsis. Front Plant Sci 6:697. doi:10.3389/fpls.2015.00697

Hebrard C, Peterson DG, Willems G, Delaunay A, Jesson B, Lefebvre M, Barnes S, Maury S (2015) Epigenomics and bolting tolerance in sugar beet genotypes. J Exp Bot. doi:10.1093/jxb/erv449

Galvao VC, Collani S, Horrer D, Schmid M (2015) Gibberellic acid signaling is required for ambient temperature-mediated induction of flowering in Arabidopsis thaliana. Plant J. doi:10.1111/tpj.13051

Su L, Shan JX, Gao JP, Lin HX (2015) OsHAL3, a new component interacts with the floral regulator Hd1 to activate flowering in rice. Mol Plant. doi:10.1016/j.molp.2015.10.009

Kim SK, Park HY, Jang YH, Lee KC, Chung YS, Lee JH, Kim JK (2015) OsNF-YC2 and OsNF-YC4 proteins inhibit flowering under long-day conditions in rice. Planta. doi:10.1007/s00425-015-2426-x

Ito A, Saito T, Sakamoto D, Sugiura T, Bai S, Moriguchi T (2015) Physiological differences between bud breaking and flowering after dormancy completion revealed by DAM and FT/TFL1 expression in Japanese pear (Pyrus pyrifolia). Tree Physiol. doi:10.1093/treephys/tpv115

Cao D, Li Y, Lu S, Wang J, Nan H, Li X, Shi D, Fang C, Zhai H, Yuan X, Anai T, Xia Z, Liu B, Kong F (2015) GmCOL1a and GmCOL1b Function as Flowering Repressors in Soybean Under Long-Day Conditions. Plant Cell Physiol. doi:10.1093/pcp/pcv152

Zhai H, Ning W, Wu H, Zhang X, Lu S, Xia Z (2015) DNA-binding protein phosphatase AtDBP1 acts as a promoter of flowering in Arabidopsis. Planta. doi:10.1007/s00425-015- 2433-y

Wilschut RA, Oplaat C, Snoek LB, Kirschner J, Verhoeven KJ (2015) Natural epigenetic variation contributes to heritable flowering divergence in a widespread asexual dandelion lineage. Mol Ecol. doi:10.1111/mec.13502

Li M, An F, Li W, Ma M, Feng Y, Zhang X, Guo H (2015) DELLA Proteins Interact with FLC to Repress the Flowering Transition. J Integr Plant Biol. doi:10.1111/jipb.12451

Li D, Wang X, Zhang X, Chen Q, Xu G, Xu D, Wang C, Liang Y, Wu L, Huang C, Tian J, Wu Y, Tian F (2015) The genetic architecture of leaf number and its genetic relationship to flowering time in maize. New Phytol. doi:10.1111/nph.13765

Lewinski M, Hallmann A, Staiger D (2015) Genome-wide identification and phylogenetic analysis of plant RNA binding proteins comprising both RNA recognition motifs and contiguous glycine residues. Mol Genet Genomics. doi:10.1007/s00438-015-1144-1

Liu B, Wei G, Shi J, Jin J, Shen T, Ni T, Shen WH, Yu Y, Dong A (2015) SET DOMAIN GROUP 708, a histone H3 lysine 36-specific methyltransferase, controls flowering time in rice (Oryza sativa). New Phytol. doi:10.1111/nph.13768 Hyun KG, Oh JE, Park J, Noh YS, Song JJ (2015) Structural Analysis of FRIGIDA Flowering-Time Regulator. Mol Plant. doi:10.1016/j.molp.2015.11.009

Zhao Q, Sun C, Liu D-D, Hao Y-J, You C-X (2015) Ectopic expression of the apple Md- miR172e gene alters flowering time and floral organ identity in Arabidopsis. Plant Cell Tiss Organ Cult 123 (3):535-546. doi:10.1007/s11240-015-0857-5

Weigl K, Flachowsky H, Peil A, Hanke M-V (2015) Heat mediated silencing of MdTFL1 genes in apple (Malus × domestica). Plant Cell Tiss Organ Cult 123 (3):511-521. doi:10.1007/s11240-015-0855-7

Aung B, Gruber M, Amyot L, Omari K, Bertrand A, Hannoufa A (2015) Ectopic expression of LjmiR156 delays flowering, enhances shoot branching, and improves forage quality in alfalfa. Plant Biotechnology Reports 9 (6):379-393. doi:10.1007/s11816-015- 0375-2

Chen L, Zhong Z, Wu W, Liu L, Lu G, Jin M, Tan J, Sheng P, Wang D, Wang J, Cheng Z, Wang J, Zhang X, Guo X, Wu F, Lin Q, Zhu S, Jiang L, Zhai H, Wu C, Wan J (2015) Fine mapping of DTH3b, a minor heading date QTL potentially functioning upstream of Hd3a and RFT1 under long-day conditions in rice. Mol Breed 35 (11):1-10. doi:10.1007/s11032-015-0401-7

Mulki MA, von Korff M (2015) CONSTANS controls floral repression by upregulating VERNALIZATION 2 (Vrn-H2) in barley. Plant Physiol. doi:10.1104/pp.15.01350

Khan M, Ragni L, Tabb P, Salasini BC, Chatfield S, Datla R, Lock J, Kuai X, Despres C, Proveniers M, Yongguo C, Xiang D, Morin H, Rulliere JP, Citerne S, Hepworth SR, Pautot V (2015) Repression of Lateral Organ Boundary Genes by PENNYWISE and POUND-FOOLISH Is Essential for Meristem Maintenance and Flowering in Arabidopsis. Plant Physiol 169 (3):2166-2186. doi:10.1104/pp.15.00915

Andres F, Romera-Branchat M, Martinez-Gallegos R, Patel V, Schneeberger K, Jang S, Altmuller J, Nurnberg P, Coupland G (2015) Floral Induction in Arabidopsis by FLOWERING LOCUS T Requires Direct Repression of BLADE-ON- Genes by the Homeodomain Protein PENNYWISE. Plant Physiol 169 (3):2187-2199. doi:10.1104/pp.15.00960

Lu S, Li Y, Wang J, Srinives P, Nan H, Cao D, Wang Y, Li J, Li X, Fang C, Shi X, Yuan X, Watanabe S, Feng X, Liu B, Abe J, Kong F (2015) QTL mapping for flowering time in different latitude in soybean. Euphytica 206 (3):725-736. doi:10.1007/s10681-015-1501-5

Riboni M, Robustelli Test A, Galbiati M, Tonelli C, Conti L (2014) Environmental stress and flowering time: The photoperiodic connection. Plant Signal Behav 9:e29036. doi:10.4161/psb.29036

Zhang X, Gao M, Wang S, Chen F, Cui D (2015) Allelic variation at the vernalization and photoperiod sensitivity loci in Chinese winter wheat cultivars (Triticum aestivum L.). Front Plant Sci 6:470. doi:10.3389/fpls.2015.00470

Zhang CH, Xu DA, Zhao CH, Yu MQ, Chen J, Qiang XL, Zhang J (2015) Identification and distribution of VERNALIZATION1 alleles in Chinese barley (Hordeum vulgare) germplasm. Mol Breed 35 (8):1-13. doi:10.1007/s11032-015-0346-x Wang J, Hou C, Huang J, Wang Z, Xu Y (2015) SVP-like MADS-box protein from Carya cathayensis forms higher-order complexes. Plant Physiol Biochem 88:9-16. doi:10.1016/j.plaphy.2015.01.002

Wang D, Chen X, Zhang Z, Liu D, Song G, Kong X, Geng S, Yang J, Wang B, Wu L, Li A, Mao L (2015) A MADS-box gene NtSVP regulates elongation by directly suppressing a KNAT1-like KNOX gene NtBPL in tobacco (Nicotiana tabacum L.). J Exp Bot 66 (20):6233-6244. doi:10.1093/jxb/erv332

Stock AJ, McGoey BV, Stinchcombe JR (2015) Water availability as an agent of selection in introduced populations of Arabidopsis thaliana: impacts on flowering time evolution. PeerJ 3:e898. doi:10.7717/peerj.898

Song M-F, Zhang S, Hou P, Shang H-Z, Gu H-K, Li J-J, Xiao Y, Guo L, Su L, Gao J-W, Yang J-P (2015) Ectopic expression of a phytochrome B gene from Chinese cabbage (Brassica rapa L. ssp. pekinensis) in Arabidopsis thaliana promotes seedling de-etiolation, dwarfing in mature plants, and delayed flowering. Plant Mol Biol 87 (6):633-643. doi:10.1007/s11103-015-0302-5

Shin J, Seo S-G, Kim J-S, Jang H, Shin M-R, Lee C, Kim S-H (2015) Ectopic expression of NtEF1 and NtEF2 promotes flowering and alters floral organ identity in Nicotiana tabacum. Plant Biotechnology Reports 9 (1):11-26. doi:10.1007/s11816-014-0336-1

Kim J-S, Seo S-G, Jun B-K, Lee Y, Jeon S, Choe J, Kim J-B, Kim S, Kim S-H (2011) An IbEF1 from sweet potato promotes flowering in transgenic tobacco. Genes and Genomics 33 (4):335-341. doi:10.1007/s13258-011-0040-2

Shcherban AB, Strygina KV, Salina EA (2015) VRN-1 gene- associated prerequisites of spring growth habit in wild tetraploid wheat T. dicoccoides and the diploid A genome species. BMC Plant Biol 15:94. doi:10.1186/s12870-015-0473-x

Sadanandom A, Ádám É, Orosa B, Viczián A, Klose C, Zhang C, Josse E-M, Kozma- Bognár L, Nagy F (2015) SUMOylation of phytochrome-B negatively regulates light- induced signaling in Arabidopsis thaliana. Proceedings of the National Academy of Sciences 112 (35):11108-11113. doi:10.1073/pnas.1415260112

Remington DL, Figueroa J, Rane M (2015) Timing of shoot development transitions affects degree of perenniality in Arabidopsis lyrata (Brassicaceae). BMC Plant Biol 15:226. doi:10.1186/s12870-015-0606-2

Raman H, Raman R, Coombes N, Song J, Prangnell R, Bandaranayake C, Tahira R, Sundaramoorthi V, Killian A, Meng J (2015) Genome-wide association analyses reveal complex genetic architecture underlying natural variation for flowering time in canola. Plant, Cell & Environment

Nakano Y, Higuchi Y, Yoshida Y, Hisamatsu T (2015) Environmental responses of the FT/TFL1 gene family and their involvement in flower induction in Fragaria xananassa. J Plant Physiol 177C:60-66. doi:10.1016/j.jplph.2015.01.007

Nagano H, Clark LV, Zhao H, Peng J, Yoo JH, Heo K, Yu CY, Anzoua KG, Matsuo T, Sacks EJ, Yamada T (2015) Contrasting allelic distribution of CO/Hd1 homologues in Miscanthus sinensis from the East Asian mainland and the Japanese archipelago. J Exp Bot 66 (14):4227-4237. doi:10.1093/jxb/erv292 Miyazaki Y, Abe H, Takase T, Kobayashi M, Kiyosue T (2015) Overexpression of LOV KELCH PROTEIN 2 confers dehydration tolerance and is associated with enhanced expression of dehydration-inducible genes in Arabidopsis thaliana. Plant Cell Rep. doi:10.1007/s00299-015-1746-4

Li X-M, Zhang D-Y, Liao W-J (2015) The rhythmic expression of genes controlling flowering time in southern and northern populations of invasive Ambrosia artemisiifolia. Journal of Plant Ecology 8 (2):207-212. doi:10.1093/jpe/rtv008

Fenske MP, Hewett Hazelton KD, Hempton AK, Shim JS, Yamamoto BM, Riffell JA, Imaizumi T (2015) Circadian clock gene LATE ELONGATED HYPOCOTYL directly regulates the timing of floral scent emission in Petunia. Proceedings of the National Academy of Sciences 112 (31):9775-9780. doi:10.1073/pnas.1422875112

Cockram J, Horsnell R, Soh E-h, Norris C, O’Sullivan D (2015) Molecular and phenotypic characterization of the alternative seasonal growth habit and flowering time in barley (Hordeum vulgare ssp. vulgare L.). Mol Breed 35 (8):1-11. doi:10.1007/s11032- 015-0359-5

Borovsky Y, Sharma VK, Verbakel H, Paran I (2015) CaAP2 transcription factor is a candidate gene for a flowering repressor and a candidate for controlling natural variation of flowering time in Capsicum annuum. Theor Appl Genet. doi:10.1007/s00122-015- 2491-3

Zheng T, Li S, Zang L, Dai L, Yang C, Qu G-Z (2014) Overexpression of Two PsnAP1 Genes from Populus simonii × P. nigra Causes Early Flowering in Transgenic Tobacco and Arabidopsis. PLoS ONE 9 (10):e111725. doi:10.1371/journal.pone.0111725

Xie Q, Chen G, Liu Q, Zhu Z, Hu Z (2015) Dual silencing of DmCPD and DmGA20ox genes generates a novel miniature and delayed-flowering Dendranthema morifolium variety. Mol Breed 35 (2):1-13. doi:10.1007/s11032-015-0239-z

Sun M, Qi X, Hou L, Xu X, Zhu Z, Li M (2015) Gene Expression Analysis of Pak Choi in Response to Vernalization. PLoS ONE 10 (10):e0141446. doi:10.1371/journal.pone.0141446

Lutz U, Posé D, Pfeifer M, Gundlach H, Hagmann J, Wang C, Weigel D, Mayer KFX, Schmid M, Schwechheimer C (2015) Modulation of Ambient Temperature-Dependent Flowering in Arabidopsis thaliana by Natural Variation of FLOWERING LOCUS M. PLoS Genet 11 (10):e1005588. doi:10.1371/journal.pgen.1005588

Guo X-r, Wang Y-y, Meng L-z, Liu H-w, Yang L, Zhou Y, Zhang H-j (2015) Distribution of the Vrn-D1b allele associated with facultative growth habit in Chinese wheat accessions. Euphytica 206 (1):1-10. doi:10.1007/s10681-015-1440-1

Holland JB (2015) MAGIC maize: a new resource for plant genetics. Genome Biol 16 (1):163. doi:10.1186/s13059-015-0713-2

Lyons R, Rusu A, Stiller J, Powell J, Manners JM, Kazan K (2015) Investigating the Association between Flowering Time and Defense in the Arabidopsis thaliana-Fusarium oxysporum Interaction. PLoS ONE 10 (6):e0127699. doi:10.1371/journal.pone.0127699 Würschum T, Liu W, Maurer HP, Abel S, Reif JC (2012) Dissecting the genetic architecture of agronomic traits in multiple segregating populations in rapeseed (Brassica napus L.). Theor Appl Genet 124 (1):153-161. doi:10.1007/s00122-011-1694-5

Raman H, Raman R, Eckermann P, Coombes N, Manoli S, Zou X, Edwards D, Meng J, Prangnell R, Stiller J, Batley J, Luckett D, Wratten N, Dennis E (2013) Genetic and physical mapping of flowering time loci in canola (Brassica napus L.). Theor Appl Genet 126 (1):119-132. doi:10.1007/s00122-012-1966-8

Raman H, Dalton-Morgan J, Diffey S, Raman R, Alamery S, Edwards D, Batley J (2014) SNP markers-based map construction and genome-wide linkage analysis in Brassica napus. Plant Biotechnol J. doi:10.1111/pbi.12186

Li X, Wang W, Wang Z, Li K, Lim YP, Piao Z (2015) Construction of chromosome segment substitution lines enables QTL mapping for flowering and morphological traits in Brassica rapa. Front Plant Sci 6:432. doi:10.3389/fpls.2015.00432

Li L, Long Y, Zhang L, Dalton-Morgan J, Batley J, Yu L, Meng J, Li M (2015) Genome Wide Analysis of Flowering Time Trait in Multiple Environments via High-Throughput Genotyping Technique in Brassica napus L. PLoS ONE 10 (3):e0119425. doi:10.1371/journal.pone.0119425

Jin S, Jung HS, Chung KS, Lee JH, Ahn JH (2015) FLOWERING LOCUS T has higher protein mobility than TWIN SISTER OF FT. J Exp Bot. doi:10.1093/jxb/erv326

Li F, Chen B, Xu K, Gao G, Yan G, Qiao J, Li J, Li H, Li L, Xiao X (2015) A genome- wide association study of plant height and primary branch number in Rapeseed (Brassica napus). Plant Sci

Würschum T, Abel S, Zhao Y (2014) Potential of genomic selection in rapeseed (Brassica napus L.) breeding. Plant Breed 133 (1):45-51

Raman H, Raman R, Kilian A, Detering F, Long Y, Edwards D, Parkin IA, Sharpe AG, Nelson MN, Larkan N (2013) A consensus map of rapeseed (Brassica napus L.) based on diversity array technology markers: applications in genetic dissection of qualitative and quantitative traits. BMC Genomics 14 (1):277

Nelson MN, Rajasekaran R, Smith A, Chen S, Beeck CP, Siddique KH, Cowling WA (2014) Quantitative trait loci for thermal time to flowering and photoperiod responsiveness discovered in summer annual-type Brassica napus L.

Wei D, Mei J, Fu Y, Disi JO, Li J, Qian W (2014) Quantitative trait loci analyses for resistance to Sclerotinia sclerotiorum and flowering time in Brassica napus. Mol Breed 34 (4):1797-1804

Luo Y, Luo C, Du D, Fu Z, Yao Y, Xu C, Zhang H (2014) Quantitative trait analysis of flowering time in spring rapeseed (B. napus L.). Euphytica 200 (3):321-335

Raman H, Raman R, Eckermann P, Coombes N, Manoli S, Zou X, Edwards D, Meng J, Prangnell R, Stiller J (2013) Genetic and physical mapping of flowering time loci in canola (Brassica napus L.). Theor Appl Genet 126 (1):119-132 Xiao D, Zhao JJ, Hou XL, Basnet RK, Carpio DP, Zhang NW, Bucher J, Lin K, Cheng F, Wang XW, Bonnema G (2013) The Brassica rapa FLC homologue FLC2 is a key regulator of flowering time, identified through transcriptional co-expression networks. J Exp Bot 64 (14):4503-4516. doi:10.1093/jxb/ert264

Peng FY, Hu Z, Yang R-C (2015) Genome-Wide Comparative Analysis of Flowering- Related Genes in Arabidopsis, Wheat, and Barley. Int J Plant Genomics 2015:874361. doi:10.1155/2015/874361

Chen H, Iqbal M, Perez-Lara E, Yang R-C, Pozniak C, Spaner D (2015) Earliness per se quantitative trait loci and their interaction with Vrn-B1 locus in a spring wheat population. Mol Breed 35 (9):1-14. doi:10.1007/s11032-015-0373-7

Zikhali M, Griffiths S The effect of earliness per se (eps) genes on flowering time in bread wheat. In: Ogihara Y, Takumi S, Handa H (eds) Advances in Wheat Genetics: from Genome to Field, Proceedings of the 12th International Wheat Genetics Symposium, Yokohama, Japan, 2015 2013. Springer. doi:10.1007/978-4-431-55675-6

Upadhyaya H, Bajaj D, Das S, Saxena M, Badoni S, Kumar V, Tripathi S, Gowda CLL, Sharma S, Tyagi A, Parida S (2015) A genome-scale integrated approach aids in genetic dissection of complex flowering time trait in chickpea. Plant Mol Biol:1-18. doi:10.1007/s11103-015-0377-z

Xiao J, Li C, Xu S, Xing L, Xu Y, Chong K (2015) AtJAC1 Regulates Nuclear Accumulation of GRP7, Influencing RNA Processing of FLC Antisense Transcripts and Flowering Time in Arabidopsis. Plant Physiol. doi:10.1104/pp.15.00801

Moreno-Mateos MA, Vejnar CE, Beaudoin J-D, Fernandez JP, Mis EK, Khokha MK, Giraldez AJ (2015) CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo. Nat Meth 12 (10):982-988. doi:10.1038/nmeth.3543 http://www.nature.com/nmeth/journal/v12/n10/abs/nmeth.3543.html#supplementary- information

Xie W, Wang G, Yuan M, Yao W, Lyu K, Zhao H, Yang M, Li P, Zhang X, Yuan J, Wang Q, Liu F, Dong H, Zhang L, Li X, Meng X, Zhang W, Xiong L, He Y, Wang S, Yu S, Xu C, Luo J, Li X, Xiao J, Lian X, Zhang Q (2015) Breeding signatures of rice improvement revealed by a genomic variation map from a large germplasm collection. Proceedings of the National Academy of Sciences 112 (39):E5411-E5419. doi:10.1073/pnas.1515919112

Kippes N, Debernardi JM, Vasquez-Gross HA, Akpinar BA, Budak H, Kato K, Chao S, Akhunov E, Dubcovsky J (2015) Identification of the VERNALIZATION 4 gene reveals the origin of spring growth habit in ancient wheats from South Asia. Proceedings of the National Academy of Sciences 112 (39):E5401-E5410. doi:10.1073/pnas.1514883112

Kwon C-T, Kim S-H, Kim D, Paek N-C (2015) The Rice Floral Repressor Early flowering1 Affects Spikelet Fertility By Modulating Gibberellin Signaling. Rice 8:23. doi:10.1186/s12284-015-0058-1

Wei F-J, Tsai Y-C, Wu H-P, Huang L-T, Chen Y-C, Chen Y-F, Wu C-C, Tseng Y-T, Hsing Y-iC Both Hd1 and Ehd1 are important for artificial selection of flowering time in cultivated rice. Plant Sci. doi:http://dx.doi.org/10.1016/j.plantsci.2015.09.005 Jang S, Choi S-C, Li H-Y, An G, Schmelzer E (2015) Functional Characterization of Phalaenopsis aphrodite Flowering Genes PaFT1 and PaFD. PLoS ONE 10 (8):e0134987. doi:10.1371/journal.pone.0134987

Zhang H, Gou F, Zhang J, Liu W, Li Q, Mao Y, Botella JR, Zhu JK (2015) TALEN- mediated targeted mutagenesis produces a large variety of heritable mutations in rice. Plant Biotechnol J. doi:10.1111/pbi.12372

Budhagatapalli N, Rutten T, Gurushidze M, Kumlehn J, Hensel G (2015) Targeted Modification of Gene Function Exploiting Homology-Directed Repair of TALEN- Mediated Double-Strand Breaks in Barley. G3 (Bethesda) 5 (9):1857-1863. doi:10.1534/g3.115.018762

Wolt JD, Wang K, Yang B (2015) The Regulatory Status of Genome-edited Crops. Plant Biotechnol J. doi:10.1111/pbi.12444

Jensen C, Salchert K, Gao C, Andersen C, Didion T, Nielsen K (2004) Floral inhibition in red fescue (Festuca rubra L.) through expression of a heterologous flowering repressor from Lolium. Mol Breed 13 (1):37-48. doi:10.1023/b:molb.0000012327.47625.23

Denise M. Franke, Allan G. Ellis, Manisha Dharjwa, Melinda Freshwater, Miki Fujikawa, Alejandra Padron, Arthur E. Weis (2006) A Steep Cline in Flowering Time for Brassica rapa in Southern California: Population‐Level Variation in the Field and the Greenhouse. Int J Plant Sci 167 (1):83-92. doi:10.1086/497648

Wang L, Greaves IK, Groszmann M, Wu LM, Dennis ES, Peacock WJ (2015) Hybrid mimics and hybrid vigor in Arabidopsis. Proceedings of the National Academy of Sciences 112 (35):E4959-E4967. doi:10.1073/pnas.1514190112

Wang C-Q, Sarmast MK, Jiang J, Dehesh K (2015) The Transcriptional Regulator BBX19 Promotes Hypocotyl Growth by Facilitating COP1-Mediated EARLY FLOWERING3 Degradation in Arabidopsis. Plant Cell. doi:10.1105/tpc.15.00044

Maurer A, Draba V, Jiang Y, Schnaithmann F, Sharma R, Schumann E, Kilian B, Reif JC, Pillen K (2015) Modelling the genetic architecture of flowering time control in barley through nested association mapping. BMC Genomics 16:290. doi:10.1186/s12864-015- 1459-7

Li P, Zhang G, Gonzales N, Guo Y, Hu H, Park S, Zhao J (2015) Ca -and diurnal rhythm- regulated Na /Ca exchanger AtNCL affects flowering time and auxin signaling in Arabidopsis. Plant Cell Environ. doi:10.1111/pce.12620

Hatlestad GJ, Akhavan NA, Sunnadeniya RM, Elam L, Cargile S, Hembd A, Gonzalez A, McGrath JM, Lloyd AM (2015) The beet Y locus encodes an anthocyanin MYB-like protein that activates the betalain red pigment pathway. Nat Genet 47 (1):92-96. doi:10.1038/ng.3163 http://www.nature.com/ng/journal/v47/n1/abs/ng.3163.html#supplementary-information

Blümel M, Dally N, Jung C (2015) Flowering time regulation in crops — what did we learn from Arabidopsis? Curr Opin Biotechnol 32 (0):121-129. doi:http://dx.doi.org/10.1016/j.copbio.2014.11.023 Gao H, Jin M, Zheng X-M, Chen J, Yuan D, Xin Y, Wang M, Huang D, Zhang Z, Zhou K, Sheng P, Ma J, Ma W, Deng H, Jiang L, Liu S, Wang H, Wu C, Yuan L, Wan J (2014) Days to heading 7, a major quantitative locus determining photoperiod sensitivity and regional adaptation in rice. Proceedings of the National Academy of Sciences 111 (46):16337-16342. doi:10.1073/pnas.1418204111

Park MY, Kim SY (2014) The Arabidopsis J protein AtJ1 is essential for seedling growth, flowering time control and ABA response. Plant Cell Physiol. doi:10.1093/pcp/pcu145

Fletcher RS, Mullen JL, Heiliger A, McKay JK (2014) QTL analysis of root morphology, flowering time, and yield reveals trade-offs in response to drought in Brassica napus. J Exp Bot. doi:10.1093/jxb/eru423

Nagel DH, Pruneda-Paz JL, Kay SA (2014) FBH1 affects warm temperature responses in the Arabidopsis circadian clock. Proceedings of the National Academy of Sciences 111 (40):14595-14600. doi:10.1073/pnas.1416666111

Csorba T, Questa JI, Sun Q, Dean C (2014) Antisense COOLAIR mediates the coordinated switching of chromatin states at FLC during vernalization. Proceedings of the National Academy of Sciences 111 (45):16160-16165. doi:10.1073/pnas.1419030111

Langer SM, Longin CFH, Würschum T (2014) Flowering time control in European winter wheat. Front Plant Sci 5:10.3389/fpls.2014.00537. doi:10.3389/fpls.2014.00537

Wu R, Wang T, McGie T, Voogd C, Allan AC, Hellens RP, Varkonyi-Gasic E (2014) Overexpression of the kiwifruit SVP3 gene affects reproductive development and suppresses anthocyanin biosynthesis in petals, but has no effect on vegetative growth, dormancy, or flowering time. J Exp Bot. doi:10.1093/jxb/eru264

Steinbach Y, Hennig L (2014) Arabidopsis MSI1 functions in photoperiodic flowering time control. Front Plant Sci 5. doi:10.3389/fpls.2014.00077

Spanudakis E, Jackson S (2014) The role of microRNAs in the control of flowering time. J Exp Bot 65 (2):365-380. doi:10.1093/jxb/ert453

Son GH, Park BS, Song JT, Seo HS (2014) FLC-mediated flowering repression is positively regulated by sumoylation. J Exp Bot 65 (1):339-351. doi:10.1093/jxb/ert383

Jaudal M, Monash J, Zhang L, Wen J, Mysore KS, Macknight R, Putterill J (2014) Overexpression of Medicago SVP genes causes floral defects and delayed flowering in Arabidopsis but only affects floral development in Medicago. J Exp Bot 65 (2):429-442. doi:10.1093/jxb/ert384

Wong A, Hecht VFG, Picard K, Diwadkar P, Laurie RE, Wen J, Mysore K, Macknight RC, Weller J (2014) Isolation and functional analysis of CONSTANS-LIKE genes suggests that a central role for CONSTANS in flowering time control is not evolutionarily conserved in Medicago truncatula. Front Plant Sci 5. doi:10.3389/fpls.2014.00486

Lifschitz E, Ayre BG, Eshed Y (2014) Florigen and anti-florigen - a systemic mechanism for coordinating growth and termination in flowering plants. Front Plant Sci 5. doi:10.3389/fpls.2014.00465 Matsoukas IG (2014) Interplay Between Sugar and Hormone Signalling Pathways Modulate Floral Signal Transduction. Frontiers in Genetics 5. doi:10.3389/fgene.2014.00218

Shrestha R, Gómez-Ariza J, Brambilla V, Fornara F (2014) Molecular control of seasonal flowering in rice, arabidopsis and temperate cereals. Ann Bot. doi:10.1093/aob/mcu032

Li P, Filiault D, Box MS, Kerdaffrec E, van Oosterhout C, Wilczek AM, Schmitt J, McMullan M, Bergelson J, Nordborg M, Dean C (2014) Multiple FLC haplotypes defined by independent cis-regulatory variation underpin life history diversity in Arabidopsis thaliana. Genes Dev 28 (15):1635-1640. doi:10.1101/gad.245993.114

Müller-Xing R, Clarenz O, Pokorny L, Goodrich J, Schubert D (2014) Polycomb-Group Proteins and FLOWERING LOCUS T Maintain Commitment to Flowering in Arabidopsis thaliana. The Plant Cell Online 26 (6):2457-2471. doi:10.1105/tpc.114.123323

Van den Ende W (2014) Sugars take a central position in plant growth, development and stress responses. A focus on apical dominance. Front Plant Sci 5. doi:10.3389/fpls.2014.00313

Andrés F, Porri A, Torti S, Mateos J, Romera-Branchat M, García-Martínez JL, Fornara F, Gregis V, Kater MM, Coupland G (2014) SHORT VEGETATIVE PHASE reduces gibberellin biosynthesis at the Arabidopsis shoot apex to regulate the floral transition. Proceedings of the National Academy of Sciences 111 (26):E2760-E2769. doi:10.1073/pnas.1409567111

Sanna G, Giunta F, Motzo R, Mastrangelo AM, De Vita P (2014) Genetic variation for the duration of pre-anthesis development in durum wheat and its interaction with vernalization treatment and photoperiod. J Exp Bot 65 (12):3177-3188. doi:10.1093/jxb/eru170

Drabešová J, Cháb D, Kolář J, Haškovcová K, Štorchová H (2014) A dark–light transition triggers expression of the floral promoter CrFTL1 and downregulates CONSTANS-like genes in a short-day plant Chenopodium rubrum. J Exp Bot 65 (8):2137-2146. doi:10.1093/jxb/eru073

Coelho CP, Minow MAA, Chalfun-Júnior A, Colasanti J (2014) Putative sugarcane FT/TFL1 genes delay flowering time and alter reproductive architecture in Arabidopsis. Front Plant Sci 5. doi:10.3389/fpls.2014.00221

Wang Z-W, Wu Z, Raitskin O, Sun Q, Dean C (2014) Antisense-mediated FLC transcriptional repression requires the P-TEFb transcription elongation factor. Proceedings of the National Academy of Sciences 111 (20):7468-7473. doi:10.1073/pnas.1406635111

García-López M, Vidoy I, Jiménez-Ruiz J, Muñoz-Mérida A, Fernández-Ocaña A, Rosa R, Barroso J, Navarro F, Trelles O, Beuzón C, Barceló A, Valpuesta V, Luque F (2014) Genetic changes involved in the juvenile-to-adult transition in the shoot apex of Olea europaea L. occur years before the first flowering. Tree Genet Genomes 10 (3):585-603. doi:10.1007/s11295-014-0706-4

Yoshida H, Hirano K, Sato T, Mitsuda N, Nomoto M, Maeo K, Koketsu E, Mitani R, Kawamura M, Ishiguro S, Tada Y, Ohme-Takagi M, Matsuoka M, Ueguchi-Tanaka M (2014) DELLA protein functions as a transcriptional activator through the DNA binding of the INDETERMINATE DOMAIN family proteins. Proceedings of the National Academy of Sciences 111 (21):7861-7866. doi:10.1073/pnas.1321669111

Han Y, Zhang C, Yang H, Jiao Y (2014) Cytokinin pathway mediates APETALA1 function in the establishment of determinate floral meristems in Arabidopsis. Proceedings of the National Academy of Sciences 111 (18):6840-6845. doi:10.1073/pnas.1318532111

McGregor CE, Waters V, Vashisth T, Abdel-Haleem H (2014) Flowering Time in Watermelon Is Associated with a Major Quantitative Trait Locus on Chromosome 3. J Am Soc Hortic Sci 139 (1):48-53

Sha A, Zhao J, Yin K, Tang Y, Wang Y, Wei X, Hong Y, Liu Y (2014) Virus-Based MicroRNA Silencing in Plants. Plant Physiol 164 (1):36-47. doi:10.1104/pp.113.231100

Ariyadasa R, Mascher M, Nussbaumer T, Schulte D, Frenkel Z, Poursarebani N, Zhou R, Steuernagel B, Gundlach H, Taudien S, Felder M, Platzer M, Himmelbach A, Schmutzer T, Hedley PE, Muehlbauer GJ, Scholz U, Korol A, Mayer KFX, Waugh R, Langridge P, Graner A, Stein N (2014) A Sequence-Ready Physical Map of Barley Anchored Genetically by Two Million Single-Nucleotide Polymorphisms. Plant Physiol 164 (1):412-423. doi:10.1104/pp.113.228213

Chen M, MacGregor DR, Dave A, Florance H, Moore K, Paszkiewicz K, Smirnoff N, Graham IA, Penfield S (2014) Maternal temperature history activates Flowering Locus T in fruits to control progeny dormancy according to time of year. Proceedings of the National Academy of Sciences 111 (52):18787-18792. doi:10.1073/pnas.1412274111

Song YH, Estrada DA, Johnson RS, Kim SK, Lee SY, MacCoss MJ, Imaizumi T (2014) Distinct roles of FKF1, GIGANTEA, and ZEITLUPE proteins in the regulation of CONSTANS stability in Arabidopsis photoperiodic flowering. Proceedings of the National Academy of Sciences. doi:10.1073/pnas.1415375111

Ning Y-Q, Ma Z-Y, Huang H-W, Mo H, Zhao T-t, Li L, Cai T, Chen S, Ma L, He X-J (2015) Two novel NAC transcription factors regulate gene expression and flowering time by associating with the histone demethylase JMJ14. Nucleic Acids Res. doi:10.1093/nar/gku1382

Tamaki S, Tsuji H, Matsumoto A, Fujita A, Shimatani Z, Terada R, Sakamoto T, Kurata T, Shimamoto K (2015) FT-like proteins induce transposon silencing in the shoot apex during floral induction in rice. Proceedings of the National Academy of Sciences 112 (8):E901-E910. doi:10.1073/pnas.1417623112

Tylewicz S, Tsuji H, Miskolczi P, Petterle A, Azeez A, Jonsson K, Shimamoto K, Bhalerao RP (2015) Dual role of tree florigen activation complex component FD in photoperiodic growth control and adaptive response pathways. Proceedings of the National Academy of Sciences 112 (10):3140-3145. doi:10.1073/pnas.1423440112 de Montaigu A, Giakountis A, Rubin M, Tóth R, Cremer F, Sokolova V, Porri A, Reymond M, Weinig C, Coupland G (2015) Natural diversity in daily rhythms of gene expression contributes to phenotypic variation. Proceedings of the National Academy of Sciences 112 (3):905-910. doi:10.1073/pnas.1422242112 Nagel DH, Doherty CJ, Pruneda-Paz JL, Schmitz RJ, Ecker JR, Kay SA (2015) Genome- wide identification of CCA1 targets uncovers an expanded clock network in Arabidopsis. Proceedings of the National Academy of Sciences 112 (34):E4802-E4810. doi:10.1073/pnas.1513609112

Digel B, Pankin A, von Korff M (2015) Global Transcriptome Profiling of Developing Leaf and Shoot Apices Reveals Distinct Genetic and Environmental Control of Floral Transition and Inflorescence Development in Barley. Plant Cell. doi:10.1105/tpc.15.00203

Angel A, Song J, Yang H, Questa JI, Dean C, Howard M (2015) Vernalizing cold is registered digitally at FLC. Proceedings of the National Academy of Sciences 112 (13):4146-4151. doi:10.1073/pnas.1503100112

Jin J, Shi J, Liu B, Liu Y, Huang Y, Yu Y, Dong A (2015) MORF-RELATED GENE702, a Reader Protein of Trimethylated Histone H3 Lysine 4 and Histone H3 Lysine 36, Is Involved in Brassinosteroid-Regulated Growth and Flowering Time Control in Rice. Plant Physiol 168 (4):1275-1285. doi:10.1104/pp.114.255737

Zhang B, Wang L, Zeng L, Zhang C, Ma H (2015) Arabidopsis TOE proteins convey a photoperiodic signal to antagonize CONSTANS and regulate flowering time. Genes Dev 29 (9):975-987. doi:10.1101/gad.251520.114

Wang C-Q, Guthrie C, Sarmast MK, Dehesh K (2014) BBX19 Interacts with CONSTANS to Repress FLOWERING LOCUS T Transcription, Defining a Flowering Time Checkpoint in Arabidopsis. Plant Cell 26 (9):3589-3602 doi:10.1105/tpc.114.130252

Zhang X, An L, Nguyen TH, Liang H, Wang R, Liu X, Li T, Qi Y, Yu F (2015) The Cloning and Functional Characterization of Peach CONSTANS and FLOWERING LOCUS T Homologous Genes PpCO and PpFT. PLoS ONE 10 (4):e0124108. doi:10.1371/journal.pone.0124108

Zhang J, Song Q, Cregan PB, Nelson RL, Wang X, Wu J, Jiang GL (2015) Genome-wide association study for flowering time, maturity dates and plant height in early maturing soybean (Glycine max) germplasm. BMC Genomics 16 (1):217. doi:10.1186/s12864-015- 1441-4

Xie Q, Lou P, Hermand V, Aman R, Park HJ, Yun DJ, Kim WY, Salmela MJ, Ewers BE, Weinig C, Khan SL, Schaible DL, McClung CR (2015) Allelic polymorphism of GIGANTEA is responsible for naturally occurring variation in circadian period in Brassica rapa. Proc Natl Acad Sci U S A 112 (12):3829-3834. doi:10.1073/pnas.1421803112

Weller JL, Ortega R (2015) Genetic control of flowering time in legumes. Front Plant Sci 6:207. doi:10.3389/fpls.2015.00207

Springthorpe V, Penfield S (2015) Flowering time and seed dormancy control use external coincidence to generate life history strategy. Elife 4. doi:10.7554/eLife.05557

Shi H, Wang X, Mo X, Tang C, Zhong S, Deng XW (2015) Arabidopsis DET1 degrades HFR1 but stabilizes PIF1 to precisely regulate seed germination. Proc Natl Acad Sci U S A 112 (12):3817-3822. doi:10.1073/pnas.1502405112 Ma X, Qiao Z, Chen D, Yang W, Zhou R, Zhang W, Wang M (2015) CYCLIN- DEPENDENT KINASE G2 regulates salinity stress response and salt mediated flowering in Arabidopsis thaliana. Plant Mol Biol. doi:10.1007/s11103-015-0324-z

Li P, Tao Z, Dean C (2015) Phenotypic evolution through variation in splicing of the noncoding RNA COOLAIR. Genes Dev 29 (7):696-701. doi:10.1101/gad.258814.115

Kang MY, Yoo SC, Kwon HY, Lee BD, Cho JN, Noh YS, Paek NC (2015) Negative regulatory roles of DE-ETIOLATED1 in flowering time in Arabidopsis. Sci Rep 5:9728. doi:10.1038/srep09728

Jeong EY, Seo PJ, Woo JC, Park CM (2015) AKIN10 delays flowering by inactivating IDD8 transcription factor through protein phosphorylation in Arabidopsis. BMC Plant Biol 15 (1):110. doi:10.1186/s12870-015-0503-8

Jarillo JA, Pineiro M (2015) H2A.Z mediates different aspects of chromatin function and modulates flowering responses in Arabidopsis. Plant J. doi:10.1111/tpj.12873

Hu S, Lubberstedt T (2015) Getting the 'MOST' out of crop improvement. Trends Plant Sci. doi:10.1016/j.tplants.2015.03.002

Hori K, Nonoue Y, Ono N, Shibaya T, Ebana K, Matsubara K, Ogiso-Tanaka E, Tanabata T, Sugimoto K, Taguchi-Shiobara F, Yonemaru J, Mizobuchi R, Uga Y, Fukuda A, Ueda T, Yamamoto S, Yamanouchi U, Takai T, Ikka T, Kondo K, Hoshino T, Yamamoto E, Adachi S, Nagasaki H, Shomura A, Shimizu T, Kono I, Ito S, Mizubayashi T, Kitazawa N, Nagata K, Ando T, Fukuoka S, Yamamoto T, Yano M (2015) Genetic architecture of variation in heading date among Asian rice accessions. BMC Plant Biol 15 (1):115. doi:10.1186/s12870-015-0501-x

Han SH, Yoo SC, Lee BD, An G, Paek NC (2015) Rice FLAVIN-BINDING, KELCH REPEAT, F-BOX 1 (OsFKF1) promotes flowering independent of photoperiod. Plant Cell Environ. doi:10.1111/pce.12549

Friedman J, Rubin MJ (2015) All in good time: Understanding annual and perennial strategies in plants. Am J Bot 102 (4):497-499. doi:10.3732/ajb.1500062

Chen Z, Ye M, Su X, Liao W, Ma H, Gao K, Lei B, An X (2015) Overexpression of AtAP1M3 regulates flowering time and floral development in Arabidopsis and effects key flowering-related genes in poplar. Transgenic Res:1-11. doi:10.1007/s11248-015-9870-z

Banday ZZ, Nandi AK (2015) Interconnection between flowering time control and activation of systemic acquired resistance. Front Plant Sci 6:174. doi:10.3389/fpls.2015.00174

Airoldi CA, McKay M, Davies B (2015) MAF2 Is Regulated by Temperature-Dependent Splicing and Represses Flowering at Low Temperatures in Parallel with FLM. PLoS ONE 10 (5):e0126516. doi:10.1371/journal.pone.0126516

Hernando CE, Sanchez SE, Mancini E, Yanovsky MJ (2015) Genome wide comparative analysis of the effects of PRMT5 and PRMT4/CARM1 arginine methyltransferases on the Arabidopsis thaliana transcriptome. BMC Genomics 16:192. doi:10.1186/s12864-015- 1399-2 Zschiesche W, Barth O, Daniel K, Bohme S, Rausche J, Humbeck K (2015) The zinc- binding nuclear protein HIPP3 acts as an upstream regulator of the salicylate-dependent plant immunity pathway and of flowering time in Arabidopsis thaliana. New Phytol 207 (4):1084-1096. doi:10.1111/nph.13419

Pico S, Ortiz-Marchena MI, Merini W, Calonje M (2015) Deciphering the Role of POLYCOMB REPRESSIVE COMPLEX1 Variants in Regulating the Acquisition of Flowering Competence in Arabidopsis. Plant Physiol 168 (4):1286-1297. doi:10.1104/pp.15.00073

Lariviere A, Limeri LB, Meindl GA, Traw MB (2015) Herbivory and relative growth rates of Pieris rapae are correlated with host constitutive salicylic acid and flowering time. J Chem Ecol 41 (4):350-359. doi:10.1007/s10886-015-0572-z

He Y (2015) Enabling photoperiodic control of flowering by timely chromatin silencing of the florigen gene. Nucleus 6 (3):179-182. doi:10.1080/19491034.2015.1038000

Zhao X, Cao D, Huang Z, Wang J, Lu S, Xu Y, Liu B, Kong F, Yuan X (2015) Dual functions of GmTOE4a in the regulation of photoperiod-mediated flowering and plant morphology in soybean. Plant Mol Biol 88 (4-5):343-355. doi:10.1007/s11103-015-0322- 1

Voogd C, Wang T, Varkonyi-Gasic E (2015) Functional and expression analyses of kiwifruit SOC1-like genes suggest that they may not have a role in the transition to flowering but may affect the duration of dormancy. J Exp Bot 66 (15):4699-4710. doi:10.1093/jxb/erv234

Klein RR, Miller FR, Dugas DV, Brown PJ, Burrell AM, Klein PE (2015) Allelic variants in the PRR37 gene and the human-mediated dispersal and diversification of sorghum. Theor Appl Genet 128 (9):1669-1683. doi:10.1007/s00122-015-2523-z

Kataya AR, Heidari B, Lillo C (2015) Protein phosphatase 2A regulatory subunits affecting plant innate immunity, energy metabolism, and flowering time--joint functions among B'eta subfamily members. Plant Signal Behav 10 (5):e1026024. doi:10.1080/15592324.2015.1026024

Horak E, Farre EM (2015) The regulation of UV-B responses by the circadian clock. Plant Signal Behav 10 (5):e1000164. doi:10.1080/15592324.2014.1000164

Durand E, Tenaillon MI, Raffoux X, Thepot S, Falque M, Jamin P, Bourgais A, Ressayre A, Dillmann C (2015) Dearth of polymorphism associated with a sustained response to selection for flowering time in maize. BMC Evol Biol 15:103. doi:10.1186/s12862-015- 0382-5

Xu C, Li Y, Yu Y, Zhang Y, Wei S (2015) Suppression of Arabidopsis flowering by near- null magnetic field is affected by light. Bioelectromagnetics 36 (6):476-479. doi:10.1002/bem.21927

Wang C, Dehesh K (2015) From retrograde signaling to flowering time. Plant Signal Behav 10 (6):e1022012. doi:10.1080/15592324.2015.1022012 Michalski SG, Durka W (2015) Separation in flowering time contributes to the maintenance of sympatric cryptic plant lineages. Ecol Evol 5 (11):2172-2184. doi:10.1002/ece3.1481

Klepikova AV, Logacheva MD, Dmitriev SE, Penin AA (2015) RNA-seq analysis of an apical meristem time series reveals a critical point in Arabidopsis thaliana flower initiation. BMC Genomics 16:466. doi:10.1186/s12864-015-1688-9

Kim JY, Oh JE, Noh YS, Noh B (2015) Epigenetic control of juvenile-to-adult phase transition by the Arabidopsis SAGA-like complex. Plant J 83 (3):537-545. doi:10.1111/tpj.12908

Han YF, Huang HW, Li L, Cai T, Chen S, He XJ (2015) The Cytosolic Iron-Sulfur Cluster Assembly Protein MMS19 Regulates Transcriptional Gene Silencing, DNA Repair, and Flowering Time in Arabidopsis. PLoS ONE 10 (6):e0129137. doi:10.1371/journal.pone.0129137

Xu M, Yamagishi N, Zhao C, Takeshima R, Kasai M, Watanabe S, Kanazawa A, Yoshikawa N, Liu B, Yamada T, Abe J (2015) The Soybean-Specific Maturity Gene E1 Family of Floral Repressors Controls Night-Break Responses through Down-Regulation of FLOWERING LOCUS T Orthologs. Plant Physiol 168 (4):1735-1746. doi:10.1104/pp.15.00763

Sacharowski SP, Gratkowska DM, Sarnowska EA, Kondrak P, Jancewicz I, Porri A, Bucior E, Rolicka AT, Franzen R, Kowalczyk J, Pawlikowska K, Huettel B, Torti S, Schmelzer E, Coupland G, Jerzmanowski A, Koncz C, Sarnowski TJ (2015) SWP73 Subunits of Arabidopsis SWI/SNF Chromatin Remodeling Complexes Play Distinct Roles in Leaf and Flower Development. Plant Cell 27 (7):1889-1906. doi:10.1105/tpc.15.00233

Liu H, Zhou L, Zhang Z, Zhang X, Wang M, Li H, Lin Z (2015) Parallel Domestication of the Heading Date 1 Gene in Cereals. Mol Biol Evol. doi:10.1093/molbev/msv148

Hajdu A, Adam E, Sheerin DJ, Dobos O, Bernula P, Hiltbrunner A, Kozma-Bognar L, Nagy F (2015) High-level expression and phosphorylation of phytochrome B modulates flowering time in Arabidopsis. Plant J 83 (5):794-805. doi:10.1111/tpj.12926

Bianchi VJ, Rubio M, Trainotti L, Verde I, Bonghi C, Martinez-Gomez P (2015) Prunus transcription factors: breeding perspectives. Front Plant Sci 6:443. doi:10.3389/fpls.2015.00443

Austen EJ, Weis AE (2015) What drives selection on flowering time? An experimental manipulation of the inherent correlation between genotype and environment. Evolution 69 (8):2018-2033. doi:10.1111/evo.12709

Mouriz A, Lopez-Gonzalez L, Jarillo JA, Pineiro M (2015) PHDs govern plant development. Plant Signal Behav 10 (7):e993253. doi:10.4161/15592324.2014.993253

Mendez-Vigo B, Savic M, Ausin I, Ramiro M, Martin B, Pico FX, Alonso-Blanco C (2015) Environmental and genetic interactions reveal FLC as a modulator of the natural variation for the plasticity of flowering in Arabidopsis. Plant Cell Environ. doi:10.1111/pce.12608 Li W, Wang P, Li Y, Zhang K, Ding F, Nie T, Yang X, Lv Q, Zhao L (2015) Identification of MicroRNAs in Response to Different Day Lengths in Soybean Using High-Throughput Sequencing and qRT-PCR. PLoS ONE 10 (7):e0132621. doi:10.1371/journal.pone.0132621

Jones MA, Hu W, Litthauer S, Lagarias JC, Harmer S (2015) A Constitutively Active Allele of Phytochrome B Maintains Circadian Robustness in the Absence of Light. Plant Physiol. doi:10.1104/pp.15.00782

Golembeski GS, Imaizumi T (2015) Photoperiodic Regulation of Florigen Function in Arabidopsis thaliana. Arabidopsis Book 13:e0178. doi:10.1199/tab.0178

Capovilla G, Pajoro A, Immink RG, Schmid M (2015) Role of alternative pre-mRNA splicing in temperature signaling. Curr Opin Plant Biol 27:97-103. doi:10.1016/j.pbi.2015.06.016

Zheng XM, Feng L, Wang J, Qiao W, Zhang L, Cheng Y, Yang Q (2015) Nonfunctional alleles of long-day suppressor genes independently regulate flowering time. J Integr Plant Biol. doi:10.1111/jipb.12383

Wurschum T, Boeven PH, Langer SM, Longin CF, Leiser WL (2015) Multiply to conquer: Copy number variations at Ppd-B1 and Vrn-A1 facilitate global adaptation in wheat. BMC Genet 16 (1):96. doi:10.1186/s12863-015-0258-0

Waser NM (2015) Competition for Pollination and the Evolution of Flowering Time. Am Nat 185 (6):iii-v

Thavamanikumar S, Dolferus R, Thumma BR (2015) Comparison of Genomic Selection Models to Predict Flowering Time and Spike Grain Number in Two Hexaploid Wheat Doubled Haploid Populations. G3 (Bethesda). doi:10.1534/g3.115.019745

Lee YS, Lee DY, Cho LH, An G (2014) Rice miR172 induces flowering by suppressing OsIDS1 and SNB, two AP2 genes that negatively regulate expression of Ehd1 and florigens. Rice (N Y) 7 (1):31. doi:10.1186/s12284-014-0031-4

Krzymuski M, Andres F, Cagnola JI, Jang S, Yanovsky MJ, Coupland G, Casal JJ (2015) The dynamics of FLOWERING LOCUS T expression encodes long-day information. Plant J. doi:10.1111/tpj.12938

Duncan S, Holm S, Questa J, Irwin J, Grant A, Dean C (2015) Seasonal shift in timing of vernalization as an adaptation to extreme winter. Elife 4. doi:10.7554/eLife.06620

Zhai H, Lu S, Wu H, Zhang Y, Zhang X, Yang J, Wang Y, Yang G, Qiu H, Cui T, Xia Z (2015) Diurnal Expression Pattern, Allelic Variation, and Association Analysis Reveal Functional Features of the E1 Gene in Control of Photoperiodic Flowering in Soybean. PLoS ONE 10 (8):e0135909. doi:10.1371/journal.pone.0135909

Marin-Gonzalez E, Matias-Hernandez L, Aguilar-Jaramillo AE, Lee JH, Ahn JH, Suarez- Lopez P, Pelaz S (2015) SHORT VEGETATIVE PHASE up-regulates TEMPRANILLO2 floral repressor at low ambient temperatures. Plant Physiol. doi:10.1104/pp.15.00570

Li X, Zhang S, Bai J, He Y (2015) Tuning growth cycles of Brassica crops via natural antisense transcripts of BrFLC. Plant Biotechnol J. doi:10.1111/pbi.12443 Lee JH, Jung JH, Park CM (2015) INDUCER OF CBF EXPRESSION 1 integrates cold signals into FLOWERING LOCUS C-mediated flowering pathways in Arabidopsis. Plant J. doi:10.1111/tpj.12956

Imtiaz M, Yang Y, Liu R, Xu Y, Khan MA, Wei Q, Gao J, Hong B (2015) Identification and functional characterization of the BBX24 promoter and gene from chrysanthemum in Arabidopsis. Plant Mol Biol. doi:10.1007/s11103-015-0347-5

Grenier C, Cao TV, Ospina Y, Quintero C, Chatel MH, Tohme J, Courtois B, Ahmadi N (2015) Accuracy of Genomic Selection in a Rice Synthetic Population Developed for Recurrent Selection Breeding. PLoS ONE 10 (8):e0136594. doi:10.1371/journal.pone.0136594

Gan ES, Xu Y, Ito T (2015) Dynamics of H3K27me3 methylation and demethylation in plant development. Plant Signal Behav:0. doi:10.1080/15592324.2015.1027851

Nakamura S, Makiko C, Stehno Z, Holubec V, Morishige H, Pourkheirandish M, Kanamori H, Wu J, Matsumoto T, Komatsuda T (2015) Diversification of the promoter sequences of wheat Mother of FT and TFL1 on chromosome 3A. Mol Breed 35 (8):1-9. doi:10.1007/s11032-015-0358-6

Raschke A, Ibañez C, Ullrich KK, Anwer MU, Becker S, Glöckner A, Trenner J, Denk K, Saal B, Sun X, Ni M, Davis SJ, Delker C, Quint M (2015) Natural variants of ELF3 affect thermomorphogenesis by transcriptionally modulating PIF4-dependent auxin response genes. BMC Plant Biol 15:197. doi:10.1186/s12870-015-0566-6

Liu C, Song G, Zhou Y, Qu X, Guo Z, Liu Z, Jiang D, Yang D (2015) OsPRR37 and Ghd7 are the major genes for general combining ability of DTH, PH and SPP in rice. Sci Rep-Uk 5:12803. doi:10.1038/srep12803

Tamada Y, Yun JY, Woo SC, Amasino RM (2009) ARABIDOPSIS TRITHORAX- RELATED7 is required for methylation of lysine 4 of histone H3 and for transcriptional activation of FLOWERING LOCUS C. Plant Cell 21 (10):3257-3269. doi:10.1105/tpc.109.070060

Jin J, Shi J, Liu B, Liu Y, Huang Y, Yu Y, Dong A (2015) MRG702, a reader protein of H3K4me3 and H3K36me3, is involved in brassinosteroid-regulated growth and flowering time control in rice. Plant Physiol. doi:10.1104/pp.114.255737

Jaudal M, Zhang L, Che C, Putterill J (2015) Three Medicago MtFUL genes have distinct and overlapping expression patterns during vegetative and reproductive development and 35S:MtFULb accelerates flowering and causes a terminal flower phenotype in Arabidopsis. Front Genet 6:50. doi:10.3389/fgene.2015.00050

Hwan Lee J, Sook Chung K, Kim SK, Ahn JH (2014) Post-translational regulation of short vegetative phase as a major mechanism for thermoregulation of flowering. Plant Signal Behav 9 (3):e28193

Bendix C, Marshall CM, Harmon FG (2015) Circadian clock genes universally control key agricultural traits. Mol Plant. doi:10.1016/j.molp.2015.03.003 Porto DD, Bruneau M, Perini P, Anzanello R, Renou JP, Santos HP, Fialho FB, Revers LF (2015) Transcription profiling of the chilling requirement for bud break in apples: a putative role for FLC-like genes. J Exp Bot 66 (9):2659-2672. doi:10.1093/jxb/erv061

Manhaes AM, de Oliveira MV, Shan L (2015) Establishment of an efficient virus-induced gene silencing (VIGS) assay in Arabidopsis by Agrobacterium-mediated rubbing infection. Methods Mol Biol 1287:235-241. doi:10.1007/978-1-4939-2453-0_17

Stratonovitch P, Semenov MA (2015) Heat tolerance around flowering in wheat identified as a key trait for increased yield potential in under climate change. J Exp Bot. doi:10.1093/jxb/erv070

Quan M, Chen J, Zhang D (2015) Exploring the secrets of long noncoding RNAs. Int J Mol Sci 16 (3):5467-5496. doi:10.3390/ijms16035467

Behringer C, Schwechheimer C (2015) B-GATA transcription factors - insights into their structure, regulation, and role in plant development. Front Plant Sci 6:90. doi:10.3389/fpls.2015.00090

Akhter S, Uddin MN, Jeong IS, Kim DW, Liu XM, Bahk JD (2015) Role of Arabidopsis AtPI4Kgamma3, a type II phosphoinositide 4-kinase, in abiotic stress responses and floral transition. Plant Biotechnol J. doi:10.1111/pbi.12376

Luo M, Tai R, Yu CW, Yang S, Chen C, Lin WD, Schmidt W, Wu K (2015) Regulation of flowering time by the histone deacetylase HDA5 in Arabidopsis. Plant J. doi:10.1111/tpj.12868

Wang S, Beruto M, Xue J, Zhu F, Liu C, Yan Y, Zhang X (2015) Molecular cloning and potential function prediction of homologous SOC1 genes in tree peony. Plant Cell Rep. doi:10.1007/s00299-015-1800-2

Wang B, Liu DL, Asseng S, Macadam I, Yu Q (2015) Impact of climate change on wheat flowering time in eastern . Agric For Meteorol 209–210 (0):11-21. doi:http://dx.doi.org/10.1016/j.agrformet.2015.04.028

Zhang R, Ding J, Liu C, Cai C, Zhou B, Zhang T, Guo W (2015) Molecular Evolution and Phylogenetic Analysis of Eight COL Superfamily Genes in Group I Related to Photoperiodic Regulation of Flowering Time in Wild and Domesticated Cotton (Gossypium) Species. PLoS ONE 10 (2):e0118669. doi:10.1371/journal.pone.0118669

Wenkel S, Turck F, Singer K, Gissot L, Le Gourrierec J, Samach A, Coupland G (2006) CONSTANS and the CCAAT box binding complex share a functionally important domain and interact to regulate flowering of Arabidopsis. Plant Cell 18 (11):2971-2984. doi:10.1105/tpc.106.043299

Shi J, Dong A, Shen WH (2014) Epigenetic regulation of rice flowering and reproduction. Front Plant Sci 5:803. doi:10.3389/fpls.2014.00803

Mizuno T, Nomoto Y, Oka H, Kitayama M, Takeuchi A, Tsubouchi M, Yamashino T (2014) Ambient Temperature Signal Feeds into the Circadian Clock Transcriptional Circuitry Through the EC Night-Time Repressor in Arabidopsis thaliana. Plant Cell Physiol. doi:10.1093/pcp/pcu030 Mishra P, Panigrahi KC (2015) GIGANTEA - an emerging story. Front Plant Sci 6:8. doi:10.3389/fpls.2015.00008

MacGregor DR, Penfield S (2015) Exploring the pleiotropy of hos1. J Exp Bot. doi:10.1093/jxb/erv022

Lee H, Yoo SJ, Lee JH, Kim W, Yoo SK, Fitzgerald H, Carrington JC, Ahn JH (2010) Genetic framework for flowering-time regulation by ambient temperature-responsive miRNAs in Arabidopsis. Nucleic Acids Res 38 (9):3081-3093. doi:gkp1240 [pii]

10.1093/nar/gkp1240

Albani MC, Coupland G (2010) Comparative Analysis of Flowering in Annual and Perennial Plants. In: Timmermans MCP (ed) Plant Development, vol 91. Current Topics in Developmental Biology. Elsevier, pp 323-348. doi:10.1016/S0070-2153(10)91011-9

Zhou L, Wang S-B, Jian J, Geng Q-C, Wen J, Song Q, Wu Z, Li G-J, Liu Y-Q, Dunwell JM, Zhang J, Feng J-Y, Niu Y, Zhang L, Ren W-L, Zhang Y-M (2015) Identification of domestication-related loci associated with flowering time and seed size in soybean with the RAD-seq genotyping method. Sci Rep 5. doi:10.1038/srep09350 http://www.nature.com/srep/2015/150323/srep09350/abs/srep09350.html#supplementary- information

Yamaguchi A, Wu MF, Yang L, Wu G, Poethig RS, Wagner D (2009) The microRNA- regulated SBP-Box transcription factor SPL3 is a direct upstream activator of LEAFY, FRUITFULL, and APETALA1. Dev Cell 17 (2):268-278. doi:10.1016/j.devcel.2009.06.007

Lauressergues D, Couzigou J-M, Clemente HS, Martinez Y, Dunand C, Becard G, Combier J-P (2015) Primary transcripts of microRNAs encode regulatory peptides. Nature advance online publication. doi:10.1038/nature14346 http://www.nature.com/nature/journal/vaop/ncurrent/abs/nature14346.html#supplementar y-information

An Y, Guo Y, Liu C, An H (2015) BdVIL4 regulates flowering time and branching through repressing miR156 in ambient temperature dependent way in Brachypodium distachyon. Plant Physiol Biochem 89:92-99. doi:10.1016/j.plaphy.2015.02.013

Weis AE (2015) On the potential strength and consequences for nonrandom gene flow caused by local adaptation in flowering time. J Evol Biol 28 (3):699-714. doi:10.1111/jeb.12612

Wang H (2015) Phytochrome Signaling: Time to Tighten up the Loose Ends. Mol Plant 8 (4):540-551. doi:10.1016/j.molp.2014.11.021

Teotia S, Tang G (2015) To Bloom or Not to Bloom: Role of MicroRNAs in Plant Flowering. Mol Plant 8 (3):359-377. doi:10.1016/j.molp.2014.12.018

Riboni M, Robustelli Test A, Galbiati M, Tonelli C, Conti L (2014) Environmental stress and flowering time. Plant Signal Behav 9 (7):e29036. doi:10.4161/psb.29036 Rantanen M, Kurokura T, Jiang P, Mouhu K, Hytonen T (2015) Strawberry homologue of TERMINAL FLOWER1 integrates photoperiod and temperature signals to inhibit flowering. Plant J 82 (1):163-173. doi:10.1111/tpj.12809

Magallon S, Gomez-Acevedo S, Sanchez-Reyes LL, Hernandez-Hernandez T (2015) A metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity. New Phytol. doi:10.1111/nph.13264

Leal Valentim F, Mourik S, Pose D, Kim MC, Schmid M, van Ham RC, Busscher M, Sanchez-Perez GF, Molenaar J, Angenent GC, Immink RG, van Dijk AD (2015) A quantitative and dynamic model of the Arabidopsis flowering time gene regulatory network. PLoS ONE 10 (2):e0116973. doi:10.1371/journal.pone.0116973

Koenig D, Weigel D (2015) Beyond the thale: comparative genomics and genetics of Arabidopsis relatives. Nat Rev Genet 16 (5):285-298. doi:10.1038/nrg3883

Gomez-Ariza J, Galbiati F, Goretti D, Brambilla V, Shrestha R, Pappolla A, Courtois B, Fornara F (2015) Loss of floral repressor function adapts rice to higher latitudes in Europe. J Exp Bot. doi:10.1093/jxb/erv004

Gaur P, Samineni S, Tripathi S, Varshney R, Gowda CLL (2015) Allelic relationships of flowering time genes in chickpea. Euphytica 203 (2):295-308. doi:10.1007/s10681-014- 1261-7

Filo J, Wu A, Eliason E, Richardson T, Thines BC, Harmon FG (2015) Gibberellin driven growth in elf3 mutants requires PIF4 and PIF5. Plant Signal Behav 10 (3):e992707. doi:10.4161/15592324.2014.992707

Lee Y-S, An G (2015) OsGI controls flowering time by modulating rhythmic flowering time regulators preferentially under short day in rice. J Plant Biol 58 (2):137-145. doi:10.1007/s12374-015-0007-y

Wang M, Xu X, Zhang X, Sun S, Wu C, Hou W, Wang Q, Han T (2015) Functional Analysis of GmCPDs and Investigation of Their Roles in Flowering. PLoS ONE 10 (3):e0118476. doi:10.1371/journal.pone.0118476

Kenzior A, Folk W (2015) Arabidopsis thaliana MSI4/FVE associates with members of a novel family of plant specific PWWP/RRM domain proteins. Plant Mol Biol 87 (4- 5):329-339. doi:10.1007/s11103-014-0280-z

Song YH, Shim JS, Kinmonth-Schultz HA, Imaizumi T (2014) Photoperiodic Flowering: Time Measurement Mechanisms in Leaves. Annu Rev Plant Biol. doi:10.1146/annurev- arplant-043014-115555

Otagaki S, Ogawa Y, Hibrand-Saint Oyant L, Foucher F, Kawamura K, Horibe T, Matsumoto S (2014) Genotype of FLOWERING LOCUS T homologue contributes to flowering time differences in wild and cultivated roses. Plant Biol:n/a-n/a. doi:10.1111/plb.12299

Li C, Chen C, Gao L, Yang S, Nguyen V, Shi X, Siminovitch K, Kohalmi SE, Huang S, Wu K, Chen X, Cui Y (2015) The Arabidopsis SWI2/SNF2 Chromatin Remodeler BRAHMA Regulates Polycomb Function during Vegetative Development and Directly Activates the Flowering Repressor Gene SVP. PLoS Genet 11 (1):e1004944. doi:10.1371/journal.pgen.1004944

Hirabayashi H, Sasaki K, Kambe T, Gannaban RB, Miras MA, Mendioro MS, Simon EV, Lumanglas PD, Fujita D, Takemoto-Kuno Y, Takeuchi Y, Kaji R, Kondo M, Kobayashi N, Ogawa T, Ando I, Jagadish KS, Ishimaru T (2014) qEMF3, a novel QTL for the early- morning flowering trait from wild rice, Oryza officinalis, to mitigate heat stress damage at flowering in rice, O. sativa. J Exp Bot. doi:10.1093/jxb/eru474

Bao Z, Zhang N, Hua J (2014) Endopolyploidization and flowering time are antagonistically regulated by checkpoint component MAD1 and immunity modulator MOS1. Nat Commun 5. doi:10.1038/ncomms6628

Ilk N, Ding J, Ihnatowicz A, Koornneef M, Reymond M (2015) Natural variation for anthocyanin accumulation under high-light and low-temperature stress is attributable to the ENHANCER OF AG-4 2 (HUA2) locus in combination with PRODUCTION OF ANTHOCYANIN PIGMENT1 (PAP1) and PAP2. New Phytol 206 (1):422-435. doi:10.1111/nph.13177

Nieh SC, Lin WS, Hsu YH, Shieh GJ, Kuo BJ (2014) The effect of flowering time and distance between pollen source and recipient on maize. GM Crops Food 5 (4):287-295. doi:10.4161/21645698.2014.947805

Nakamichi N (2014) Adaptation to the Local Environment by Modifications of the Photoperiod Response in Crops. Plant Cell Physiol. doi:10.1093/pcp/pcu181

Kurbidaeva A, Ezhova T, Novokreshchenova M (2014) Arabidopsis thaliana ICE2 gene: phylogeny, structural evolution and functional diversification from ICE1. Plant Sci 229:10-22. doi:10.1016/j.plantsci.2014.08.011

Guo D, Li C, Dong R, Li X, Xiao X, Huang X (2014) Molecular cloning and functional analysis of the FLOWERING LOCUS T (FT) homolog GhFT1 from Gossypium hirsutum. J Integr Plant Biol. doi:10.1111/jipb.12316

Hu X, Kong X, Wang C, Ma L, Zhao J, Wei J, Zhang X, Loake GJ, Zhang T, Huang J, Yang Y (2014) Proteasome-Mediated Degradation of FRIGIDA Modulates Flowering Time in Arabidopsis during Vernalization. Plant Cell 26 (12):4763-4781. doi:10.1105/tpc.114.132738

Fu J, Yang L, Dai S (2014) Identification and characterization of the CONSTANS-like gene family in the short-day plant Chrysanthemum lavandulifolium. Mol Genet Genomics. doi:10.1007/s00438-014-0977-3

Yang D, Zhao W, Meng Y, Li H, Liu B (2015) A CIB1-LIKE Transcription Factor GmCIL10 from Soybean positively regulates plant flowering. Sci China Life Sci. doi:10.1007/s11427-015-4815-6

Matsumoto T, Yasumoto AA, Nitta K, Hirota SK, Yahara T, Tachida H (2015) Difference in flowering time can initiate speciation of nocturnally flowering species. J Theor Biol 370C:61-71. doi:10.1016/j.jtbi.2015.01.036

Hong Y, Jackson S (2015) Floral induction and flower formation-the role and potential applications of miRNAs. Plant Biotechnol J. doi:10.1111/pbi.12340 Brunner AM, Evans LM, Hsu CY, Sheng X (2014) Vernalization and the chilling requirement to exit bud dormancy: shared or separate regulation? Front Plant Sci 5:732. doi:10.3389/fpls.2014.00732

Wang H (2014) Phytochrome Signaling: Time to Tighten up the Loose Ends. Mol Plant. doi:10.1016/j.molp.2014.11.021

Serivichyaswat P, Ryu HS, Kim W, Kim S, Chung KS, Kim JJ, Ahn JH (2015) Expression of the Floral Repressor miRNA156 is Positively Regulated by the AGAMOUS-like Proteins AGL15 and AGL18. Mol Cells. doi:10.14348/molcells.2015.2311

Roumet M, Cayre A, Latreille M, Muller MH (2015) Quantifying temporal isolation: a modelling approach assessing the effect of flowering time differences on crop-to-weed pollen flow in sunflower. Evol Appl 8 (1):64-74. doi:10.1111/eva.12222

Guo W, Fukatsu T, Ninomiya S (2015) Automated characterization of flowering dynamics in rice using field-acquired time-series RGB images. Plant Methods 11:7. doi:10.1186/s13007-015-0047-9

Castro P, Bushakra JM, Stewart P, Weebadde CK, Wang D, Hancock JF, Finn CE, Luby JJ, Lewers KS (2015) Genetic mapping of day-neutrality in cultivated strawberry. Mol Breed 35 (2):1-16. doi:10.1007/s11032-015-0250-4

Kwon C-T, Koo B-H, Kim D, Yoo S-C, Paek N-C (2015) Casein Kinases I and 2α Phosphorylate Oryza Sativa Pseudo-Response Regulator 37 (OsPRR37) in Photoperiodic Flowering in Rice. Mol Cells 38 (1):81-88. doi:10.14348/molcells.2015.2254

Li L, Hu L, Han L-P, Ji H, Zhu Y, Wang X, Ge J, Xu M, Shen D, Dong H (2014) Expression of turtle riboflavin-binding protein represses mitochondrial electron transport gene expression and promotes flowering in Arabidopsis. BMC Plant Biol 14 (1):381. doi:10.1186/s12870-014-0381-5

Jia Z, Jiang B, Gao X, Yue Y, Fei Z, Sun H, Wu C, Sun S, Hou W, Han T (2015) GmFULa, a FRUITFULL homolog, functions in the flowering and maturation of soybean. Plant Cell Rep 34 (1):121-132. doi:10.1007/s00299-014-1693-5

Sun C, Chen D, Fang J, Wang P, Deng X, Chu C (2014) Understanding the genetic and epigenetic architecture in complex network of rice flowering pathways. Protein Cell. doi:10.1007/s13238-014-0068-6

Jones RC, Vaillancourt RE, Gore PL, Potts BM (2011) Genetic control of flowering time in globulus ssp. globulus. Tree Genet Genomes 7 (6):1209-1218. doi:10.1007/s11295-011-0407-1

Hori K, Ogiso-Tanaka E, Matsubara K, Yamanouchi U, Ebana K, Yano M (2013) Hd16, a gene for casein kinase I, is involved in the control of rice flowering time by modulating the day-length response. Plant J 76 (1):36-46. doi:10.1111/tpj.12268

Gachomo EW, Jno Baptiste L, Kefela T, Saidel WM, Kotchoni SO (2014) The Arabidopsis CURVY1 (CVY1) gene encoding a novel receptor-like protein kinase regulates cell morphogenesis, flowering time and seed production. BMC Plant Biol 14:221. doi:10.1186/s12870-014-0221-7 Endo M, Shimizu H, Nohales MA, Araki T, Kay SA (2014) Tissue-specific clocks in Arabidopsis show asymmetric coupling. Nature 515 (7527):419-422. doi:10.1038/nature13919

Wickland DP, Hanzawa Y (2015) The FLOWERING LOCUS T / TERMINAL FLOWER 1 Gene Family: Functional Evolution and MolecularMechanisms. Mol Plant. doi:10.1016/j.molp.2015.01.007

Fornara F, de Montaigu A, Sanchez-Villarreal A, Takahashi Y, van Themaat EV, Huettel B, Davis SJ, Coupland G (2015) The GI-CDF module of Arabidopsis affects freezing tolerance and growth as well as flowering. Plant J. doi:10.1111/tpj.12759

Deng W, Casao MC, Wang P, Sato K, Hayes PM, Finnegan EJ, Trevaskis B (2015) Direct links between the vernalization response and other key traits of cereal crops. Nat Commun 6:5882. doi:10.1038/ncomms6882

Yi G, Park H, Kim J-S, Chae W, Park S, Huh J (2014) Identification of three FLOWERING LOCUS C genes responsible for vernalization response in radish (Raphanus sativus L.). Hortic Environ Biotechnol 55 (6):548-556. doi:10.1007/s13580- 014-1151-x

Li G, Yu M, Fang T, Cao S, Carver BF, Yan L (2013) Vernalization requirement duration in winter wheat is controlled by TaVRN-A1 at the protein level. Plant J 76 (5):742-753. doi:10.1111/tpj.12326

Kaeppler S, De Leon N, Foerster JM, Muttoni G (2014) Modifying flowering time in maize United States of America Patent,

Kusakina J, Gould PD, Hall A (2014) A fast circadian clock at high temperatures is a conserved feature across Arabidopsis accessions and likely to be important for vegetative yield. Plant, Cell & Environment 37 (2):327-340. doi:10.1111/pce.12152

Pinheiro TT, Figueira A, Latado RR (2014) Early-flowering sweet orange mutant ‘x11’ as a model for functional genomic studies of Citrus. BMC Res Notes 7 (1):511. doi:10.1186/1756-0500-7-511

Zhao S, Luo Y, Zhang Z, Xu M, Wang W, Zhao Y, Zhang L, Fan Y, Wang L (2014) ZmSOC1, an MADS-Box Transcription Factor from Zea mays, Promotes Flowering in Arabidopsis. International Journal of Molecular Sciences 15 (11):19987-20003. doi:10.3390/ijms151119987

Xu M, Lu Y, Yang H, He J, Hu Z, Hu X, Luan M, Zhang L, Fan Y, Wang L (2015) ZmGRF, a GA regulatory factor from maize, promotes flowering and plant growth in Arabidopsis. Plant Mol Biol 87 (1-2):157-167. doi:10.1007/s11103-014-0267-9

Zhang XL, Zhang LG (2014) Molecular cloning and expression of the male sterility- related CtYABBY1 gene in flowering Chinese cabbage (Brassica campestris L. ssp chinensis var. parachinensis). Genet Mol Res 13 (2):4336-4347. doi:10.4238/2014.June.10.1

Jones RC, Hecht VFG, Potts BM, Vaillancourt RE, Weller JL (2011) Expression of a FLOWERING LOCUS T homologue is temporally associated with annual flower bud initiation in Eucalyptus globulus subsp globulus (). Aust J Bot 59 (8):756-769. doi:Doi 10.1071/Bt11251

Rios G, Leida C, Conejero A, Badenes ML (2014) Epigenetic regulation of bud dormancy events in perennial plants. Front Plant Sci 5. doi:Artn 247

Doi 10.3389/Fpls.2014.00247

Zhebentyayeva TN, Fan SH, Chandra A, Bielenberg DG, Reighard GL, Okie WR, Abbott AG (2014) Dissection of chilling requirement and bloom date QTLs in peach using a whole genome sequencing of sibling trees from an F-2 mapping population. Tree Genet Genomes 10 (1):35-51. doi:DOI 10.1007/s11295-013-0660-6

Wang L, Tiffin P, Olson MS (2014) Timing for success: expression phenotype and local adaptation related to latitude in the boreal forest tree, Populus balsamifera. Tree Genet Genomes 10 (4):911-922. doi:DOI 10.1007/s11295-014-0731-3

Yamaguchi N, Winter CM, Wu MF, Kanno Y, Yamaguchi A, Seo M, Wagner D (2014) Gibberellin acts positively then negatively to control onset of flower formation in Arabidopsis. Science 344 (6184):638-641. doi:10.1126/science.1250498

Takata N, Saito S, Saito CT, Uemura M (2010) Phylogenetic footprint of the plant clock system in angiosperms: evolutionary processes of pseudo-response regulators. BMC Evol Biol 10:126. doi:10.1186/1471-2148-10-126

McClung CR (2011) The genetics of plant clocks. Adv Genet 74:105-139. doi:10.1016/b978-0-12-387690-4.00004-0

Doherty CJ, Kay SA (2010) Circadian Control of Global Gene Expression Patterns. Annu Rev Genet 44:419-444. doi:10.1146/annurev-genet-102209-163432

Loscos J, Igartua E, Contreras-Moreira B, Gracia MP, Casas AM (2014) HvFT1 polymorphism and effect-survey of barley germplasm and expression analysis. Front Plant Sci 5:251. doi:10.3389/fpls.2014.00251

Kim S, Lee T, Kang Y, Hwang W, Kim K, Moon J-K, Kim M, Lee S-H (2014) Genome- wide comparative analysis of flowering genes between Arabidopsis and mungbean. Genes and Genomics 36 (6):799-808. doi:10.1007/s13258-014-0215-8

Limin AE, Fowler DB (2002) Developmental Traits Affecting Low-temperature Tolerance Response in Near-isogenic Lines for the Vernalization Locus Vrn-A1 in Wheat (Triticum aestivum L. em Thell). Ann Bot 89 (5):579-585. doi:10.1093/aob/mcf102

Xu Q, Saito H, Hirose I, Katsura K, Yoshitake Y, Yokoo T, Tsukiyama T, Teraishi M, Tanisaka T, Okumoto Y (2014) The effects of the photoperiod-insensitive alleles,se13, hd1 and ghd7, on yield components in rice. Mol Breed 33:813-819. doi:10.1007/s11032- 013-9994-x

Yang S, Murphy RL, Morishige DT, Klein PE, Rooney WL, Mullet JE (2014) Sorghum Phytochrome B Inhibits Flowering in Long Days by Activating Expression of SbPRR37 and SbGHD7, Repressors of SbEHD1, SbCN8 and SbCN12. PLoS ONE 9 (8):e105352. doi:10.1371/journal.pone.0105352 Zuellig MP, Kenney AM, Sweigart AL (2014) Evolutionary genetics of plant adaptation: insights from new model systems. Curr Opin Plant Biol 18:44-50. doi:10.1016/j.pbi.2014.01.001

Zhai H, Lu S, Wang Y, Chen X, Ren H, Yang J, Cheng W, Zong C, Gu H, Qiu H, Wu H, Zhang X, Cui T, Xia Z (2014) Allelic variations at four major maturity e genes and transcriptional abundance of the e1 gene are associated with flowering time and maturity of soybean cultivars. PLoS ONE 9 (5):e97636. doi:10.1371/journal.pone.0097636

Zhai H, Lu S, Liang S, Wu H, Zhang X, Liu B, Kong F, Yuan X, Li J, Xia Z (2014) GmFT4, a homolog of FLOWERING LOCUS T, is positively regulated by E1 and functions as a flowering repressor in soybean. PLoS ONE 9 (2):e89030. doi:10.1371/journal.pone.0089030

Zanke C, Ling J, Plieske J, Kollers S, Ebmeyer E, Korzun V, Argillier O, Stiewe G, Hinze M, Beier S, Ganal MW, Roder MS (2014) Genetic architecture of main effect QTL for heading date in European winter wheat. Front Plant Sci 5:217. doi:10.3389/fpls.2014.00217

Yokoo T, Saito H, Yoshitake Y, Xu Q, Asami T, Tsukiyama T, Teraishi M, Okumoto Y, Tanisaka T (2014) Se14, Encoding a JmjC Domain-Containing Protein, Plays Key Roles in Long-Day Suppression of Rice Flowering through the Demethylation of H3K4me3 of RFT1. PLoS ONE 9 (4):e96064. doi:10.1371/journal.pone.0096064

Yan Y, Shen L, Chen Y, Bao S, Thong Z, Yu H (2014) A MYB-Domain Protein EFM Mediates Flowering Responses to Environmental Cues in Arabidopsis. Dev Cell 30 (4):437-448. doi:10.1016/j.devcel.2014.07.004

Wang Y, Gu X, Yuan W, Schmitz RJ, He Y (2014) Photoperiodic Control of the Floral Transition through a Distinct Polycomb Repressive Complex. Dev Cell 28 (6):727-736. doi:10.1016/j.devcel.2014.01.029

Wang X, Fan S, Song M, Pang C, Wei H, Yu J, Ma Q, Yu S (2014) Upland cotton gene GhFPF1 confers promotion of flowering time and shade-avoidance responses in Arabidopsis thaliana. PLoS ONE 9 (3):e91869. doi:10.1371/journal.pone.0091869

Wang CC, Chang PC, Ng KL, Chang CM, Sheu PC, Tsai JJ (2014) A model comparison study of the flowering time regulatory network in Arabidopsis. BMC Syst Biol 8:15. doi:10.1186/1752-0509-8-15

Wagner MR, Lundberg DS, Coleman-Derr D, Tringe SG, Dangl JL, Mitchell-Olds T (2014) Natural soil microbes alter flowering phenology and the intensity of selection on flowering time in a wild Arabidopsis relative. Ecol Lett 17 (6):717-726. doi:10.1111/ele.12276

Vermeulen PJ (2014) On selection for flowering time plasticity in response to density. New Phytol. doi:10.1111/nph.12984

Tsai AY, Gazzarrini S (2014) Trehalose-6-phosphate and SnRK1 kinases in plant development and signaling: the emerging picture. Front Plant Sci 5:119. doi:10.3389/fpls.2014.00119 Thiruvengadam M, Chung IM (2014) Optimization of factors influencing in vitro flowering of gherkin (Cucumis anguria L.). Acta Biol Hung 65 (1):72-84. doi:10.1556/ABiol.65.2014.1.7

Thines BC, Youn Y, Duarte MI, Harmon FG (2014) The time of day effects of warm temperature on flowering time involve PIF4 and PIF5. J Exp Bot 65 (4):1141-1151. doi:10.1093/jxb/ert487

Steffen A, Fischer A, Staiger D (2014) Determination of photoperiodic flowering time control in Arabidopsis and barley. Methods Mol Biol 1158:285-295. doi:10.1007/978-1- 4939-0700-7_19

Song X, Li Y, Liu T, Duan W, Huang Z, Wang L, Tan H, Hou X (2014) Genes associated with agronomic traits in non-heading Chinese cabbage identified by expression profiling. BMC Plant Biol 14:71. doi:10.1186/1471-2229-14-71

Shi P, Chen Z, Yang Q, Harris MK, Xiao M (2014) Influence of air temperature on the first flowering date of Prunus yedoensis Matsum. Ecol Evol 4 (3):292-299. doi:10.1002/ece3.442

Shen L, Thong Z, Gong X, Shen Q, Gan Y, Yu H (2014) The putative PRC1 RING-finger protein AtRING1A regulates flowering through repressing MADS AFFECTING FLOWERING genes in Arabidopsis. Development 141 (6):1303-1312. doi:10.1242/dev.104513

Semenov MA, Stratonovitch P, Alghabari F, Gooding MJ (2014) Adapting wheat in Europe for climate change. J Cereal Sci 59 (3):245-256. doi:10.1016/j.jcs.2014.01.006

Schmalenbach I, Zhang L, Ryngajllo M, Jimenez-Gomez JM (2014) Functional analysis of the Landsberg erecta allele of FRIGIDA. BMC Plant Biol 14 (1):218. doi:10.1186/s12870-014-0218-2

Schiessl S, Samans B, Huttel B, Reinhard R, Snowdon RJ (2014) Capturing sequence variation among flowering-time regulatory gene homologs in the allopolyploid crop species Brassica napus. Front Plant Sci 5:404. doi:10.3389/fpls.2014.00404

Rosas U, Mei Y, Xie Q, Banta JA, Zhou RW, Seufferheld G, Gerard S, Chou L, Bhambhra N, Parks JD, Flowers JM, McClung CR, Hanzawa Y, Purugganan MD (2014) Variation in Arabidopsis flowering time associated with cis-regulatory variation in CONSTANS. Nat Commun 5:3651. doi:10.1038/ncomms4651

Ranjan A, Dickopf S, Ullrich KK, Rensing SA, Hoecker U (2014) Functional analysis of COP1 and SPA orthologs from Physcomitrella and rice during photomorphogenesis of transgenic Arabidopsis reveals distinct evolutionary conservation. BMC Plant Biol 14:178. doi:10.1186/1471-2229-14-178

Qian H, Han X, Peng X, Lu T, Liu W, Fu Z (2014) The circadian clock gene regulatory module enantioselectively mediates imazethapyr-induced early flowering in Arabidopsis thaliana. J Plant Physiol 171 (5):92-98. doi:10.1016/j.jplph.2013.11.011

Moharekar Lokhande S, Moharekar S, Kobayashi T, Ishii H, Sumida A, Hara T (2014) Phenotypic plasticity and ecotypic variations in growth and flowering time of arabidopsis thaliana (L.) under different light and temperature conditions. Indian J Exp Biol 52 (4):344-351

Lv B, Nitcher R, Han X, Wang S, Ni F, Li K, Pearce S, Wu J, Dubcovsky J, Fu D (2014) Characterization of FLOWERING LOCUS T1 (FT1) Gene in Brachypodium and Wheat. PLoS ONE 9 (4):e94171. doi:10.1371/journal.pone.0094171

Lu Q, Zhao L, Li D, Hao D, Zhan Y, Li W (2014) A GmRAV Ortholog Is Involved in Photoperiod and Sucrose Control of Flowering Time in Soybean. PLoS ONE 9 (2):e89145. doi:10.1371/journal.pone.0089145

Li DM, L FB, Zhu GF, Sun YB, Liu HL, Liu JW, Wang Z (2014) Molecular characterization and functional analysis of a Flowering locus T homolog gene from a Phalaenopsis orchid. Genet Mol Res 13 (3):5982-5994. doi:10.4238/2014.August.7.14

Keerthi CM, Ramesh S, Byregowda M, Mohan Rao A, Rajendra Prasad BS, Vaijayanthi PV (2014) Genetics of growth habit and photoperiodic response to flowering time in dolichos bean (Lablab purpureus (L.) Sweet). J Genet 93 (1):203-206

Jorgensen SA, Preston JC (2014) Differential SPL gene expression patterns reveal candidate genes underlying flowering time and architectural differences in Mimulus and Arabidopsis. Mol Phylogenet Evol 73:129-139. doi:10.1016/j.ympev.2014.01.029

Ji H, Zhu Y, Tian S, Xu M, Tian Y, Li L, Wang H, Hu L, Ji Y, Ge J, Wen W, Dong H (2014) Downregulation of leaf flavin content induces early flowering and photoperiod gene expression in Arabidopsis. BMC Plant Biol 14 (1):237. doi:10.1186/s12870-014- 0237-z

Ito A, Saito T, Nishijima T, Moriguchi T (2014) Effect of extending the photoperiod with low-intensity red or far-red light on the timing of shoot elongation and flower-bud formation of 1-year-old Japanese pear (Pyrus pyrifolia). Tree Physiol 34 (5):534-546. doi:10.1093/treephys/tpu033

Ho WW, Weigel D (2014) Structural features determining flower-promoting activity of Arabidopsis FLOWERING LOCUS T. Plant Cell 26 (2):552-564. doi:10.1105/tpc.113.115220

Diallo AO, Agharbaoui Z, Badawi MA, Ali-Benali MA, Moheb A, Houde M, Sarhan F (2014) Transcriptome analysis of an mvp mutant reveals important changes in global gene expression and a role for methyl jasmonate in vernalization and flowering in wheat. J Exp Bot 65 (9):2271-2286. doi:10.1093/jxb/eru102

Cai Y, Vega-Sanchez ME, Park CH, Bellizzi M, Guo Z, Wang GL (2014) RBS1, an RNA Binding Protein, Interacts with SPIN1 and Is Involved in Flowering Time Control in Rice. PLoS ONE 9 (1):e87258. doi:10.1371/journal.pone.0087258

Cai Y, Chen X, Xie K, Xing Q, Wu Y, Li J, Du C, Sun Z, Guo Z (2014) Dlf1, a WRKY Transcription Factor, Is Involved in the Control of Flowering Time and Plant Height in Rice. PLoS ONE 9 (7):e102529. doi:10.1371/journal.pone.0102529

Byeon Y, Back K (2014) An increase in melatonin in transgenic rice causes pleiotropic phenotypes, including enhanced seedling growth, delayed flowering, and low grain yield. J Pineal Res 56 (4):408-414. doi:10.1111/jpi.12129 Bu Z, Yu Y, Li Z, Liu Y, Jiang W, Huang Y, Dong AW (2014) Regulation of Arabidopsis Flowering by the Histone Mark Readers MRG1/2 via Interaction with CONSTANS to Modulate FT Expression. PLoS Genet 10 (9):e1004617. doi:10.1371/journal.pgen.1004617

Brachi B, Faure N, Bergelson J, Cuguen J, Roux F (2013) Genome-wide association mapping of flowering time in in nature: genetics for underlying components and reaction norms across two successive years. Acta Bot Gallica 160 (3-4):205-219. doi:10.1080/12538078.2013.807302

Blee E, Boachon B, Burcklen M, Le Guedard M, Hanano A, Heintz D, Ehlting J, Herrfurth C, Feussner I, Bessoule JJ (2014) The Reductase Activity of the Arabidopsis Caleosin RESPONSIVE TO DESSICATION20 Mediates Gibberellin-Dependent Flowering Time, Abscisic Acid Sensitivity, and Tolerance to Oxidative Stress. Plant Physiol 166 (1):109-124. doi:10.1104/pp.114.245316

Ai-Hua S, Yin-Hua C, Zhi-Hui S, Xiao-Juan Z, Xue-Jun W, De-Zheng Q, Xin-An Z (2014) Identification of photoperiod-regulated gene in soybean and functional analysis in Nicotiana benthamiana. J Genet 93 (1):43-51

Aguilera F, Fornaciari M, Ruiz-Valenzuela L, Galan C, Msallem M, Dhiab AB, la Guardia CD, Del Mar Trigo M, Bonofiglio T, Orlandi F (2014) Phenological models to predict the main flowering phases of olive (Olea europaea L.) along a latitudinal and longitudinal gradient across the Mediterranean region. Int J Biometeorol. doi:10.1007/s00484-014-0876-7

Balanza V, Martinez-Fernandez I, Ferrandiz C (2014) Sequential action of FRUITFULL as a modulator of the activity of the floral regulators SVP and SOC1. J Exp Bot 65 (4):1193-1203. doi:10.1093/jxb/ert482

Wu F, Price BW, Haider W, Seufferheld G, Nelson R, Hanzawa Y (2014) Functional and evolutionary characterization of the CONSTANS gene family in short-day photoperiodic flowering in soybean. PLoS ONE 9 (1):e85754. doi:10.1371/journal.pone.0085754

Romeu JF, Monforte AJ, Sanchez G, Granell A, Garcia-Brunton J, Badenes ML, Rios G (2014) Quantitative trait loci affecting reproductive phenology in peach. BMC Plant Biol 14:52. doi:10.1186/1471-2229-14-52

Ortiz-Marchena MI, Albi T, Lucas-Reina E, Said FE, Romero-Campero FJ, Cano B, Ruiz MT, Romero JM, Valverde F (2014) Photoperiodic control of carbon distribution during the floral transition in Arabidopsis. Plant Cell 26 (2):565-584. doi:10.1105/tpc.114.122721

Naranjo L, Talon M, Domingo C (2014) Diversity of floral regulatory genes of japonica rice cultivated at northern latitudes. BMC Genomics 15:101. doi:10.1186/1471-2164-15- 101

Koprivova A, Calderwood A, Lee BR, Kopriva S (2014) Do PFT1 and HY5 interact in regulation of sulfate assimilation by light in Arabidopsis? FEBS Lett 588 (7):1116-1121. doi:10.1016/j.febslet.2014.02.031

Jegu T, Latrasse D, Delarue M, Hirt H, Domenichini S, Ariel F, Crespi M, Bergounioux C, Raynaud C, Benhamed M (2014) The BAF60 subunit of the SWI/SNF chromatin- remodeling complex directly controls the formation of a gene loop at FLOWERING LOCUS C in Arabidopsis. Plant Cell 26 (2):538-551. doi:10.1105/tpc.113.114454

Chen J, Li X, Cheng C, Wang Y, Qin M, Zhu H, Zeng R, Fu X, Liu Z, Zhang G (2014) Characterization of epistatic interaction of QTLs LH8 and EH3 controlling heading date in rice. Sci Rep 4:4263. doi:10.1038/srep04263

Potouroglou M, Kenyon EJ, Gall A, Cook KJ, Bull JC (2014) The roles of flowering, overwinter survival and sea surface temperature in the long-term population dynamics of Zostera marina around the Isles of Scilly, UK. Mar Pollut Bull 83 (2):500-507. doi:10.1016/j.marpolbul.2014.03.035

Marquardt S, Raitskin O, Wu Z, Liu F, Sun Q, Dean C (2014) Functional consequences of splicing of the antisense transcript COOLAIR on FLC transcription. Mol Cell 54 (1):156- 165. doi:10.1016/j.molcel.2014.03.026

Lind-Riehl JF, Sullivan AR, Gailing O (2014) Evidence for selection on a CONSTANS- like gene between two red oak species. Ann Bot 113 (6):967-975. doi:10.1093/aob/mcu019

Li DM, Lu FB, Zhu GF, Sun YB, Xu YC, Jiang MD, Liu JW, Wang Z (2014) Identification of warm day and cool night conditions induced flowering-related genes in a Phalaenopsis orchid hybrid by suppression subtractive hybridization. Genet Mol Res 13 (3):7037-7051. doi:10.4238/2014.February.14.7

Jung JH, Lee HJ, Park MJ, Park CM (2014) Beyond ubiquitination: proteolytic and nonproteolytic roles of HOS1. Trends Plant Sci 19 (8):538-545. doi:10.1016/j.tplants.2014.03.012

Endo M, Kudo D, Koto T, Shimizu H, Araki T (2014) Light-dependent destabilization of PHL in Arabidopsis. Plant Signal Behav 9 (3):e28118

Castelletti S, Tuberosa R, Pindo M, Salvi S (2014) A MITE transposon insertion is associated with differential methylation at the maize flowering time QTL Vgt1. G3 (Bethesda) 4 (5):805-812. doi:10.1534/g3.114.010686

Yang Y, Ma C, Xu Y, Wei Q, Imtiaz M, Lan H, Gao S, Cheng L, Wang M, Fei Z, Hong B, Gao J (2014) A Zinc Finger Protein Regulates Flowering Time and Abiotic Stress Tolerance in Chrysanthemum by Modulating Gibberellin Biosynthesis. Plant Cell 26 (5):2038-2054. doi:10.1105/tpc.114.124867

Tao YB, Luo L, He LL, Ni J, Xu ZF (2014) A promoter analysis of MOTHER OF FT AND TFL1 1 (JcMFT1), a seed-preferential gene from the biofuel plant Jatropha curcas. J Plant Res 127 (4):513-524. doi:10.1007/s10265-014-0639-x

Matsubara K, Hori K, Ogiso-Tanaka E, Yano M (2014) Cloning of quantitative trait genes from rice reveals conservation and divergence of photoperiod flowering pathways in Arabidopsis and rice. Front Plant Sci 5:193. doi:10.3389/fpls.2014.00193

Lu H, Lin T, Klein J, Wang S, Qi J, Zhou Q, Sun J, Zhang Z, Weng Y, Huang S (2014) QTL-seq identifies an early flowering QTL located near Flowering Locus T in cucumber. Theor Appl Genet 127 (7):1491-1499. doi:10.1007/s00122-014-2313-z Hu JY, Zhou Y, He F, Dong X, Liu LY, Coupland G, Turck F, de Meaux J (2014) miR824-Regulated AGAMOUS-LIKE16 Contributes to Flowering Time Repression in Arabidopsis. Plant Cell 26 (5):2024-2037. doi:10.1105/tpc.114.124685

Hoenicka H, Lehnhardt D, Nilsson O, Hanelt D, Fladung M (2014) Successful crossings with early flowering transgenic poplar: interspecific crossings, but not transgenesis, promoted aberrant phenotypes in offspring. Plant Biotechnol J 12 (8):1066-1074. doi:10.1111/pbi.12213

Fu J, Yang L, Dai S (2014) Conservation of Arabidopsis thaliana circadian clock genes in Chrysanthemum lavandulifolium. Plant Physiol Biochem 80:337-347. doi:10.1016/j.plaphy.2014.04.001

Chen A, Li C, Hu W, Lau MY, Lin H, Rockwell NC, Martin SS, Jernstedt JA, Lagarias JC, Dubcovsky J (2014) Phytochrome C plays a major role in the acceleration of wheat flowering under long-day photoperiod. Proc Natl Acad Sci U S A 111 (28):10037-10044. doi:10.1073/pnas.1409795111

Zhang Z, Wang P, Li Y, Ma L, Li L, Yang R, Ma Y, Wang S, Wang Q (2014) Global transcriptome analysis and identification of the flowering regulatory genes expressed in leaves of Lagerstroemia indica. DNA Cell Biol 33 (10):680-688. doi:10.1089/dna.2014.2469

Sanchez-Perez R, Del Cueto J, Dicenta F, Martinez-Gomez P (2014) Recent advancements to study flowering time in almond and other Prunus species. Front Plant Sci 5:334. doi:10.3389/fpls.2014.00334

Pankin A, Campoli C, Dong X, Kilian B, Sharma R, Himmelbach A, Saini R, Davis SJ, Stein N, Schneeberger K, von Korff M (2014) Mapping-by-sequencing identifies HvPHYTOCHROME C as a candidate gene for the early maturity 5 locus modulating the circadian clock and photoperiodic flowering in barley. Genetics 198 (1):383-396. doi:10.1534/genetics.114.165613

Nitcher R, Pearce S, Tranquilli G, Zhang X, Dubcovsky J (2014) Effect of the hope FT- B1 allele on wheat heading time and yield components. J Hered 105 (5):666-675. doi:10.1093/jhered/esu042

Nakamura Y, Andres F, Kanehara K, Liu YC, Coupland G, Dormann P (2014) Diurnal and circadian expression profiles of glycerolipid biosynthetic genes in Arabidopsis. Plant Signal Behav 9

Jali SS, Rosloski SM, Janakirama P, Steffen JG, Zhurov V, Berleth T, Clark RM, Grbic V (2014) A plant-specific HUA2-LIKE (HULK) gene family in Arabidopsis thaliana is essential for development. Plant J 80 (2):242-254. doi:10.1111/tpj.12629

Fernandez-Nohales P, Domenech MJ, Martinez de Alba AE, Micol JL, Ponce MR, Madueno F (2014) AGO1 controls arabidopsis inflorescence architecture possibly by regulating TFL1 expression. Ann Bot 114 (7):1471-1481. doi:10.1093/aob/mcu132

Fernandez L, Le Cunff L, Tello J, Lacombe T, Boursiquot JM, Fournier-Level A, Bravo G, Lalet S, Torregrosa L, This P, Martinez-Zapater JM (2014) Haplotype diversity of VvTFL1A gene and association with cluster traits in grapevine (V. vinifera). BMC Plant Biol 14:209. doi:10.1186/s12870-014-0209-3 Dittmar EL, Oakley CG, Agren J, Schemske DW (2014) Flowering time QTL in natural populations of Arabidopsis thaliana and implications for their adaptive value. Mol Ecol 23 (17):4291-4303. doi:10.1111/mec.12857

Behringer C, Bastakis E, Ranftl QL, Mayer KF, Schwechheimer C (2014) Functional diversification within the family of B-GATA transcription factors through the leucine- leucine-methionine domain. Plant Physiol 166 (1):293-305. doi:10.1104/pp.114.246660

Weis AE, Nardone E, Fox GA (2014) The strength of assortative mating for flowering date and its basis in individual variation in flowering schedule. J Evol Biol 27 (10):2138- 2151. doi:10.1111/jeb.12465

Johansson M, Staiger D (2014) SRR1 is essential to repress flowering in non-inductive conditions in Arabidopsis thaliana. J Exp Bot 65 (20):5811-5822. doi:10.1093/jxb/eru317

Jiang B, Nan H, Gao Y, Tang L, Yue Y, Lu S, Ma L, Cao D, Sun S, Wang J, Wu C, Yuan X, Hou W, Kong F, Han T, Liu B (2014) Allelic combinations of soybean maturity Loci E1, E2, E3 and E4 result in diversity of maturity and adaptation to different latitudes. PLoS ONE 9 (8):e106042. doi:10.1371/journal.pone.0106042

Hou X, Zhou J, Liu C, Liu L, Shen L, Yu H (2014) Nuclear factor Y-mediated H3K27me3 demethylation of the SOC1 locus orchestrates flowering responses of Arabidopsis. Nat Commun 5:4601. doi:10.1038/ncomms5601

Higgins RH, Thurber CS, Assaranurak I, Brown PJ (2014) Multiparental mapping of plant height and flowering time QTL in partially isogenic sorghum families. G3 (Bethesda) 4 (9):1593-1602. doi:10.1534/g3.114.013318

Feng Z, Zhang L, Yang C, Wu T, Lv J, Chen Y, Liu X, Liu S, Jiang L, Wan J (2014) EF8 is involved in photoperiodic flowering pathway and chlorophyll biogenesis in rice. Plant Cell Rep 33 (12):2003-2014. doi:10.1007/s00299-014-1674-8

Yasui Y, Kohchi T (2014) ONE-ZINC FINGER1 and VOZ2 repress the FLOWERING LOCUS C clade members to control flowering time in Arabidopsis. Biosci Biotechnol Biochem 78 (11):1850-1855. doi:10.1080/09168451.2014.932670

Wang Y, Wang Z, Amyot L, Tian L, Xu Z, Gruber MY, Hannoufa A (2014) Ectopic expression of miR156 represses nodulation and causes morphological and developmental changes in Lotus japonicus. Mol Genet Genomics. doi:10.1007/s00438-014-0931-4

Suter L, Ruegg M, Zemp N, Hennig L, Widmer A (2014) Gene regulatory variation mediates flowering responses to vernalization along an altitudinal gradient in Arabidopsis thaliana. Plant Physiol. doi:10.1104/pp.114.247346

Ridge S, Brown PH, Hecht V, Driessen RG, Weller JL (2014) The role of BoFLC2 in cauliflower (Brassica oleracea var. botrytis L.) reproductive development. J Exp Bot. doi:10.1093/jxb/eru408

Mir RR, Kudapa H, Srikanth S, Saxena RK, Sharma A, Azam S, Saxena K, Varma Penmetsa R, Varshney RK (2014) Candidate gene analysis for determinacy in pigeonpea (Cajanus spp.). Theor Appl Genet 127 (12):2663-2678. doi:10.1007/s00122-014-2406-8 Lee CR, Anderson JT, Mitchell-Olds T (2014) Unifying Genetic Canalization, Genetic Constraint, and Genotype-by-Environment Interaction: QTL by Genomic Background by Environment Interaction of Flowering Time in Boechera stricta. PLoS Genet 10 (10):e1004727. doi:10.1371/journal.pgen.1004727

Kolmos E, Chow BY, Pruneda-Paz JL, Kay SA (2014) HsfB2b-mediated repression of PRR7 directs abiotic stress responses of the circadian clock. Proc Natl Acad Sci U S A 111 (45):16172-16177. doi:10.1073/pnas.1418483111

Kaur H, Banga SS (2014) Discovery and mapping of Brassica juncea Sdt gene associated with determinate plant growth habit. Theor Appl Genet. doi:10.1007/s00122-014-2424-6

Johansson M, Staiger D (2014) Time to flower: interplay between photoperiod and the circadian clock. J Exp Bot. doi:10.1093/jxb/eru441

Hu Q, Jin Y, Shi H, Yang W (2014) GmFLD, a soybean homolog of the autonomous pathway gene FLOWERING LOCUS D, promotes flowering in Arabidopsis thaliana. BMC Plant Biol 14 (1):263. doi:10.1186/s12870-014-0263-x

Henry LP, Watson RH, Blackman BK (2014) Transitions in photoperiodic flowering are common and involve few loci in wild sunflowers (Helianthus; ). Am J Bot 101 (10):1748-1758. doi:10.3732/ajb.1400097

Guilbaud CS, Dalchau N, Purves DW, Turnbull LA (2014) Is 'peak N' key to understanding the timing of flowering in annual plants? New Phytol. doi:10.1111/nph.13095

Eriksson ME, Hoffman D, Kaduk M, Mauriat M, Moritz T (2014) Transgenic hybrid aspen trees with increased gibberellin (GA) concentrations suggest that GA acts in parallel with FLOWERING LOCUS T2 to control shoot elongation. New Phytol. doi:10.1111/nph.13144

Cui LG, Shan JX, Shi M, Gao JP, Lin HX (2014) The miR156-SPL9-DFR pathway coordinates the relationship between development and abiotic stress tolerance in plants. Plant J. doi:10.1111/tpj.12712

Chin DC, Shen CH, Senthilkumar R, Yeh KW (2014) Prolonged exposure to elevated temperature induces floral transition via up-regulation of cytosolic ascorbate peroxidase 1 and subsequent reduction of ascorbate redox ratio in Oncidium hybrid orchid. Plant Cell Physiol. doi:10.1093/pcp/pcu146

Capovilla G, Schmid M, Pose D (2014) Control of flowering by ambient temperature. J Exp Bot. doi:10.1093/jxb/eru416

Austen EJ, Forrest JR, Weis AE (2014) Within-Plant Variation In Reproductive Investment: Consequences For Selection On Flowering Time. J Evol Biol. doi:10.1111/jeb.12538

Liu X, Zhou C, Zhao Y, Zhou S, Wang W, Zhou DX (2014) The rice enhancer of zeste [E(z)] genes SDG711 and SDG718 are respectively involved in long day and short day signaling to mediate the accurate photoperiod control of flowering time. Front Plant Sci 5:591. doi:10.3389/fpls.2014.00591 Liu F, Gong D, Zhang Q, Wang D, Cui M, Zhang Z, Liu G, Wu J, Wang Y (2014) High- throughput generation of an activation-tagged mutant library for functional genomic analyses in tobacco. Planta. doi:10.1007/s00425-014-2186-z

Berr A, Shafiq S, Pinon V, Dong A, Shen WH (2014) The trxG family histone- methyltransferase SET DOMAIN GROUP 26 promotes flowering via a distinctive genetic pathway. Plant J. doi:10.1111/tpj.12729

Lee H-J, Jung J-H, Cortés Llorca L, Kim S-G, Lee S, Baldwin IT, Park C-M (2014) FCA mediates thermal adaptation of stem growth by attenuating auxin action in Arabidopsis. Nat Commun 5. doi:10.1038/ncomms6473

Park SJ, Jiang K, Tal L, Yichie Y, Gar O, Zamir D, Eshed Y, Lippman ZB (2014) Optimization of crop productivity in tomato using induced mutations in the florigen pathway. Nat Genet 46 (12):1337-1342. doi:10.1038/ng.3131 http://www.nature.com/ng/journal/v46/n12/abs/ng.3131.html#supplementary-information

Sha AH, Gao ZL, Wu H, Lin DZ, Zhang QL, Chen YH (2014) Ectopic expression of soybean methionine synthase delays flowering time in transgenic tobacco plants. Biol Plant:1-8. doi:10.1007/s10535-014-0461-2

Luo YX, Luo CY, Du DZ, Fu Z, Yao YM, Xu CC, Zhang HS (2014) Quantitative trait analysis of flowering time in spring rapeseed (B. napus L.). Euphytica 200 (3):321-335. doi:10.1007/s10681-014-1140-2

Chen J-Y, Guo L, Ma H, Chen Y-Y, Zhang H-W, Ying J-Z, Zhuang J-Y (2014) Fine mapping of qHd1, a minor heading date QTL with pleiotropism for yield traits in rice (Oryza sativa L.). Theor Appl Genet 127 (11):2515-2524. doi:10.1007/s00122-014-2395- 7

Wakabayashi T, Oh H, Kawaguchi M, Harada K, Sato S, Ikeda H, Hiroaki S (2014) Polymorphisms of E1 and GIGANTEA in wild populations of Lotus japonicus. J Plant Res 127 (6):651-660. doi:10.1007/s10265-014-0649-8

Xiao D, Wang HG, Basnet RK, Zhao JJ, Lin K, Hou XL, Bonnema G (2014) Genetic dissection of leaf development in Brassica rapa using a 'genetical genomics' approach. Plant Physiol 164 (3):1309-1325. doi:10.1104/pp.113.227348

Li F, Sun J, Wang D, Bai S, Clarke AK, Holm M (2014) The B-Box Family Gene STO (BBX24) in Arabidopsis thaliana Regulates Flowering Time in Different Pathways. PLoS ONE 9 (2):e87544. doi:10.1371/journal.pone.0087544

Jung JH, Park CM (2014) HOS1-mediated activation of FLC via chromatin remodeling under cold stress. Plant Signal Behav 8 (12):e27342

Yasui Y, Mukougawa K, Uemoto M, Yokofuji A, Suzuri R, Nishitani A, Kohchi T (2012) The Phytochrome-Interacting VASCULAR PLANT ONE–ZINC FINGER1 and VOZ2 Redundantly Regulate Flowering in Arabidopsis. Plant Cell 24 (8):3248-3263. doi:10.1105/tpc.112.101915

Song YH, Lee I, Lee SY, Imaizumi T, Hong JC (2012) CONSTANS and ASYMMETRIC LEAVES 1 complex is involved in the induction of FLOWERING LOCUS T in photoperiodic flowering in Arabidopsis. Plant J 69 (2):332-342. doi:10.1111/j.1365- 313X.2011.04793.x

Ito S, Song YH, Josephson-Day AR, Miller RJ, Breton G, Olmstead RG, Imaizumi T (2012) FLOWERING BHLH transcriptional activators control expression of the photoperiodic flowering regulator CONSTANS in Arabidopsis. Proc Natl Acad Sci U S A 109 (9):3582-3587. doi:10.1073/pnas.1118876109

Inigo S, Alvarez MJ, Strasser B, Califano A, Cerdan PD (2012) PFT1, the MED25 subunit of the plant Mediator complex, promotes flowering through CONSTANS dependent and independent mechanisms in Arabidopsis. Plant J 69 (4):601-612. doi:10.1111/j.1365-313X.2011.04815.x

Rawat R, Takahashi N, Hsu PY, Jones MA, Schwartz J, Salemi MR, Phinney BS, Harmer SL (2011) REVEILLE8 and PSEUDO-REPONSE REGULATOR5 Form a Negative Feedback Loop within the Arabidopsis Circadian Clock. PLoS Genet 7 (3):e1001350. doi:10.1371/journal.pgen.1001350

Koops P, Pelser S, Ignatz M, Klose C, Marrocco-Selden K, Kretsch T (2011) EDL3 is an F-box protein involved in the regulation of abscisic acid signalling in Arabidopsis thaliana. J Exp Bot 62 (15):5547-5560. doi:10.1093/jxb/err236

Kim W, Ahn HJ, Chiou TJ, Ahn JH (2011) The role of the miR399-PHO2 module in the regulation of flowering time in response to different ambient temperatures in Arabidopsis thaliana. Mol Cells 32 (1):83-88. doi:10.1007/s10059-011-1043-1

Johansson M, McWatters HG, Bako L, Takata N, Gyula P, Hall A, Somers DE, Millar AJ, Eriksson ME (2011) Partners in time: EARLY BIRD associates with ZEITLUPE and regulates the speed of the Arabidopsis clock. Plant Physiol 155 (4):2108-2122. doi:10.1104/pp.110.167155

Helfer A, Nusinow DA, Chow BY, Gehrke AR, Bulyk ML, Kay SA (2011) LUX ARRHYTHMO encodes a nighttime repressor of circadian gene expression in the Arabidopsis core clock. Curr Biol 21 (2):126-133. doi:10.1016/j.cub.2010.12.021

Yu X, Michaels SD (2010) The Arabidopsis Paf1c complex component CDC73 participates in the modification of FLOWERING LOCUS C chromatin. Plant Physiol 153 (3):1074-1084. doi:10.1104/pp.110.158386

Richter R, Behringer C, Muller IK, Schwechheimer C (2010) The GATA-type transcription factors GNC and GNL/CGA1 repress gibberellin signaling downstream from DELLA proteins and PHYTOCHROME-INTERACTING FACTORS. Genes Dev 24 (18):2093-2104. doi:10.1101/gad.594910

Park S, Oh S, Ek-Ramos J, van Nocker S (2010) PLANT HOMOLOGOUS TO PARAFIBROMIN Is a Component of the PAF1 Complex and Assists in Regulating Expression of Genes within H3K27ME3-Enriched Chromatin. Plant Physiol 153 (2):821- 831. doi:10.1104/pp.110.155838

Morris K, Thornber S, Codrai L, Richardson C, Craig A, Sadanandom A, Thomas B, Jackson S (2010) DAY NEUTRAL FLOWERING represses CONSTANS to prevent Arabidopsis flowering early in short days. Plant Cell 22 (4):1118-1128. doi:10.1105/tpc.109.066605 Morris K, Jackson SP (2010) DAY NEUTRAL FLOWERING does not act through GIGANTEA and FKF1 to regulate CONSTANS expression and flowering time. Plant Signal Behav 5 (9):1105-1107. doi:12416 [pii] 10.4161/psb.5.9.12416

Wang J-W, Czech B, Weigel D (2009) miR156-Regulated SPL Transcription Factors Define an Endogenous Flowering Pathway in Arabidopsis thaliana. Cell 138 (4):738-749. doi:10.1016/j.cell.2009.06.014

Pruneda-Paz JL, Breton G, Para A, Kay SA (2009) A Functional Genomics Approach Reveals CHE as a Component of the Arabidopsis Circadian Clock. Science 323 (5920):1481-1485. doi:10.1126/science.1167206

Mathieu J, Yant LJ, Murdter F, Kuttner F, Schmid M (2009) Repression of flowering by the miR172 target SMZ. PLoS Biol 7 (7):e1000148. doi:10.1371/journal.pbio.1000148

Jose Ripoll J, Rodriguez-Cazorla E, Gonzalez-Reig S, Andujar A, Alonso-Cantabrana H, Angel Perez-Amador M, Carbonell J, Martinez-Laborda A, Vera A (2009) Antagonistic interactions between Arabidopsis K-homology domain genes uncover PEPPER as a positive regulator of the central floral repressor FLOWERING LOCUS C. Dev Biol 333 (2):251-262. doi:10.1016/j.ydbio.2009.06.035

Fornara F, Panigrahi KC, Gissot L, Sauerbrunn N, Ruhl M, Jarillo JA, Coupland G (2009) Arabidopsis DOF transcription factors act redundantly to reduce CONSTANS expression and are essential for a photoperiodic flowering response. Dev Cell 17 (1):75-86. doi:10.1016/j.devcel.2009.06.015

Schwarz S, Grande A, Bujdoso N, Saedler H, Huijser P (2008) The microRNA regulated SBP-box genes SPL9 and SPL15 control shoot maturation in Arabidopsis. Plant Mol Biol 67 (1-2):183-195. doi:10.1007/s11103-008-9310-z

Liu H, Yu X, Li K, Klejnot J, Yang H, Lisiero D, Lin C (2008) Photoexcited CRY2 Interacts with CIB1 to Regulate Transcription and Floral Initiation in Arabidopsis. Science 322 (5907):1535-1539. doi:10.1126/science.1163927

Han P, Garcia-Ponce B, Fonseca-Salazar G, Alvarez-Buylla ER, Yu H (2008) AGAMOUS-LIKE 17, a novel flowering promoter, acts in a FT-independent photoperiod pathway. Plant J 55 (2):253-265. doi:10.1111/j.1365-313X.2008.03499.x

Feng S, Martinez C, Gusmaroli G, Wang Y, Zhou J, Wang F, Chen L, Yu L, Iglesias- Pedraz JM, Kircher S, Schafer E, Fu X, Fan LM, Deng XW (2008) Coordinated regulation of Arabidopsis thaliana development by light and gibberellins. Nature 451 (7177):475- 479. doi:10.1038/nature06448

Castillejo C, Pelaz S (2008) The balance between CONSTANS and TEMPRANILLO activities determines FT expression to trigger flowering. Curr Biol 18 (17):1338-1343. doi:10.1016/j.cub.2008.07.075

March-Diaz R, Garcia-Dominguez M, Florencio FJ, Reyes JC (2007) SEF, a new protein required for flowering repression in Arabidopsis, interacts with PIE1 and ARP6. Plant Physiol 143 (2):893-901. doi:10.1104/pp.106.092270

Jiang D, Yang W, He Y, Amasino RM (2007) Arabidopsis relatives of the human lysine- specific demethylase1 repress the expression of FWA and FLOWERING LOCUS C and thus promote the floral transition. Plant Cell 19 (10):2975-2987. doi:10.1105/tpc.107.052373

Dennis ES, Peacock WJ (2007) Epigenetic regulation of flowering. Curr Opin Plant Biol 10 (5):520-527. doi:10.1016/j.pbi.2007.06.009

Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I, Giakountis A, Farrona S, Gissot L, Turnbull C, Coupland G (2007) FT protein movement contributes to long- distance signaling in floral induction of Arabidopsis. Science 316 (5827):1030-1033. doi:10.1126/science.1141752

Sung S, He Y, Eshoo TW, Tamada Y, Johnson L, Nakahigashi K, Goto K, Jacobsen SE, Amasino RM (2006) Epigenetic maintenance of the vernalized state in Arabidopsis thaliana requires LIKE HETEROCHROMATIN PROTEIN 1. Nat Genet 38 (6):706-710. doi:10.1038/ng1795

Ruhl DD, Jin J, Cai Y, Swanson S, Florens L, Washburn MP, Conaway RC, Conaway JW, Chrivia JC (2006) Purification of a Human SRCAP Complex That Remodels Chromatin by Incorporating the Histone Variant H2A.Z into Nucleosomes. Biochemistry 45 (17):5671-5677. doi:10.1021/bi060043d

Kim S, Choi K, Park C, Hwang H-J, Lee I (2006) SUPPRESSOR OF FRIGIDA4, encoding a C2H2-type zinc finger protein, represses flowering by transcriptional activation of Arabidopsis FLOWERING LOCUS C. Plant Cell 18 (11):2985-2998. doi:10.1105/tpc.106.045179

Griffiths J, Murase K, Rieu I, Zentella R, Zhang ZL, Powers SJ, Gong F, Phillips AL, Hedden P, Sun TP, Thomas SG (2006) Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis. Plant Cell 18 (12):3399-3414. doi:10.1105/tpc.106.047415

Dong CH, Agarwal M, Zhang Y, Xie Q, Zhu JK (2006) The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1. Proc Natl Acad Sci U S A 103 (21):8281-8286. doi:10.1073/pnas.0602874103

Bouveret R, Schonrock N, Gruissem W, Hennig L (2006) Regulation of flowering time by Arabidopsis MSI1. Development 133 (9):1693-1702. doi:10.1242/dev.02340

Bernhardt A, Lechner E, Hano P, Schade V, Dieterle M, Anders M, Dubin MJ, Benvenuto G, Bowler C, Genschik P, Hellmann H (2006) CUL4 associates with DDB1 and DET1 and its downregulation affects diverse aspects of development in Arabidopsis thaliana. Plant J 47 (4):591-603. doi:10.1111/j.1365-313X.2006.02810.x

Song HR, Carre IA (2005) DET1 regulates the proteasomal degradation of LHY, a component of the Arabidopsis circadian clock. Plant Mol Biol 57 (5):761-771. doi:10.1007/s11103-005-3096-z

Schmitz RJ, Hong L, Michaels S, Amasino RM (2005) FRIGIDA-ESSENTIAL 1 interacts genetically with FRIGIDA and FRIGIDA-LIKE 1 to promote the winter-annual habit of Arabidopsis thaliana. Development 132 (24):5471-5478. doi:10.1242/dev.02170 Onai K, Ishiura M (2005) PHYTOCLOCK 1 encoding a novel GARP protein essential for the Arabidopsis circadian clock. Genes Cells 10 (10):963-972. doi:10.1111/j.1365- 2443.2005.00892.x

Kim SY, He YH, Jacob Y, Noh YS, Michaels S, Amasino R (2005) Establishment of the vernalization-responsive, winter-annual habit in Arabidopsis requires a putative histone H3 methyl transferase. Plant Cell 17 (12):3301-3310. doi:10.1105/tpc.105.034645

Imaizumi T, Schultz TF, Harmon FG, Ho LA, Kay SA (2005) FKF1F-BOX protein mediates cyclic degradation of a repressor of CONSTANS in Arabidopsis. Science 309 (5732):293-297. doi:10.1126/science.1110586

Hazen SP, Schultz TF, Pruneda-Paz JL, Borevitz JO, Ecker JR, Kay SA (2005) LUX ARRHYTHMO encodes a Myb domain protein essential for circadian rhythms. Proc Natl Acad Sci U S A 102 (29):10387-10392. doi:10.1073/pnas.0503029102

Doyle MR, Bizzell CM, Keller MR, Michaels SD, Song J, Noh YS, Amasino RM (2005) HUA2 is required for the expression of floral repressors in Arabidopsis thaliana. Plant J 41 (3):376-385. doi:10.1111/j.1365-313X.2004.02300.x

Choi K, Kim S, Kim SY, Kim M, Hyun Y, Lee H, Choe S, Kim SG, Michaels S, Lee I (2005) SUPPRESSOR OF FRIGIDA3 encodes a nuclear ACTIN-RELATED PROTEIN6 required for floral repression in Arabidopsis. Plant Cell 17 (10):2647-2660. doi:10.1105/tpc.105.035485

Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, Ichinoki H, Notaguchi M, Goto K, Araki T (2005) FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309 (5737):1052-1056. doi:10.1126/science.1115983

Sung S, Amasino RM (2004) Vernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3. Nature 427 (6970):159-164. doi:10.1038/nature02195

Oh S, Zhang H, Ludwig P, van Nocker S (2004) A mechanism related to the yeast transcriptional regulator Paf1c is required for expression of the Arabidopsis FLC/MAF MADS box gene family. Plant Cell 16 (11):2940-2953. doi:10.1105/tpc.104.026062

Noh YS, Bizzell CM, Noh B, Schomburg FM, Amasino RM (2004) EARLY FLOWERING 5 acts as a floral repressor in Arabidopsis. Plant J 38 (4):664-672. doi:10.1111/j.1365-313X.2004.02072.x

Murakami M, Yamashino T, Mizuno T (2004) Characterization of circadian-associated APRR3 pseudo-response regulator belonging to the APRR1/TOC1 quintet in Arabidopsis thaliana. Plant Cell Physiol 45 (5):645-650

Michaels SD, Bezerra IC, Amasino RM (2004) FRIGIDA-related genes are required for the winter-annual habit in Arabidopsis. Proc Natl Acad Sci U S A 101 (9):3281-3285. doi:10.1073/pnas.0306778101

Lim MH, Kim J, Kim YS, Chung KS, Seo YH, Lee I, Hong CB, Kim HJ, Park CM (2004) A new Arabidopsis gene, FLK, encodes an RNA binding protein with K homology motifs and regulates flowering time via FLOWERING LOCUS C. Plant Cell 16 (3):731-740. doi:10.1105/tpc.019331 He Y, Doyle MR, Amasino RM (2004) PAF1-complex-mediated histone methylation of FLOWERING LOCUS C chromatin is required for the vernalization-responsive, winter- annual habit in Arabidopsis. Genes Dev 18 (22):2774-2784. doi:10.1101/gad.1244504

Dill A, Thomas SG, Hu J, Steber CM, Sun T-p (2004) The Arabidopsis F-Box Protein SLEEPY1 Targets Gibberellin Signaling Repressors for Gibberellin-Induced Degradation. Plant Cell 16 (6):1392-1405. doi:10.1105/tpc.020958

Ausin I, Alonso-Blanco C, Jarillo JA, Ruiz-Garcia L, Martinez-Zapater JM (2004) Regulation of flowering time by FVE, a retinoblastoma-associated protein. Nat Genet 36 (2):162-166. doi:10.1038/ng1295

Yamamoto Y, Sato E, Shimizu T, Nakamich N, Sato S, Kato T, Tabata S, Nagatani A, Yamashino T, Mizuno T (2003) Comparative genetic studies on the APRR5 and APRR7 genes belonging to the APRR1/TOC1 quintet implicated in circadian rhythm, control of flowering time, and early photomorphogenesis. Plant Cell Physiol 44 (11):1119-1130

Simpson GG, Dijkwel PP, Quesada V, Henderson I, Dean C (2003) FY is an RNA 3 ' end- processing factor that interacts with FCA to control the Arabidopsis floral transition. Cell 113 (6):777-787. doi:10.1016/s0092-8674(03)00425-2

Ratcliffe OJ, Kumimoto RW, Wong BJ, Riechmann JL (2003) Analysis of the Arabidopsis MADS AFFECTING FLOWERING gene family: MAF2 prevents vernalization by short periods of cold. Plant Cell 15 (5):1159-1169

Noh YS, Amasino RM (2003) PIE1, an ISWI family gene, is required for FLC activation and floral repression in Arabidopsis. Plant Cell 15 (7):1671-1682. doi:10.1105/tpc.012161

Ito S, Matsushika A, Yamada H, Sato S, Kato T, Tabata S, Yamashino T, Mizuno T (2003) Characterization of the APRR9 pseudo-response regulator belonging to the APRR1/TOC1 quintet in Arabidopsis thaliana. Plant Cell Physiol 44 (11):1237-1245

Imaizumi T, Tran HG, Swartz TE, Briggs WR, Kay SA (2003) FKF1 is essential for photoperiodic-specific light signalling in Arabidopsis. Nature 426 (6964):302-306. doi:10.1038/nature02090

He YH, Michaels SD, Amasino RM (2003) Regulation of flowering time by histone acetylation in Arabidopsis. Science 302 (5651):1751-1754. doi:10.1126/science.1091109

Fujita H, Takemura M, Tani E, Nemoto K, Yokota A, Kohchi T (2003) An Arabidopsis MADS-box protein, AGL24, is specifically bound to and phosphorylated by meristematic receptor-like kinase (MRLK). Plant Cell Physiol 44 (7):735-742

Aukerman MJ, Sakai H (2003) Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell 15 (11):2730-2741. doi:10.1105/tpc.016238

Zhang H, van Nocker S (2002) The VERNALIZATION INDEPENDENCE 4 gene encodes a novel regulator of FLOWERING LOCUS C. Plant J 31 (5):663-673

Mouradov A, Cremer F, Coupland G (2002) Control of flowering time: interacting pathways as a basis for diversity. Plant Cell 14 Suppl:S111-130 Levy YY, Mesnage S, Mylne JS, Gendall AR, Dean C (2002) Multiple roles of Arabidopsis VRN1 in vernalization and flowering time control. Science 297 (5579):243- 246. doi:10.1126/science.1072147

Lee S, Cheng H, King KE, Wang W, He Y, Hussain A, Lo J, Harberd NP, Peng J (2002) Gibberellin regulates Arabidopsis seed germination via RGL2, a GAI/RGA-like gene whose expression is up-regulated following imbibition. Genes Dev 16 (5):646-658. doi:10.1101/gad.969002

Scortecci KC, Michaels SD, Amasino RM (2001) Identification of a MADS-box gene, FLOWERING LOCUS M, that represses flowering. Plant J 26 (2):229-236

Schomburg FM, Patton DA, Meinke DW, Amasino RM (2001) FPA, a gene involved in floral induction in Arabidopsis, encodes a protein containing RNA-recognition motifs. Plant Cell 13 (6):1427-1436

Schultz TF, Kiyosue T, Yanovsky M, Wada M, Kay SA (2001) A role for LKP2 in the circadian clock of Arabidopsis. Plant Cell 13 (12):2659-2670

Hoecker U, Quail PH (2001) The phytochrome A-specific signaling intermediate SPA1 interacts directly with COP1, a constitutive repressor of light signaling in Arabidopsis. J Biol Chem 276 (41):38173-38178

Gendall AR, Levy YY, Wilson A, Dean C (2001) The VERNALIZATION 2 gene mediates the epigenetic regulation of vernalization in Arabidopsis. Cell 107 (4):525-535. doi:S0092-8674(01)00573-6 [pii]

Strayer C, Oyama T, Schultz TF, Raman R, Somers DE, Mas P, Panda S, Kreps JA, Kay SA (2000) Cloning of the Arabidopsis clock gene TOC1, an autoregulatory response regulator homolog. Science 289 (5480):768-771

Somers DE, Schultz TF, Milnamow M, Kay SA (2000) ZEITLUPE encodes a novel clock-associated PAS protein from Arabidopsis. Cell 101 (3):319-329. doi:10.1016/s0092-8674(00)80841-7

Pelaz S, Ditta GS, Baumann E, Wisman E, Yanofsky MF (2000) B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405 (6783):200-203

Nelson DC, Lasswell J, Rogg LE, Cohen MA, Bartel B (2000) FKF1, a clock-controlled gene that regulates the transition to flowering in Arabidopsis. Cell 101 (3):331-340

Hartmann U, Hohmann S, Nettesheim K, Wisman E, Saedler H, Huijser P (2000) Molecular cloning of SVP: a negative regulator of the floral transition in Arabidopsis. Plant J 21 (4):351-360. doi:10.1046/j.1365-313x.2000.00682.x

Johanson U, West J, Lister C, Michaels S, Amasino R, Dean C (2000) Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time. Science 290 (5490):344-347. doi:10.1126/science.290.5490.344

Ferrandiz C, Gu Q, Martienssen R, Yanofsky MF (2000) Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALA1 and CAULIFLOWER. Development 127 (4):725-734 Borner R, Kampmann G, Chandler J, Gleissner R, Wisman E, Apel K, Melzer S (2000) A MADS domain gene involved in the transition to flowering in Arabidopsis. Plant J 24 (5):591-599. doi:10.1046/j.1365-313x.2000.00906.x

Michaels SD, Amasino RM (1999) FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11 (5):949-956

Melzer S, Kampmann G, Chandler J, Apel K (1999) FPF1 modulates the competence to flowering in Arabidopsis. Plant J 18 (4):395-405. doi:10.1046/j.1365-313X.1999.00461.x

Hoecker U, Tepperman JM, Quail PH (1999) SPA1, a WD-repeat protein specific to phytochrome A signal transduction. Science 284 (5413):496-499. doi:DOI 10.1126/science.284.5413.496

Fowler S, Lee K, Onouchi H, Samach A, Richardson K, Coupland G, Putterill J (1999) GIGANTEA: a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains. EMBO J 18 (17):4679-4688. doi:10.1093/emboj/18.17.4679

Yamaguchi S, Smith MW, Brown RG, Kamiya Y, Sun T (1998) Phytochrome regulation and differential expression of gibberellin 3beta-hydroxylase genes in germinating Arabidopsis seeds. Plant Cell 10 (12):2115-2126

Wang ZY, Tobin EM (1998) Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) gene disrupts circadian rhythms and suppresses its own expression. Cell 93 (7):1207-1217

Somers DE, Devlin PF, Kay SA (1998) Phytochromes and cryptochromes in the entrainment of the Arabidopsis circadian clock. Science 282 (5393):1488-1490

Silverstone AL, Ciampaglio CN, Sun T (1998) The Arabidopsis RGA gene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway. Plant Cell 10 (2):155-169

Schaffer R, Ramsay N, Samach A, Corden S, Putterill J, Carre IA, Coupland G (1998) The late elongated hypocotyl mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering. Cell 93 (7):1219-1229

Peng J, Carol P, Richards DE, King KE, Cowling RJ, Murphy GP, Harberd NP (1997) The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses. Genes Dev 11 (23):3194-3205

Ohshima S, Murata M, Sakamoto W, Ogura Y, Motoyoshi F (1997) Cloning and molecular analysis of the Arabidopsis gene Terminal Flower 1. Mol Gen Genet 254 (2):186-194. doi:10.1007/s004380050407

Macknight R, Bancroft I, Page T, Lister C, Schmidt R, Love K, Westphal L, Murphy G, Sherson S, Cobbett C, Dean C (1997) FCA, a gene controlling flowering time in Arabidopsis, encodes a protein containing RNA-binding domains. Cell 89 (5):737-745. doi:10.1016/s0092-8674(00)80256-1 Hicks KA, Millar AJ, Carre IA, Somers DE, Straume M, Meeks-Wagner DR, Kay SA (1996) Conditional circadian dysfunction of the Arabidopsis early-flowering 3 mutant. Science 274 (5288):790-792

Putterill J, Robson F, Lee K, Simon R, Coupland G (1995) The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc-finger transcription factors. Cell 80 (6):847-857. doi:10.1016/0092-8674(95)90288-0

Phillips AL, Ward DA, Uknes S, Appleford NE, Lange T, Huttly AK, Gaskin P, Graebe JE, Hedden P (1995) Isolation and expression of three gibberellin 20-oxidase cDNA clones from Arabidopsis. Plant Physiol 108 (3):1049-1057

Lee I, Aukerman MJ, Gore SL, Lohman KN, Michaels SD, Weaver LM, John MC, Feldmann KA, Amasino RM (1994) Isolation of LUMINIDEPENDENS: a gene involved in the control of flowering time in Arabidopsis. Plant Cell 6 (1):75-83. doi:10.1105/tpc.6.1.75

Zagotta MT, Shannon S, Jacobs C, Meekswagner DR (1992) Early Flowering Mutants of Arabidopsis thaliana. Aust J Plant Physiol 19 (4):411-418

Mandel MA, Gustafsonbrown C, Savidge B, Yanofsky MF (1992) Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature 360 (6401):273-277

Schultz EA, Haughn GW (1991) LEAFY, a Homeotic Gene That Regulates Inflorescence Development in Arabidopsis. Plant Cell 3 (8):771-781. doi:10.1105/tpc.3.8.771

Beales J, Turner A, GriYths S, Snape JW, Laurie DA (2007) A Pseudo-Response Regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.). Theor Appl Genet 115 (5):721-733. doi:10.1007/s00122-007- 0603-4

Wu J, Wei K, Cheng F, Li S, Wang Q, Zhao J, Bonnema G, Wang X (2012) A naturally occurring InDel variation in BraA.FLC.b (BrFLC2) associated with flowering time variation in Brassica rapa. BMC Plant Biol 12 (1):10.1186/1471-2229-1112-1151. doi:10.1186/1471-2229-12-151

Pin PA, Zhang W, Vogt SH, Dally N, Büttner B, Schulze-Buxloh G, Jelly NS, Chia TYP, Mutasa-Göttgens ES, Dohm JC, Himmelbauer H, Weisshaar B, Kraus J, Gielen JJL, Lommel M, Weyens G, Wahl B, Schechert A, Nilsson O, Jung C, Kraft T, Müller AE (2012) The Role of a Pseudo-Response Regulator Gene in Life Cycle Adaptation and Domestication of Beet. Curr Biol 22 (12):1095-1101. doi:10.1016/j.cub.2012.04.007

Hsu CY, Adams JP, Kim HJ, No K, Ma CP, Strauss SH, Drnevich J, Vandervelde L, Ellis JD, Rice BM, Wickett N, Gunter LE, Tuskan GA, Brunner AM, Page GP, Barakat A, Carlson JE, dePamphilis CW, Luthe DS, Yuceer C (2011) FLOWERING LOCUS T duplication coordinates reproductive and vegetative growth in perennial poplar. Proc Natl Acad Sci U S A 108 (26):10756-10761. doi:DOI 10.1073/pnas.1104713108

Turner A, Beales J, Faure S, Dunford RP, Laurie DA (2005) The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science 310 (5750):1031- 1034. doi:10.1126/science.1117619 Molinero-Rosales N, Jamilena M, Zurita S, Gomez P, Capel J, Lozano R (1999) FALSIFLORA, the tomato orthologue of FLORICAULA and LEAFY, controls flowering time and floral meristem identity. Plant J 20 (6):685-693

Zhao J, Huang X, Ouyang X, Chen W, Du A, Zhu L, Wang S, Deng XW, Li S (2012) OsELF3-1, an Ortholog of Arabidopsis EARLY FLOWERING 3, Regulates Rice Circadian Rhythm and Photoperiodic Flowering. PLoS ONE 7 (8):e43705. doi:10.1371/journal.pone.0043705

Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T (2000) Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 12 (12):2473-2483. doi:10.1105/tpc.12.12.2473

D'Aloia M, Tocquin P, Perilleux C (2008) Vernalization-induced repression of FLOWERING LOCUS C stimulates flowering in Sinapis alba and enhances plant responsiveness to photoperiod. New Phytol 178 (4):755-765. doi:10.1111/j.1469- 8137.2008.02404.x

Wang R, Farrona S, Vincent C, Joecker A, Schoof H, Turck F, Alonso-Blanco C, Coupland G, Albani MC (2009) PEP1 regulates perennial flowering in Arabis alpina. Nature 459 (7245):423-427. doi:10.1038/nature07988

Ye J, Geng Y, Zhang B, Mao H, Qu J, Chua N-H (2014) The Jatropha FT ortholog is a systemic signal regulating growth and flowering time. Biotechnol Biofuels 7 (1):doi:10.1186/1754-6834-1187-1191. doi:doi:10.1186/1754-6834-7-91

Liew LC, Hecht VF, Sussmilch FC, Weller JL (2014) The pea photoperiod response locus STERILE NODES is an ortholog of LUX ARRHYTHMO. Plant Physiol 165 (2):648-657. doi:10.1104/pp.114.237008

Azeez A, Miskolczi P, Tylewicz S, Bhalerao Rishikesh P (2014) A Tree Ortholog of APETALA1 Mediates Photoperiodic Control of Seasonal Growth. Curr Biol 24 (7):717- 724. doi:http://dx.doi.org/10.1016/j.cub.2014.02.037

Lee R, Baldwin S, Kenel F, McCallum J, Macknight R (2013) FLOWERING LOCUS T genes control onion bulb formation and flowering. Nat Commun 4:doi:10.1038/ncomms3884. doi:10.1038/ncomms3884

Xiang L, Li X, Qin D, Guo F, Wu C, Miao L, Sun C (2012) Functional analysis of FLOWERING LOCUS T orthologs from spring orchid (Cymbidium goeringii Rchb. f.) that regulates the vegetative to reproductive transition. Plant Physiol Biochem 58:98-105. doi:10.1016/j.plaphy.2012.06.011

Harig L, Beinecke FA, Oltmanns J, Muth J, Muller O, Ruping B, Twyman RM, Fischer R, Prufer D, Noll GA (2012) Proteins from the FLOWERING LOCUS T-like subclade of the PEBP family act antagonistically to regulate floral initiation in tobacco. Plant J 72 (6):908-921. doi:10.1111/j.1365-313X.2012.05125.x

Gonzalez-Schain ND, Diaz-Mendoza M, Zurczak M, Suarez-Lopez P (2012) Potato CONSTANS is involved in photoperiodic tuberization in a graft-transmissible manner. Plant J 70 (4):678-690. doi:10.1111/j.1365-313X.2012.04909.x Faure S, Turner AS, Gruszka D, Christodoulou V, Davis SJ, von Korff M, Laurie DA (2012) Mutation at the circadian clock gene EARLY MATURITY 8 adapts domesticated barley (Hordeum vulgare) to short growing seasons. Proc Natl Acad Sci U S A 109 (21):8328-8333. doi:10.1073/pnas.1120496109

Chen J, Chen JY, Wang JN, Kuang JF, Shan W, Lu WJ (2012) Molecular characterization and expression profiles of MaCOL1, a CONSTANS-like gene in banana fruit. Gene:10.1016/j.gene.2012.1001.1008

Campoli C, Drosse B, Searle I, Coupland G, von Korff M (2012) Functional characterisation of HvCO1, the barley (Hordeum vulgare) flowering time ortholog of CONSTANS. Plant J 69 (5):868-880. doi:10.1111/j.1365-313X.2011.04839.x

Wang N, Qian W, Suppanz I, Wei L, Mao B, Long Y, Meng J, Muller AE, Jung C (2011) Flowering time variation in oilseed rape (Brassica napus L.) is associated with allelic variation in the FRIGIDA homologue BnaA.FRI.a. J Exp Bot. doi:10.1093/jxb/err249

Meng X, Muszynski MG, Danilevskaya ON (2011) The FT-Like ZCN8 Gene Functions as a Floral Activator and Is Involved in Photoperiod Sensitivity in Maize. Plant Cell 23 (3):942-960. doi:10.1105/tpc.110.081406

Lazakis CM, Coneva V, Colasanti J (2011) ZCN8 encodes a potential orthologue of Arabidopsis FT florigen that integrates both endogenous and photoperiod flowering signals in maize. J Exp Bot 62 (14):4833-4842. doi:10.1093/jxb/err129

Pin PA, Benlloch R, Bonnet D, Wremerth-Weich E, Kraft T, Gielen JJL, Nilsson O (2010) An Antagonistic Pair of FT Homologs Mediates the Control of Flowering Time in Sugar Beet. Science 330 (6009):1397-1400. doi:10.1126/science.1197004

Liu B, Watanabe S, Uchiyama T, Kong F, Kanazawa A, Xia Z, Nagamatsu A, Arai M, Yamada T, Kitamura K, Masuta C, Harada K, Abe J (2010) The soybean stem growth habit gene Dt1 is an ortholog of Arabidopsis TERMINAL FLOWER1. Plant Physiol 153 (1):198-210. doi:10.1104/pp.109.150607

Kotoda N, Hayashi H, Suzuki M, Igarashi M, Hatsuyama Y, Kidou S, Igasaki T, Nishiguchi M, Yano K, Shimizu T, Takahashi S, Iwanami H, Moriya S, Abe K (2010) Molecular characterization of FLOWERING LOCUS T-like genes of apple (Malus x domestica Borkh.). Plant Cell Physiol 51 (4):561-575. doi:10.1093/pcp/pcq021

Kong F, Liu B, Xia Z, Sato S, Kim BM, Watanabe S, Yamada T, Tabata S, Kanazawa A, Harada K, Abe J (2010) Two coordinately regulated homologs of FLOWERING LOCUS T are involved in the control of photoperiodic flowering in soybean. Plant Physiol 154 (3):1220-1231. doi:10.1104/pp.110.160796

Danilevskaya ON, Meng X, Ananiev EV (2010) Concerted Modification of Flowering Time and Inflorescence Architecture by Ectopic Expression of TFL1-Like Genes in Maize. Plant Physiol 153 (1):238-251. doi:10.1104/pp.110.154211

Liew LC, Hecht V, Laurie RE, Knowles CL, Vander Schoor JK, Macknight RC, Weller JL (2009) DIE NEUTRALIS and LATE BLOOMER 1 contribute to regulation of the pea circadian clock. Plant Cell 21 (10):3198-3211. doi:10.1105/tpc.109.067223 Elitzur T, Nahum H, Borovsky Y, Pekker I, Eshed Y, Paran I (2009) Co-ordinated regulation of flowering time, plant architecture and growth by FASCICULATE: the pepper orthologue of SELF PRUNING. J Exp Bot 60 (3):869-880. doi:10.1093/jxb/ern334

Rao NN, Prasad K, Kumar PR, Vijayraghavan U (2008) Distinct regulatory role for RFL, the rice LFY homolog, in determining flowering time and plant architecture. Proc Natl Acad Sci U S A 105 (9):3646-3651. doi:10.1073/pnas.0709059105

Igasaki T, Watanabe Y, Nishiguchi M, Kotoda N (2008) The FLOWERING LOCUS T/TERMINAL FLOWER 1 family in Lombardy poplar. Plant Cell Physiol 49 (3):291- 300. doi:10.1093/pcp/pcn010

Hecht V, Knowles CL, Schoor JKV, Liew LC, Jones SE, Lambert MJM, Weller JL (2007) Pea LATE BLOOMER1 is a GIGANTEA ortholog with roles in photoperiodic flowering, deetiolation, and transcriptional regulation of circadian clock gene homologs. Plant Physiol 144 (2):648-661. doi:10.1104/pp.107.096818

Faure S, Higgins J, Turner A, Laurie DA (2007) The FLOWERING LOCUS T-like gene family in barley (Hordeum vulgare). Genetics 176 (1):599-609. doi:10.1534/genetics.106.069500

Carmona MJ, Calonje M, Miguel Martinez-Zapater J (2007) The FT/TFL1 gene family in grapevine. Plant Mol Biol 63 (5):637-650. doi:10.1007/s11103-006-9113-z

Yan L, Fu D, Li C, Blechl A, Tranquilli G, Bonafede M, Sanchez A, Valarik M, Yasuda S, Dubcovsky J (2006) The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc Natl Acad Sci U S A 103 (51):19581-19586. doi:10.1073/pnas.0607142103

Lifschitz E, Eviatar T, Rozman A, Shalit A, Goldshmidt A, Amsellem Z, Alvarez JP, Eshed Y (2006) The tomato FT ortholog triggers systemic signals that regulate growth and flowering and substitute for diverse environmental stimuli. Proc Natl Acad Sci U S A 103 (16):6398-6403. doi:10.1073/pnas.0601620103

Kotoda N, Iwanami H, Takahashi S, Abe K (2006) Antisense expression of MdTFL1, a TFL1-like gene, reduces the juvenile phase in apple. J Am Soc Hortic Sci 131 (1):74-81

Hsu C-Y, Liu Y, Luthe DS, Yuceer C (2006) Poplar FT2 shortens the juvenile phase and promotes seasonal flowering. Plant Cell 18 (8):1846-1861. doi:10.1105/tpc.106.041038

Böhlenius H, Huang T, Charbonnel-Campaa L, Brunner AM, Jansson S, Strauss SH, Nilsson O (2006) CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science 312 (5776):1040-1043. doi:10.1126/science.1126038

Endo T, Shimada T, Fujii H, Kobayashi Y, Araki T, Omura M (2005) Ectopic expression of an FT homolog from citrus confers an early flowering phenotype on trifoliate orange (Poncirus trifoliata L. Raf.). Transgenic Res 14 (5):703-712. doi:10.1007/s11248-005- 6632-3

Pillitteri LJ, Lovatt CJ, Walling LL (2004) Isolation and characterization of a TERMINAL FLOWER homolog and its correlation with juvenility in citrus. Plant Physiol 135 (3):1540-1551. doi:10.1104/pp.103.036178 Lee S, Kim J, Han JJ, Han MJ, An G (2004) Functional analyses of the flowering time gene OsMADS50, the putative SUPPRESSOR OF OVEREXPRESSION OF CO 1/AGAMOUS-LIKE 20 (SOC1/AGL20) ortholog in rice. Plant J 38 (5):754-764. doi:10.1111/j.1365-313X.2004.02082.x

Nemoto Y, Kisaka M, Fuse T, Yano M, Ogihara Y (2003) Characterization and functional analysis of three wheat genes with homology to the CONSTANS flowering time gene in transgenic rice. Plant J 36 (1):82-93. doi:10.1046/j.1365-313X.2003.01859.x

Nakagawa M, Shimamoto K, Kyozuka J (2002) Overexpression of RCN1 and RCN2, rice TERMINAL FLOWER 1/CENTRORADIALIS homologs, confers delay of phase transition and altered panicle morphology in rice. Plant J 29 (6):743-750

Bradley D, Carpenter R, Copsey L, Vincent C, Rothstein S, Coen E (1996) Control of inflorescence architecture in Antirrhinum. Nature 379 (6568):791-797. doi:10.1038/379791a0

Ream TS, Woods DP, Amasino RM (2012) The molecular basis of vernalization in different plant groups. Cold Spring Harbor Symp Quant Biol 77:105-115. doi:10.1101/sqb.2013.77.014449

Milec Z, Valarik M, Bartos J, Safar J (2014) Can a late bloomer become an early bird? Tools for flowering time adjustment. Biotechnol Adv 32 (1):200-214. doi:10.1016/j.biotechadv.2013.09.008

Chia TYP, Mueller A, Jung C, Mutasa-Goettgens ES (2008) Sugar beet contains a large CONSTANS-LIKE gene family including a CO homologue that is independent of the early-bolting (B) gene locus. J Exp Bot 59 (10):2735-2748. doi:10.1093/jxb/ern129

Jaeger KE, Pullen N, Lamzin S, Morris RJ, Wigge PA (2013) Interlocking feedback loops govern the dynamic behavior of the floral transition in Arabidopsis. Plant Cell 25 (3):820- 833. doi:10.1105/tpc.113.109355

Yamagishi N, Kishigami R, Yoshikawa N (2013) Reduced generation time of apple seedlings to within a year by means of a plant virus vector: a new plant-breeding technique with no transmission of genetic modification to the next generation. Plant Biotechnol J 12 (1):60-68. doi:10.1111/pbi.12116

Iwata H, Gaston A, Remay A, Thouroude T, Jeauffre J, Kawamura K, Oyant LH, Araki T, Denoyes B, Foucher F (2012) The TFL1 homologue KSN is a regulator of continuous flowering in rose and strawberry. Plant J 69 (1):116-125. doi:10.1111/j.1365- 313X.2011.04776.x

Baldwin S, Revanna R, Pither-Joyce M, Shaw M, Wright K, Thomson S, Moya L, Lee R, Macknight R, McCallum J (2014) Genetic analyses of bolting in bulb onion (Allium cepa L.). Theor Appl Genet 127 (3):535-547. doi:10.1007/s00122-013-2232-4

Wei XJ, Liu LL, Xu JF, Jiang L, Zhang WW, Wang JK, Zhai HQ, Wan JM (2010) Breeding strategies for optimum heading date using genotypic information in rice. Mol Breed 25 (2):287-298. doi:DOI 10.1007/s11032-009-9332-5

Hou J, Long Y, Raman H, Zou X, Wang J, Dai S, Xiao Q, Li C, Fan L, Liu B, Meng J (2012) A Tourist-like MITE insertion in the upstream region of the BnFLC.A10 gene is associated with vernalization requirement in rapeseed (Brassica napus L.). BMC Plant Biol 12:doi:10.1186/1471-2229-1112-1238. doi:10.1186/1471-2229-12-238

Watanabe S, Xia Z, Hideshima R, Tsubokura Y, Sato S, Yamanaka N, Takahashi R, Anai T, Tabata S, Kitamura K, Harada K (2011) A map-based cloning strategy employing a residual heterozygous line reveals that the GIGANTEA gene is involved in soybean maturity and flowering. Genetics 188 (2):395-407. doi:10.1534/genetics.110.125062

Clotault J, Thuillet AC, Buiron M, De Mita S, Couderc M, Haussmann BI, Mariac C, Vigouroux Y (2012) Evolutionary history of pearl millet (Pennisetum glaucum [L.] R. Br.) and selection on flowering genes since its domestication. Mol Biol Evol 29 (4):1199- 1212. doi:10.1093/molbev/msr287

Weller JL, Liew LC, Hecht VF, Rajandran V, Laurie RE, Ridge S, Wenden B, Vander Schoor JK, Jaminon O, Blassiau C, Dalmais M, Rameau C, Bendahmane A, Macknight RC, Lejeune-Henaut I (2012) A conserved molecular basis for photoperiod adaptation in two temperate legumes. Proc Natl Acad Sci U S A 109 (51):21158-21163. doi:10.1073/pnas.1207943110

Zakhrabekova S, Gough SP, Braumann I, Muller AH, Lundqvist J, Ahmann K, Dockter C, Matyszczak I, Kurowska M, Druka A, Waugh R, Graner A, Stein N, Steuernagel B, Lundqvist U, Hansson M (2012) Induced mutations in circadian clock regulator Mat-a facilitated short-season adaptation and range extension in cultivated barley. Proc Natl Acad Sci U S A 109 (11):4326–4331. doi:10.1073/pnas.1113009109

Shcherban AB, Boerner A, Salina EA (2014) Effect of VRN-1 and PPD-D1 genes on heading time in European bread wheat cultivars. Plant Breed in press

Eagles HA, Cane K, Trevaskis B (2011) Veery wheats carry an allele of Vrn-A1 that has implications for freezing tolerance in winter wheats. Plant Breed 130 (4):413-418. doi:10.1111/j.1439-0523.2011.01856.x

Yang Q, Li Z, Li W, Ku L, Wang C, Ye J, Li K, Yang N, Li Y, Zhong T, Li J, Chen Y, Yan J, Yang X, Xu M (2013) CACTA-like transposable element in ZmCCT attenuated photoperiod sensitivity and accelerated the postdomestication spread of maize. Proc Natl Acad Sci U S A 110 (42):16969–16974. doi:10.1073/pnas.1310949110

Hung HY, Shannon LM, Tian F, Bradbury PJ, Chen C, Flint-Garcia SA, McMullen MD, Ware D, Buckler ES, Doebley JF, Holland JB (2012) ZmCCT and the genetic basis of day-length adaptation underlying the postdomestication spread of maize. Proc Natl Acad Sci U S A 109 (28):E1913–E1921. doi:10.1073/pnas.1203189109

Zhang ZH, Wang K, Guo L, Zhu YJ, Fan YY, Cheng SH, Zhuang JY (2012) Pleiotropism of the photoperiod-insensitive allele of Hd1 on heading date, plant height and yield traits in rice. PLoS ONE 7 (12):e52538. doi:10.1371/journal.pone.0052538

Fujino K, Yamanouchi U, Yano M (2013) Roles of the Hd5 gene controlling heading date for adaptation to the northern limits of rice cultivation. Theor Appl Genet 126 (3):611- 618. doi:10.1007/s00122-012-2005-5

Guo Y, Harloff HJ, Jung C, Molina C (2014) Mutations in single FT- and TFL1-paralogs of rapeseed (Brassica napus L.) and their impact on flowering time and yield components. Front Plant Sci 5:10.3389/fpls.2014.00282. doi:10.3389/fpls.2014.00282 Krieger U, Lippman ZB, Zamir D (2010) The flowering gene SINGLE FLOWER TRUSS drives heterosis for yield in tomato. Nat Genet 42 (5):459-463. doi:10.1038/ng.550

Navarro C, Abelenda JA, Cruz-Oro E, Cuellar CA, Tamaki S, Silva J, Shimamoto K, Prat S (2011) Control of flowering and storage organ formation in potato by FLOWERING LOCUS T. Nature 478 (7367):119-122. doi:10.1038/nature10431

Basunanda P, Radoev M, Ecke W, Friedt W, Becker HC, Snowdon RJ (2010) Comparative mapping of quantitative trait loci involved in heterosis for seedling and yield traits in oilseed rape (Brassica napus L.). Theor Appl Genet 120 (2):271-281. doi:10.1007/s00122-009-1133-z

Park SJ, Kim SL, Lee S, Je BI, Piao HL, Park SH, Kim CM, Ryu C-H, Park SH, Xuan Y- h, Colasanti J, An G, Han C-d (2008) Rice Indeterminate 1 (OsId1) is necessary for the expression of Ehd1 (Early heading date 1) regardless of photoperiod. Plant J 56 (6):1018- 1029. doi:10.1111/j.1365-313X.2008.03667.x

Comadran J, Kilian B, Russell J, Ramsay L, Stein N, Ganal M, Shaw P, Bayer M, Thomas W, Marshall D, Hedley P, Tondelli A, Pecchioni N, Francia E, Korzun V, Walther A, Waugh R (2012) Natural variation in a homolog of Antirrhinum CENTRORADIALIS contributed to spring growth habit and environmental adaptation in cultivated barley. Nat Genet 44 (12):1388-1392. doi:10.1038/ng.2447

Gao H, Zheng XM, Fei G, Chen J, Jin M, Ren Y, Wu W, Zhou K, Sheng P, Zhou F, Jiang L, Wang J, Zhang X, Guo X, Wang JL, Cheng Z, Wu C, Wang H, Wan JM (2013) Ehd4 encodes a novel and Oryza-genus-specific regulator of photoperiodic flowering in rice. PLoS Genet 9 (2):e1003281. doi:10.1371/journal.pgen.1003281

Wahl V, Ponnu J, Schlereth A, Arrivault S, Langenecker T, Franke A, Feil R, Lunn JE, Stitt M, Schmid M (2013) Regulation of Flowering by Trehalose-6-Phosphate Signaling in Arabidopsis thaliana. Science 339 (6120):704-707. doi:10.1126/science.1230406

Repinski SL, Kwak M, Gepts P (2012) The common bean growth habit gene PvTFL1y is a functional homolog of Arabidopsis TFL1. Theor Appl Genet 124 (8):1539-1547. doi:10.1007/s00122-012-1808-8

Pin PA, Nilsson O (2012) The multifaceted roles of FLOWERING LOCUS T in plant development. Plant Cell Environ 35 (10):1742-1755. doi:10.1111/j.1365- 3040.2012.02558.x

Wang G, Schmalenbach I, von Korff M, Leon J, Kilian B, Rode J, Pillen K (2010) Association of barley photoperiod and vernalization genes with QTLs for flowering time and agronomic traits in a BC2DH population and a set of wild barley introgression lines. Theor Appl Genet 120 (8):1559-1574. doi:10.1007/s00122-010-1276-y

Tian Z, Wang X, Lee R, Li Y, Specht JE, Nelson RL, McClean PE, Qiu L, Ma J (2010) Artificial selection for determinate growth habit in soybean. Proc Natl Acad Sci U S A 107 (19):8563-8568. doi:10.1073/pnas.1000088107

Fujino K, Wu J, Sekiguchi H, Ito T, Izawa T, Matsumoto T (2010) Multiple introgression events surrounding the Hd1 flowering-time gene in cultivated rice, Oryza sativa L. Molecular Genet Genom 284 (2):137-146. doi:10.1007/s00438-010-0555-2 Yuan YX, Wu J, Sun RF, Zhang XW, Xu DH, Bonnema G, Wang XW (2009) A naturally occurring splicing site mutation in the Brassica rapa FLC1 gene is associated with variation in flowering time. J Exp Bot 60 (4):1299-1308. doi:erp010 [pii]

10.1093/jxb/erp010

Zikhali M, Leverington-Waite M, Fish L, Simmonds J, Orford S, Wingen L, Goram R, Gosman N, Bentley A, Griffiths S (2014) Validation of a 1DL earliness per se (eps) flowering QTL in bread wheat (Triticum aestivum). Mol Breed 34 (3):1023-1033. doi:10.1007/s11032-014-0094-3

Wang JW (2014) Regulation of flowering time by the miR156-mediated age pathway. J Exp Bot:10.1093/jxb/eru1246. doi:10.1093/jxb/eru246

Vogt SH, Weyens G, Lefebvre M, Bork B, Schechert A, Muller AE (2014) The FLC-like gene BvFL1 is not a major regulator of vernalization response in biennial beets. Front Plant Sci 5:doi: 10.3389/fpls.2014.00146. doi:10.3389/fpls.2014.00146

Kamran A, Iqbal M, Spaner D (2014) Flowering time in wheat (Triticum aestivum L.): a key factor for global adaptability. Euphytica 197:1-26. doi:10.1007/s10681-014-1075-7

Dally N, Xiao K, Holtgräwe D, Jung C (2014) The B2 flowering time locus of beet encodes a zinc finger transcription factor. Proc Natl Acad Sci U S A 111 (28):10365- 10370. doi:10.1073/pnas.1404829111

Zheng B, Biddulph B, Li D, Kuchel H, Chapman S (2013) Quantification of the effects of VRN1 and Ppd-D1 to predict spring wheat (Triticum aestivum) heading time across diverse environments. J Exp Bot 64 (12):3747-3761. doi:10.1093/jxb/ert209

Ruelens P, de Maagd RA, Proost S, Theissen G, Geuten K, Kaufmann K (2013) FLOWERING LOCUS C in monocots and the tandem origin of angiosperm-specific MADS-box genes. Nat Commun 4:2280. doi:10.1038/ncomms3280

Rollins JA, Drosse B, Mulki MA, Grando S, Baum M, Singh M, Ceccarelli S, von Korff M (2013) Variation at the vernalisation genes Vrn-H1 and Vrn-H2 determines growth and yield stability in barley (Hordeum vulgare) grown under dryland conditions in Syria. Theor Appl Genet 126 (11):2803-2824. doi:10.1007/s00122-013-2173-y

Richter R, Behringer C, Zourelidou M, Schwechheimer C (2013) Convergence of auxin and gibberellin signaling on the regulation of the GATA transcription factors GNC and GNL in Arabidopsis thaliana. Proc Natl Acad Sci U S A 110 (32):13192-13197. doi:10.1073/pnas.1304250110

Richter R, Bastakis E, Schwechheimer C (2013) Cross-repressive interactions between SOC1 and the GATAs GNC and GNL/CGA1 in the control of greening, cold tolerance, and flowering time in Arabidopsis. Plant Physiol 162 (4):1992-2004. doi:10.1104/pp.113.219238

Perilleux C, Pieltain A, Jacquemin G, Bouche F, Detry N, D'Aloia M, Thiry L, Aljochim P, Delansnay M, Mathieu AS, Lutts S, Tocquin P (2013) A root chicory MADS box sequence and the Arabidopsis flowering repressor FLC share common features that suggest conserved function in vernalization and de-vernalization responses. Plant J 75 (3):390-402. doi:10.1111/tpj.12208 Kloosterman B, Abelenda JA, Gomez MdMC, Oortwijn M, de Boer JM, Kowitwanich K, Horvath BM, van Eck HJ, Smaczniak C, Prat S, Visser RGF, Bachem CWB (2013) Naturally occurring allele diversity allows potato cultivation in northern latitudes. Nature 495:246-250. doi:doi:10.1038/nature11912

Bouchet S, Servin B, Bertin P, Madur D, Combes V, Dumas F, Brunel D, Laborde J, Charcosset A, Nicolas S (2013) Adaptation of Maize to Temperate Climates: Mid-Density Genome-Wide Association Genetics and Diversity Patterns Reveal Key Genomic Regions, with a Major Contribution of the Vgt2 (ZCN8) Locus. PLoS ONE 8 (8):e71377. doi:10.1371/journal.pone.0071377

Xia Z, Watanabe S, Yamada T, Tsubokura Y, Nakashima H, Zhai H, Anai T, Sato S, Yamazaki T, Lu S, Wu H, Tabata S, Harada K (2012) Positional cloning and characterization reveal the molecular basis for soybean maturity locus E1 that regulates photoperiodic flowering. Proc Natl Acad Sci U S A 109 (32):E2155–E2164. doi:10.1073/pnas.1117982109

Bentley AR, Turner AS, Gosman N, Leigh FJ, Maccaferri M, Dreisigacker S, Greenland A, Laurie DA (2011) Frequency of photoperiod-insensitive Ppd-A1a alleles in tetraploid, hexaploid and synthetic hexaploid wheat germplasm. Plant Breed 130 (1):10-15. doi:10.1111/j.1439-0523.2010.01802.x

Colasanti J, Yuan Z, Sundaresan V (1998) The indeterminate gene encodes a zinc finger protein and regulates a leaf-generated signal required for the transition to flowering in maize. Cell 93 (4):593-603. doi:10.1016/s0092-8674(00)81188-5

Reeves PA, He Y, Schmitz RJ, Amasino RM, Panella LW, Richards CM (2007) Evolutionary conservation of the FLOWERING LOCUS C-mediated vernalization response: Evidence from the sugar beet (Beta vulgaris). Genetics 176 (1):295-307. doi:10.1534/genetics.106.069336

Kim SL, Lee S, Kim HJ, Nam HG, An G (2007) OsMADS51 is a short-day flowering promoter that functions upstream of Ehd1, OsMADS14, and Hd3a. Plant Physiol 145 (4):1484-1494. doi:10.1104/pp.107.103291

Alvarez-Buylla ER, Liljegren SJ, Pelaz S, Gold SE, Burgeff C, Ditta GS, Vergara-Silva F, Yanofsky MF (2000) MADS-box gene evolution beyond flowers: expression in pollen, endosperm, guard cells, roots and trichomes. Plant J 24 (4):457-466. doi:10.1111/j.1365- 313X.2000.00891.x

Kempin S, Savidge B, Yanofsky M (1995) Molecular basis of the cauliflower phenotype in Arabidopsis. Science 267 (5197):522-525. doi:10.1126/science.7824951

Laubinger S, Marchal V, Le Gourrierec J, Wenkel S, Adrian J, Jang S, Kulajta C, Braun H, Coupland G, Hoecker U (2006) Arabidopsis SPA proteins regulate photoperiodic flowering and interact with the floral inducer CONSTANS to regulate its stability. Development 133 (16):3213-3222. doi:10.1242/dev.02481

Franklin KA, Quail PH (2010) Phytochrome functions in Arabidopsis development. J Exp Bot 61 (1):11-24. doi:10.1093/jxb/erp304 Casson SA, Franklin KA, Gray JE, Grierson CS, Whitelam GC, Hetherington AM (2009) phytochrome B and PIF4 regulate stomatal development in response to light quantity. Current biology : CB 19 (3):229-234. doi:10.1016/j.cub.2008.12.046

Kim W, Latrasse D, Servet C, Zhou D-X (2013) Arabidopsis histone deacetylase HDA9 regulates flowering time through repression of AGL19. Biochem Biophys Res Commun 432 (2):394-398. doi:http://dx.doi.org/10.1016/j.bbrc.2012.11.102 de Lucas M, Daviere J-M, Rodriguez-Falcon M, Pontin M, Iglesias-Pedraz JM, Lorrain S, Fankhauser C, Blazquez MA, Titarenko E, Prat S (2008) A molecular framework for light and gibberellin control of cell elongation. Nature 451 (7177):480-484. doi:http://www.nature.com/nature/journal/v451/n7177/suppinfo/nature06520_S1.html

Peng J, Harberd NP (1997) Gibberellin deficiency and response mutations suppress the stem elongation phenotype of phytochrome-deficient mutants of Arabidopsis. Plant Physiol 113 (4):1051-1058

Yamaguchi S, Sun T, Kawaide H, Kamiya Y (1998) The GA2 locus of Arabidopsis thaliana encodes ent-kaurene synthase of gibberellin biosynthesis. Plant Physiol 116 (4):1271-1278

Krichevsky A, Gutgarts H, Kozlovsky SV, Tzfira T, Sutton A, Sternglanz R, Mandel G, Citovsky V (2007) C2H2 zinc finger-SET histone methyltransferase is a plant-specific chromatin modifier. Dev Biol 303 (1):259-269. doi:http://dx.doi.org/10.1016/j.ydbio.2006.11.012

Zou J, Raman H, Guo S, Hu D, Wei Z, Luo Z, Long Y, Shi W, Fu Z, Du D, Meng J (2014) Constructing a dense genetic linkage map and mapping QTL for the traits of flower development in Brassica carinata. Theor Appl Genet. doi:10.1007/s00122-014- 2321-z

Zografos BR, Sung S (2012) Vernalization-mediated chromatin changes. J Exp Bot. doi:10.1093/jxb/ers157

Wu L, Liu D, Wu J, Zhang R, Qin Z, Li A, Fu D, Zhai W, Mao L (2013) Regulation of FLOWERING LOCUS T by a MicroRNA in Brachypodium distachyon. Plant Cell. doi:10.1105/tpc.113.118620

Weidler G, Zur Oven-Krockhaus S, Heunemann M, Orth C, Schleifenbaum F, Harter K, Hoecker U, Batschauer A (2012) Degradation of Arabidopsis CRY2 is regulated by SPA proteins and phytochrome A. Plant Cell 24 (6):2610-2623. doi:10.1105/tpc.112.098210

Takada S, Goto K (2003) TERMINAL FLOWER2, an Arabidopsis homolog of HETEROCHROMATIN PROTEIN1, counteracts the activation of FLOWERING LOCUS T by CONSTANS in the vascular tissues of leaves to regulate flowering time. Plant Cell 15 (12):2856-2865. doi:10.1105/tpc.016345

Randoux M, Jeauffre J, Thouroude T, Vasseur F, Hamama L, Juchaux M, Sakr S, Foucher F (2012) Gibberellins regulate the transcription of the continuous flowering regulator, RoKSN, a rose TFL1 homologue. J Exp Bot 63 (18):6543-6554. doi:10.1093/jxb/ers310 Preston JC, Hileman LC (2010) SQUAMOSA-PROMOTER BINDING PROTEIN 1 initiates flowering in Antirrhinum majus through the activation of meristem identity genes. Plant J 62 (4):704-712. doi:10.1111/j.1365-313X.2010.04184.x

Meinke DW, Cherry JM, Dean C, Rounsley SD, Koornneef M (1998) Arabidopsis thaliana: A Model Plant for Genome Analysis. Science 282 (5389):662-682. doi:10.1126/science.282.5389.662

Martin J, Storgaard M, Andersen CH, Nielsen KK (2004) Photoperiodic regulation of flowering in perennial ryegrass involving a CONSTANS-like homolog. Plant Mol Biol 56 (2):159-169. doi:10.1007/s11103-004-2647-z

Liu L, Zhang J, Adrian J, Gissot L, Coupland G, Yu D, Turck F (2014) Elevated Levels of MYB30 in the Phloem Accelerate Flowering in Arabidopsis through the Regulation of FLOWERING LOCUS T. PLoS ONE 9 (2):e89799. doi:10.1371/journal.pone.0089799

Jung JH, Park CM (2013) HOS1-mediated activation of FLC via chromatin remodeling under cold stress. Plant Signal Behav 8 (12). doi:10.4161/psb.27342

Jochner S, Caffarra A, Menzel A (2013) Can spatial data substitute temporal data in phenological modelling? A survey using birch flowering. Tree Physiol. doi:10.1093/treephys/tpt079

Jiang K, Liberatore KL, Park SJ, Alvarez JP, Lippman ZB (2013) Tomato Yield Heterosis Is Triggered by a Dosage Sensitivity of the Florigen Pathway That Fine-Tunes Shoot Architecture. PLoS Genet 9 (12). doi:10.1371/journal.pgen.1004043

Iler AM, Hoye TT, Inouye DW, Schmidt NM (2013) Long-term trends mask variation in the direction and magnitude of short-term phenological shifts. Am J Bot. doi:10.3732/ajb.1200490

Herrero E, Davis SJ (2012) Time for a Nuclear Meeting: Protein Trafficking and Chromatin Dynamics Intersect in the Plant Circadian System. Mol Plant. doi:10.1093/mp/sss010

Gawronski P, Ariyadasa R, Himmelbach A, Poursarebani N, Kilian B, Stein N, Steuernagel B, Hensel G, Kumlehn J, Sehgal SK, Gill BS, Gould P, Hall A, Schnurbusch T (2014) A Distorted Circadian Clock Causes Early Flowering and Temperature- Dependent Variation in Spike Development in the Eps-3Am Mutant of Einkorn Wheat. Genetics. doi:10.1534/genetics.113.158444

Galvao VC, Nordstrom KJ, Lanz C, Sulz P, Mathieu J, Pose D, Schmid M, Weigel D, Schneeberger K (2012) Synteny-based mapping-by-sequencing enabled by targeted enrichment. The Plant journal : for cell and molecular biology. doi:10.1111/j.1365- 313X.2012.04993.x

Fujiwara S, Oda A, Yoshida R, Niinuma K, Miyata K, Tomozoe Y, Tajima T, Nakagawa M, Hayashi K, Coupland G, Mizoguchi T (2008) Circadian Clock Proteins LHY and CCA1 Regulate SVP Protein Accumulation to Control Flowering in Arabidopsis. Plant Cell 20 (11):2960-2971. doi:10.1105/tpc.108.061531 Flachowsky H, Szankowski I, Waidmann S, Peil A, Trankner C, Hanke MV (2012) The MdTFL1 gene of apple (Malus x domestica Borkh.) reduces vegetative growth and generation time. Tree Physiol. doi:10.1093/treephys/tps080

Exner V, Alexandre C, Rosenfeldt G, Alfarano P, Nater M, Caflisch A, Gruissem W, Batschauer A, Hennig L (2010) A Gain-of-Function Mutation of Arabidopsis CRYPTOCHROME1 Promotes Flowering. Plant Physiol 154 (4):1633-1645. doi:10.1104/pp.110.160895

Elrouby N, Bonequi MV, Porri A, Coupland G (2013) Identification of Arabidopsis SUMO-interacting proteins that regulate chromatin activity and developmental transitions. Proceedings of the National Academy of Sciences 110 (49):19956-19961. doi:10.1073/pnas.1319985110

Chai G, Wang Z, Tang X, Yu L, Qi G, Wang D, Yan X, Kong Y, Zhou G (2014) R2R3- MYB gene pairs in Populus: evolution and contribution to secondary wall formation and flowering time. J Exp Bot. doi:10.1093/jxb/eru196

Celesnik H, Ali GS, Robison FM, Reddy AS (2013) Arabidopsis thaliana VOZ (Vascular plant One-Zinc finger) transcription factors are required for proper regulation of flowering time. Biology Open. doi:doi: 10.1242/bio.20133764

Brambilla V, Fornara F (2013) Molecular Control of Flowering in Response to Day Length in Rice. J Integr Plant Biol. doi:10.1111/jipb.12033

Bolger ME, Weisshaar B, Scholz U, Stein N, Usadel B, Mayer KF (2014) Plant genome sequencing - applications for crop improvement. Curr Opin Biotechnol 26C:31-37. doi:10.1016/j.copbio.2013.08.019

Banerjee R, Schleicher E, Meier S, Viana RM, Pokorny R, Ahmad M, Bittl R, Batschauer A (2007) The signaling state of Arabidopsis cryptochrome 2 contains flavin semiquinone. J Biol Chem 282 (20):14916-14922. doi:10.1074/jbc.M700616200

Laurie DA, Griffiths S, Dunford RP, Christodoulou V, Taylor SA, Cockram J, Beales J, Turner A (2004) Comparative genetic approaches to the identification of flowering time genes in temperate cereals. Field Crops Res 90 (1):87-99. doi:http://dx.doi.org/10.1016/j.fcr.2004.07.007

Saijo Y, Zhu DM, Li JG, Rubio V, Zhou ZZ, Shen YP, Hoecker U, Wang HY, Deng XW (2008) Arabidopsis COP1/SPA1 complex and FHY1/FHY3 associate with distinct phosphorylated forms of phytochrome a in balancing light signaling. Mol Cell 31 (4):607- 613. doi:DOI 10.1016/j.molcel.2008.08.003

Saijo Y, Sullivan JA, Wang HY, Yang JP, Shen YP, Rubio V, Ma LG, Hoecker U, Deng XW (2003) The COP1-SPA1 interaction defines a critical step in phytochrome A- mediated regulation of HY5 activity. Genes Dev 17 (21):2642-2647. doi:Doi 10.1101/Gad.1122903

Rangani G, Khodakovskaya M, Alimohammadi M, Hoecker U, Srivastava V (2012) Site- specific methylation in gene coding region underlies transcriptional silencing of the Phytochrome A epiallele in Arabidopsis thaliana. Plant Mol Biol 79 (1-2):191-202. doi:DOI 10.1007/s11103-012-9906-1 Nicholson SJ, Hoecker U, Srivastava V (2011) A novel Phytochrome B allele in Arabidopsis thaliana exhibits partial mutant phenotype: a short deletion in N-terminal extension reduces Phytochrome B activity. Plant Growth Regul 65 (1):207-212. doi:DOI 10.1007/s10725-011-9576-z

Hoecker U, Xu Y, Quail PH (1998) SPA1: A new genetic locus involved in phytochrome A - Specific signal transduction. Plant Cell 10 (1):19-33

Baumgardt RL, Oliverio KA, Casa JJ, Hoecker U (2002) SPA1, a component of phytochrome A signal transduction, regulates the light signaling current. Planta 215 (5):745-753. doi:DOI 10.1007/s00425-002-0801-x

Deng XW, Caspar T, Quail PH (1991) cop1: a regulatory locus involved in light- controlled development and gene expression in Arabidopsis. Genes Dev 5 (7):1172-1182. doi:10.1101/gad.5.7.1172

Kamran A, Randhawa HS, Pozniak C, Spaner D (2013) Phenotypic Effects of the Flowering Gene Complex in Canadian Spring Wheat Germplasm. Crop Sci 53 (1):84-94. doi:DOI 10.2135/cropsci2012.05.0313

Fjellheim S, Boden S, Trevaskis B (2014) The role of seasonal flowering responses in adaptation of grasses to temperate climates. Front Plant Sci 5:431. doi:10.3389/fpls.2014.00431

Huang NC, Jane WN, Chen J, Yu TS (2012) Arabidopsis thaliana CENTRORADIALIS homologue (ATC) acts systemically to inhibit floral initiation in Arabidopsis. The Plant journal : for cell and molecular biology 72 (2):175-184. doi:10.1111/j.1365- 313X.2012.05076.x

Banfield MJ, Brady RL (2000) The structure of Antirrhinum centroradialis protein (CEN) suggests a role as a kinase regulator. J Mol Biol 297 (5):1159-1170. doi:10.1006/jmbi.2000.3619

Nusinow DA, Helfer A, Hamilton EE, King JJ, Imaizumi T, Schultz TF, Farre EM, Kay SA (2011) The ELF4-ELF3-LUX complex links the circadian clock to diurnal control of hypocotyl growth. Nature 475 (7356):398-402. doi:10.1038/nature10182

Kikis EA, Khanna R, Quail PH (2005) ELF4 is a phytochrome-regulated component of a negative-feedback loop involving the central oscillator components CCA1 and LHY. The Plant journal : for cell and molecular biology 44 (2):300-313. doi:10.1111/j.1365- 313X.2005.02531.x

Nakamichi N, Kiba T, Henriques R, Mizuno T, Chua NH, Sakakibara H (2010) PSEUDO- RESPONSE REGULATORS 9, 7, and 5 are transcriptional repressors in the Arabidopsis circadian clock. Plant Cell 22 (3):594-605. doi:10.1105/tpc.109.072892

Mizuno T, Nakamichi N (2005) Pseudo-Response Regulators (PRRs) or True Oscillator Components (TOCs). Plant Cell Physiol 46 (5):677-685. doi:10.1093/pcp/pci087

Tsuji H, Taoka KI (2014) Florigen Signaling. In: Machida Y, Lin C, Tamanoi F (eds) Signaling Pathways in Plants, vol 35. The Enzymes, 1 edn. Academic Press, London, San Diego, Waltham, Oxford, pp 113-137 Soppe WJ, Bentsink L, Koornneef M (1999) The early-flowering mutant efs is involved in the autonomous promotion pathway of Arabidopsis thaliana. Development 126 (21):4763- 4770

Searle I, He Y, Turck F, Vincent C, Fornara F, Krober S, Amasino RA, Coupland G (2006) The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis. Genes Dev 20 (7):898-912. doi:10.1101/gad.373506

Koornneef M, Hanhart CJ, van der Veen JH (1991) A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol Gen Genet 229 (1):57-66

Koornneef M (1997) Plant development: timing when to flower. Curr Biol 7 (10):R651- 652

El-Din El-Assal S, Alonso-Blanco C, Peeters AJ, Raz V, Koornneef M (2001) A QTL for flowering time in Arabidopsis reveals a novel allele of CRY2. Nat Genet 29 (4):435-440. doi:10.1038/ng767

Alonso-Blanco C, El-Assal SE, Coupland G, Koornneef M (1998) Analysis of natural allelic variation at flowering time loci in the Landsberg erecta and Cape Verde Islands ecotypes of Arabidopsis thaliana. Genetics 149 (2):749-764

Goff SA, Ricke D, Lan T-H, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange BM, Moughamer T, Xia Y, Budworth P, Zhong J, Miguel T, Paszkowski U, Zhang S, Colbert M, Sun W-l, Chen L, Cooper B, Park S, Wood TC, Mao L, Quail P, Wing R, Dean R, Yu Y, Zharkikh A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell J, Eldredge G, Scholl T, Miller RM, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A, Briggs S (2002) A Draft Sequence of the Rice Genome (Oryza sativa L. ssp. japonica). Science 296 (5565):92-100. doi:10.1126/science.1068275

Yu J, Hu S, Wang J, Wong GK-S, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X, Cao M, Liu J, Sun J, Tang J, Chen Y, Huang X, Lin W, Ye C, Tong W, Cong L, Geng J, Han Y, Li L, Li W, Hu G, Huang X, Li W, Li J, Liu Z, Li L, Liu J, Qi Q, Liu J, Li L, Li T, Wang X, Lu H, Wu T, Zhu M, Ni P, Han H, Dong W, Ren X, Feng X, Cui P, Li X, Wang H, Xu X, Zhai W, Xu Z, Zhang J, He S, Zhang J, Xu J, Zhang K, Zheng X, Dong J, Zeng W, Tao L, Ye J, Tan J, Ren X, Chen X, He J, Liu D, Tian W, Tian C, Xia H, Bao Q, Li G, Gao H, Cao T, Wang J, Zhao W, Li P, Chen W, Wang X, Zhang Y, Hu J, Wang J, Liu S, Yang J, Zhang G, Xiong Y, Li Z, Mao L, Zhou C, Zhu Z, Chen R, Hao B, Zheng W, Chen S, Guo W, Li G, Liu S, Tao M, Wang J, Zhu L, Yuan L, Yang H (2002) A Draft Sequence of the Rice Genome (Oryza sativa L. ssp. indica). Science 296 (5565):79-92. doi:10.1126/science.1068037

The International Barley Genome Sequencing Consortium I (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature 491 (7426):711-716. doi:http://www.nature.com/nature/journal/v491/n7426/abs/nature11543.html#supplementa ry-information The International Wheat Genome Sequencing Consortium I (2014) A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345 (6194):1251788. doi:10.1126/science.1251788

Pfeifer M, Kugler KG, Sandve SR, Zhan B, Rudi H, Hvidsten TR, Mayer KF, Olsen OA (2014) Genome interplay in the grain transcriptome of hexaploid bread wheat. Science 345 (6194):1250091. doi:10.1126/science.1250091

Pennisi E (2014) Agriculture. Harvest of genome data for wheat growers. Science 345 (6194):251. doi:10.1126/science.345.6194.251

Eversole K, Feuillet C, Mayer KF, Rogers J (2014) Slicing the wheat genome. Introduction. Science 345 (6194):285-287. doi:10.1126/science.1257983

Koornneef M, Alonso-Blanco C, Peeters AJ, Soppe W (1998) Genetic control of flowering time in Arabidopsis. Annu Rev Plant Physiol Plant Mol Biol 49:345-370. doi:10.1146/annurev.arplant.49.1.345

Swarup K, Alonso-Blanco C, Lynn JR, Michaels SD, Amasino RM, Koornneef M, Millar AJ (1999) Natural allelic variation identifies new genes in the Arabidopsis circadian system. Plant J 20 (1):67-77

Somerville C, Koornneef M (2002) A fortunate choice: the history of Arabidopsis as a model plant. Nat Rev Genet 3 (11):883-889. doi:10.1038/nrg927

El-Din El-Assal S, Alonso-Blanco C, Peeters AJ, Wagemaker C, Weller JL, Koornneef M (2003) The role of cryptochrome 2 in flowering in Arabidopsis. Plant Physiol 133 (4):1504-1516. doi:10.1104/pp.103.029819

Alonso-Blanco C, Koornneef M (2000) Naturally occurring variation in Arabidopsis: an underexploited resource for plant genetics. Trends Plant Sci 5 (1):22-29

Soppe WJ, Jacobsen SE, Alonso-Blanco C, Jackson JP, Kakutani T, Koornneef M, Peeters AJ (2000) The late flowering phenotype of fwa mutants is caused by gain-of-function epigenetic alleles of a homeodomain gene. Mol Cell 6 (4):791-802

Koornneef M, Alonso-Blanco C, Blankestijn-de Vries H, Hanhart CJ, Peeters AJ (1998) Genetic interactions among late-flowering mutants of Arabidopsis. Genetics 148 (2):885- 892

Koornneef M (1991) Isolation of higher plant developmental mutants. Symp Soc Exp Biol 45:1-19

Halliday KJ, Koornneef M, Whitelam GC (1994) Phytochrome B and at Least One Other Phytochrome Mediate the Accelerated Flowering Response of Arabidopsis thaliana L. to Low Red/Far-Red Ratio. Plant Physiol 104 (4):1311-1315

Shin J-H, Chekanova JA (2014) Arabidopsis RRP6L1 and RRP6L2 Function in FLOWERING LOCUS C Silencing via Regulation of Antisense RNA Synthesis. PLoS Genet 10 (9):e1004612. doi:10.1371/journal.pgen.1004612 Crevillen P, Yang H, Cui X, Greeff C, Trick M, Qiu Q, Cao X, Dean C (2014) Epigenetic reprogramming that prevents transgenerational inheritance of the vernalized state. Nature advance online publication. doi:10.1038/nature13722

Shaw LM, Turner AS, Herry L, Griffiths S, Laurie DA (2013) Mutant Alleles of Photoperiod-1 in Wheat (Triticum aestivum L.) That Confer a Late Flowering Phenotype in Long Days. PLoS ONE 8 (11):e79459. doi:10.1371/journal.pone.0079459

Zhang F, Chen S, Jiang J, Guan Z, Fang W, Chen F (2013) Genetic Mapping of Quantitative Trait Loci Underlying Flowering Time in Chrysanthemum (Chrysanthemum morifolium). PLoS ONE 8 (12):e83023. doi:10.1371/journal.pone.0083023

Woods DP, Ream TS, Minevich G, Hobert O, Amasino RM (2014) PHYTOCHROME C Is an Essential Light Receptor for Photoperiodic Flowering in the Temperate Grass, Brachypodium distachyon. Genetics. doi:10.1534/genetics.114.166785

Wang YG, Zhang L, Ji XH, Yan JF, Liu YT, Lv XX, Feng H (2014) Mapping of quantitative trait loci for the bolting trait in Brassica rapa under vernalizing conditions. Genet Mol Res 13 (2):3927-3939. doi:10.4238/2014.May.23.3

Shinozuka H, Hand ML, Cogan NO, Spangenberg GC, Forster JW (2013) Nucleotide diversity of vernalization and flowering-time-related genes in a germplasm collection of meadow fescue (Festuca pratensis Huds. syn. Lolium pratense (Huds.) Darbysh.). Ecol Evol 3 (13):4415-4426. doi:10.1002/ece3.828

Sgamma T, Jackson A, Muleo R, Thomas B, Massiah A (2014) TEMPRANILLO is a regulator of juvenility in plants. Sci Rep 4:3704. doi:10.1038/srep03704

Ream TS, Woods DP, Schwartz CJ, Sanabria CP, Mahoy JA, Walters EM, Kaeppler HF, Amasino RM (2014) Interaction of photoperiod and vernalization determines flowering time of Brachypodium distachyon. Plant Physiol 164 (2):694-709. doi:10.1104/pp.113.232678

Rataj K, Simpson GG (2014) Message ends: RNA 3' processing and flowering time control. J Exp Bot 65 (2):353-363. doi:10.1093/jxb/ert439

Raggi L, Tissi C, Mazzucato A, Negri V (2014) Molecular polymorphism related to flowering trait variation in a Phaseolus vulgaris L. collection. Plant Sci 215-216:180-189. doi:10.1016/j.plantsci.2013.11.001

Preston JC, Jorgensen SA, Jha SG (2014) Functional Characterization of Duplicated SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1-Like Genes in Petunia. PLoS ONE 9 (5):e96108. doi:10.1371/journal.pone.0096108

Nguyen AT, Iehisa JC, Mizuno N, Nitta M, Nasuda S, Takumi S (2013) Differential contribution of two Ppd-1 homoeoalleles to early-flowering phenotype in Nepalese and Japanese varieties of common wheat. Breed Sci 63 (4):374-383. doi:10.1270/jsbbs.63.374

Mandel JR, McAssey EV, Nambeesan S, Garcia-Navarro E, Burke JM (2014) Molecular Evolution of Candidate Genes for Crop-Related Traits in Sunflower (Helianthus annuus L.). PLoS ONE 9 (6):e99620. doi:10.1371/journal.pone.0099620 Liu Y, Li X, Li K, Liu H, Lin C (2013) Multiple bHLH proteins form heterodimers to mediate CRY2-dependent regulation of flowering-time in Arabidopsis. PLoS Genet 9 (10):e1003861. doi:10.1371/journal.pgen.1003861

Lillo C, Kataya AR, Heidari B, Creighton MT, Nemie-Feyissa D, Ginbot Z, Jonassen EM (2014) Protein phosphatases PP2A, PP4 and PP6: mediators and regulators in development and responses to environmental cues. Plant Cell Environ. doi:10.1111/pce.12364

Li F, Zhang X, Hu R, Wu F, Ma J, Meng Y, Fu Y (2013) Identification and Molecular Characterization of FKF1 and GI Homologous Genes in Soybean. PLoS ONE 8 (11):e79036. doi:10.1371/journal.pone.0079036

Leeggangers HA, Moreno-Pachon N, Gude H, Immink RG (2013) Transfer of knowledge about flowering and vegetative propagation from model species to bulbous plants. Int J Dev Biol 57 (6-8):611-620. doi:10.1387/ijdb.130238ri

Lai Z, Schluttenhofer CM, Bhide K, Shreve J, Thimmapuram J, Lee SY, Yun DJ, Mengiste T (2014) MED18 interaction with distinct transcription factors regulates multiple plant functions. Nat Commun 5:3064. doi:10.1038/ncomms4064

Jung JH, Lee S, Yun J, Lee M, Park CM (2014) The miR172 target TOE3 represses AGAMOUS expression during Arabidopsis floral patterning. Plant Sci 215-216:29-38. doi:10.1016/j.plantsci.2013.10.010

Jiang B, Yue Y, Gao Y, Ma L, Sun S, Wu C, Hou W, Lam HM, Han T (2013) GmFT2a polymorphism and maturity diversity in soybeans. PLoS ONE 8 (10):e77474. doi:10.1371/journal.pone.0077474

Ikegami H, Nogata H, Inoue Y, Himeno S, Yakushiji H, Hirata C, Hirashima K, Mori M, Awamura M, Nakahara T (2013) Expression of FcFT1, a FLOWERING LOCUS T-like gene, is regulated by light and associated with inflorescence differentiation in fig (Ficus carica L.). BMC Plant Biol 13:216. doi:10.1186/1471-2229-13-216

Han Y, Zhang X, Wang Y, Ming F (2013) The Suppression of WRKY44 by GIGANTEA- miR172 Pathway Is Involved in Drought Response of Arabidopsis thaliana. PLoS ONE 8 (11):e73541. doi:10.1371/journal.pone.0073541

Gao J, Zhang Y, Zhang C, Qi F, Li X, Mu S, Peng Z (2014) Characterization of the Floral Transcriptome of Moso Bamboo (Phyllostachys edulis) at Different Flowering Developmental Stages by Transcriptome Sequencing and RNA-Seq Analysis. PLoS ONE 9 (6):e98910. doi:10.1371/journal.pone.0098910

Fu J, Wang L, Wang Y, Yang L, Yang Y, Dai S (2014) Photoperiodic control of FT-like gene ClFT initiates flowering in Chrysanthemum lavandulifolium. Plant Physiol Biochem 74:230-238. doi:10.1016/j.plaphy.2013.11.004

Fan C, Hu R, Zhang X, Wang X, Zhang W, Zhang Q, Ma J, Fu YF (2014) Conserved CO- FT regulons contribute to the photoperiod flowering control in soybean. BMC Plant Biol 14:9. doi:10.1186/1471-2229-14-9

Cortijo S, Wardenaar R, Colome-Tatche M, Gilly A, Etcheverry M, Labadie K, Caillieux E, Hospital F, Aury JM, Wincker P, Roudier F, Jansen RC, Colot V, Johannes F (2014) Mapping the epigenetic basis of complex traits. Science 343 (6175):1145-1148. doi:10.1126/science.1248127

Corrales AR, Nebauer SG, Carrillo L, Fernandez-Nohales P, Marques J, Renau-Morata B, Granell A, Pollmann S, Vicente-Carbajosa J, Molina RV, Medina J (2014) Characterization of tomato Cycling Dof Factors reveals conserved and new functions in the control of flowering time and abiotic stress responses. J Exp Bot 65 (4):995-1012. doi:10.1093/jxb/ert451

Choi SC, Lee S, Kim SR, Lee YS, Liu C, Cao X, An G (2014) Trithorax group protein Oryza sativa Trithorax1 controls flowering time in rice via interaction with early heading date3. Plant Physiol 164 (3):1326-1337. doi:10.1104/pp.113.228049

Chen ZH, Jia FF, Hu JQ, Pang JL, Xu L, Wang LL (2014) Virus-induced gene silencing of PEAM4 affects floral morphology by altering the expression pattern of PsSOC1a and PsPVP in pea. J Plant Physiol 171 (2):148-153. doi:10.1016/j.jplph.2013.08.010

Chen Z, Li F, Yang S, Dong Y, Yuan Q, Wang F, Li W, Jiang Y, Jia S, Pei X (2013) Identification and Functional Analysis of Flowering Related microRNAs in Common Wild Rice (Oryza rufipogon Griff.). PLoS ONE 8 (12):e82844. doi:10.1371/journal.pone.0082844

Chao Y, Zhang T, Yang Q, Kang J, Sun Y, Gruber MY, Qin Z (2014) Expression of the alfalfa CCCH-type zinc finger protein gene MsZFN delays flowering time in transgenic Arabidopsis thaliana. Plant Sci 215-216:92-99. doi:10.1016/j.plantsci.2013.10.012

Huang H, Wang S, Jiang J, Liu G, Li H, Chen S, Xu H (2014) Overexpression of BpAP1 induces early flowering and produces dwarfism in Betula platyphylla x Betula pendula. Physiol Plant 151 (4):495-506. doi:10.1111/ppl.12123

Jokela V, Virkajarvi P, Tanskanen J, Seppanen MM (2014) Vernalization, gibberellic acid and photo period are important signals of yield formation in timothy (Phleum pratense). Physiol Plant 152 (1):152-163. doi:10.1111/ppl.12141

Khan AR, Enjalbert J, Marsollier AC, Rousselet A, Goldringer I, Vitte C (2013) Vernalization treatment induces site-specific DNA hypermethylation at the VERNALIZATION-A1 (VRN-A1) locus in hexaploid winter wheat. BMC Plant Biol 13:209. doi:10.1186/1471-2229-13-209

Monpara BA, Dhameliya HR (2013) Genetic behaviour of earliness related traits and seed yield in chickpea (Cicer arietinum L.). Pak J Biol Sci 16 (18):955-959

Khan MR, Ai XY, Zhang JZ (2014) Genetic regulation of flowering time in annual and perennial plants. Wiley Interdiscip Rev RNA 5 (3):347-359. doi:10.1002/wrna.1215

Doust AN, Lukens L, Olsen KM, Mauro-Herrera M, Meyer A, Rogers K (2014) Beyond the single gene: How epistasis and gene-by-environment effects influence crop domestication. Proc Natl Acad Sci U S A 111 (17):6178-6183. doi:10.1073/pnas.1308940110

Zhang Z, Song X, Chen Y, Wang P, Wei X, Tao F (2014) Dynamic variability of the heading-flowering stages of single rice in China based on field observations and NDVI estimations. Int J Biometeorol. doi:10.1007/s00484-014-0877-6 Xu Y, Gan ES, Zhou J, Wee WY, Zhang X, Ito T (2014) Arabidopsis MRG domain proteins bridge two histone modifications to elevate expression of flowering genes. Nucleic Acids Res. doi:10.1093/nar/gku781

Takeuchi T, Newton L, Burkhardt A, Mason S, Farre EM (2014) Light and the circadian clock mediate time-specific changes in sensitivity to UV-B stress under light/dark cycles. J Exp Bot. doi:10.1093/jxb/eru339

Shen C, Xu Y, Huang J, Wang Z, Qiu J, Huang Y (2014) Molecular characterization and expression analysis of the critical floral genes in hickory (Carya cathayensis Sarg.). Plant Physiol Biochem 83C:142-150. doi:10.1016/j.plaphy.2014.07.020

Rival P, Press MO, Bale J, Grancharova T, Undurraga SF, Queitsch C (2014) The Conserved PFT1 Tandem Repeat is Crucial for Proper Flowering in Arabidopsis thaliana. Genetics. doi:10.1534/genetics.114.167866

Parry G (2014) Components of the Arabidopsis nuclear pore complex play multiple diverse roles in control of plant growth. J Exp Bot. doi:10.1093/jxb/eru346

Li YH, Zhou G, Ma J, Jiang W, Jin LG, Zhang Z, Guo Y, Zhang J, Sui Y, Zheng L, Zhang SS, Zuo Q, Shi XH, Li YF, Zhang WK, Hu Y, Kong G, Hong HL, Tan B, Song J, Liu ZX, Wang Y, Ruan H, Yeung CK, Liu J, Wang H, Zhang LJ, Guan RX, Wang KJ, Li WB, Chen SY, Chang RZ, Jiang Z, Jackson SA, Li R, Qiu LJ (2014) De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits. Nat Biotechnol. doi:10.1038/nbt.2979

Arifuzzaman M, Sayed M, Muzammil S, Pillen K, Schumann H, Naz A, Léon J (2014) Detection and validation of novel QTL for shoot and root traits in barley (Hordeum vulgare L.). Mol Breed 34 (3):1373-1387. doi:10.1007/s11032-014-0122-3

Zhao X, Liu H, Wei X, Wu L, Cheng F, Ku L, Zhang Z, Han Z, Cao L, Cui X, Chen Y (2014) Promoter region characterization of ZmPhyB2 associated with the photoperiod- dependent floral transition in maize (Zea mays L.). Mol Breed 34 (3):1413-1422. doi:10.1007/s11032-014-0125-0

Vollmann J, Rajcan I (2009) Handbook of Plant Breeding: Oil Crops. vol 4. Springer, Berlin - Heidelberg - New York

Uddenberg D, Reimegard J, Clapham D, Almqvist C, von Arnold S, Emanuelsson O, Sundstrom JF (2013) Early cone setting in Picea abies acrocona is associated with increased transcriptional activity of a MADS box transcription factor. Plant Physiol 161 (2):813-823. doi:10.1104/pp.112.207746

Carlsbecker A, Sundstrom JF, Englund M, Uddenberg D, Izquierdo L, Kvarnheden A, Vergara-Silva F, Engstrom P (2013) Molecular control of normal and acrocona mutant seed cone development in Norway spruce (Picea abies) and the evolution of conifer ovule- bearing organs. The New phytologist 200 (1):261-275. doi:10.1111/nph.12360

Castaings L, Bergonzi S, Albani MC, Kemi U, Savolainen O, Coupland G (2014) Evolutionary conservation of cold-induced antisense RNAs of FLOWERING LOCUS C in Arabidopsis thaliana perennial relatives. Nat Commun 5:4457. doi:10.1038/ncomms5457 Tsuji H, Taoka K, Shimamoto K (2011) Regulation of flowering in rice: two florigen genes, a complex gene network, and natural variation. Curr Opin Plant Biol 14 (1):45-52. doi:10.1016/j.pbi.2010.08.016

Kiss T, Balla K, Veisz O, Láng L, Bedő Z, Griffiths S, Isaac P, Karsai I (2014) Allele frequencies in the VRN-A1, VRN-B1 and VRN-D1 vernalization response and PPD-B1 and PPD-D1 photoperiod sensitivity genes, and their effects on heading in a diverse set of wheat cultivars (Triticum aestivum L.). Mol Breed 34 (2):297-310. doi:10.1007/s11032- 014-0034-2

Fechter I, Hausmann L, Zyprian E, Daum M, Holtgräwe D, Weisshaar B, Töpfer R (2014) QTL analysis of flowering time and ripening traits suggests an impact of a genomic region on linkage group 1 in Vitis. Theor Appl Genet 127 (9):1857-1872. doi:10.1007/s00122- 014-2310-2

Wang M, Yu Y, Haberer G, Marri PR, Fan C, Goicoechea JL, Zuccolo A, Song X, Kudrna D, Ammiraju JSS, Cossu RM, Maldonado C, Chen J, Lee S, Sisneros N, de Baynast K, Golser W, Wissotski M, Kim W, Sanchez P, Ndjiondjop M-N, Sanni K, Long M, Carney J, Panaud O, Wicker T, Machado CA, Chen M, Mayer KFX, Rounsley S, Wing RA (2014) The genome sequence of African rice (Oryza glaberrima) and evidence for independent domestication. Nat Genet 46 (9):982-988. doi:10.1038/ng.3044 http://www.nature.com/ng/journal/v46/n9/abs/ng.3044.html#supplementary-information

Yang H, Howard M, Dean C (2014) Antagonistic Roles for H3K36me3 and H3K27me3 in the Cold-Induced Epigenetic Switch at Arabidopsis FLC. Curr Biol 24 (15):1793-1797. doi:http://dx.doi.org/10.1016/j.cub.2014.06.047

Li W, Zhou Y, Liu X, Yu P, Cohen JD, Meyerowitz EM (2013) LEAFY Controls Auxin Response Pathways in Floral Primordium Formation, vol 6. vol 270. doi:10.1126/scisignal.2003937

Nelson MN, Rajasekaran R, Smith A, Chen S, Beeck CP, Siddique KHM, Cowling WA (2014) Quantitative Trait Loci for Thermal Time to Flowering and Photoperiod Responsiveness Discovered in Summer Annual-Type Brassica napus L. PLoS ONE 9 (7):e102611. doi:10.1371/journal.pone.0102611

Wang N, Li F, Chen B, Xu K, Yan G, Qiao J, Li J, Gao G, Bancroft I, Meng J, King G, Wu X (2014) Genome-wide investigation of genetic changes during modern breeding of Brassica napus. Theor Appl Genet 127 (8):1817-1829. doi:10.1007/s00122-014-2343-6

Niwa M, Endo M, Araki T (2013) Florigen is involved in axillary bud development at multiple stages in Arabidopsis. Plant Signal Behav 8 (11):e27167

Keilwagen J, Kilian B, Ozkan H, Babben S, Perovic D, Mayer KF, Walther A, Poskar CH, Ordon F, Eversole K, Borner A, Ganal M, Knupffer H, Graner A, Friedel S (2014) Separating the wheat from the chaff - a strategy to utilize plant genetic resources from ex situ genebanks. Sci Rep 4:5231. doi:10.1038/srep05231

Zhong Z, Wu W, Wang H, Chen L, Liu L, Wang C, Zhao Z, Lu G, Gao H, Wei X, Yu C, Chen M, Shen Y, Zhang X, Cheng Z, Wang J, Jiang L, Wan J (2014) Fine mapping of a minor-effect QTL, DTH12, controlling heading date in rice by up-regulation of florigen genes under long-day conditions. Mol Breed 34 (2):311-322. doi:10.1007/s11032-014- 0035-1

Guo L, Gao Z, Qian Q (2014) Application of resequencing to rice genomics, functional genomics and evolutionary analysis. Rice 7 (1):4

Staiger D, Shin J, Johansson M, Davis SJ (2013) The circadian clock goes genomic. Genome Biol 14 (6):208. doi:10.1186/gb-2013-14-6-208

Van Dijk H, Hautekeete NC (2014) Evidence of genetic change in the flowering phenology of sea beets along a latitudinal cline within two decades. J Evol Biol. doi:10.1111/jeb.12410

Pyo Y, Park S, Xi Y, Sung S (2014) Chapter Two - Regulation of Flowering by Vernalisation in Arabidopsis. In: Fabio F (ed) Advances in Botanical Research, vol Volume 72. Academic Press, pp 29-61. doi:http://dx.doi.org/10.1016/B978-0-12-417162- 6.00002-X

Broholm SK, Teeri TH, Elomaa P (2014) Chapter Ten - Molecular Control of Inflorescence Development in Asteraceae. In: Fabio F (ed) Advances in Botanical Research, vol Volume 72. Academic Press, pp 297-333. doi:http://dx.doi.org/10.1016/B978-0-12-417162-6.00010-9

Galvão VC, Schmid M (2014) Chapter Three - Regulation of Flowering by Endogenous Signals. In: Fabio F (ed) Advances in Botanical Research, vol Volume 72. Academic Press, pp 63-102. doi:http://dx.doi.org/10.1016/B978-0-12-417162-6.00003-1

Kyozuka J (2014) Chapter Seven - Grass Inflorescence: Basic Structure and Diversity. In: Fabio F (ed) Advances in Botanical Research, vol Volume 72. Academic Press, pp 191- 219. doi:http://dx.doi.org/10.1016/B978-0-12-417162-6.00007-9

O’Maoileidigh DS, Graciet E, Wellmer F (2014) Chapter Six - Genetic Control of Arabidopsis Flower Development. In: Fabio F (ed) Advances in Botanical Research, vol Volume 72. Academic Press, pp 159-190. doi:http://dx.doi.org/10.1016/B978-0-12- 417162-6.00006-7

Osugi A, Izawa T (2014) Chapter Four - Critical Gates in Day-Length Recognition to Control the Photoperiodic Flowering. In: Fabio F (ed) Advances in Botanical Research, vol Volume 72. Academic Press, pp 103-130. doi:http://dx.doi.org/10.1016/B978-0-12- 417162-6.00004-3

Tanaka W, Toriba T, Hirano H-Y (2014) Chapter Eight - Flower Development in Rice. In: Fabio F (ed) Advances in Botanical Research, vol Volume 72. Academic Press, pp 221- 262. doi:http://dx.doi.org/10.1016/B978-0-12-417162-6.00008-0

Thompson B (2014) Chapter Nine - Genetic and Hormonal Regulation of Maize Inflorescence Development. In: Fabio F (ed) Advances in Botanical Research, vol Volume 72. Academic Press, pp 263-296. doi:http://dx.doi.org/10.1016/B978-0-12-417162- 6.00009-2

Campoli C, von Korff M (2014) Chapter Five - Genetic Control of Reproductive Development in Temperate Cereals. In: Fabio F (ed) Advances in Botanical Research, vol Volume 72. Academic Press, pp 131-158. doi:http://dx.doi.org/10.1016/B978-0-12- 417162-6.00005-5

Weis A, Wadgymar S, Sekor M, Franks S (2014) The shape of selection: using alternative fitness functions to test predictions for selection on flowering time. Evol Ecol:1-20. doi:10.1007/s10682-014-9719-6

Li Q, Fan C, Zhang X, Wang X, Wu F, Hu R, Fu Y (2014) Identification of a Soybean MOTHER OF FT AND TFL1 Homolog Involved in Regulation of Seed Germination. PLoS ONE 9 (6):e99642. doi:10.1371/journal.pone.0099642

Kim W, Ahn JH (2014) MicroRNA-target Interactions: Important Signaling Modules Regulating Flowering Time in Diverse Plant Species. Crit Rev Plant Sci 33 (6):470-485. doi:10.1080/07352689.2014.917533

Xing D, Zhao H, Xu R, Li QQ (2008) Arabidopsis PCFS4, a homologue of yeast polyadenylation factor Pcf11p, regulates FCA alternative processing and promotes flowering time. Plant J 54 (5):899-910. doi:10.1111/j.1365-313X.2008.03455.x

Xing J, Zhang J, Yang P, Jiang C, Fan J, Han J, Dong J (2014) SDR6 is involved in regulation of flowering time in Arabidopsis thaliana. Plant Biotechnol advpub. doi:10.5511/plantbiotechnology.14.0125b

Zou X, Suppanz I, Raman H, Hou J, Wang J, Long Y, Jung C, Meng J (2012) Comparative Analysis of FLC Homologues in Brassicaceae Provides Insight into Their Role in the Evolution of Oilseed Rape. PLoS ONE 7 (9):e45751. doi:10.1371/journal.pone.0045751

Villajuana-Bonequi M, Elrouby N, Nordstrom K, Griebel T, Bachmair A, Coupland G (2014) Elevated salicylic acid levels conferred by increased expression of ISOCHORISMATE SYNTHASE 1 contribute to hyperaccumulation of SUMO1 conjugates in the Arabidopsis mutant early in short days 4. Plant J. doi:10.1111/tpj.12549

Todesco M, Balasubramanian S, Cao J, Ott F, Sureshkumar S, Schneeberger K, Meyer RC, Altmann T, Weigel D (2012) Natural variation in biogenesis efficiency of individual Arabidopsis thaliana microRNAs. Current biology : CB 22 (2):166-170. doi:10.1016/j.cub.2011.11.060

Snowdon RJ, Iniguez Luy FL (2012) Potential to improve oilseed rape and canola breeding in the genomics era. Plant Breed 131 (3):351-360. doi:10.1111/j.1439- 0523.2012.01976.x

Shin J, Heidrich K, Sanchez-Villarreal A, Parker JE, Davis SJ (2012) TIME FOR COFFEE Represses Accumulation of the MYC2 Transcription Factor to Provide Time-of- Day Regulation of Jasmonate Signaling in Arabidopsis. Plant Cell 24 (6):2470-2482. doi:10.1105/tpc.111.095430

Shin J, Anwer MU, Davis SJ (2013) Phytochrome-Interacting Factors (PIFs) as Bridges between Environmental Signals and the Circadian Clock: Diurnal Regulation of Growth and Development. Mol Plant 6 (3):592-595. doi:10.1093/mp/sst060

Sanchez-Villarreal A, Shin J, Bujdoso N, Obata T, Neumann U, Du SX, Ding Z, Davis AM, Shindo T, Schmelzer E, Sulpice R, Nunes-Nesi A, Stitt M, Fernie AR, Davis SJ (2013) TIME FOR COFFEE is an essential component in the maintenance of metabolic homeostasis in Arabidopsis thaliana. Plant J 76 (2):188-200. doi:10.1111/tpj.12292

Rosloski SM, Singh A, Jali SS, Balasubramanian S, Weigel D, Grbic V (2013) Functional analysis of splice variant expression of MADS AFFECTING FLOWERING 2 of Arabidopsis thaliana. Plant Mol Biol 81 (1-2):57-69. doi:10.1007/s11103-012-9982-2

Pose D, Verhage L, Ott F, Yant L, Mathieu J, Angenent GC, Immink RG, Schmid M (2013) Temperature-dependent regulation of flowering by antagonistic FLM variants. Nature 503 (7476):414-417. doi:10.1038/nature12633

Koskela EA, Mouhu K, Albani MC, Kurokura T, Rantanen M, Sargent DJ, Battey NH, Coupland G, Elomaa P, Hytonen T (2012) Mutation in TERMINAL FLOWER1 Reverses the Photoperiodic Requirement for Flowering in the Wild Strawberry Fragaria vesca. Plant Physiol 159 (3):1043-1054. doi:10.1104/pp.112.196659

Hoenicka H, Lautner S, Klingberg A, Koch G, El-Sherif F, Lehnhardt D, Zhang B, Burgert I, Odermatt J, Melzer S, Fromm J, Fladung M (2012) Influence of over- expression of the FLOWERING PROMOTING FACTOR 1 gene (FPF1) from Arabidopsis on wood formation in hybrid poplar (Populus tremula L. x P. tremuloides Michx.). Planta 235 (2):359-373. doi:10.1007/s00425-011-1507-8

Herrero E, Kolmos E, Bujdoso N, Yuan Y, Wang M, Berns MC, Uhlworm H, Coupland G, Saini R, Jaskolski M, Webb A, Goncalves J, Davis SJ (2012) EARLY FLOWERING4 Recruitment of EARLY FLOWERING3 in the Nucleus Sustains the Arabidopsis Circadian Clock. Plant Cell 24 (2):428-443. doi:10.1105/tpc.111.093807

Debieu M, Tang C, Stich B, Sikosek T, Effgen S, Josephs E, Schmitt J, Nordborg M, Koornneef M, de Meaux J (2013) Co-Variation between Seed Dormancy, Growth Rate and Flowering Time Changes with Latitude in Arabidopsis thaliana. PLoS ONE 8 (5):e61075. doi:10.1371/journal.pone.0061075

Bergonzi S, Albani MC, Ver Loren van Themaat E, Nordstrom KJ, Wang R, Schneeberger K, Moerland PD, Coupland G (2013) Mechanisms of age-dependent response to winter temperature in perennial flowering of Arabis alpina. Science 340 (6136):1094-1097. doi:10.1126/science.1234116

Albani MC, Castaings L, Wotzel S, Mateos JL, Wunder J, Wang R, Reymond M, Coupland G (2012) PEP1 of Arabis alpina Is Encoded by Two Overlapping Genes That Contribute to Natural Genetic Variation in Perennial Flowering. PLoS Genet 8 (12):e1003130. doi:10.1371/journal.pgen.1003130

Quint M, Drost HG, Gabel A, Ullrich KK, Bonn M, Grosse I (2012) A transcriptomic hourglass in plant embryogenesis. Nature 490 (7418):98-101. doi:10.1038/nature11394

Nettling M, Thieme N, Both A, Grosse I (2014) DRUMS: Disk Repository with Update Management and Select option for high throughput sequencing data. BMC Bioinformatics 15:38. doi:10.1186/1471-2105-15-38

Nakamura Y, Andres F, Kanehara K, Liu YC, Dörmann P, Coupland G (2014) Arabidopsis florigen FT binds to diurnally oscillating phospholipids that accelerate flowering. Nat Commun 5:3553 Hedtke I, Lemnian IM, Müller-Hannemann M, Grosse I (2014) On optimal read trimming in next generation sequencing and its complexity. Proceedings of AlCoB 8542:83-94

Grau J, Keilwagen J, Gohr A, Paponov IA, Posch S, Seifert M, Strickert M, Grosse I (2013) Dispom: a discriminative de-novo motif discovery tool based on the jstacs library. J Bioinform Comput Biol 11 (1):1340006. doi:10.1142/S0219720013400064

Grau J, Keilwagen J, Gohr A, Haldemann B, Posch S, Grosse I (2012) Jstacs: A Java Framework for Statistical Analysis and Classification of Biological Sequences Journal of Machine Learning Research 13 (1967-1971)

Eggeling R, Roos T, Myllymäki P, Grosse I (2014) Robust learning of inhomogeneous PMMs. Journal of Machine Learning Research 33:229-237

Anwer MU, Boikoglou E, Herrero E, Hallstein M, Davis AM, James GV, Davis SJ (2014) Natural variation reveals that intracellular distribution of ELF3 protein is associated with function in the circadian clock. Elife 10.7554/eLife.02206. doi:http://dx.doi.org/10.7554/eLife.02206

Vetter MM, Kronholm I, He F, Haweker H, Reymond M, Kronholm I, Bergelson J, Robatzek S, De Meaux J (2012) Flagellin Perception Varies Quantitatively in Arabidopsis thaliana and Its Relatives. Mol Biol Evol 29 (6). doi:10.1093/molbev/mss011.

Sarnowska EA, Rolicka AT, Bucior E, Cwiek P, Tohge T, Fernie AR, Jikumaru Y, Kamiya Y, Franzen R, Schmelzer E, Porri A, Sacharowski S, Gratkowska DM, Zugaj DL, Taff A, Zalewska A, Archacki R, Davis SJ, Coupland G, Koncz C, Jerzmanowski A, Sarnowski TJ (2013) DELLA-interacting SWI3C core subunit of switch/sucrose nonfermenting chromatin remodeling complex modulates gibberellin responses and hormonal cross talk in Arabidopsis. Plant Physiol 163 (1):305-317. doi:10.1104/pp.113.223933

Pakull B, Kersten B, Lueneburg J, Fladung M (2014) A simple PCR-based marker to determine sex in aspen. Plant Biol (Stuttg) in press

Langer SM, Longin CFH, Würschum T (2014) Phenotypic evaluation of floral and flowering traits with relevance for hybrid breeding in wheat (Triticum aestivum L.). Plant Breed accepted

Koenig D, Jimenez-Gomez JM, Kimura S, Fulop D, Chitwood DH, Headland LR, Kumar R, Covington MF, Devisetty UK, Tat AV, Tohge T, Bolger A, Schneeberger K, Ossowski S, Lanz C, Xiong G, Taylor-Teeples M, Brady SM, Pauly M, Weigel D, Usadel B, Fernie AR, Peng J, Sinha NR, Maloof JN (2013) Comparative transcriptomics reveals patterns of selection in domesticated and wild tomato. Proc Natl Acad Sci U S A 110 (28):E2655- 2662. doi:10.1073/pnas.1309606110

James GV, Patel V, Nordstrom KJ, Klasen JR, Salome PA, Weigel D, Schneeberger K (2013) User guide for mapping-by-sequencing in Arabidopsis. Genome Biol 14 (6):R61. doi:10.1186/gb-2013-14-6-r61

Edwards D, Batley J, Snowdon RJ (2013) Accessing complex crop genomes with next- generation sequencing. TAG Theoretical and applied genetics Theoretische und angewandte Genetik 126 (1):1-11. doi:10.1007/s00122-012-1964-x Ahuja MR, Fladung M (2014) Integration and inheritance of transgenes in crop plants and trees. . Tree Genet Genomes in press. doi:10.1007/s11295-014-0724-2

Würschum T, Langer SM, Longin CF, Korzun V, Akhunov E, Ebmeyer E, Schachschneider R, Schacht J, Kazman E, Reif JC (2013) Population structure, genetic diversity and linkage disequilibrium in elite winter wheat assessed with SNP and SSR markers. Theor Appl Genet 126 (6):1477-1486. doi:10.1007/s00122-013-2065-1

Streitner C, Simpson CG, Shaw P, Danisman S, Brown JW, Staiger D (2013) Small changes in ambient temperature affect alternative splicing in Arabidopsis thaliana. Plant Signal Behav 8 (7):e24638. doi:10.4161/psb.24638

Schmal C, Reimann P, Staiger D (2013) A circadian clock-regulated toggle switch explains AtGRP7 and AtGRP8 oscillations in Arabidopsis thaliana. PLoS Comput Biol 9 (3):e1002986. doi:10.1371/journal.pcbi.1002986

Löhr B, Streitner C, Steffen A, Lange T, Staiger D (2014) A glycine-rich RNA-binding protein affects gibberellin biosynthesis in Arabidopsis. Mol Biol Rep 41 (1):439-445. doi:10.1007/s11033-013-2878-7

Baerenfeller K, Bastow R, Beynon J, Brady S, Brendel V, S. D, Dooley R, Forster M, Friesner J, Gifford D, Grotewold E, Gutierrez R, Huala E, Jaiswal P, Joshi HJ, Kersey P, Liu L, Loraine A, Lyons E, May S, Mayer K, MacLean D, Meyers B, Mueller L, Muller R, Muller H-M, Ouellette F, Pires JC, Provart N, Staiger D, Stanzione D, Taylor JM, Taylor C, Town C, Vaughn M, Walsh S, Ware D, Weckwerth W (2012) Taking the next step: building an Arabidopsis information portal. Plant Cell 24 (6):2248-2256. doi:10.1105/tpc.112.100669

Schnaithmann F, Kopahnke D, Pillen K (2014) A first step toward the development of a barley NAM population and its utilization to detect QTLs conferring leaf rust seedling resistance. Theor Appl Genet. doi:10.1007/s00122-014-2315-x

Muller LM, von Korff M, Davis SJ (2014) Connections between circadian clocks and carbon metabolism reveal species-specific effects on growth control. J Exp Bot. doi:10.1093/jxb/eru117

Mascher M, Richmond TA, Gerhardt DJ, Himmelbach A, Clissold L, Sampath D, Ayling S, Steuernagel B, Pfeifer M, D'Ascenzo M, Akhunov ED, Hedley PE, Gonzales AM, Morrell PL, Kilian B, Blattner FR, Scholz U, Mayer KF, Flavell AJ, Muehlbauer GJ, Waugh R, Jeddeloh JA, Stein N (2013) Barley whole exome capture: a tool for genomic research in the genus Hordeum and beyond. Plant J 76 (3):494-505. doi:10.1111/tpj.12294

Kersten B, Pakull B, Groppe K, Lueneburg J, Fladung M (2014) The sex-linked region in Populus tremuloides Turesson 141 corresponds to a pericentromeric region of about two million base pairs on P. trichocarpa chromosome 19. Plant Biol (Stuttg) 16 (2):411-418. doi:10.1111/plb.12048

Jakob SS, Rodder D, Engler JO, Shaaf S, Ozkan H, Blattner FR, Kilian B (2014) Evolutionary history of wild barley (Hordeum vulgare subsp. spontaneum) analyzed using multilocus sequence data and paleodistribution modeling. Genome Biol Evol 6 (3):685- 702. doi:10.1093/gbe/evu047 Fladung M, Hoenicka H, Raj Ahuja M (2013) Genomic stability and long-term transgene expression in poplar. Transgenic Res 22 (6):1167-1178. doi:10.1007/s11248-013-9719-2

Falke KC, Glander S, He F, Hu J, de Meaux J, Schmitz G (2013) The spectrum of mutations controlling complex traits and the genetics of fitness in plants. Curr Opin Genet Dev 23 (6):665-671. doi:10.1016/j.gde.2013.10.006

Campoli C, Pankin A, Drosse B, Casao CM, Davis SJ, von Korff M (2013) HvLUX1 is a candidate gene underlying the early maturity 10 locus in barley: phylogeny, diversity, and interactions with the circadian clock and photoperiodic pathways. New Phytol 199 (4):1045-1059. doi:10.1111/nph.12346

Archacki R, Buszewicz D, Sarnowski TJ, Sarnowska E, Rolicka AT, Tohge T, Fernie AR, Jikumaru Y, Kotlinski M, Iwanicka-Nowicka R, Kalisiak K, Patryn J, Halibart-Puzio J, Kamiya Y, Davis SJ, Koblowska MK, Jerzmanowski A (2013) BRAHMA ATPase of the SWI/SNF chromatin remodeling complex acts as a positive regulator of gibberellin- mediated responses in Arabidopsis. PLoS ONE 8 (3):e58588. doi:10.1371/journal.pone.0058588

Anwer MU, Davis SJ (2013) An overview of natural variation studies in the Arabidopsis thaliana circadian clock. Semin Cell Dev Biol 24 (5):422-429. doi:10.1016/j.semcdb.2013.03.006

Turck F, Coupland G (2014) Natural variation in epigenetic gene regulation and its effects on plant developmental traits. Evolution; international journal of organic evolution 68 (3):620-631. doi:10.1111/evo.12286

Schroeder H, Hoeltken AM, Fladung M (2012) Differentiation of Populus species using chloroplast single nucleotide polymorphism (SNP) markers--essential for comprehensible and reliable poplar breeding. Plant Biol 14 (2):374-381. doi:10.1111/j.1438- 8677.2011.00502.x

Nordstrom K, Albani MC, James GV, Gutjahr C, Hartwig B, Turck F, Paszowski U, Coupland G, Schneeberger K (2013) Mutation identification by direct comparison of whole-genome sequencing data from mutant and wild-type individuals using k-mers. Nat Biotechnol accepted

Fladung M, Polak O (2012) Ac/Ds-transposon activation tagging in poplar: a powerful tool for gene discovery. BMC Genomics 13:61. doi:10.1186/1471-2164-13-61

Fladung M, Altosaar I, Bartsch D, Baucher M, Boscaleri F, Gallardo F, Haggman H, Hoenicka H, Nielsen K, Paffetti D, Seguin A, Stotzky G, Vettori C (2012) European discussion forum on transgenic tree biosafety. Nat Biotechnol 30 (1):37-38. doi:10.1038/nbt.2078

Flachowsky H, Trankner C, Szankowski I, Waidmann S, Hanke MV, Treutter D, Fischer TC (2012) RNA-Mediated Gene Silencing Signals Are Not Graft Transmissible from the Rootstock to the Scion in Greenhouse-Grown Apple Plants Malus sp. International journal of molecular sciences 13 (8):9992-10009. doi:10.3390/ijms13089992

Undurraga SF, Press MO, Legendre M, Bujdoso N, Bale J, Wang H, Davis SJ, Verstrepen KJ, Queitsch C (2012) Background-dependent effects of polyglutamine variation in the Arabidopsis thaliana gene ELF3. Proc Natl Acad Sci U S A 109 (47):19363-19367. doi:10.1073/pnas.1211021109

Bujdoso N, Davis SJ (2013) Mathematical modeling of an oscillating gene circuit to unravel the circadian clock network of Arabidopsis thaliana. Front Plant Sci 4:3. doi:10.3389/fpls.2013.00003

Jiang M, Han YQ, Zhou MG, Zhao HZ, Xiao X, Hou YY, Gao J, Bai G, Luo GA (2014) The screening research of anti-inflammatory bioactive markers from different flowering phases of flos lonicerae japonicae. PLoS ONE 9 (5):e96214. doi:10.1371/journal.pone.0096214

Yang S, Weers B, Morishige D, Mullet J (2014) CONSTANS is a photoperiod regulated activator of flowering in sorghum. BMC Plant Biol 14 (1):148

Verhage L, Angenent GC, Immink RG (2014) Research on floral timing by ambient temperature comes into blossom. Trends Plant Sci. doi:10.1016/j.tplants.2014.03.009

Nan H, Cao D, Zhang D, Li Y, Lu S, Tang L, Yuan X, Liu B, Kong F (2014) GmFT2a and GmFT5a Redundantly and Differentially Regulate Flowering through Interaction with and Upregulation of the bZIP Transcription Factor GmFDL19 in Soybean. PLoS ONE 9 (5):e97669. doi:10.1371/journal.pone.0097669

Chen F, Gao M, Zhang J, Zuo A, Shang X, Cui D (2013) Molecular characterization of vernalization and response genes in bread wheat from the Yellow and Huai valley of China. BMC Plant Biol 13 (1):199. doi:10.1186/1471-2229-13-199

Bock A, Sparks TH, Estrella N, Jee N, Casebow A, Schunk C, Leuchner M, Menzel A (2014) Changes in first flowering dates and flowering duration of 232 plant species on the island of Guernsey. Glob Chang Biol. doi:10.1111/gcb.12579

CaraDonna PJ, Iler AM, Inouye DW (2014) Shifts in flowering phenology reshape a subalpine plant community. Proc Natl Acad Sci U S A 111 (13):4916-4921. doi:10.1073/pnas.1323073111

Singh H, Verma A, Ansari MW, Shukla A (2014) Physiological response of rice (Oryza sativa L.) genotypes to elevated nitrogen applied under field conditions. Plant Signal Behav 9

Austen EJ, Weis AE (2014) Temporal variation in phenotypic gender and expected functional gender within and among individuals in an annual plant. Ann Bot. doi:10.1093/aob/mcu087

Lv H, Wang Q, Zhang Y, Yang L, Fang Z, Wang X, Liu Y, Zhuang M, Lin Y, Yu H, Liu B (2014) Linkage map construction using InDel and SSR markers and QTL analysis of heading traits in Brassica oleracea var. capitata L. Mol Breed 34 (1):87-98. doi:10.1007/s11032-014-0019-1

Ehrlén J (2014) Selection on flowering time in a life-cycle context. Oikos:no-no. doi:10.1111/oik.01473

Zhu J, Pearce S, Burke A, See D, Skinner D, Dubcovsky J, Garland-Campbell K (2014) Copy number and haplotype variation at the VRN-A1 and central FR-A2 loci are associated with frost tolerance in hexaploid wheat. Theor Appl Genet 127 (5):1183-1197. doi:10.1007/s00122-014-2290-2

Dechaine J, Brock M, Weinig C (2014) QTL architecture of reproductive fitness characters in Brassica rapa. BMC Plant Biol 14 (1):66

Sun Y, Fan Z, Li X, Li J, Yin H The APETALA1 and FRUITFUL homologs in Camellia japonica and their roles in double flower domestication.

Yu M, Carver BF, Yan L (2014) TamiR1123 originated from a family of miniature inverted-repeat transposable elements (MITE) including one inserted in the Vrn-A1a promoter in wheat. Plant Sci 215-216:117-123. doi:10.1016/j.plantsci.2013.11.007

Khan MR, Ai XY, Zhang JZ (2013) Genetic regulation of flowering time in annual and perennial plants. Wiley Interdiscip Rev RNA. doi:10.1002/wrna.1215

Jokela V, Virkajarvi P, Tanskanen J, Seppanen MM (2013) Vernalization, gibberellic acid and photo period are important signals of yield formation in timothy (Phleum pratense). Physiol Plant. doi:10.1111/ppl.12141

Ison JL, Wagenius S, Reitz D, Ashley MV (2014) Mating between Echinacea angustifolia (Asteraceae) individuals increases with their flowering synchrony and spatial proximity. Am J Bot 101 (1):180-189. doi:10.3732/ajb.1300065

Peiffer JA, Romay MC, Gore MA, Flint-Garcia SA, Zhang Z, Millard MJ, Gardner CA, McMullen MD, Holland JB, Bradbury PJ, Buckler ES (2014) The Genetic Architecture of Maize Height. Genetics. doi:10.1534/genetics.113.159152

Bhide A, Schliesky S, Reich M, Weber AP, Becker A (2014) Analysis of the floral transcriptome of Tarenaya hassleriana (Cleomaceae), a member of the sister group to the Brassicaceae: towards understanding the base of morphological diversity in Brassicales. BMC Genomics 15 (1):140. doi:10.1186/1471-2164-15-140

Matsoukas IG (2014) Attainment of reproductive competence, phase transition, and quantification of juvenility in mutant genetic screens. Front Plant Sci 5. doi:10.3389/fpls.2014.00032

McClung CR (2014) Wheels within wheels: new transcriptional feedback loops in the Arabidopsis circadian clock. F1000 Prime Reports 6 (2). doi:doi: 10.12703/P6-2

Berendzen K, Searle I, Ravenscroft D, Koncz C, Batschauer A, Coupland G, Somssich IE, Ulker B (2005) A rapid and versatile combined DNA/RNA extraction protocol and its application to the analysis of a novel DNA marker set polymorphic between Arabidopsis thaliana ecotypes Col-0 and Landsberg erecta. Plant Methods 1 (1):4. doi:10.1186/1746- 4811-1-4

Zirak P, Penzkofer A, Moldt J, Pokorny R, Batschauer A, Essen LO (2009) Photocycle dynamics of the E149A mutant of cryptochrome 3 from Arabidopsis thaliana. J Photochem Photobiol B 97 (2):94-108. doi:10.1016/j.jphotobiol.2009.08.005

Song SH, Dick B, Penzkofer A, Pokorny R, Batschauer A, Essen LO (2006) Absorption and fluorescence spectroscopic characterization of cryptochrome 3 from Arabidopsis thaliana. J Photochem Photobiol B 85 (1):1-16. doi:10.1016/j.jphotobiol.2006.03.007 Kottke T, Batschauer A, Ahmad M, Heberle J (2006) Blue-light-induced changes in Arabidopsis cryptochrome 1 probed by FTIR difference spectroscopy. Biochemistry 45 (8):2472-2479. doi:10.1021/bi051964b

Klar T, Pokorny R, Moldt J, Batschauer A, Essen LO (2007) Cryptochrome 3 from Arabidopsis thaliana: structural and functional analysis of its complex with a folate light antenna. J Mol Biol 366 (3):954-964. doi:10.1016/j.jmb.2006.11.066

Kaiser G, Kleiner O, Beisswenger C, Batschauer A (2009) Increased DNA repair in Arabidopsis plants overexpressing CPD photolyase. Planta 230 (3):505-515. doi:10.1007/s00425-009-0962-y

Immeln D, Pokorny R, Herman E, Moldt J, Batschauer A, Kottke T (2010) Photoreaction of plant and DASH cryptochromes probed by infrared spectroscopy: the neutral radical state of flavoproteins. J Phys Chem B 114 (51):17155-17161. doi:10.1021/jp1076388

Herbel V, Orth C, Wenzel R, Ahmad M, Bittl R, Batschauer A (2013) Lifetimes of Arabidopsis cryptochrome signaling states in vivo. Plant J 74 (4):583-592. doi:10.1111/tpj.12144

Fittinghoff K, Laubinger S, Nixdorf M, Fackendahl P, Baumgardt RL, Batschauer A, Hoecker U (2006) Functional and expression analysis of Arabidopsis SPA genes during seedling photomorphogenesis and adult growth. Plant J 47 (4):577-590. doi:10.1111/j.1365-313X.2006.02812.x

Chaves I, Pokorny R, Byrdin M, Hoang N, Ritz T, Brettel K, Essen LO, van der Horst GT, Batschauer A, Ahmad M (2011) The cryptochromes: blue light photoreceptors in plants and animals. Annu Rev Plant Biol 62:335-364. doi:10.1146/annurev-arplant- 042110-103759

Bouly JP, Schleicher E, Dionisio-Sese M, Vandenbussche F, Van Der Straeten D, Bakrim N, Meier S, Batschauer A, Galland P, Bittl R, Ahmad M (2007) Cryptochrome blue light photoreceptors are activated through interconversion of flavin redox states. J Biol Chem 282 (13):9383-9391. doi:10.1074/jbc.M609842200

Banerjee R, Batschauer A (2005) Plant blue-light receptors. Planta 220 (3):498-502. doi:10.1007/s00425-004-1418-z

Yang J, Song N, Zhao X, Qi X, Hu Z, Zhang M (2014) Genome survey sequencing provides clues into glucosinolate biosynthesis and flowering pathway evolution in allotetrapolyploid Brassica juncea. BMC Genomics 15 (1):107

Weston DJ, Wullschleger SD, Tuskan GA (2013) Extending the Arabidopsis flowering paradigm to a mass flowering phenomenon in the tropics. Mol Ecol 22 (18):4603-4605

Hwang SG, Hwang JG, Kim DS, Jang CS (2014) Genome-wide DNA polymorphism and transcriptome analysis of an early-maturing rice mutant. Genetica. doi:10.1007/s10709- 013-9755-0

Beers E, Zhao C (2013) Alternative splicing of Myb-related genes and may modulate activities through changes in dimerization, localization, or protein folding. Plant Signal Behav 8 (11) Zhang J-Z, Mei L, Liu R, Khan MRG, Hu C-G (2014) Possible Involvement of Locus- Specific Methylation on Expression Regulation of LEAFY Homologous Gene (CiLFY) during Precocious Trifoliate Orange Phase Change Process. PLoS ONE 9 (2):e88558. doi:10.1371/journal.pone.0088558

Kitamoto N, Yui S, Nishikawa K, Takahata Y, Yokoi S (2014) A naturally occurring long insertion in the first intron in the Brassica rapa FLC2 gene causes delayed bolting. Euphytica 196 (2):213-223. doi:10.1007/s10681-013-1025-9

Fishman L, Sweigart AL, Kenney AM, Campbell S (2014) Major quantitative trait loci control divergence in critical photoperiod for flowering between selfing and outcrossing species of monkeyflower (Mimulus). New Phytol 201 (4):1498-1507. doi:10.1111/nph.12618

Huang H, Wang S, Jiang J, Liu G, Li H, Chen S, Xu H (2013) Overexpression of BpAP1 induces early flowering and produces dwarfism in Betula platyphylla x Betula pendula. Physiol Plant. doi:10.1111/ppl.12123

Weng X, Wang L, Wang J, Hu Y, Du H, Xu C, Xing Y, Li X, Xiao J, Zhang Q (2014) Grain number, plant height, and heading date7 is a central regulator of growth, development, and stress response. Plant Physiol 164 (2):735-747. doi:10.1104/pp.113.231308

Vandepitte K, De Meyer T, Helsen K, Van Acker K, Roldan-Ruiz I, Mergeay J, Honnay O (2014) Rapid genetic adaptation precedes the spread of an exotic plant species. Mol Ecol. doi:10.1111/mec.12683

Gupta N, Prasad VB, Chattopadhyay S (2014) LeMYC2 acts as a negative regulator of blue light mediated photomorphogenic growth, and promotes the growth of adult tomato plants. BMC Plant Biol 14 (1):38. doi:10.1186/1471-2229-14-38

Jorgensen SA, Preston JC Differential SPL gene expression patterns reveal candidate genes underlying flowering time and architectural differences in Mimulus and Arabidopsis. Mol Phylogenet Evol (0). doi:http://dx.doi.org/10.1016/j.ympev.2014.01.029

Chopra D, Wolff H, Span J, Schellmann S, Coupland G, Albani M, Schrader A, Hulskamp M (2014) Analysis of TTG1 function in Arabis alpina. BMC Plant Biol 14 (1):16

Li R, Xia J, Xu Y, Zhao X, Liu Y-G, Chen Y (2014) Characterization and genetic mapping of a Photoperiod-sensitive dwarf 1 locus in rice (Oryza sativa L.). Theor Appl Genet 127 (1):241-250. doi:10.1007/s00122-013-2213-7

Kelder T, van Iersel MP, Hanspers K, Kutmon M, Conklin BR, Evelo CT, Pico AR (2012) WikiPathways: building research communities on biological pathways. Nucleic Acids Res 40 (Database issue):D1301-1307. doi:10.1093/nar/gkr1074

Fu J, Wang L, Wang Y, Yang L, Yang Y, Dai S (2013) Photoperiodic control of FT-like gene ClFT initiates flowering in Chrysanthemum lavandulifolium. Plant Physiol Biochem 74C:230-238. doi:10.1016/j.plaphy.2013.11.004 Yang H, Liu J, Huang S, Guo T, Deng L, Hua W (2014) Selection and evaluation of novel reference genes for quantitative reverse transcription PCR (qRT-PCR) based on genome and transcriptome data in Brassica napus L. Gene. doi:10.1016/j.gene.2013.12.057

Weng X, Wang L, Wang J, Hu Y, Du H, Xu C, Xing Y, Li X, Xiao J, Zhang Q (2014) Ghd7 is a central regulator for growth, development, adaptation and responses to biotic and abiotic stresses. Plant Physiol. doi:10.1104/pp.113.231308

Khan A, Enjalbert J, Marsollier A-C, Rousselet A, Goldringer I, Vitte C (2013) Vernalization treatment induces site-specific DNA hypermethylation at the VERNALIZATION-A1 (VRN-A1) locus in hexaploid winter wheat. BMC Plant Biol 13 (1):209

Li T, Liu B, Spalding MH, Weeks DP, Yang B (2012) High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat Biotechnol 30 (5):390-392. doi:10.1038/nbt.2199

Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, Baller JA, Somia NV, Bogdanove AJ, Voytas DF (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39 (12):e82. doi:10.1093/nar/gkr218

Zhang Y, Zhang F, Li X, Baller JA, Qi Y, Starker CG, Bogdanove AJ, Voytas DF (2013) Transcription activator-like effector nucleases enable efficient plant genome engineering. Plant Physiol 161 (1):20-27. doi:10.1104/pp.112.205179

Yan W, Smith C, Cheng L (2013) Expanded activity of dimer nucleases by combining ZFN and TALEN for genome editing. Sci Rep 3:2376. doi:10.1038/srep02376

Xiao A, Wu Y, Yang Z, Hu Y, Wang W, Zhang Y, Kong L, Gao G, Zhu Z, Lin S, Zhang B (2013) EENdb: a database and knowledge base of ZFNs and TALENs for endonuclease engineering. Nucleic Acids Res 41 (Database issue):D415-422. doi:10.1093/nar/gks1144

Wendt T, Holm PB, Starker CG, Christian M, Voytas DF, Brinch-Pedersen H, Holme IB (2013) TAL effector nucleases induce mutations at a pre-selected location in the genome of primary barley transformants. Plant Mol Biol 83 (3):279-285. doi:10.1007/s11103-013- 0078-4

Reyon D, Maeder ML, Khayter C, Tsai SQ, Foley JE, Sander JD, Joung JK (2013) Engineering customized TALE nucleases (TALENs) and TALE transcription factors by fast ligation-based automatable solid-phase high-throughput (FLASH) assembly. Curr Protoc Mol Biol Chapter 12:Unit 12 16. doi:10.1002/0471142727.mb1216s103

Doyle EL, Hummel AW, Demorest ZL, Starker CG, Voytas DF, Bradley P, Bogdanove AJ (2013) TAL Effector Specificity for base 0 of the DNA Target Is Altered in a Complex, Effector- and Assay-Dependent Manner by Substitutions for the Tryptophan in Cryptic Repeat -1. PLoS ONE 8 (12):e82120. doi:10.1371/journal.pone.0082120

Christian M, Qi Y, Zhang Y, Voytas DF (2013) Targeted mutagenesis of Arabidopsis thaliana using engineered TAL effector nucleases. G3 (Bethesda) 3 (10):1697-1705. doi:10.1534/g3.113.007104 Chen K, Gao C (2013) TALENs: customizable molecular DNA scissors for genome engineering of plants. J Genet Genomics 40 (6):271-279. doi:10.1016/j.jgg.2013.03.009

Oh W, Kang K, Cho K, Shin J, Kim K (2013) Temperature and long-day lighting strategy affect flowering time and crop characteristics in Cyclamen persicum. Hortic Environ Biotechnol 54 (6):484-491. doi:10.1007/s13580-013-0111-1

Ohigashi K, Mizuguti A, Yoshimura Y, Matsuo K, Miwa T (2014) A new method for evaluating flowering synchrony to support the temporal isolation of genetically modified crops from their wild relatives. J Plant Res 127 (1):109-117. doi:10.1007/s10265-013- 0592-0 van Iersel MP, Kelder T, Pico AR, Hanspers K, Coort S, Conklin BR, Evelo C (2008) Presenting and exploring biological pathways with PathVisio. BMC Bioinformatics 9:399. doi:10.1186/1471-2105-9-399

Pico AR, Kelder T, van Iersel MP, Hanspers K, Conklin BR, Evelo C (2008) WikiPathways: pathway editing for the people. PLoS Biol 6 (7):e184. doi:10.1371/journal.pbio.0060184 van Iersel MP, Pico AR, Kelder T, Gao J, Ho I, Hanspers K, Conklin BR, Evelo CT (2010) The BridgeDb framework: standardized access to gene, protein and metabolite identifier mapping services. BMC Bioinformatics 11:5. doi:10.1186/1471-2105-11-5

Kelder T, Eijssen L, Kleemann R, van Erk M, Kooistra T, Evelo C (2011) Exploring pathway interactions in insulin resistant mouse liver. BMC Syst Biol 5:127. doi:10.1186/1752-0509-5-127

Zhao Z, Yu Y, Meyer D, Wu C, Shen WH (2005) Prevention of early flowering by expression of FLOWERING LOCUS C requires methylation of histone H3 K36. Nat Cell Biol 7 (12):1256-1260. doi:10.1038/ncb1329

Zhang H, Ransom C, Ludwig P, van Nocker S (2003) Genetic analysis of early flowering mutants in Arabidopsis defines a class of pleiotropic developmental regulator required for expression of the flowering-time switch flowering locus C. Genetics 164 (1):347-358

Yang J, Lee S, Hang R, Kim SR, Lee YS, Cao X, Amasino R, An G (2013) OsVIL2 functions with PRC2 to induce flowering by repressing OsLFL1 in rice. The Plant journal : for cell and molecular biology 73 (4):566-578. doi:10.1111/tpj.12057

Yaish MW, Peng M, Rothstein SJ (2009) AtMBD9 modulates Arabidopsis development through the dual epigenetic pathways of DNA methylation and histone acetylation. Plant J 59 (1):123-135. doi:10.1111/j.1365-313X.2009.03860.x

Yaish MW, Colasanti J, Rothstein SJ (2011) The role of epigenetic processes in controlling flowering time in plants exposed to stress. J Exp Bot 62 (11):3727-3735. doi:10.1093/jxb/err177

Xu Y, Gan ES, Ito T (2013) The AT-hook/PPC domain protein TEK negatively regulates floral repressors including MAF4 and MAF5. Plant Signal Behav 8 (8)

Xu L, Zhao Z, Dong A, Soubigou-Taconnat L, Renou JP, Steinmetz A, Shen WH (2008) Di- and tri- but not monomethylation on histone H3 lysine 36 marks active transcription of genes involved in flowering time regulation and other processes in Arabidopsis thaliana. Mol Cell Biol 28 (4):1348-1360. doi:10.1128/mcb.01607-07

Xiao J, Zhang H, Xing L, Xu S, Liu H, Chong K, Xu Y (2013) Requirement of histone acetyltransferases HAM1 and HAM2 for epigenetic modification of FLC in regulating flowering in Arabidopsis. J Plant Physiol 170 (4):444-451. doi:10.1016/j.jplph.2012.11.007

Turck F, Coupland G (2013) NATURAL VARIATION IN EPIGENETIC GENE REGULATION AND ITS EFFECTS ON PLANT DEVELOPMENTAL TRAITS. Evolution. doi:10.1111/evo.12286

Trap-Gentil MV, Hebrard C, Lafon-Placette C, Delaunay A, Hagege D, Joseph C, Brignolas F, Lefebvre M, Barnes S, Maury S (2011) Time course and amplitude of DNA methylation in the shoot apical meristem are critical points for bolting induction in sugar beet and bolting tolerance between genotypes. J Exp Bot 62 (8):2585-2597. doi:10.1093/jxb/erq433

Takeno K (2010) Epigenetic regulation of photoperiodic flowering. Plant Signal Behav 5 (7):788-791

Sung ZR, Chen L, Moon YH, Lertpiriyapong K (2003) Mechanisms of floral repression in Arabidopsis. Curr Opin Plant Biol 6 (1):29-35

Song J, Irwin J, Dean C (2013) Remembering the prolonged cold of winter. Curr Biol 23 (17):R807-811. doi:10.1016/j.cub.2013.07.027

Simpson GG (2004) The autonomous pathway: epigenetic and post-transcriptional gene regulation in the control of Arabidopsis flowering time. Curr Opin Plant Biol 7 (5):570- 574. doi:10.1016/j.pbi.2004.07.002

Sheldon CC, Finnegan EJ, Peacock WJ, Dennis ES (2009) Mechanisms of gene repression by vernalization in Arabidopsis. Plant J 59 (3):488-498. doi:10.1111/j.1365- 313X.2009.03883.x

Schmitz RJ, Sung S, Amasino RM (2008) Histone arginine methylation is required for vernalization-induced epigenetic silencing of FLC in winter-annual Arabidopsis thaliana. Proc Natl Acad Sci U S A 105 (2):411-416. doi:0710423104 [pii] 10.1073/pnas.0710423104

Satake A, Iwasa Y (2012) A stochastic model of chromatin modification: Cell population coding of winter memory in plants. J Theor Biol 302:6-17. doi:10.1016/j.jtbi.2012.02.009

Peng M, Cui Y, Bi YM, Rothstein SJ (2006) AtMBD9: a protein with a methyl-CpG- binding domain regulates flowering time and shoot branching in Arabidopsis. Plant J 46 (2):282-296. doi:10.1111/j.1365-313X.2006.02691.x

Pabon-Mora N, Sharma B, Holappa LD, Kramer EM, Litt A (2013) The Aquilegia FRUITFULL-like genes play key roles in leaf morphogenesis and inflorescence development. Plant J 74 (2):197-212. doi:10.1111/tpj.12113 Michaels SD, Himelblau E, Kim SY, Schomburg FM, Amasino RM (2005) Integration of flowering signals in winter-annual Arabidopsis. Plant Physiol 137 (1):149-156. doi:10.1104/pp.104.052811

Michaels SD (2009) Flowering time regulation produces much fruit. Curr Opin Plant Biol 12 (1):75-80. doi:S1369-5266(08)00161-1 [pii] 10.1016/j.pbi.2008.09.005

Mayfield D, Chen ZJ, Pires JC (2011) Epigenetic regulation of flowering time in polyploids. Curr Opin Plant Biol 14 (2):174-178. doi:S1369-5266(11)00020-3 [pii] 10.1016/j.pbi.2011.03.008

Liew LC, Singh MB, Bhalla PL (2013) An RNA-Seq Transcriptome Analysis of Histone Modifiers and RNA Silencing Genes in Soybean during Floral Initiation Process. PLoS ONE 8 (10):e77502. doi:10.1371/journal.pone.0077502

Li C, Huang L, Xu C, Zhao Y, Zhou DX (2011) Altered levels of histone deacetylase OsHDT1 affect differential gene expression patterns in hybrid rice. PLoS ONE 6 (7):e21789. doi:10.1371/journal.pone.0021789

Latrasse D, Germann S, Houba-Herin N, Dubois E, Bui-Prodhomme D, Hourcade D, Juul-Jensen T, Le Roux C, Majira A, Simoncello N, Granier F, Taconnat L, Renou JP, Gaudin V (2011) Control of flowering and cell fate by LIF2, an RNA binding partner of the polycomb complex component LHP1. PLoS ONE 6 (1):e16592. doi:10.1371/journal.pone.0016592

Kim DH, Sung S (2010) The Plant Homeo Domain finger protein, VIN3-LIKE 2, is necessary for photoperiod-mediated epigenetic regulation of the floral repressor, MAF5. Proc Natl Acad Sci U S A 107 (39):17029-17034. doi:10.1073/pnas.1010834107

Kidner CA, Martienssen RA (2005) The role of ARGONAUTE1 (AGO1) in meristem formation and identity. Dev Biol 280 (2):504-517. doi:10.1016/j.ydbio.2005.01.031

Johannes F, Porcher E, Teixeira FK, Saliba-Colombani V, Simon M, Agier N, Bulski A, Albuisson J, Heredia F, Audigier P, Bouchez D, Dillmann C, Guerche P, Hospital F, Colot V (2009) Assessing the impact of transgenerational epigenetic variation on complex traits. PLoS Genet 5 (6):e1000530. doi:10.1371/journal.pgen.1000530

Herr AJ, Molnar A, Jones A, Baulcombe DC (2006) Defective RNA processing enhances RNA silencing and influences flowering of Arabidopsis. Proc Natl Acad Sci U S A 103 (41):14994-15001. doi:10.1073/pnas.0606536103

Giliberto L, Perrotta G, Pallara P, Weller JL, Fraser PD, Bramley PM, Fiore A, Tavazza M, Giuliano G (2005) Manipulation of the blue light photoreceptor cryptochrome 2 in tomato affects vegetative development, flowering time, and fruit antioxidant content. Plant Physiol 137 (1):199-208. doi:10.1104/pp.104.051987

Coustham V, Li P, Strange A, Lister C, Song J, Dean C (2012) Quantitative modulation of polycomb silencing underlies natural variation in vernalization. Science 337 (6094):584- 587. doi:10.1126/science.1221881

Choi J, Hyun Y, Kang MJ, In Yun H, Yun JY, Lister C, Dean C, Amasino RM, Noh B, Noh YS, Choi Y (2009) Resetting and regulation of Flowering Locus C expression during Arabidopsis reproductive development. Plant J 57 (5):918-931. doi:10.1111/j.1365- 313X.2008.03776.x

Chen ZJ (2007) Genetic and epigenetic mechanisms for gene expression and phenotypic variation in plant polyploids. Annu Rev Plant Biol 58:377-406. doi:10.1146/annurev.arplant.58.032806.103835

Bastow R, Mylne JS, Lister C, Lippman Z, Martienssen RA, Dean C (2004) Vernalization requires epigenetic silencing of FLC by histone methylation. Nature 427 (6970):164-167. doi:nature02269 [pii] 10.1038/nature02269

Barrero JM, Gonzalez-Bayon R, del Pozo JC, Ponce MR, Micol JL (2007) INCURVATA2 encodes the catalytic subunit of DNA Polymerase alpha and interacts with genes involved in chromatin-mediated cellular memory in Arabidopsis thaliana. Plant Cell 19 (9):2822-2838. doi:10.1105/tpc.107.054130

Amasino RM (2005) Vernalization and flowering time. Curr Opin Biotechnol 16 (2):154- 158. doi:10.1016/j.copbio.2005.02.004

Ahmad A, Zhang Y, Cao XF (2010) Decoding the epigenetic language of plant development. Mol Plant 3 (4):719-728. doi:10.1093/mp/ssq026

Morrish FM, Hanna WW, Vasil IK (1990) The expression and perpetuation of inherent somatic variation in regenerants from embryogenic cultures of Pennisetum glaucum (L.) R. Br. (pearl millet). Theor Appl Genet 80 (3):409-416. doi:10.1007/bf00210081

Jeddeloh JA, Stokes TL, Richards EJ (1999) Maintenance of genomic methylation requires a SWI2/SNF2-like protein. Nat Genet 22 (1):94-97. doi:10.1038/8803

Simpson GG, Quesada V, Henderson IR, Dijkwel PP, Macknight R, Dean C (2004) RNA processing and Arabidopsis flowering time control. Biochem Soc Trans 32 (Pt 4):565-566. doi:10.1042/bst0320565

Sheldon CC, Finnegan EJ, Dennis ES, Peacock WJ (2006) Quantitative effects of vernalization on FLC and SOC1 expression. Plant J 45 (6):871-883. doi:10.1111/j.1365- 313X.2006.02652.x

Schmitz RJ, Amasino RM (2007) Vernalization: a model for investigating epigenetics and eukaryotic gene regulation in plants. Biochim Biophys Acta 1769 (5-6):269-275. doi:10.1016/j.bbaexp.2007.02.003

Ng DW, Wang T, Chandrasekharan MB, Aramayo R, Kertbundit S, Hall TC (2007) Plant SET domain-containing proteins: structure, function and regulation. Biochim Biophys Acta 1769 (5-6):316-329. doi:10.1016/j.bbaexp.2007.04.003

Mylne JS, Barrett L, Tessadori F, Mesnage S, Johnson L, Bernatavichute YV, Jacobsen SE, Fransz P, Dean C (2006) LHP1, the Arabidopsis homologue of HETEROCHROMATIN PROTEIN1, is required for epigenetic silencing of FLC. Proc Natl Acad Sci U S A 103 (13):5012-5017. doi:10.1073/pnas.0507427103

Deng W, Liu C, Pei Y, Deng X, Niu L, Cao X (2007) Involvement of the histone acetyltransferase AtHAC1 in the regulation of flowering time via repression of FLOWERING LOCUS C in Arabidopsis. Plant Physiol 143 (4):1660-1668. doi:10.1104/pp.106.095521

Yi C, Zhang S, Liu X, Bui HT, Hong Y (2010) Does epigenetic polymorphism contribute to phenotypic variances in Jatropha curcas L.? BMC Plant Biol 10:259. doi:10.1186/1471- 2229-10-259

Wang K, Tang D, Hong L, Xu W, Huang J, Li M, Gu M, Xue Y, Cheng Z (2010) DEP and AFO regulate reproductive habit in rice. PLoS Genet 6 (1):e1000818. doi:10.1371/journal.pgen.1000818

Swiezewski S, Liu F, Magusin A, Dean C (2009) Cold-induced silencing by long antisense transcripts of an Arabidopsis Polycomb target. Nature 462 (7274):799-802. doi:10.1038/nature08618

Oliver SN, Finnegan EJ, Dennis ES, Peacock WJ, Trevaskis B (2009) Vernalization- induced flowering in cereals is associated with changes in histone methylation at the VERNALIZATION1 gene. Proc Natl Acad Sci U S A 106 (20):8386-8391. doi:10.1073/pnas.0903566106

Meijon M, Canal MJ, Valledor L, Rodriguez R, Feito I (2011) Epigenetic and physiological effects of gibberellin inhibitors and chemical pruners on the floral transition of azalea. Physiol Plant 141 (3):276-288. doi:10.1111/j.1399-3054.2010.01430.x

Luo M, Platten D, Chaudhury A, Peacock WJ, Dennis ES (2009) Expression, imprinting, and evolution of rice homologs of the polycomb group genes. Mol Plant 2 (4):711-723. doi:10.1093/mp/ssp036

Lewis RS, Kernodle SP (2009) A method for accelerated trait conversion in plant breeding. Theor Appl Genet 118 (8):1499-1508. doi:10.1007/s00122-009-0998-1

Kraft E, Bostick M, Jacobsen SE, Callis J (2008) ORTH/VIM proteins that regulate DNA methylation are functional ubiquitin E3 ligases. Plant J 56 (5):704-715. doi:10.1111/j.1365-313X.2008.03631.x

Wollmann H, Berger F (2012) Epigenetic reprogramming during plant reproduction and seed development. Curr Opin Plant Biol 15 (1):63-69. doi:10.1016/j.pbi.2011.10.001

Shimizu KK, Kudoh H, Kobayashi MJ (2011) Plant sexual reproduction during climate change: gene function in natura studied by ecological and evolutionary systems biology. Ann Bot 108 (4):777-787. doi:10.1093/aob/mcr180

Pazhouhandeh M, Molinier J, Berr A, Genschik P (2011) MSI4/FVE interacts with CUL4-DDB1 and a PRC2-like complex to control epigenetic regulation of flowering time in Arabidopsis. Proc Natl Acad Sci U S A 108 (8):3430-3435. doi:10.1073/pnas.1018242108

Marfil CF, Asurmendi S, Masuelli RW (2012) Changes in micro RNA expression in a wild tuber-bearing Solanum species induced by 5-Azacytidine treatment. Plant Cell Rep 31 (8):1449-1461. doi:10.1007/s00299-012-1260-x

Li W, Han Y, Tao F, Chong K (2011) Knockdown of SAMS genes encoding S-adenosyl- l-methionine synthetases causes methylation alterations of DNAs and histones and leads to late flowering in rice. J Plant Physiol 168 (15):1837-1843. doi:10.1016/j.jplph.2011.05.020

Jean Finnegan E, Bond DM, Buzas DM, Goodrich J, Helliwell CA, Tamada Y, Yun JY, Amasino RM, Dennis ES (2011) Polycomb proteins regulate the quantitative induction of VERNALIZATION INSENSITIVE 3 in response to low temperatures. Plant J 65 (3):382- 391. doi:10.1111/j.1365-313X.2010.04428.x

Fujimoto R, Sasaki T, Kudoh H, Taylor JM, Kakutani T, Dennis ES (2011) Epigenetic variation in the FWA gene within the genus Arabidopsis. Plant J 66 (5):831-843. doi:10.1111/j.1365-313X.2011.04549.x

Wang J, Hu J, Qian Q, Xue HW (2013) LC2 and OsVIL2 promote rice flowering by photoperoid-induced epigenetic silencing of OsLF. Mol Plant 6 (2):514-527. doi:10.1093/mp/sss096

Li J, Nie X, Tan JL, Berger F (2013) Integration of epigenetic and genetic controls of seed size by cytokinin in Arabidopsis. Proc Natl Acad Sci U S A 110 (38):15479-15484. doi:10.1073/pnas.1305175110

Kapazoglou A, Engineer C, Drosou V, Kalloniati C, Tani E, Tsaballa A, Kouri ED, Ganopoulos I, Flemetakis E, Tsaftaris AS (2012) The study of two barley type I-like MADS-box genes as potential targets of epigenetic regulation during seed development. BMC Plant Biol 12:166. doi:10.1186/1471-2229-12-166

Bhaya D, Davison M, Barrangou R (2011) CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annu Rev Genet 45:273-297. doi:10.1146/annurev-genet-110410-132430

Xie K, Yang Y (2013) RNA-guided genome editing in plants using a CRISPR-Cas system. Mol Plant 6 (6):1975-1983. doi:10.1093/mp/sst119

Wang Y, Li Z, Xu J, Zeng B, Ling L, You L, Chen Y, Huang Y, Tan A (2013) The CRISPR/Cas System mediates efficient genome engineering in Bombyx mori. Cell Res 23 (12):1414-1416. doi:10.1038/cr.2013.146

Vercoe RB, Chang JT, Dy RL, Taylor C, Gristwood T, Clulow JS, Richter C, Przybilski R, Pitman AR, Fineran PC (2013) Cytotoxic chromosomal targeting by CRISPR/Cas systems can reshape bacterial genomes and expel or remodel pathogenicity islands. PLoS Genet 9 (4):e1003454. doi:10.1371/journal.pgen.1003454

Upadhyay SK, Kumar J, Alok A, Tuli R (2013) RNA-Guided Genome Editing for Target Gene Mutations in Wheat. G3 (Bethesda) 3 (12):2233-2238. doi:10.1534/g3.113.008847

Smits TH, Rezzonico F, Lopez MM, Blom J, Goesmann A, Frey JE, Duffy B (2013) Phylogenetic position and virulence apparatus of the pear flower necrosis pathogen Erwinia piriflorinigrans CFBP 5888T as assessed by comparative genomics. Syst Appl Microbiol 36 (7):449-456. doi:10.1016/j.syapm.2013.04.003

Shariat N, Dudley EG (2014) CRISPRs: Molecular Signatures Used for Pathogen Subtyping. Appl Environ Microbiol 80 (2):430-439. doi:10.1128/aem.02790-13 Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, Xi JJ, Qiu JL, Gao C (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31 (8):686-688. doi:10.1038/nbt.2650

Puchta H, Fauser F (2013) Synthetic nucleases for genome engineering in plants: prospects for a bright future. Plant J. doi:10.1111/tpj.12338

Puchta H, Fauser F (2013) Gene targeting in plants: 25 years later. Int J Dev Biol 57 (6- 8):629-637. doi:10.1387/ijdb.130194hp

Millen AM, Horvath P, Boyaval P, Romero DA (2012) Mobile CRISPR/Cas-mediated bacteriophage resistance in Lactococcus lactis. PLoS ONE 7 (12):e51663. doi:10.1371/journal.pone.0051663

Miao J, Guo D, Zhang J, Huang Q, Qin G, Zhang X, Wan J, Gu H, Qu LJ (2013) Targeted mutagenesis in rice using CRISPR-Cas system. Cell Res 23 (10):1233-1236. doi:10.1038/cr.2013.123

Mao Y, Zhang H, Xu N, Zhang B, Gou F, Zhu JK (2013) Application of the CRISPR-Cas system for efficient genome engineering in plants. Mol Plant 6 (6):2008-2011. doi:10.1093/mp/sst121

Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks DP (2013) Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res 41 (20):e188. doi:10.1093/nar/gkt780

Frampton RA, Pitman AR, Fineran PC (2012) Advances in bacteriophage-mediated control of plant pathogens. Int J Microbiol 2012:326452. doi:10.1155/2012/326452

Feng Z, Zhang B, Ding W, Liu X, Yang DL, Wei P, Cao F, Zhu S, Zhang F, Mao Y, Zhu JK (2013) Efficient genome editing in plants using a CRISPR/Cas system. Cell Res 23 (10):1229-1232. doi:10.1038/cr.2013.114

Chen K, Gao C (2013) Targeted genome modification technologies and their applications in crop improvements. Plant Cell Rep. doi:10.1007/s00299-013-1539-6

Blackburn PR, Campbell JM, Clark KJ, Ekker SC (2013) The CRISPR system--keeping zebrafish gene targeting fresh. Zebrafish 10 (1):116-118. doi:10.1089/zeb.2013.9999

Belhaj K, Chaparro-Garcia A, Kamoun S, Nekrasov V (2013) Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods 9 (1):39. doi:10.1186/1746-4811-9-39

Xiao A, Cheng Z, Kong L, Zhu Z, Lin S, Gao G, Zhang B (2014) CasOT: a genome-wide Cas9/gRNA off-target searching tool. Bioinformatics. doi:10.1093/bioinformatics/btt764

Gao Y, Zhao Y (2013) Self-processing of ribozyme-flanked RNAs into guide RNAs in vitro and in vivo for CRISPR-mediated genome editing. J Integr Plant Biol. doi:10.1111/jipb.12152

Bentolila S, Knight W, Hanson M (2010) Natural variation in Arabidopsis leads to the identification of REME1, a pentatricopeptide repeat-DYW protein controlling the editing of mitochondrial transcripts. Plant Physiol 154 (4):1966-1982. doi:10.1104/pp.110.165969 Di Stilio VS, Kumar RA, Oddone AM, Tolkin TR, Salles P, McCarty K (2010) Virus- induced gene silencing as a tool for comparative functional studies in Thalictrum. PLoS ONE 5 (8):e12064. doi:10.1371/journal.pone.0012064

Bentolila S, Babina AM, Germain A, Hanson MR (2013) Quantitative trait locus mapping identifies REME2, a PPR-DYW protein required for editing of specific C targets in Arabidopsis mitochondria. RNA Biol 10 (9)

Soitamo AJ, Jada B, Lehto K (2011) HC-Pro silencing suppressor significantly alters the gene expression profile in tobacco leaves and flowers. BMC Plant Biol 11:68. doi:10.1186/1471-2229-11-68

Wu C, Jia L, Goggin F (2011) The reliability of virus-induced gene silencing experiments using tobacco rattle virus in tomato is influenced by the size of the vector control. Mol Plant Pathol 12 (3):299-305. doi:10.1111/j.1364-3703.2010.00669.x

Sasaki S, Yamagishi N, Yoshikawa N (2011) Efficient virus-induced gene silencing in apple, pear and Japanese pear using Apple latent spherical virus vectors. Plant Methods 7 (1):15. doi:10.1186/1746-4811-7-15

Pabon-Mora N, Ambrose BA, Litt A (2012) Poppy APETALA1/FRUITFULL orthologs control flowering time, branching, perianth identity, and fruit development. Plant Physiol 158 (4):1685-1704. doi:10.1104/pp.111.192104

Ma M, Yan Y, Huang L, Chen M, Zhao H (2012) Virus-induced gene-silencing in wheat spikes and grains and its application in functional analysis of HMW-GS-encoding genes. BMC Plant Biol 12:141. doi:10.1186/1471-2229-12-141

Hammond RW, Zhao Y (2009) Modification of tobacco plant development by sense and antisense expression of the tomato viroid-induced AGC VIIIa protein kinase PKV suggests involvement in gibberellin signaling. BMC Plant Biol 9:108. doi:10.1186/1471- 2229-9-108

Gould B, Kramer EM (2007) Virus-induced gene silencing as a tool for functional analyses in the emerging model plant Aquilegia (columbine, Ranunculaceae). Plant Methods 3:6. doi:10.1186/1746-4811-3-6

Dong Y, Burch-Smith TM, Liu Y, Mamillapalli P, Dinesh-Kumar SP (2007) A ligation- independent cloning tobacco rattle virus vector for high-throughput virus-induced gene silencing identifies roles for NbMADS4-1 and -2 in floral development. Plant Physiol 145 (4):1161-1170. doi:10.1104/pp.107.107391

Coustham V, Vlad D, Deremetz A, Gy I, Cubillos FA, Kerdaffrec E, Loudet O, Bouché N (2014) SHOOT GROWTH1 Maintains Arabidopsis Epigenomes by Regulating IBM1. PLoS ONE 9 (1):e84687. doi:10.1371/journal.pone.0084687

Nguyen AT, Iehisa JCM, Mizuno N, Nitta M, Nasuda S, Takumi S (2013) Differential contribution of two Ppd-1 homoeoalleles to early-flowering phenotype in Nepalese and Japanese varieties of common wheat. Breed Sci 63 (4):374-383

Melzer S, Müller AE, Jung C (2014) Genetics and Genomics of Flowering Time Regulation in Sugar Beet. In: Tuberosa R, Graner A, Frison E (eds) Genomics of Plant Genetic Resources. Springer Netherlands, pp 3-26. doi:10.1007/978-94-007-7575-6_1 Gilchrist EJ, Sidebottom CHD, Koh CS, MacInnes T, Sharpe AG, Haughn GW (2013) A Mutant Brassica napus (Canola) Population for the Identification of New Genetic Diversity via TILLING and Next Generation Sequencing. PLoS ONE 8 (12):e84303. doi:10.1371/journal.pone.0084303

Weber B, Heitkam T, Holtgrawe D, Weisshaar B, Minoche AE, Dohm JC, Himmelbauer H, Schmidt T (2013) Highly diverse chromoviruses of Beta vulgaris are classified by chromodomains and chromosomal integration. Mob DNA 4 (1):8. doi:10.1186/1759- 8753-4-8

Dohm JC, Minoche AE, Holtgrawe D, Capella-Gutierrez S, Zakrzewski F, Tafer H, Rupp O, Sorensen TR, Stracke R, Reinhardt R, Goesmann A, Kraft T, Schulz B, Stadler PF, Schmidt T, Gabaldon T, Lehrach H, Weisshaar B, Himmelbauer H (2013) The genome of the recently domesticated crop plant sugar beet (Beta vulgaris). Nature. doi:10.1038/nature12817

Zhou CM, Zhang TQ, Wang X, Yu S, Lian H, Tang H, Feng ZY, Zozomova-Lihova J, Wang JW (2013) Molecular basis of age-dependent vernalization in Cardamine flexuosa. Science 340 (6136):1097-1100. doi:10.1126/science.1234340

Zhou CM, Wang JW (2013) Regulation of Flowering Time by MicroRNAs. J Genet Genomics 40 (5):211-215. doi:10.1016/j.jgg.2012.12.003

Zheng Z, Guan H, Leal F, Grey PH, Oppenheimer DG (2013) Mediator subunit18 controls flowering time and floral organ identity in Arabidopsis. PLoS ONE 8 (1):e53924. doi:10.1371/journal.pone.0053924

Zhang Y, Zhao L, Li H, Gao Y, Li Y, Wu X, Teng W, Han Y, Zhao X, Li W (2013) GmGBP1, a homolog of human ski interacting protein in soybean, regulates flowering and stress tolerance in Arabidopsis. BMC Plant Biol 13:21. doi:10.1186/1471-2229-13-21

Zhang W, Fan S, Pang C, Wei H, Ma J, Song M, Yu S (2013) Molecular Cloning and Function Analysis of Two SQUAMOSA-Like MADS-Box Genes From Gossypium hirsutum L. J Integr Plant Biol 55 (7):597-607. doi:10.1111/jipb.12075

Zhang T, Chao Y, Kang J, Ding W, Yang Q (2013) Molecular cloning and characterization of a gene regulating flowering time from Alfalfa (Medicago sativa L.). Mol Biol Rep 40 (7):4597-4603. doi:10.1007/s11033-013-2552-0

Yin H, Liu J, Xu Y, Liu X, Zhang S, Ma J, Du J (2013) TARE1, a Mutated Copia-Like LTR Retrotransposon Followed by Recent Massive Amplification in Tomato. PLoS ONE 8 (7):e68587. doi:10.1371/journal.pone.0068587

Yadav RK, Snipes S, Girke T, Reddy GV (2013) Gene expression analysis of shoot apical meristem cell types. Methods Mol Biol 959:235-245. doi:10.1007/978-1-62703-221-6_16

Xu B, Sathitsuksanoh N, Tang Y, Udvardi MK, Zhang JY, Shen Z, Balota M, Harich K, Zhang PY, Zhao B (2012) Overexpression of AtLOV1 in Switchgrass Alters Plant Architecture, Lignin Content, and Flowering Time. PLoS ONE 7 (12):e47399. doi:10.1371/journal.pone.0047399

Wu W, Zheng XM, Lu G, Zhong Z, Gao H, Chen L, Wu C, Wang HJ, Wang Q, Zhou K, Wang JL, Wu F, Zhang X, Guo X, Cheng Z, Lei C, Lin Q, Jiang L, Wang H, Ge S, Wan J (2013) Association of functional nucleotide polymorphisms at DTH2 with the northward expansion of rice cultivation in Asia. Proc Natl Acad Sci U S A 110 (8):2775-2780. doi:10.1073/pnas.1213962110

Wong CE, Singh MB, Bhalla PL (2013) The dynamics of soybean leaf and shoot apical meristem transcriptome undergoing floral initiation process. PLoS ONE 8 (6):e65319. doi:10.1371/journal.pone.0065319

Wei B, Liu D, Guo J, Leseberg CH, Zhang X, Mao L (2013) Functional divergence of two duplicated D-lineage MADS-box genes BdMADS2 and BdMADS4 from Brachypodium distachyon. J Plant Physiol 170 (4):424-431. doi:10.1016/j.jplph.2012.11.013

Wang Y, Pijut PM (2013) Isolation and characterization of a TERMINAL FLOWER 1 homolog from Prunus serotina Ehrh. Tree Physiol 33 (8):855-865. doi:10.1093/treephys/tpt051

Tsuji H, Taoka K, Shimamoto K (2013) Florigen in rice: complex gene network for florigen transcription, florigen activation complex, and multiple functions. Curr Opin Plant Biol 16 (2):228-235. doi:10.1016/j.pbi.2013.01.005

Thurber CS, Ma JM, Higgins RH, Brown PJ (2013) Retrospective genomic analysis of sorghum adaptation to temperate-zone grain production. Genome Biol 14 (6):R68. doi:10.1186/gb-2013-14-6-r68

Shcherban AB, Khlestkina EK, Efremova TT, Salina EA (2013) The effect of two differentially expressed wheat VRN-B1 alleles on the heading time is associated with structural variation in the first intron. Genetica 141 (4-6):133-141. doi:10.1007/s10709- 013-9712-y

Seedat N, Dinsdale A, Ong EK, Gendall AR (2013) Acceleration of flowering in Arabidopsis thaliana by Cape Verde Islands alleles of FLOWERING H is dependent on the floral promoter FD. J Exp Bot 64 (10):2767-2778. doi:10.1093/jxb/ert120

Schwartz C, Amasino R (2013) Nitrogen recycling and flowering time in perennial bioenergy crops. Front Plant Sci 4:76. doi:10.3389/fpls.2013.00076

Satake A, Kawagoe T, Saburi Y, Chiba Y, Sakurai G, Kudoh H (2013) Forecasting flowering phenology under climate warming by modelling the regulatory dynamics of flowering-time genes. Nat Commun 4:2303. doi:10.1038/ncomms3303

Samach A, Smith HM (2013) Constraints to obtaining consistent annual yields in perennials. II: Environment and fruit load affect induction of flowering. Plant Sci 207:168-176. doi:10.1016/j.plantsci.2013.02.006

Ryu JY, Lee HJ, Seo PJ, Jung JH, Ahn JH, Park CM (2013) The Arabidopsis Floral Repressor BFT Delays Flowering by Competing with FT for FD Binding under High Salinity. Mol Plant. doi:10.1093/mp/sst114

Rugnone ML, Faigon Soverna A, Sanchez SE, Schlaen RG, Hernando CE, Seymour DK, Mancini E, Chernomoretz A, Weigel D, Mas P, Yanovsky MJ (2013) LNK genes integrate light and clock signaling networks at the core of the Arabidopsis oscillator. Proc Natl Acad Sci U S A 110 (29):12120-12125. doi:10.1073/pnas.1302170110 Riboni M, Galbiati M, Tonelli C, Conti L (2013) GIGANTEA enables drought escape response via abscisic acid-dependent activation of the florigens and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS. Plant Physiol 162 (3):1706-1719. doi:10.1104/pp.113.217729

Pullen N, Jaeger KE, Wigge PA, Morris RJ (2013) Simple network motifs can capture key characteristics of the floral transition in Arabidopsis. Plant Signal Behav 8 (11)

Preston JC, Hileman LC (2013) Functional Evolution in the Plant SQUAMOSA- PROMOTER BINDING PROTEIN-LIKE (SPL) Gene Family. Front Plant Sci 4:80. doi:10.3389/fpls.2013.00080

Poupin MJ, Timmermann T, Vega A, Zuniga A, Gonzalez B (2013) Effects of the Plant Growth-Promoting Bacterium Burkholderia phytofirmans PsJN throughout the Life Cycle of Arabidopsis thaliana. PLoS ONE 8 (7):e69435. doi:10.1371/journal.pone.0069435

Poethig RS (2013) Vegetative phase change and shoot maturation in plants. Curr Top Dev Biol 105:125-152. doi:10.1016/b978-0-12-396968-2.00005-1

Petterle A, Karlberg A, Bhalerao RP (2013) Daylength mediated control of seasonal growth patterns in perennial trees. Curr Opin Plant Biol 16 (3):301-306. doi:10.1016/j.pbi.2013.02.006

Ordas B, Alvarez A, Revilla P, Butron A, Malvar RA (2013) Relationship between time to flowering and stalk and ear damage by second generation corn borers. J Econ Entomol 106 (3):1234-1239

Olsen KM, Wendel JF (2013) Crop plants as models for understanding plant adaptation and diversification. Front Plant Sci 4:290. doi:10.3389/fpls.2013.00290

Oliver SN, Deng W, Casao MC, Trevaskis B (2013) Low temperatures induce rapid changes in chromatin state and transcript levels of the cereal VERNALIZATION1 gene. J Exp Bot 64 (8):2413-2422. doi:10.1093/jxb/ert095

Nitcher R, Distelfeld A, Tan C, Yan L, Dubcovsky J (2013) Increased copy number at the HvFT1 locus is associated with accelerated flowering time in barley. Mol Genet Genomics 288 (5-6):261-275. doi:10.1007/s00438-013-0746-8

Mitchell-Olds T (2013) Selection on QTL and complex traits in complex environments. Mol Ecol 22 (13):3427-3429

Mendez-Vigo B, Martinez-Zapater JM, Alonso-Blanco C (2013) The Flowering Repressor SVP Underlies a Novel Arabidopsis thaliana QTL Interacting with the Genetic Background. PLoS Genet 9 (1):e1003289. doi:10.1371/journal.pgen.1003289

Mazer SJ, Travers SE, Cook BI, Davies TJ, Bolmgren K, Kraft NJ, Salamin N, Inouye DW (2013) Flowering date of taxonomic families predicts phenological sensitivity to temperature: Implications for forecasting the effects of climate change on unstudied taxa. Am J Bot 100 (7):1381-1397. doi:10.3732/ajb.1200455

Mauro-Herrera M, Wang X, Barbier H, Brutnell TP, Devos KM, Doust AN (2013) Genetic control and comparative genomic analysis of flowering time in Setaria (Poaceae). Genes Genomes Genetics 3 (2):283-295. doi:10.1534/g3.112.005207 Luo X, Sun X, Liu B, Zhu D, Bai X, Cai H, Ji W, Cao L, Wu J, Wang M, Ding X, Zhu Y (2013) Ectopic Expression of a WRKY Homolog from Glycine soja Alters Flowering Time in Arabidopsis. PLoS ONE 8 (8):e73295. doi:10.1371/journal.pone.0073295

Lovell JT, Juenger TE, Michaels SD, Lasky JR, Platt A, Richards JH, Yu X, Easlon HM, Sen S, McKay JK (2013) Pleiotropy of FRIGIDA enhances the potential for multivariate adaptation. Proc Biol Sci 280 (1763):20131043. doi:10.1098/rspb.2013.1043

Li X, Bian H, Song D, Ma S, Han N, Wang J, Zhu M (2013) Flowering time control in ornamental gloxinia (Sinningia speciosa) by manipulation of miR159 expression. Ann Bot 111 (5):791-799. doi:10.1093/aob/mct034

Lee S, Shin K, Lee I, Song HR, Noh YS, Lee RA, Kim SY, Park SK, Soh MS (2013) Genetic identification of a novel locus, ACCELERATED FLOWERING 1 that controls chromatin modification associated with histone H3 lysine 27 trimethylation in Arabidopsis thaliana. Plant Sci 208:20-27. doi:10.1016/j.plantsci.2013.03.009

Lee J, Amasino RM (2013) Two FLX family members are non-redundantly required to establish the vernalization requirement in Arabidopsis. Nat Commun 4:2186. doi:10.1038/ncomms3186

Kim J, Geng R, Gallenstein RA, Somers DE (2013) The F-box protein ZEITLUPE controls stability and nucleocytoplasmic partitioning of GIGANTEA. Development 140 (19):4060-4069. doi:10.1242/dev.096651

Kim HS, Abbasi N, Choi SB (2013) Bruno-like proteins modulate flowering time via 3' UTR-dependent decay of SOC1 mRNA. New Phytol 198 (3):747-756. doi:10.1111/nph.12181

Khandaker MM, Faruq G, Rahman MM, Sofian-Azirun M, Boyce AN (2013) The Influence of 1-Triacontanol on the Growth, Flowering, and Quality of Potted Bougainvillea Plants (Bougainvillea glabra var. "Elizabeth Angus") under Natural Conditions. ScientificWorldJournal 2013:308651. doi:10.1155/2013/308651

Kamran A, Iqbal M, Navabi A, Randhawa H, Pozniak C, Spaner D (2013) Earliness per se QTLs and their interaction with the photoperiod insensitive allele Ppd-D1a in the Cutler x AC Barrie spring wheat population. Theor Appl Genet 126 (8):1965-1976. doi:10.1007/s00122-013-2110-0

Johansson J, Bolmgren K, Jonzen N (2013) Climate change and the optimal flowering time of annual plants in seasonal environments. Glob Chang Biol 19 (1):197-207. doi:10.1111/gcb.12006

Itoh H, Izawa T (2013) The coincidence of critical day length recognition for florigen gene expression and floral transition under long-day conditions in rice. Mol Plant 6 (3):635-649. doi:10.1093/mp/sst022

Iler AM, Hoye TT, Inouye DW, Schmidt NM (2013) Nonlinear flowering responses to climate: are species approaching their limits of phenological change? Philos Trans R Soc Lond B Biol Sci 368 (1624):20120489. doi:10.1098/rstb.2012.0489 Huang Y, Jiang L, Ruan Y, Shen W, Liu C (2013) An Allotetraploid Brassica napus early- flowering mutant has BnaFLC2-regulated flowering. J Sci Food Agric. doi:10.1002/jsfa.6254

Gu X, Wang Y, He Y (2013) Photoperiodic Regulation of Flowering Time through Periodic Histone Deacetylation of the Florigen Gene FT. PLoS Biol 11 (9):e1001649. doi:10.1371/journal.pbio.1001649

Gu X, Le C, Wang Y, Li Z, Jiang D, He Y (2013) Arabidopsis FLC clade members form flowering-repressor complexes coordinating responses to endogenous and environmental cues. Nat Commun 4:1947. doi:10.1038/ncomms2947

Grillo MA, Li C, Hammond M, Wang L, Schemske DW (2013) Genetic architecture of flowering time differentiation between locally adapted populations of Arabidopsis thaliana. New Phytol 197 (4):1321-1331. doi:10.1111/nph.12109

Farkas A, Molnár I, Kiss T, Karsai I, Molnár-Láng M (2014) Effect of added barley chromosomes on the flowering time of new wheat/winter barley addition lines in various environments. Euphytica 195 (1):45-55. doi:10.1007/s10681-013-0970-7

Ellwood ER, Playfair SR, Polgar CA, Primack RB (2013) Cranberry flowering times and climate change in southern Massachusetts. Int J Biometeorol. doi:10.1007/s00484-013- 0719-y

Ding L, Wang Y, Yu H (2013) Overexpression of DOSOC1, an Ortholog of Arabidopsis SOC1, Promotes Flowering in the Orchid Dendrobium Chao Parya Smile. Plant Cell Physiol 54 (4):595-608. doi:10.1093/pcp/pct026

Coelho CP, Costa Netto AP, Colasanti J, Chalfun-Junior A (2013) A proposed model for the flowering signaling pathway of sugarcane under photoperiodic control. Genet Mol Res 12 (2):1347-1359. doi:10.4238/2013.April.25.6

Chen A, Dubcovsky J (2012) Wheat TILLING Mutants Show That the Vernalization Gene VRN1 Down-Regulates the Flowering Repressor VRN2 in Leaves but Is Not Essential for Flowering. PLoS Genet 8 (12):e1003134. doi:10.1371/journal.pgen.1003134

Cave RL, Hammer GL, McLean G, Birch CJ, Erwin JE, Johnston ME (2013) Modelling temperature, photoperiod and vernalization responses of Brunonia australis (Goodeniaceae) and Calandrinia sp. (Portulacaceae) to predict flowering time. Ann Bot 111 (4):629-639. doi:10.1093/aob/mct028

Cai X, Das S, Welch SM (2013) A novel strategy for plant breeding based on simulations of gene network models. Int J Bioinform Res Appl 9 (5):517-533. doi:10.1504/ijbra.2013.056084

Bolouri Moghaddam MR, den Ende WV (2013) Sugars, the clock and transition to flowering. Front Plant Sci 4:22. doi:10.3389/fpls.2013.00022

Bendix C, Mendoza JM, Stanley DN, Meeley R, Harmon FG (2013) The circadian clock- associated gene gigantea1 affects maize developmental transitions. Plant Cell Environ. doi:10.1111/pce.12067 Barrett SC (2013) The evolution of plant reproductive systems: how often are transitions irreversible? Proc Biol Sci 280 (1765):20130913. doi:10.1098/rspb.2013.0913

Andargie M, Pasquet RS, Muluvi GM, Timko MP (2013) Quantitative trait loci analysis of flowering time related traits identified in recombinant inbred lines of cowpea (Vigna unguiculata). Genome 56 (5):289-294. doi:10.1139/gen-2013-0028

Allen JM, Terres MA, Katsuki T, Iwamoto K, Kobori H, Higuchi H, Primack RB, Wilson AM, Gelfand A, Silander JA (2013) Modeling daily flowering probabilities: expected impact of climate change on Japanese cherry phenology. Glob Chang Biol. doi:10.1111/gcb.12364

Nakano Y, Higuchi Y, Sumitomo K, Hisamatsu T (2013) Flowering retardation by high temperature in chrysanthemums: involvement of FLOWERING LOCUS T-like 3 gene repression. J Exp Bot 64 (4):909-920. doi:10.1093/jxb/ers370

Li XF, Jia LY, Xu J, Deng XJ, Wang Y, Zhang W, Zhang XP, Fang Q, Zhang DM, Sun Y, Xu L (2013) FT-like NFT1 gene may play a role in flower transition induced by heat accumulation in Narcissus tazetta var. chinensis. Plant Cell Physiol 54 (2):270-281. doi:10.1093/pcp/pcs181

Kim SK, Park HY, Jang YH, Lee JH, Kim JK (2013) The sequence variation responsible for the functional difference between the CONSTANS protein, and the CONSTANS-like (COL) 1 and COL2 proteins, resides mostly in the region encoded by their first exons. Plant Sci 199-200:71-78. doi:10.1016/j.plantsci.2012.09.019

Newton RJ, Hay FR, Ellis RH (2013) Seed development and maturation in early spring- flowering Galanthus nivalis and Narcissus pseudonarcissus continues post-shedding with little evidence of maturation in planta. Ann Bot 111 (5):945-955. doi:10.1093/aob/mct051

Kim W, Park TI, Yoo SJ, Jun AR, Ahn JH (2013) Generation and analysis of a complete mutant set for the Arabidopsis FT/TFL1 family shows specific effects on thermo-sensitive flowering regulation. J Exp Bot 64 (6):1715-1729. doi:10.1093/jxb/ert036

Joon Seo P, Jung JH, Park MJ, Lee K, Park CM (2013) Controlled turnover of CONSTANS protein by the HOS1 E3 ligase regulates floral transition at low temperatures. Plant Signal Behav 8 (4):e23780. doi:10.4161/psb.23780

Jamalabadi JG, Saidi A, Karami E, Kharkesh M, Talebi R (2013) Molecular mapping and characterization of genes governing time to flowering, seed weight, and plant height in an intraspecific genetic linkage map of chickpea (Cicer arietinum). Biochem Genet 51 (5- 6):387-397. doi:10.1007/s10528-013-9571-3

Bendahmane M, Dubois A, Raymond O, Bris ML (2013) Genetics and genomics of flower initiation and development in roses. J Exp Bot 64 (4):847-857. doi:10.1093/jxb/ers387

Smith HM, Samach A (2013) Constraints to obtaining consistent annual yields in perennial tree crops. I: Heavy fruit load dominates over vegetative growth. Plant Sci 207:158-167. doi:10.1016/j.plantsci.2013.02.014 Liu D, Cai X (2013) OsRRMh, a Spen-like gene, plays an important role during the vegetative to reproductive transition in rice. J Integr Plant Biol 55 (9):876-887. doi:10.1111/jipb.12056

Footitt S, Huang Z, Clay HA, Mead A, Finch-Savage WE (2013) Temperature, light and nitrate sensing coordinate Arabidopsis seed dormancy cycling, resulting in winter and summer annual phenotypes. Plant J 74 (6):1003-1015. doi:10.1111/tpj.12186

Crimmins TM, Crimmins MA, Bertelsen CD (2013) Spring and summer patterns in flowering onset, duration, and constancy across a water-limited gradient. Am J Bot 100 (6):1137-1147. doi:10.3732/ajb.1200633

Xu Y, Gan ES, He Y, Ito T (2013) Flowering and genome integrity control by a nuclear matrix protein in Arabidopsis. Nucleus 4 (4):274-276. doi:10.4161/nucl.25612

Xu M, Xu Z, Liu B, Kong F, Tsubokura Y, Watanabe S, Xia Z, Harada K, Kanazawa A, Yamada T, Abe J (2013) Genetic variation in four maturity genes affects photoperiod insensitivity and PHYA-regulated post-flowering responses of soybean. BMC Plant Biol 13:91. doi:10.1186/1471-2229-13-91

Wilson DC, Carella P, Isaacs M, Cameron RK (2013) The floral transition is not the developmental switch that confers competence for the Arabidopsis age-related resistance response to Pseudomonas syringae pv. tomato. Plant Mol Biol 83 (3):235-246. doi:10.1007/s11103-013-0083-7

Wilhelm EP, Boulton MI, Al-Kaff N, Balfourier F, Bordes J, Greenland AJ, Powell W, Mackay IJ (2013) Rht-1 and Ppd-D1 associations with height, GA sensitivity, and days to heading in a worldwide bread wheat collection. Theor Appl Genet 126 (9):2233-2243. doi:10.1007/s00122-013-2130-9

Tominaga-Wada R, Nukumizu Y, Wada T (2013) Flowering is delayed by mutations in homologous genes CAPRICE and TRYPTICHON in the early flowering Arabidopsis cpl3 mutant. J Plant Physiol 170 (16):1466-1468. doi:10.1016/j.jplph.2013.05.013

Song YH, Ito S, Imaizumi T (2013) Flowering time regulation: photoperiod- and temperature-sensing in leaves. Trends Plant Sci 18 (10):575-583. doi:10.1016/j.tplants.2013.05.003

De Keyser E, Desmet L, Van Bockstaele E, De Riek J (2013) How to perform RT-qPCR accurately in plant species? A case study on flower colour gene expression in an azalea (Rhododendron simsii hybrids) mapping population. BMC Mol Biol 14:13. doi:10.1186/1471-2199-14-13

Winterhagen P, Tiyayon P, Samach A, Hegele M, Wunsche JN (2013) Isolation and characterization of FLOWERING LOCUS T subforms and APETALA1 of the subtropical fruit tree Dimocarpus longan. Plant Physiol Biochem 71:184-190. doi:10.1016/j.plaphy.2013.07.013

Wimmer V, Lehermeier C, Albrecht T, Auinger HJ, Wang Y, Schon CC (2013) Genome- wide prediction of traits with different genetic architecture through efficient variable selection. Genetics 195 (2):573-587. doi:10.1534/genetics.113.150078 Vojvodova P, Maskova P, Francis D, Lipavska H (2013) A yeast mitotic activator sensitises the shoot apical meristem to become floral in day-neutral tobacco. Planta 238 (4):793-806. doi:10.1007/s00425-013-1931-z

Song GQ, Walworth A, Zhao D, Jiang N, Hancock JF (2013) The Vaccinium corymbosum FLOWERING LOCUS T-like gene (VcFT): a flowering activator reverses photoperiodic and chilling requirements in blueberry. Plant Cell Rep 32 (11):1759-1769. doi:10.1007/s00299-013-1489-z

Song GQ, Walworth A, Zhao D, Hildebrandt B, Leasia M (2013) Constitutive expression of the K-domain of a Vaccinium corymbosum SOC1-like (VcSOC1-K) MADS-box gene is sufficient to promote flowering in tobacco. Plant Cell Rep 32 (11):1819-1826. doi:10.1007/s00299-013-1495-1

Shan J, Song W, Zhou J, Wang X, Xie C, Gao X, Xie T, Liu J (2013) Transcriptome analysis reveals novel genes potentially involved in photoperiodic tuberization in potato. Genomics 102 (4):388-396. doi:10.1016/j.ygeno.2013.07.001

Jaudal M, Yeoh CC, Zhang L, Stockum C, Mysore KS, Ratet P, Putterill J (2013) Retroelement insertions at the Medicago FTa1 locus in spring mutants eliminate vernalisation but not long-day requirements for early flowering. Plant J 76 (4):580-591. doi:10.1111/tpj.12315

Yan Z, Hossain MS, Wang J, Valdes-Lopez O, Liang Y, Libault M, Qiu L, Stacey G (2013) miR172 regulates soybean nodulation. Mol Plant Microbe Interact 26 (12):1371- 1377. doi:10.1094/mpmi-04-13-0111-r

Wang Q, Zhang W, Yin Z, Wen CK (2013) Rice CONSTITUTIVE TRIPLE- RESPONSE2 is involved in the ethylene-receptor signalling and regulation of various aspects of rice growth and development. J Exp Bot 64 (16):4863-4875. doi:10.1093/jxb/ert272

Remington DL, Leinonen PH, Leppala J, Savolainen O (2013) Complex genetic effects on early vegetative development shape resource allocation differences between Arabidopsis lyrata populations. Genetics 195 (3):1087-1102. doi:10.1534/genetics.113.151803

Pudasaini A, Zoltowski BD (2013) Zeitlupe Senses Blue-Light Fluence To Mediate Circadian Timing in Arabidopsis thaliana. Biochemistry 52 (40):7150-7158. doi:10.1021/bi401027n

Levin DA (2013) The timetable for allopolyploidy in flowering plants. Ann Bot 112 (7):1201-1208. doi:10.1093/aob/mct194

Lei HJ, Yuan HZ, Liu Y, Guo XW, Liao X, Liu LL, Wang Q, Li TH (2013) Identification and characterization of FaSOC1, a homolog of SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 from strawberry. Gene 531 (2):158-167. doi:10.1016/j.gene.2013.09.036

Creissen HE, Jorgensen TH, Brown JK (2013) Stabilization of yield in plant genotype mixtures through compensation rather than complementation. Ann Bot 112 (7):1439- 1447. doi:10.1093/aob/mct209 Yu Y, Hu R, Wang H, Cao Y, He G, Fu C, Zhou G (2013) MlWRKY12, a novel Miscanthus transcription factor, participates in pith secondary cell wall formation and promotes flowering. Plant Sci 212:1-9. doi:10.1016/j.plantsci.2013.07.010

Sharma P, Chatterjee M, Burman N, Khurana JP (2013) Cryptochrome 1 regulates growth and development in Brassica through alteration in the expression of genes involved in light, phytohormone and stress signalling. Plant Cell Environ. doi:10.1111/pce.12212

Shafiq S, Berr A, Shen WH (2014) Combinatorial functions of diverse histone methylations in Arabidopsis thaliana flowering time regulation. New Phytol 201 (1):312- 322. doi:10.1111/nph.12493

Saijo T, Nagasawa A (2013) Development of a tightly regulated and highly responsive copper-inducible gene expression system and its application to control of flowering time. Plant Cell Rep. doi:10.1007/s00299-013-1511-5

Saidou AA, Clotault J, Couderc M, Mariac C, Devos KM, Thuillet AC, Amoukou IA, Vigouroux Y (2013) Association mapping, patterns of linkage disequilibrium and selection in the vicinity of the PHYTOCHROME C gene in pearl millet. Theor Appl Genet. doi:10.1007/s00122-013-2197-3

Ogiso-Tanaka E, Matsubara K, Yamamoto S, Nonoue Y, Wu J, Fujisawa H, Ishikubo H, Tanaka T, Ando T, Matsumoto T, Yano M (2013) Natural Variation of the RICE FLOWERING LOCUS T 1 Contributes to Flowering Time Divergence in Rice. PLoS ONE 8 (10):e75959. doi:10.1371/journal.pone.0075959

McGlothlin JW, Galloway LF (2013) THE CONTRIBUTION OF MATERNAL EFFECTS TO SELECTION RESPONSE: AN EMPIRICAL TEST OF COMPETING MODELS. Evolution. doi:10.1111/evo.12235

Liang M, Yin X, Lin Z, Zheng Q, Liu G, Zhao G (2013) Identification and characterization of NF-Y transcription factor families in Canola (Brassica napus L.). Planta. doi:10.1007/s00425-013-1964-3

Lee MS, Park BJ, Lee J, Park KT, Ku JH, Lee JW, Oh KO, Miyazaki Y (2013) Physiological relaxation induced by horticultural activity: transplanting work using flowering plants. J Physiol Anthropol 32 (1):15. doi:10.1186/1880-6805-32-15

Higuchi Y, Narumi T, Oda A, Nakano Y, Sumitomo K, Fukai S, Hisamatsu T (2013) The gated induction system of a systemic floral inhibitor, antiflorigen, determines obligate short-day flowering in chrysanthemums. Proc Natl Acad Sci U S A 110 (42):17137- 17142. doi:10.1073/pnas.1307617110

Geuten K, Coenen H (2013) Heterochronic genes in plant evolution and development. Front Plant Sci 4:381. doi:10.3389/fpls.2013.00381

Eamens AL, McHale M, Waterhouse PM (2014) The use of artificial microRNA technology to control gene expression in Arabidopsis thaliana. Methods Mol Biol 1062:211-224. doi:10.1007/978-1-62703-580-4_11

Brothers AN, Barb JG, Ballerini ES, Drury DW, Knapp SJ, Arnold ML (2013) Genetic architecture of floral traits in Iris hexagona and Iris fulva. J Hered 104 (6):853-861. doi:10.1093/jhered/est059 Brandvain Y, Slotte T, Hazzouri KM, Wright SI, Coop G (2013) Genomic identification of founding haplotypes reveals the history of the selfing species Capsella rubella. PLoS Genet 9 (9):e1003754. doi:10.1371/journal.pgen.1003754

Bebber DP, Wood JR, Barker C, Scotland RW (2013) Author inflation masks global capacity for species discovery in flowering plants. New Phytol. doi:10.1111/nph.12522

Xia Z, Zhai H, Lu S, Wu H, Zhang Y (2013) Recent Achievement in Gene Cloning and Functional Genomics in Soybean. ScientificWorldJournal 2013:281367. doi:10.1155/2013/281367

Tsubokura Y, Watanabe S, Xia Z, Kanamori H, Yamagata H, Kaga A, Katayose Y, Abe J, Ishimoto M, Harada K (2013) Natural variation in the genes responsible for maturity loci E1, E2, E3 and E4 in soybean. Ann Bot. doi:10.1093/aob/mct269

Teo ZW, Song S, Wang YQ, Liu J, Yu H (2013) New insights into the regulation of inflorescence architecture. Trends Plant Sci. doi:10.1016/j.tplants.2013.11.001

Son GH, Park BS, Song JT, Seo HS (2013) FLC-mediated flowering repression is positively regulated by sumoylation. J Exp Bot. doi:10.1093/jxb/ert383

Mulekar JJ, Huq E (2013) Expanding roles of protein kinase CK2 in regulating plant growth and development. J Exp Bot. doi:10.1093/jxb/ert401

Li Y, Cheng R, Spokas KA, Palmer AA, Borevitz JO (2013) Genetic Variation for Life History Sensitivity to Seasonal Warming in Arabidopsis thaliana. Genetics. doi:10.1534/genetics.113.157628

Jaudal M, Monash J, Zhang L, Wen J, Mysore KS, Macknight R, Putterill J (2013) Over- expression of Medicago SVP genes causes floral defects and delayed flowering in Arabidopsis but only affects floral development in Medicago. J Exp Bot. doi:10.1093/jxb/ert384

Guerreiro C (2013) Flowering cycles of woody bamboos native to southern South America. J Plant Res. doi:10.1007/s10265-013-0593-z

Fishman L, Sweigart AL, Kenney AM, Campbell S (2013) Major quantitative trait loci control divergence in critical photoperiod for flowering between selfing and outcrossing species of monkeyflower (Mimulus). New Phytol. doi:10.1111/nph.12618

Ferrandez-Ayela A, Micol-Ponce R, Sanchez-Garcia AB, Alonso-Peral MM, Micol JL, Ponce MR (2013) Mutation of an Arabidopsis NatB N-Alpha-Terminal Acetylation Complex Component Causes Pleiotropic Developmental Defects. PLoS ONE 8 (11):e80697. doi:10.1371/journal.pone.0080697

Diago MP, Sanz-Garcia A, Millan B, Blasco J, Tardaguila J (2013) Assessment of flower number per inflorescence in grapevine by image analysis under field conditions. J Sci Food Agric. doi:10.1002/jsfa.6512

Molnár-Láng M, Linc G, Szakács É (2014) Wheat–barley hybridization: the last 40 years. Euphytica 195 (3):315-329. doi:10.1007/s10681-013-1009-9 Rai M, Shekhawat NS (2014) Recent advances in genetic engineering for improvement of fruit crops. Plant Cell Tiss Organ Cult 116 (1):1-15. doi:10.1007/s11240-013-0389-9

Kobayashi MJ, Takeuchi Y, Kenta T, Kume T, Diway B, Shimizu KK (2013) Mass flowering of the tropical tree Shorea beccariana was preceded by expression changes in flowering and drought-responsive genes. Mol Ecol 22 (18):4767-4782. doi:10.1111/mec.12344

Gargul JM, Mibus H, Serek M (2013) Constitutive overexpression of Nicotiana GA 2 ox leads to compact phenotypes and delayed flowering in Kalanchoë blossfeldiana and Petunia hybrida. Plant Cell Tiss Organ Cult 115 (3):407-418. doi:10.1007/s11240-013- 0372-5

Korf I (2013) Genomics: the state of the art in RNA-seq analysis. Nat Meth 10 (12):1165- 1166. doi:10.1038/nmeth.2735

Deng Y, Srivastava R, Howell SH (2013) Protein kinase and ribonuclease domains of IRE1 confer stress tolerance, vegetative growth, and reproductive development in Arabidopsis. Proceedings of the National Academy of Sciences 110 (48):19633-19638. doi:10.1073/pnas.1314749110

Wu F-Q, Fan C-M, Zhang X-M, Fu Y-F (2013) The phytochrome gene family in soybean and a dominant negative effect of a soybean PHYA transgene on endogenous Arabidopsis PHYA. Plant Cell Rep 32 (12):1879-1890. doi:10.1007/s00299-013-1500-8

Cookson S, Ollat N (2013) Grafting with rootstocks induces extensive transcriptional re- programming in the shoot apical meristem of grapevine. BMC Plant Biol 13 (1):147

Huang Y-J, Liu L-L, Huang J-Q, Wang Z-J, Chen F-F, Zhang Q-X, Zheng B-S, Chen M (2013) Use of transcriptome sequencing to understand the pistillate flowering in hickory (Carya cathayensis Sarg.). BMC Genomics 14 (1):691

Chantreau M, Grec S, Gutierrez L, Dalmais M, Pineau C, Demailly H, Paysant-Leroux C, Tavernier R, Trouve J-P, Chatterjee M, Guillot X, Brunaud V, Chabbert B, van Wuytswinkel O, Bendahmane A, Thomasset B, Hawkins S (2013) PT-Flax (phenotyping and TILLinG of flax): development of a flax (Linum usitatissimum L.) mutant population and TILLinG platform for forward and reverse genetics. BMC Plant Biol 13 (1):159

Tan L-Q, Wang L-Y, Wei K, Zhang C-C, Wu L-Y, Qi G-N, Cheng H, Zhang Q, Cui Q-M, Liang J-B (2013) Floral Transcriptome Sequencing for SSR Marker Development and Linkage Map Construction in the Tea Plant Camellia sinensis. PLoS ONE 8 (11):e81611. doi:10.1371/journal.pone.0081611

Clarke WE, Parkin IA, Gajardo HA, Gerhardt DJ, Higgins E, Sidebottom C, Sharpe AG, Snowdon RJ, Federico ML, Iniguez-Luy FL (2013) Genomic DNA Enrichment Using Sequence Capture Microarrays: a Novel Approach to Discover Sequence Nucleotide Polymorphisms (SNP) in Brassica napus L. PLoS ONE 8 (12):e81992. doi:10.1371/journal.pone.0081992

Wei L, Xiao M, Hayward A, Fu D (2013) Applications and challenges of next-generation sequencing in Brassica species. Planta 238 (6):1005-1024. doi:10.1007/s00425-013-1961- 6 Fujita D, Trijatmiko KR, Tagle AG, Sapasap MV, Koide Y, Sasaki K, Tsakirpaloglou N, Gannaban RB, Nishimura T, Yanagihara S, Fukuta Y, Koshiba T, Slamet-Loedin IH, Ishimaru T, Kobayashi N (2013) NAL1 allele from a rice landrace greatly increases yield in modern indica cultivars. Proceedings of the National Academy of Sciences. doi:10.1073/pnas.1310790110

Staiger D, Brown JWS (2013) Alternative Splicing at the Intersection of Biological Timing, Development, and Stress Responses. The Plant Cell Online. doi:10.1105/tpc.113.113803

Li J, Fan S-L, Song M-Z, Pang C-Y, Wei H-L, Li W, Ma J-h, Wei J-H, Jing J-g, Yu S-X (2013) Cloning and characterization of a FLO/LFY ortholog in Gossypium hirsutum L. Plant Cell Rep 32 (11):1675-1686. doi:10.1007/s00299-013-1479-1

Pearce S, Vanzetti LS, Dubcovsky J (2013) Exogenous Gibberellins Induce Wheat Spike Development under Short Days Only in the Presence of VERNALIZATION1. Plant Physiol 163 (3):1433-1445. doi:10.1104/pp.113.225854

Wenzel S, Flachowsky H, Hanke M-V (2013) The Fast-track breeding approach can be improved by heat-induced expression of the FLOWERING LOCUS T genes from poplar (Populus trichocarpa) in apple (Malus × domestica Borkh.). Plant Cell Tiss Organ Cult 115 (2):127-137. doi:10.1007/s11240-013-0346-7

Giacomelli L, Rota-Stabelli O, Masuero D, Acheampong AK, Moretto M, Caputi L, Vrhovsek U, Moser C (2013) Gibberellin metabolism in Vitis vinifera L. during bloom and fruit-set: functional characterization and evolution of grapevine gibberellin oxidases. J Exp Bot 64 (14):4403-4419. doi:10.1093/jxb/ert251

Xiao D, Zhao JJ, Hou XL, Basnet RK, Carpio DPD, Zhang NW, Bucher J, Lin K, Cheng F, Wang XW, Bonnema G (2013) The Brassica rapa FLC homologue FLC2 is a key regulator of flowering time, identified through transcriptional co-expression networks. J Exp Bot 64 (14):4503-4516. doi:10.1093/jxb/ert264

Kim SL, Choi M, Jung K-H, An G (2013) Analysis of the early-flowering mechanisms and generation of T-DNA tagging lines in Kitaake, a model rice . J Exp Bot 64 (14):4169-4182. doi:10.1093/jxb/ert226

Houston K, McKim SM, Comadran J, Bonar N, Druka I, Uzrek N, Cirillo E, Guzy- Wrobelska J, Collins NC, Halpin C, Hansson M, Dockter C, Druka A, Waugh R (2013) Variation in the interaction between alleles of HvAPETALA2 and microRNA172 determines the density of grains on the barley inflorescence. Proceedings of the National Academy of Sciences 110 (41):16675-16680. doi:10.1073/pnas.1311681110

Haydon MJ, Mielczarek O, Robertson FC, Hubbard KE, Webb AAR (2013) Photosynthetic entrainment of the Arabidopsis thaliana circadian clock. Nature advance online publication. doi:10.1038/nature12603

Bommert P, Je BI, Goldshmidt A, Jackson D (2013) The maize G[agr] gene COMPACT PLANT2 functions in CLAVATA signalling to control shoot meristem size. Nature 502 (7472):555-558. doi:10.1038/nature12583 http://www.nature.com/nature/journal/v502/n7472/abs/nature12583.html#supplementary- information Endo M, Tanigawa Y, Murakami T, Araki T, Nagatani A (2013) PHYTOCHROME- DEPENDENT LATE-FLOWERING accelerates flowering through physical interactions with phytochrome B and CONSTANS. Proceedings of the National Academy of Sciences. doi:10.1073/pnas.1310631110

Liu H, Wang Q, Liu Y, Zhao X, Imaizumi T, Somers DE, Tobin EM, Lin C (2013) Arabidopsis CRY2 and ZTL mediate blue-light regulation of the transcription factor CIB1 by distinct mechanisms. Proceedings of the National Academy of Sciences. doi:10.1073/pnas.1308987110

Amasino RM (2013) My favourite flowering image: Maryland Mammoth tobacco. J Exp Bot. doi:10.1093/jxb/ert083

Pabon-Mora N, Hidalgo O, Gleissberg S, Litt A (2013) Assessing duplication and loss of APETALA1/FRUITFULL homologs in Ranunculales. Front Plant Sci 4. doi:10.3389/fpls.2013.00358

Rosa S, De Lucia F, Mylne JS, Zhu D, Ohmido N, Pendle A, Kato N, Shaw P, Dean C (2013) Physical clustering of FLC alleles during Polycomb-mediated epigenetic silencing in vernalization. Genes Dev 27 (17):1845-1850. doi:10.1101/gad.221713.113

Barboza L, Effgen S, Alonso-Blanco C, Kooke R, Keurentjes JJ, Koornneef M, Alcazar R (2013) Arabidopsis semidwarfs evolved from independent mutations in GA20ox1, ortholog to green revolution dwarf alleles in rice and barley. Proc Natl Acad Sci U S A. doi:10.1073/pnas.1314979110

Zmienko A, Samelak A, Kozlowski P, Figlerowicz M (2013) Copy number polymorphism in plant genomes. Theor Appl Genet. doi:10.1007/s00122-013-2177-7

Lee JH, Ryu HS, Chung KS, Pose D, Kim S, Schmid M, Ahn JH (2013) Regulation of Ambient Temperature-Responsive Flowering by MADS-Box Transcription Factor Repressor Complexes. Science. doi:10.1126/science.1241097

Tian Y, Yuan X, Jiang S, Cui B, Su J (2013) Molecular cloning and spatiotemporal expression of an APETALA1/FRUITFULL-like MADS-box gene from the orchid (Cymbidium faberi). Sheng Wu Gong Cheng Xue Bao 29 (2):203-213

O'Maoileidigh DS, Graciet E, Wellmer F (2013) Gene networks controlling Arabidopsis thaliana flower development. New Phytol. doi:10.1111/nph.12444

Gregis V, Andres F, Sessa A, Guerra RF, Simonini S, Mateos JL, Torti S, Zambelli F, Prazzoli GM, Bjerkan KN, Grini PE, Pavesi G, Colombo L, Coupland G, Kater MM (2013) Identification of pathways directly regulated by SHORT VEGETATIVE PHASE during vegetative and reproductive development in Arabidopsis. Genome Biol 14 (6):R56. doi:10.1186/gb-2013-14-6-r56

Galvao VC, Horrer D, Kuttner F, Schmid M (2012) Spatial control of flowering by DELLA proteins in Arabidopsis thaliana. Development 139 (21):4072-4082. doi:10.1242/dev.080879

Dai X, Ding Y, Tan L, Fu Y, Liu F, Zhu Z, Sun X, Gu P, Cai H, Sun C (2012) LHD1, an allele of DTH8/Ghd8, controls late heading date in common wild rice (Oryza rufipogon). J Integr Plant Biol 54 (10):790-799. doi:10.1111/j.1744-7909.2012.01166.x Zhang S, Gardiner J, Xiao Y, Zhao J, Wang F, Zheng Y (2013) Floral transition in maize infected with Sporisorium reilianum disrupts compatibility with this biotrophic fungal pathogen. Planta 237 (5):1251-1266. doi:10.1007/s00425-013-1841-0

Zhang D, Ren L, Yue JH, Wang L, Zhuo LH, Shen XH (2013) A comprehensive analysis of flowering transition in Agapanthus praecox ssp. orientalis (Leighton) Leighton by using transcriptomic and proteomic techniques. J Proteomics 80C:1-25. doi:10.1016/j.jprot.2012.12.028

Niwa M, Daimon Y, Kurotani K, Higo A, Pruneda-Paz JL, Breton G, Mitsuda N, Kay SA, Ohme-Takagi M, Endo M, Araki T (2013) BRANCHED1 interacts with FLOWERING LOCUS T to repress the floral transition of the axillary meristems in Arabidopsis. Plant Cell 25 (4):1228-1242. doi:10.1105/tpc.112.109090

Matsoukas IG, Massiah AJ, Thomas B (2013) Starch metabolism and antiflorigenic signals modulate the juvenile-to-adult phase transition in Arabidopsis. Plant Cell Environ 36 (10):1802-1811. doi:10.1111/pce.12088

Zhao Y, Thammannagowda S, Staton M, Tang S, Xia X, Yin W, Liang H (2013) An EST dataset for Metasequoia glyptostroboides buds: the first EST resource for molecular genomics studies in Metasequoia. Planta 237 (3):755-770. doi:10.1007/s00425-012-1783- y

Zhang XM, Zhao L, Larson-Rabin Z, Li DZ, Guo ZH (2012) De novo sequencing and characterization of the floral transcriptome of Dendrocalamus latiflorus (Poaceae: Bambusoideae). PLoS ONE 7 (8):e42082. doi:10.1371/journal.pone.0042082

Torti S, Fornara F (2012) AGL24 acts in concert with SOC1 and FUL during Arabidopsis floral transition. Plant Signal Behav 7 (10):1251-1254. doi:10.4161/psb.21552

Hiraoka K, Yamaguchi A, Abe M, Araki T (2013) The florigen genes FT and TSF modulate lateral shoot outgrowth in Arabidopsis thaliana. Plant Cell Physiol 54 (3):352- 368. doi:10.1093/pcp/pcs168

Yu S, Galvao VC, Zhang YC, Horrer D, Zhang TQ, Hao YH, Feng YQ, Wang S, Schmid M, Wang JW (2012) Gibberellin Regulates the Arabidopsis Floral Transition through miR156-Targeted SQUAMOSA PROMOTER BINDING-LIKE Transcription Factors. Plant Cell 24 (8):3320-3332. doi:10.1105/tpc.112.101014

Wang Y, Li L, Ye T, Lu Y, Chen X, Wu Y (2013) The inhibitory effect of ABA on floral transition is mediated by ABI5 in Arabidopsis. J Exp Bot 64 (2):675-684. doi:10.1093/jxb/ers361

Pineiro M, Jarillo JA (2013) Ubiquitination in the control of photoperiodic flowering. Plant Sci 198:98-109. doi:10.1016/j.plantsci.2012.10.005

Pautler M, Tanaka W, Hirano HY, Jackson D (2013) Grass meristems I: shoot apical meristem maintenance, axillary meristem determinacy and the floral transition. Plant Cell Physiol 54 (3):302-312. doi:10.1093/pcp/pct025

Na X, Jian B, Yao W, Wu C, Hou W, Jiang B, Bi Y, Han T (2013) Cloning and functional analysis of the flowering gene GmSOC1-like, a putative SUPPRESSOR OF OVEREXPRESSION CO1/AGAMOUS-LIKE 20 (SOC1/AGL20) ortholog in soybean. Plant Cell Rep 32 (8):1219-1229. doi:10.1007/s00299-013-1419-0

Kim WY, Ali Z, Park HJ, Park SJ, Cha JY, Perez-Hormaeche J, Quintero FJ, Shin G, Kim MR, Qiang Z, Ning L, Park HC, Lee SY, Bressan RA, Pardo JM, Bohnert HJ, Yun DJ (2013) Release of SOS2 kinase from sequestration with GIGANTEA determines salt tolerance in Arabidopsis. Nat Commun 4:1352. doi:10.1038/ncomms2357

Dong Z, Danilevskaya O, Abadie T, Messina C, Coles N, Cooper M (2012) A gene regulatory network model for floral transition of the shoot apex in maize and its dynamic modeling. PLoS ONE 7 (8):e43450. doi:10.1371/journal.pone.0043450

MacAlister CA, Park SJ, Jiang K, Marcel F, Bendahmane A, Izkovich Y, Eshed Y, Lippman ZB (2012) Synchronization of the flowering transition by the tomato TERMINATING FLOWER gene. Nat Genet 44 (12):1393-1398. doi:10.1038/ng.2465

Hebrard C, Trap-Gentil MV, Lafon-Placette C, Delaunay A, Joseph C, Lefebvre M, Barnes S, Maury S (2013) Identification of differentially methylated regions during vernalization revealed a role for RNA methyltransferases in bolting. J Exp Bot 64 (2):651- 663. doi:10.1093/jxb/ers363

Yoo SC, Chen C, Rojas M, Daimon Y, Ham BK, Araki T, Lucas WJ (2013) Phloem long- distance delivery of FLOWERING LOCUS T (FT) to the apex. Plant J 75 (3):456-468. doi:10.1111/tpj.12213

McGarry RC, Prewitt S, Ayre BG (2013) Overexpression of FT in cotton affects architecture but not floral organogenesis. Plant Signal Behav 8 (4)

Khanday I, Yadav SR, Vijayraghavan U (2013) Rice LHS1/OsMADS1 controls floret meristem specification by coordinated regulation of transcription factors and hormone signaling pathways. Plant Physiol 161 (4):1970-1983. doi:10.1104/pp.112.212423

Li W, Zhou Y, Liu X, Yu P, Cohen JD, Meyerowitz EM (2013) LEAFY controls auxin response pathways in floral primordium formation. Sci Signal 6 (277):ra23cr

Zhao L, Wang Z, Lu Q, Wang P, Li Y, Lv Q, Song X, Li D, Gu Y, Liu L, Li W (2013) Overexpression of a GmGBP1 ortholog of soybean enhances the responses to flowering, stem elongation and heat tolerance in transgenic tobaccos. Plant Mol Biol 82 (3):279-299. doi:10.1007/s11103-013-0062-z

Mandel JR, Nambeesan S, Bowers JE, Marek LF, Ebert D, Rieseberg LH, Knapp SJ, Burke JM (2013) Association mapping and the genomic consequences of selection in sunflower. PLoS Genet 9 (3):e1003378. doi:10.1371/journal.pgen.1003378

Karlgren A, Gyllenstrand N, Kallman T, Lagercrantz U (2013) Conserved function of core clock proteins in the gymnosperm Norway spruce (Picea abies L. Karst). PLoS ONE 8 (3):e60110. doi:10.1371/journal.pone.0060110

Chiang GC, Barua D, Dittmar E, Kramer EM, de Casas RR, Donohue K (2013) Pleiotropy in the wild: the dormancy gene dog1 exerts cascading control on life cycles. Evolution 67 (3):883-893. doi:10.1111/j.1558-5646.2012.01828.x Cavanagh CR, Chao S, Wang S, Huang BE, Stephen S, Kiani S, Forrest K, Saintenac C, Brown-Guedira GL, Akhunova A, See D, Bai G, Pumphrey M, Tomar L, Wong D, Kong S, Reynolds M, da Silva ML, Bockelman H, Talbert L, Anderson JA, Dreisigacker S, Baenziger S, Carter A, Korzun V, Morrell PL, Dubcovsky J, Morell MK, Sorrells ME, Hayden MJ, Akhunov E (2013) Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc Natl Acad Sci U S A 110 (20):8057-8062. doi:10.1073/pnas.1217133110

Qiu L-J, Xing L-L, Guo Y, Wang J, Jackson S, Chang R-Z (2013) A platform for soybean molecular breeding: the utilization of core collections for food security. Plant Mol Biol 83 (1-2):41-50. doi:10.1007/s11103-013-0076-6

Ding L, Kim SY, Michaels SD (2013) FLOWERING LOCUS C EXPRESSOR Family Proteins Regulate FLOWERING LOCUS C Expression in Both Winter-Annual and Rapid-Cycling Arabidopsis. Plant Physiol 163 (1):243-252. doi:10.1104/pp.113.223958

Turner A, Faure S, Zhang Y, Laurie D (2013) The effect of day-neutral mutations in barley and wheat on the interaction between photoperiod and vernalization. Theor Appl Genet 126 (9):2267-2277. doi:10.1007/s00122-013-2133-6

McClosky B, Tanksley S (2013) The impact of recombination on short-term selection gain in plant breeding experiments. Theor Appl Genet 126 (9):2299-2312. doi:10.1007/s00122- 013-2136-3

Brachi B, Villoutreix R, Faure N, Hautekeete N, Piquot Y, Pauwels M, Roby D, Cuguen J, Bergelson J, Roux F (2013) Investigation of the geographical scale of adaptive phenological variation and its underlying genetics in Arabidopsis thaliana. Mol Ecol 22 (16):4222-4240. doi:10.1111/mec.12396

Liu S, Wang X, Li E, Douglas C, Chen J-G, Wang S (2013) R2R3 MYB transcription factor PtrMYB192 regulates flowering time in Arabidopsis by activating FLOWERING LOCUS C. J Plant Biol 56 (4):243-250. doi:10.1007/s12374-013-0135-1

Ding J, Lu Q, Ouyang Y, Mao H, Zhang P, Yao J, Xu C, Li X, Xiao J, Zhang Q (2012) A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice. Proc Natl Acad Sci U S A 109 (7):2654-2659. doi:10.1073/pnas.1121374109

Noy-Porat T, Cohen D, Mathew D, Eshel A, Kamenetsky R, Flaishman MA (2013) Turned on by heat: differential expression of FT and LFY-like genes in Narcissus tazetta during floral transition. J Exp Bot 64 (11):3273-3284. doi:10.1093/jxb/ert165

Weinhold A, Kallenbach M, Baldwin IT (2013) Progressive 35S promoter methylation increases rapidly during vegetative development in transgenic Nicotiana attenuata plants. BMC Plant Biol 13 (1):99

Hong J, Kim S-Y, Kim K-S, Kwon S-J, Kim J, Kim J, Lee S, Lee Y-H (2013) Overexpression of a Brassica rapa MADS-box gene, BrAGL20, induces early flowering time phenotypes in Brassica napus. Plant Biotechnology Reports 7 (3):231-237. doi:10.1007/s11816-012-0254-z

Ando E, Ohnishi M, Wang Y, Matsushita T, Watanabe A, Hayashi Y, Fujii M, Ma JF, Inoue S-i, Kinoshita T (2013) TWIN SISTER OF FT, GIGANTEA, and CONSTANS Have a Positive But Indirect Effect on Blue Light-Induced Stomatal Opening in Arabidopsis. Plant Physiol 162 (3):1529-1538. doi:10.1104/pp.113.217984

Jia G, Huang X, Zhi H, Zhao Y, Zhao Q, Li W, Chai Y, Yang L, Liu K, Lu H, Zhu C, Lu Y, Zhou C, Fan D, Weng Q, Guo Y, Huang T, Zhang L, Lu T, Feng Q, Hao H, Liu H, Lu P, Zhang N, Li Y, Guo E, Wang S, Wang S, Liu J, Zhang W, Chen G, Zhang B, Li W, Wang Y, Li H, Zhao B, Li J, Diao X, Han B (2013) A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet (Setaria italica). Nat Genet 45 (8):957-961. doi:10.1038/ng.2673 http://www.nature.com/ng/journal/v45/n8/abs/ng.2673.html#supplementary-information

Long Q, Rabanal FA, Meng D, Huber CD, Farlow A, Platzer A, Zhang Q, Vilhjalmsson BJ, Korte A, Nizhynska V, Voronin V, Korte P, Sedman L, Mandakova T, Lysak MA, Seren U, Hellmann I, Nordborg M (2013) Massive genomic variation and strong selection in Arabidopsis thaliana lines from Sweden. Nat Genet 45 (8):884-890. doi:10.1038/ng.2678 http://www.nature.com/ng/journal/v45/n8/abs/ng.2678.html#supplementary-information

Heidari B, Nemie-Feyissa D, Kangasjärvi S, Lillo C (2013) Antagonistic Regulation of Flowering Time through Distinct Regulatory Subunits of Protein Phosphatase 2A. PLoS ONE 8 (7):e67987. doi:10.1371/journal.pone.0067987

Milec Z, Sumíková T, Tomková L, Pánková K (2013) Distribution of different Vrn-B1 alleles in hexaploid spring wheat germplasm. Euphytica 192 (3):371-378. doi:10.1007/s10681-013-0863-9

Nguyen AT, Iehisa JCM, Kajimura T, Murai K, Takumi S (2013) Identification of quantitative trait loci for flowering-related traits in the D genome of synthetic hexaploid wheat lines. Euphytica 192 (3):401-412. doi:10.1007/s10681-013-0873-7

Gonsamo A, Chen JM, Wu C (2013) Citizen Science: linking the recent rapid advances of plant flowering in Canada with climate variability. Sci Rep 3. doi:10.1038/srep02239 http://www.nature.com/srep/2013/130719/srep02239/abs/srep02239.html#supplementary- information

Zhao Q, Zou J, Meng J, Mei S, Wang J (2013) Tracing the Transcriptomic Changes in Synthetic Trigenomic allohexaploids of Brassica Using an RNA-Seq Approach. PLoS ONE 8 (7):e68883. doi:10.1371/journal.pone.0068883

Hsu PY, Devisetty UK, Harmer SL (2013) Accurate timekeeping is controlled by a cycling activator in Arabidopsis. Elife 2:e00473. doi:10.7554/eLife.00473

Iler AM, Inouye DW (2013) Effects of climate change on mast-flowering cues in a clonal montane herb, Veratrum tenuipetalum (Melanthiaceae). Am J Bot 100 (3):519-525. doi:10.3732/ajb.1200491

Li X, Fan J, Gruber J, Guan R, Frentzen M, Zhu LH (2013) Efficient selection and evaluation of transgenic lines of Crambe abyssinica. Front Plant Sci 4:162. doi:10.3389/fpls.2013.00162 Huang X, Ding J, Effgen S, Turck F, Koornneef M (2013) Multiple loci and genetic interactions involving flowering time genes regulate stem branching among natural variants of Arabidopsis. New Phytol. doi:10.1111/nph.12306

Xu C, Wei S, Lu Y, Zhang Y, Chen C, Song T (2013) Removal of the local geomagnetic field affects reproductive growth in Arabidopsis. Bioelectromagnetics. doi:10.1002/bem.21788

Huang D, Koh C, Feurtado JA, Tsang EW, Cutler AJ (2013) MicroRNAs and their putative targets in Brassica napus seed maturation. BMC Genomics 14:140. doi:10.1186/1471-2164-14-140

Fan C, Ma J, Guo Q, Li X, Wang H, Lu M (2013) Selection of reference genes for quantitative real-time PCR in bamboo (Phyllostachys edulis). PLoS ONE 8 (2):e56573. doi:10.1371/journal.pone.0056573

Zhang C, Xie Q, Anderson RG, Ng G, Seitz NC, Peterson T, McClung CR, McDowell JM, Kong D, Kwak JM, Lu H (2013) Crosstalk between the Circadian Clock and Innate Immunity in Arabidopsis. PLoS Pathog 9 (6):e1003370. doi:10.1371/journal.ppat.1003370

Cui X, Lu F, Li Y, Xue Y, Kang Y, Zhang S, Qiu Q, Cui X, Zheng S, Liu B, Xu X, Cao X (2013) Ubiquitin-Specific Proteases UBP12 and UBP13 Act in Circadian Clock and Photoperiodic Flowering Regulation in Arabidopsis. Plant Physiol 162 (2):897-906. doi:10.1104/pp.112.213009

Slotte T, Hazzouri KM, Agren JA, Koenig D, Maumus F, Guo Y-L, Steige K, Platts AE, Escobar JS, Newman LK, Wang W, Mandakova T, Vello E, Smith LM, Henz SR, Steffen J, Takuno S, Brandvain Y, Coop G, Andolfatto P, Hu TT, Blanchette M, Clark RM, Quesneville H, Nordborg M, Gaut BS, Lysak MA, Jenkins J, Grimwood J, Chapman J, Prochnik S, Shu S, Rokhsar D, Schmutz J, Weigel D, Wright SI (2013) The Capsella rubella genome and the genomic consequences of rapid mating system evolution. Nat Genet 45 (7):831-835. doi:10.1038/ng.2669 http://www.nature.com/ng/journal/v45/n7/abs/ng.2669.html#supplementary-information

Hirsch CN, Hirsch CD, Felcher K, Coombs J, Zarka D, Van Deynze A, De Jong W, Veilleux RE, Jansky S, Bethke P, Douches DS, Buell CR (2013) Retrospective View of North American Potato (Solanum tuberosum L.) Breeding in the 20th and 21st Centuries. G3: Genes|Genomes|Genetics 3 (6):1003-1013. doi:10.1534/g3.113.005595

Frerichmann SL (2013) Detection of new sequence variants for flowering and bolting time genes in species of the genus Beta. Christian Albrechts University, Kiel

Moritani M, Taguchi K, Kitazaki K, Matsuhira H, Katsuyama T, Mikami T, Kubo T (2013) Identification of the predominant nonrestoring allele for Owen-type cytoplasmic male sterility in sugar beet (Beta vulgaris L.): development of molecular markers for the maintainer genotype. Mol Breed 32 (1):91-100. doi:10.1007/s11032-013-9854-8

Wang Y, Deng D, Ding H, Xu X, Zhang R, Wang S, Bian Y, Yin Z, Chen Y (2013) Gibberellin Biosynthetic Deficiency Is Responsible for Maize Dominant Dwarf11 (D11) Mutant Phenotype: Physiological and Transcriptomic Evidence. PLoS ONE 8 (6):e66466. doi:10.1371/journal.pone.0066466 Lessard-Therrien M, Davies TJ, Bolmgren K (2013) A phylogenetic comparative study of flowering phenology along an elevational gradient in the Canadian subarctic. Int J Biometeorol. doi:10.1007/s00484-013-0672-9

Watt M, Moosavi S, Cunningham SC, Kirkegaard JA, Rebetzke GJ, Richards RA (2013) A rapid, controlled-environment seedling root screen for wheat correlates well with rooting depths at vegetative, but not reproductive, stages at two field sites. Ann Bot 112 (2):447-455. doi:10.1093/aob/mct122

Oberbauer SF, Elmendorf SC, Troxler TG, Hollister RD, Rocha AV, Bret-Harte MS, Dawes MA, Fosaa AM, Henry GH, Hoye TT, Jarrad FC, Jonsdottir IS, Klanderud K, Klein JA, Molau U, Rixen C, Schmidt NM, Shaver GR, Slider RT, Totland O, Wahren CH, Welker JM (2013) Phenological response of tundra plants to background climate variation tested using the International Tundra Experiment. Philos Trans R Soc Lond B Biol Sci 368 (1624):20120481. doi:10.1098/rstb.2012.0481

Chiurugwi T, Holmes HF, Qi A, Chia TYP, Hedden P, Mutasa-Göttgens ES (2012) Development of new quantitative physiological and molecular breeding parameters based on the sugar-beet vernalization intensity model. The Journal of Agricultural Science:1-14. doi:dx.doi.org/10.1017/S0021859612000573

Nayyeripasand L, Nematzadeh G, Jelodar NB, Ahmadikhah A, Azimi M (2013) Development of an allele-specific functional marker for studying Hd1 effect on flowering time of rice. International Research Journal of Applied and Basic Sciences 4 (8):2209- 2215

Yoshikawa T, Ozawa S, Sentoku N, Itoh J-I, Nagato Y, Yokoi S (2013) Change of shoot architecture during juvenile-to-adult phase transition in soybean. Planta 238 (1):229-237. doi:10.1007/s00425-013-1895-z

Yau Y-Y, Stewart CN (2013) Less is more: strategies to remove marker genes from transgenic plants. BMC Biotechnol 13 (1):36

Shin J, Du S, Bujdoso N, Hu Y, Davis S (2013) Overexpression and loss-of-function at TIME FOR COFFEE results in similar phenotypes in diverse growth and physiological responses. J Plant Biol 56 (3):152-159. doi:10.1007/s12374-013-0091-9

Preston JC, Sandve SR (2013) Adaptation to seasonality and the winter freeze. Front Plant Sci 4. doi:10.3389/fpls.2013.00167

Wu D-H, Wu H-P, Wang C-S, Tseng H-Y, Hwu K-K (2013) Genome-wide InDel marker system for application in rice breeding and mapping studies. Euphytica 192 (1):131-143. doi:10.1007/s10681-013-0925-z

Turnbull CG, Lopez-Cobollo RM (2013) Heavy traffic in the fast lane: long-distance signalling by macromolecules. New Phytol 198 (1):33-51. doi:10.1111/nph.12167

Aspinwall MJ, Lowry DB, Taylor SH, Juenger TE, Hawkes CV, Johnson MV, Kiniry JR, Fay PA (2013) Genotypic variation in traits linked to climate and aboveground productivity in a widespread C grass: evidence for a functional trait syndrome. New Phytol. doi:10.1111/nph.12341 Wright SI, Kalisz S, Slotte T (2013) Evolutionary consequences of self-fertilization in plants. Proc Biol Sci 280 (1760):20130133. doi:10.1098/rspb.2013.0133

Upadhyaya HD, Wang YH, Gowda CL, Sharma S (2013) Association mapping of maturity and plant height using SNP markers with the sorghum mini core collection. Theor Appl Genet. doi:10.1007/s00122-013-2113-x

Agrawal AA, Johnson MT, Hastings AP, Maron JL (2013) A field experiment demonstrating plant life-history evolution and its eco-evolutionary feedback to seed predator populations. Am Nat 181 Suppl 1:S35-45. doi:10.1086/666727

Bock A, Sparks TH, Estrella N, Menzel A (2013) Changes in the timing of hay cutting in Germany do not keep pace with climate warming. Glob Chang Biol. doi:10.1111/gcb.12280

Zhang J, Wu K, Zeng S, Teixeira da Silva JA, Zhao X, Tian CE, Xia H, Duan J (2013) Transcriptome analysis of Cymbidium sinense and its application to the identification of genes associated with floral development. BMC Genomics 14:279. doi:10.1186/1471- 2164-14-279

Yamashino T, Yamawaki S, Hagui E, Ueoka-Nakanishi H, Nakamichi N, Ito S, Mizuno T (2013) Clock-Controlled and FLOWERING LOCUS T (FT)-Dependent Photoperiodic Pathway in Lotus japonicus I: Verification of the Flowering-Associated Function of an FT Homolog. Biosci Biotechnol Biochem

Quilot-Turion B, Leppala J, Leinonen PH, Waldmann P, Savolainen O, Kuittinen H (2013) Genetic changes in flowering and morphology in response to adaptation to a high- latitude environment in Arabidopsis lyrata. Ann Bot. doi:10.1093/aob/mct055

Larsson SJ, Lipka AE, Buckler ES (2013) Lessons from dwarf8 on the strengths and weaknesses of structured association mapping. PLoS Genet 9 (2):e1003246. doi:10.1371/journal.pgen.1003246

Frerichmann SL, Kirchhoff M, Muller AE, Scheidig AJ, Jung C, Kopisch-Obuch FJ (2013) EcoTILLING in Beta vulgaris reveals polymorphisms in the FLC-like gene BvFL1 that are associated with annuality and winter hardiness. BMC Plant Biol 13 (1):52. doi:10.1186/1471-2229-13-52

Cadic E, Coque M, Vear F, Grezes-Besset B, Pauquet J, Piquemal J, Lippi Y, Blanchard P, Romestant M, Pouilly N, Rengel D, Gouzy J, Langlade N, Mangin B, Vincourt P (2013) Combined linkage and association mapping of flowering time in Sunflower (Helianthus annuus L.). Theor Appl Genet 126 (5):1337-1356. doi:10.1007/s00122-013- 2056-2

Bentley AR, Horsnell R, Werner CP, Turner AS, Rose GA, Bedard C, Howell P, Wilhelm EP, Mackay IJ, Howells RM, Greenland A, Laurie DA, Gosman N (2013) Short, natural, and extended photoperiod response in BC2F4 lines of bread wheat with different Photoperiod-1 (Ppd-1) alleles. J Exp Bot. doi:10.1093/jxb/ert038

Lehoczki-Krsjak S, Varga M, Szabo-Hever A, Mesterhazy A (2013) Translocation and degradation of tebuconazole and prothioconazole in wheat following fungicide treatment at flowering. Pest Manag Sci. doi:10.1002/ps.3486 Beaulieu JM, O'Meara BC, Donoghue MJ (2013) Identifying hidden rate changes in the evolution of a binary morphological character: the evolution of plant habit in campanulid angiosperms. Syst Biol. doi:10.1093/sysbio/syt034

Mohammadi M, Torkamaneh D, Nikkhah H-R (2013) Correlation of Vernalization Loci VRN-H1 and VRN-H2 and Growth Habit in Barley Germplasm. Int J Plant Genomics 2013:9. doi:10.1155/2013/924043

Mace ES, Hunt CH, Jordan DR (2013) Supermodels: sorghum and maize provide mutual insight into the genetics of flowering time. Theor Appl Genet 126 (5):1377-1395. doi:10.1007/s00122-013-2059-z

Verde I, Abbott AG, Scalabrin S, Jung S, Shu S, Marroni F, Zhebentyayeva T, Dettori MT, Grimwood J, Cattonaro F, Zuccolo A, Rossini L, Jenkins J, Vendramin E, Meisel LA, Decroocq V, Sosinski B, Prochnik S, Mitros T, Policriti A, Cipriani G, Dondini L, Ficklin S, Goodstein DM, Xuan P, Fabbro CD, Aramini V, Copetti D, Gonzalez S, Horner DS, Falchi R, Lucas S, Mica E, Maldonado J, Lazzari B, Bielenberg D, Pirona R, Miculan M, Barakat A, Testolin R, Stella A, Tartarini S, Tonutti P, Arus P, Orellana A, Wells C, Main D, Vizzotto G, Silva H, Salamini F, Schmutz J, Morgante M, Rokhsar DS (2013) The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat Genet 45 (5):487-494. doi:10.1038/ng.2586 http://www.nature.com/ng/journal/v45/n5/abs/ng.2586.html#supplementary-information

Zhang D, Cheng H, Hu Z, Wang H, Kan G, Liu C, Yu D (2013) Fine mapping of a major flowering time QTL on soybean chromosome 6 combining linkage and association analysis. Euphytica 191 (1):23-33. doi:10.1007/s10681-012-0840-8

Vargas A, Cunff L, This P, Ibáñez J, Andrés MT (2013) VvGAI1 polymorphisms associate with variation for berry traits in grapevine. Euphytica 191 (1):85-98. doi:10.1007/s10681-013-0866-6

Schroeder JI, Delhaize E, Frommer WB, Guerinot ML, Harrison MJ, Herrera-Estrella L, Horie T, Kochian LV, Munns R, Nishizawa NK, Tsay Y-F, Sanders D (2013) Using membrane transporters to improve crops for sustainable food production. Nature 497 (7447):60-66. doi:10.1038/nature11909

Ruan J, Lee Y, Yeoung Y (2013) Flowering and fruiting of day-neutral and ever-bearing strawberry cultivars in high-elevation for summer and autumn fruit production in Korea. Hortic Environ Biotechnol 54 (2):109-120. doi:10.1007/s13580-013-0185-9

Ibarra-Laclette E, Lyons E, Hernandez-Guzman G, Perez-Torres CA, Carretero-Paulet L, Chang T-H, Lan T, Welch AJ, Juarez MJA, Simpson J, Fernandez-Cortes A, Arteaga- Vazquez M, Gongora-Castillo E, Acevedo-Hernandez G, Schuster SC, Himmelbauer H, Minoche AE, Xu S, Lynch M, Oropeza-Aburto A,

Cervantes-Perez SA, de Jesus Ortega-Estrada M, Cervantes-Luevano JI, Michael TP, Mockler T, Bryant D, Herrera-Estrella A, Albert VA, Herrera-Estrella L (2013) Architecture and evolution of a minute plant genome. Nature advance online publication. doi:10.1038/nature12132 http://www.nature.com/nature/journal/vaop/ncurrent/abs/nature12132.html#supplementar y-information

Trainin T, Bar-Ya’akov I, Holland D (2013) ParSOC1, a MADS-box gene closely related to Arabidopsis AGL20/SOC1, is expressed in apricot leaves in a diurnal manner and is linked with chilling requirements for dormancy break. Tree Genet Genomes 9 (3):753- 766. doi:10.1007/s11295-012-0590-8

Nystedt B, Street NR, Wetterbom A, Zuccolo A, Lin Y-C, Scofield DG, Vezzi F, Delhomme N, Giacomello S, Alexeyenko A, Vicedomini R, Sahlin K, Sherwood E, Elfstrand M, Gramzow L, Holmberg K, Hallman J, Keech O, Klasson L, Koriabine M, Kucukoglu M, Kaller M, Luthman J, Lysholm F, Niittyla T, Olson A, Rilakovic N, Ritland C, Rossello JA, Sena J, Svensson T, Talavera-Lopez C, Theiszen G, Tuominen H, Vanneste K, Wu Z-Q, Zhang B, Zerbe P, Arvestad L, Bhalerao R, Bohlmann J, Bousquet J, Garcia Gil R, Hvidsten TR, de Jong P, MacKay J, Morgante M, Ritland K, Sundberg B, Lee Thompson S, Van de Peer Y, Andersson B, Nilsson O, Ingvarsson PK, Lundeberg J, Jansson S (2013) The Norway spruce genome sequence and conifer genome evolution. Nature advance online publication. doi:10.1038/nature12211 http://www.nature.com/nature/journal/vaop/ncurrent/abs/nature12211.html#supplementar y-information

Qu G-Z, Zheng T, Liu G, Wang W, Zang L, Liu H, Yang C (2013) Overexpression of a MADS-Box Gene from Birch (Betula platyphylla) Promotes Flowering and Enhances Chloroplast Development in Transgenic Tobacco. PLoS ONE 8 (5):e63398. doi:10.1371/journal.pone.0063398

Sadok IB, Celton J-M, Essalouh L, El Aabidine AZ, Garcia G, Martinez S, Grati-Kamoun N, Rebai A, Costes E, Khadari B (2013) QTL Mapping of Flowering and Fruiting Traits in Olive. PLoS ONE 8 (5):e62831. doi:10.1371/journal.pone.0062831

Yadav RK, Perales M, Gruel J, Ohno C, Heisler M, Girke T, Jonsson H, Reddy GV (2013) Plant stem cell maintenance involves direct transcriptional repression of differentiation program. Mol Syst Biol 9. doi:http://www.nature.com/msb/journal/v9/n1/suppinfo/msb20138_S1.html

Nayyeripasand L, Jelodar NB, Nematzadeh G, Ahmadikhah A, Azimi M (2013) Development of a PCR-based marker for studying allelic variation of Hd3a in rice and its effect on flowring time. International Research Journal of Applied and Basic Sciences 4 (5):1000-1006

Hufford MB, Lubinksy P, Pyhajarvi T, Devengenzo MT, Ellstrand NC, Ross-Ibarra J (2013) The genomic signature of crop-wild introgression in maize. PLoS Genet 9 (5):e1003477. doi:10.1371/journal.pgen.1003477

Chen L, Phillips AL, Condon AG, Parry MA, Hu YG (2013) GA-Responsive Dwarfing Gene Rht12 Affects the Developmental and Agronomic Traits in Common Bread Wheat. PLoS ONE 8 (4):e62285. doi:10.1371/journal.pone.0062285

Schmitz RJ, Ecker JR (2012) Epigenetic and epigenomic variation in Arabidopsis thaliana. Trends Plant Sci 17 (3):149-154. doi:10.1016/j.tplants.2012.01.001 Duan C, Argout X, Gebelin V, Summo M, Dufayard JF, Leclercq J, Kuswanhadi, Piyatrakul P, Pirrello J, Rio M, Champion A, Montoro P (2013) Identification of the Hevea brasiliensis AP2/ERF superfamily by RNA sequencing. BMC Genomics 14:30. doi:10.1186/1471-2164-14-30

Ariizumi T, Shinozaki Y, Ezura H (2013) Genes that influence yield in tomato. Breed Sci 63 (1):3-13. doi:10.1270/jsbbs.63.3

Hirakawa H, Shirasawa K, Ohyama A, Fukuoka H, Aoki K, Rothan C, Sato S, Isobe S, Tabata S (2013) Genome-Wide SNP Genotyping to Infer the Effects on Gene Functions in Tomato. DNA research : an international journal for rapid publication of reports on genes and genomes. doi:10.1093/dnares/dst005

Aoki K, Ogata Y, Igarashi K, Yano K, Nagasaki H, Kaminuma E, Toyoda A (2013) Functional genomics of tomato in a post-genome-sequencing phase. Breed Sci 63 (1):14- 20. doi:10.1270/jsbbs.63.14

Miura K, Furumoto T (2013) Cold signaling and cold response in plants. International Journal of Molecular Sciences 14 (3):5312-5337. doi:10.3390/ijms14035312

Raman H, Raman R, Kilian A, Detering F, Long Y, Edwards D, Parkin IA, Sharpe AG, Nelson MN, Larkan N, Zou J, Meng J, Aslam MN, Batley J, Cowling WA, Lydiate D (2013) A consensus map of rapeseed (Brassica napus L.) based on diversity array technology markers: applications in genetic dissection of qualitative and quantitative traits. BMC Genomics 14:277. doi:10.1186/1471-2164-14-277

Fan CM, Wang X, Wang YW, Hu RB, Zhang XM, Chen JX, Fu YF (2013) Genome- Wide Expression Analysis of Soybean MADS Genes Showing Potential Function in the Seed Development. PLoS ONE 8 (4):e62288. doi:10.1371/journal.pone.0062288

Sun Q, Csorba T, Skourti-Stathaki K, Proudfoot NJ, Dean C (2013) R-loop stabilization represses antisense transcription at the Arabidopsis FLC locus. Science 340 (6132):619- 621. doi:10.1126/science.1234848

Wei M, Song M, Fan S, Yu S (2013) Transcriptomic analysis of differentially expressed genes during anther development in genetic male sterile and wild type cotton by digital gene-expression profiling. BMC Genomics 14:97. doi:10.1186/1471-2164-14-97

Wei M, Wei H, Wu M, Song M, Zhang J, Yu J, Fan S, Yu S (2013) Comparative expression profiling of miRNA during anther development in genetic male sterile and wild type cotton. BMC Plant Biol 13:66. doi:10.1186/1471-2229-13-66

Ma J, Wei H, Liu J, Song M, Pang C, Wang L, Zhang W, Fan S, Yu S (2013) Selection and Characterization of a Novel Photoperiod-sensitive Male Sterile Line in Upland Cotton (Gossypium Hirsutum L.). J Integr Plant Biol. doi:10.1111/jipb.12067

Tadege M, Sheldon CC, Helliwell CA, Stoutjesdijk P, Dennis ES, Peacock WJ (2001) Control of flowering time by FLC orthologues in Brassica napus. Plant J 28 (5):545-553

Kun W, Xiaojue P, Yanxiao J, Yang P, Yingguo Z, Li S (2013) Gene, protein and network of male sterility in rice. Front Plant Sci 4. doi:10.3389/fpls.2013.00092 Preston JC, Hileman L (2013) Functional evolution in the plant SQUAMOSA- PROMOTER BINDING PROTEIN-LIKE (SPL) gene family. Front Plant Sci 4. doi:10.3389/fpls.2013.00080

Palloix A, Ayme V, Moury B (2009) Durability of plant major resistance genes to pathogens depends on the genetic background, experimental evidence and consequences for breeding strategies. The New Phytologist 183 (1):190-199. doi:10.1111/j.1469- 8137.2009.02827.x

Von Holle B, Wei Y, Nickerson D (2010) Climatic variability leads to later seasonal flowering of Floridian plants. PLoS ONE 5 (7):e11500. doi:10.1371/journal.pone.0011500

Varshney RK, Hoisington DA, Nayak SN, Graner A (2009) Molecular plant breeding: methodology and achievements. Methods Mol Biol 513:283-304. doi:10.1007/978-1- 59745-427-8_15

Sharbel TF, Voigt ML, Corral JM, Thiel T, Varshney A, Kumlehn J, Vogel H, Rotter B (2009) Molecular signatures of apomictic and sexual ovules in the Boechera holboellii complex. The Plant journal : for cell and molecular biology 58 (5):870-882. doi:10.1111/j.1365-313X.2009.03826.x

Lukac M, Gooding MJ, Griffiths S, Jones HE (2012) Asynchronous flowering and within- plant flowering diversity in wheat and the implications for crop resilience to heat. Ann Bot 109 (4):843-850. doi:10.1093/aob/mcr308

Zhang H, Harry DE, Ma C, Yuceer C, Hsu CY, Vikram V, Shevchenko O, Etherington E, Strauss SH (2010) Precocious flowering in trees: the FLOWERING LOCUS T gene as a research and breeding tool in Populus. J Exp Bot 61 (10):2549-2560. doi:10.1093/jxb/erq092

Mueller GC, Beier JC, Traore SF, Toure MB, Traore MM, Bah S, Doumbia S, Schlein Y (2010) Field experiments of Anopheles gambiae attraction to local fruits/seedpods and flowering plants in Mali to optimize strategies for malaria vector control in Africa using attractive toxic sugar bait methods. Malar J 9:262. doi:10.1186/1475-2875-9-262

Kumar AA, Mishra P, Kumari K, Panigrahi KC (2012) Environmental stress influencing plant development and flowering. Front Biosci 4:1315-1324

Boyce CK, Lee JE (2010) An exceptional role for flowering plant physiology in the expansion of tropical rainforests and biodiversity. Proc Biol Sci 277 (1699):3437-3443. doi:10.1098/rspb.2010.0485

Tachiki Y, Iwasa Y, Satake A (2010) Pollinator coupling can induce synchronized flowering in different plant species. J Theor Biol 267 (2):153-163. doi:10.1016/j.jtbi.2010.08.023

Blakeney M (2012) Patenting of plant varieties and plant breeding methods. J Exp Bot 63 (3):1069-1074. doi:10.1093/jxb/err368

Balsemao-Pires E, Andrade LR, Sachetto-Martins G (2013) Functional study of TCP23 in Arabidopsis thaliana during plant development. Plant Physiol Biochem 67C:120-125. doi:10.1016/j.plaphy.2013.03.009 Gould PD, Ugarte N, Domijan M, Costa M, Foreman J, MacGregor D, Rose K, Griffiths J, Millar AJ, Finkenstadt B, Penfield S, Rand DA, Halliday KJ, Hall AJW (2013) Network balance via CRY signalling controls the Arabidopsis circadian clock over ambient temperatures. Mol Syst Biol 9. doi:http://www.nature.com/msb/journal/v9/n1/suppinfo/msb20137_S1.html

Quesada V, Sarmiento-Manus R, Gonzalez-Bayon R, Hricova A, Ponce MR, Micol JL (2013) PORPHOBILINOGEN DEAMINASE deficiency alters vegetative and reproductive development and causes lesions in Arabidopsis. PLoS ONE 8 (1):e53378. doi:10.1371/journal.pone.0053378

Chao Y, Yang Q, Kang J, Zhang T, Sun Y (2012) Expression of the alfalfa FRIGIDA- Like Gene, MsFRI-L delays flowering time in transgenic Arabidopsis thaliana. Mol Biol Rep. doi:10.1007/s11033-012-2266-8

Ward JK, Samanta Roy D, Chatterjee I, Bone CR, Springer CJ, Kelly JK (2012) Identification of a Major QTL That Alters Flowering Time at Elevated [CO2] in Arabidopsis thaliana. PLoS ONE 7 (11):e49028. doi:10.1371/journal.pone.0049028

Wang J, Zhang X, Yan G, Zhou Y, Zhang K (2013) Over-expression of the PaAP1 gene from sweet cherry (Prunus avium L.) causes early flowering in Arabidopsis thaliana. J Plant Physiol 170 (3):315-320. doi:10.1016/j.jplph.2012.09.015

Sweetman C, Wong DC, Ford CM, Drew DP (2012) Transcriptome analysis at four developmental stages of grape berry (Vitis vinifera cv. Shiraz) provides insights into regulated and coordinated gene expression. BMC Genomics 13:691. doi:10.1186/1471- 2164-13-691

Moghaddam MR, den Ende WV (2013) Sugars, the clock and transition to flowering. Front Plant Sci 4:22. doi:10.3389/fpls.2013.00022

Ietswaart R, Wu Z, Dean C (2012) Flowering time control: another window to the connection between antisense RNA and chromatin. Trends Genet. doi:10.1016/j.tig.2012.06.002

Blackman BK (2013) Interacting duplications, fluctuating selection, and convergence: the complex dynamics of flowering time evolution during sunflower domestication. J Exp Bot 64 (2):421-431. doi:10.1093/jxb/ers359

Adawy SS, Diab AA, Atia MA, Hussein EH (2013) Construction of genetic linkage map with chromosomal assigment and quantitative trait loci associated with some important agronomic traits in cotton. GM Crops Food 4 (1)

Hubner S, Bdolach E, Ein-Gedy S, Schmid KJ, Korol A, Fridman E (2013) Phenotypic landscapes: phenological patterns in wild and cultivated barley. J Evol Biol 26 (1):163- 174. doi:10.1111/jeb.12043

Munoz-Fambuena N, Mesejo C, Gonzalez-Mas MC, Primo-Millo E, Agusti M, Iglesias DJ (2013) Use or abuse of bioinformatic tools: a response to Samach. Ann Bot 111 (3):335-336. doi:10.1093/aob/mct020

Premkumar G, Sankaranarayanan R, Jeeva S, Rajarathinam K (2011) Cytokinin induced shoot regeneration and flowering of Scoparia dulcis L. (Scrophulariaceae)–an ethnomedicinal herb. Asian Pacific Journal of Tropical Biomedicine 1 (3):169-172. doi:http://dx.doi.org/10.1016/S2221-1691(11)60020-8

Grimm D, Hagmann J, Koenig D, Weigel D, Borgwardt K (2013) Accurate indel prediction using paired-end short reads. BMC Genomics 14:132. doi:10.1186/1471-2164- 14-132

Pokhilko A, Mas P, Millar AJ (2013) Modelling the widespread effects of TOC1 signalling on the plant circadian clock and its outputs. BMC Syst Biol 7:23. doi:10.1186/1752-0509-7-23

Jesske T, Olberg B, Schierholt A, Becker H (2013) Resynthesized lines from domesticated and wild Brassica taxa and their hybrids with B. napus L.: genetic diversity and hybrid yield. Theor Appl Genet 126 (4):1053-1065. doi:10.1007/s00122-012-2036-y

Yu S, Cao L, Zhou CM, Zhang TQ, Lian H, Sun Y, Wu J, Huang J, Wang G, Wang JW (2013) Sugar is an endogenous cue for juvenile-to-adult phase transition in plants. Elife 2:e00269. doi:10.7554/eLife.00269

Jiang J, Shao Y, Du K, Ran L, Fang X, Wang Y (2013) Use of digital gene expression to discriminate gene expression differences in early generations of resynthesized Brassica napus and its diploid progenitors. BMC Genomics 14:72. doi:10.1186/1471-2164-14-72

Cobb JN, Declerck G, Greenberg A, Clark R, McCouch S (2013) Next-generation phenotyping: requirements and strategies for enhancing our understanding of genotype- phenotype relationships and its relevance to crop improvement. TAG Theoretical and applied genetics Theoretische und angewandte Genetik 126 (4):867-887. doi:10.1007/s00122-013-2066-0

Bennett D, Izanloo A, Edwards J, Kuchel H, Chalmers K, Tester M, Reynolds M, Schnurbusch T, Langridge P (2012) Identification of novel quantitative trait loci for days to ear emergence and flag leaf glaucousness in a bread wheat (Triticum aestivum L.) population adapted to southern Australian conditions. Theor Appl Genet 124 (4):697-711. doi:10.1007/s00122-011-1740-3

Yandell M, Ence D (2012) A beginner's guide to eukaryotic genome annotation. Nature reviews Genetics 13 (5):329-342. doi:10.1038/nrg3174

Vieler A, Wu G, Tsai CH, Bullard B, Cornish AJ, Harvey C, Reca IB, Thornburg C, Achawanantakun R, Buehl CJ, Campbell MS, Cavalier D, Childs KL, Clark TJ, Deshpande R, Erickson E, Armenia Ferguson A, Handee W, Kong Q, Li X, Liu B, Lundback S, Peng C, Roston RL, Sanjaya, Simpson JP, Terbush A, Warakanont J, Zauner S, Farre EM, Hegg EL, Jiang N, Kuo MH, Lu Y, Niyogi KK, Ohlrogge J, Osteryoung KW, Shachar-Hill Y, Sears BB, Sun Y, Takahashi H, Yandell M, Shiu SH, Benning C (2012) Genome, functional gene annotation, and nuclear transformation of the heterokont oleaginous alga Nannochloropsis oceanica CCMP1779. PLoS Genet 8 (11):e1003064. doi:10.1371/journal.pgen.1003064

Schmitz RJ, Schultz MD, Urich MA, Nery JR, Pelizzola M, Libiger O, Alix A, McCosh RB, Chen H, Schork NJ, Ecker JR (2013) Patterns of population epigenomic diversity. Nature 495 (7440):193-198. doi:doi:10.1038/nature11968 Schwegler DD, Liu W, Gowda M, Würschum T, Schulz B, Reif JC (2013) Multiple-line cross quantitative trait locus mapping in sugar beet (Beta vulgaris L.). Mol Breed 31 (2):279-287. doi:10.1007/s11032-012-9788-6

Shi T, Li R, Zhao Z, Ding G, Long Y, Meng J, Xu F, Shi L (2013) QTL for Yield Traits and Their Association with Functional Genes in Response to Phosphorus Deficiency in Brassica napus. PLoS ONE 8 (1):e54559. doi:10.1371/journal.pone.0054559

Fogelström E (2013) Herbivores, pollinators and selection on flowering time in tetraploid and octoploid Cardamine pratensis. Stockholm University, Stockholm

Chen Y-Y, Wang Y, Shin L-J, Wu J-F, Shanmugam V, Tsednee M, Lo J-C, Chen C-C, Wu S-H, Yeh K-C (2013) Iron Is Involved in the Maintenance of Circadian Period Length in Arabidopsis. Plant Physiol 161 (3):1409-1420. doi:10.1104/pp.112.212068

Amasino R (2004) Take a cold flower. Nat Genet 36 (2):111-112. doi:10.1038/ng0204- 111

Zhang JZ, Li ZM, Mei L, Yao JL, Hu CG (2009) PtFLC homolog from trifoliate orange (Poncirus trifoliata) is regulated by alternative splicing and experiences seasonal fluctuation in expression level. Planta 229 (4):847-859. doi:10.1007/s00425-008-0885-z

Liu C, Thong Z, Yu H (2009) Coming into bloom: the specification of floral meristems. Development 136 (20):3379-3391. doi:10.1242/dev.033076

Gregis V, Sessa A, Dorca-Fornell C, Kater MM (2009) The Arabidopsis floral meristem identity genes AP1, AGL24 and SVP directly repress class B and C floral homeotic genes. The Plant journal : for cell and molecular biology 60 (4):626-637. doi:10.1111/j.1365- 313X.2009.03985.x

Fekih R, Miyata K, Yoshida R, Ezura H, Mizoguchi T (2009) Isolation of suppressors of late flowering and abnormal flower shape phenotypes caused by overexpression of the SHORT VEGETATIVE PHASE gene in Arabidopsis thaliana. Plant Biotechnol 26 (2):217-224

Tsuji H, Nakamura H, Taoka K-i, Shimamoto K (2013) Functional Diversification of FD Transcription Factors in Rice, Components of Florigen Activation Complexes. Plant Cell Physiol 54 (3):385-397. doi:10.1093/pcp/pct005

Salome PA, Oliva M, Weigel D, Kramer U (2013) Circadian clock adjustment to plant iron status depends on chloroplast and phytochrome function. The EMBO journal 32 (4):511-523. doi:10.1038/emboj.2012.330

Sakai H, Lee SS, Tanaka T, Numa H, Kim J, Kawahara Y, Wakimoto H, Yang CC, Iwamoto M, Abe T, Yamada Y, Muto A, Inokuchi H, Ikemura T, Matsumoto T, Sasaki T, Itoh T (2013) Rice Annotation Project Database (RAP-DB): An Integrative and Interactive Database for Rice Genomics. Plant Cell Physiol 54 (2):e6. doi:10.1093/pcp/pcs183

Kudo T, Akiyama K, Kojima M, Makita N, Sakurai T, Sakakibara H (2013) UniVIO: A Multiple Omics Database with Hormonome and Transcriptome Data from Rice. Plant Cell Physiol 54 (2):e9. doi:10.1093/pcp/pct003 Wang H, Zhang Z, Li H, Zhao X, Liu X, Ortiz M, Lin C, Liu B (2013) CONSTANS- LIKE 7 regulates branching and shade avoidance response in Arabidopsis. J Exp Bot 64 (4):1017-1024. doi:10.1093/jxb/ers376

Eldakak M, Milad SI, Nawar AI, Rohila JS (2013) Proteomics: a biotechnology tool for crop improvement. Front Plant Sci 4:35. doi:10.3389/fpls.2013.00035

Page JT, Gingle AR, Udall JA (2013) PolyCat: A Resource for Genome Categorization of Sequencing Reads From Allopolyploid Organisms. G3 3 (3):517-525. doi:10.1534/g3.112.005298

Parvathaneni RK, Jakkula V, Padi FK, Faure S, Nagarajappa N, Pontaroli AC, Wu X, Bennetzen JL, Devos KM (2013) Fine-Mapping and Identification of a Candidate Gene Underlying the d2 Dwarfing Phenotype in Pearl Millet, Cenchrus americanus (L.) Morrone. G3 3 (3):563-572. doi:10.1534/g3.113.005587

Xu J, Liu Y, Liu J, Cao M, Wang J, Lan H, Xu Y, Lu Y, Pan G, Rong T (2012) The genetic architecture of flowering time and photoperiod sensitivity in maize as revealed by QTL review and meta analysis. J Integr Plant Biol 54 (6):358-373. doi:10.1111/j.1744- 7909.2012.01128.x

Malcomber ST, Preston JC, Reinheimer R, Kossuth J, Kellogg EA (2006) Developmental gene evolution and the origin of grass inflorescence diversity. In: Soltis DELJHSPSCJA (ed) Advances in Botanical Research: Incorporating Advances in Plant Pathology, vol 44. Advances in Botanical Research Incorporating Advances in Plant Pathology. pp 425-481. doi:10.1016/s0065-2296(06)44011-8

Izawa T (2007) Daylength measurements by rice plants in photoperiodic short-day flowering. International Review of Cytology - a Survey of Cell Biology 256:191-222. doi:10.1016/s0074-7696(07)56006-7

Long TA, Rady SM, Benfey PN (2008) Systems Approaches to Identifying Gene Regulatory Networks in Plants. Annu Rev Cell Dev Biol 24:81-103. doi:10.1146/annurev.cellbio.24.110707.175408

Van de Peer Y, Fawcett JA, Proost S, Sterck L, Vandepoele K (2009) The flowering world: a tale of duplications. Trends Plant Sci 14 (12):680-688. doi:10.1016/j.tplants.2009.09.001

Park HJ, Kim WY, Park HC, Lee SY, Bohnert HJ, Yun DJ (2011) SUMO and SUMOylation in plants. Mol Cells 32 (4):305-316. doi:10.1007/s10059-011-0122-7

Wingler A (2011) Interactions between flowering and senescence regulation and the influence of low temperature in Arabidopsis and crop plants. Ann Appl Biol 159 (3):320- 338. doi:10.1111/j.1744-7348.2011.00497.x

Chandler JW (2012) Floral meristem initiation and emergence in plants. Cell Mol Life Sci 69 (22):3807-3818. doi:10.1007/s00018-012-0999-0

Ponnu J, Wahl V, Schmid M (2011) Trehalose-6-phosphate: connecting plant metabolism and development. Front Plant Sci 2:70. doi:10.3389/fpls.2011.00070 Mlotshwa S, Yang Z, Kim Y, Chen X (2006) Floral patterning defects induced by Arabidopsis APETALA2 and microRNA172 expression in Nicotiana benthamiana. Plant Mol Biol 61 (4-5):781-793. doi:10.1007/s11103-006-0049-0

Chincinska I, Gier K, Krugel U, Liesche J, He H, Grimm B, Harren FJ, Cristescu SM, Kuhn C (2013) Photoperiodic regulation of the sucrose transporter StSUT4 affects the expression of circadian-regulated genes and ethylene production. Front Plant Sci 4:26. doi:10.3389/fpls.2013.00026

Ma B, Wei L, Mason AS, An Z, Xiao M, Banga SS, Zhang J, Zhou Q, Fu D (2013) Characterization and comparison of key genes involved with flowering time regulation from Arabidopsis thaliana, Oryza sativa and Zea mays. Afr J Biotechnol 12 (4):353-363. doi:10.5897/AJB12.1778

Bujdoso N, Davis SJ (2013) Mathematical modeling of an oscillating gene circuit to unravel the circadian-clock network of Arabidopsis thaliana. Front Plant Sci 4. doi:10.3389/fpls.2013.00003

You X, Wang L, Liang W, Gai Y, Wang X, Chen W (2012) Floral reversion mechanism in longan (Dimocarpus longan Lour.) revealed by proteomic and anatomic analyses. Journal of Proteomics 75 (4):1099-1118. doi:10.1016/j.jprot.2011.10.023

Mutasa-Goettgens ES, Joshi A, Holmes HF, Hedden P, Gottgens B (2012) A new RNASeq-based reference transcriptome for sugar beet and its application in transcriptome-scale analysis of vernalization and gibberellin responses. BMC Genomics 13:99. doi:10.1186/1471-2164-13-99

Mutasa-Goettgens ES, Qi A, Zhang W, Schulze-Buxloh G, Jennings A, Hohmann U, Müller AE, Hedden P (2010) Bolting and flowering control in sugar beet: relationships and effects of gibberellin, the bolting gene B and vernalization. AoB Plants 2010:plq012. doi:doi:10.1093/aobpla/plq012

Mutasa-Goettgens E, Qi A, Mathews A, Thomas S, Phillips A, Hedden P (2009) Modification of gibberellin signalling (metabolism & signal transduction) in sugar beet: analysis of potential targets for crop improvement. Transgenic Res 18 (2):301-308. doi:10.1007/s11248-008-9211-6

Sun L-M, Ai X-Y, Li W-Y, Guo W-W, Deng X-X, Hu C-G, Zhang J-Z (2012) Identification and Comparative Profiling of miRNAs in an Early Flowering Mutant of Trifoliate Orange and Its Wild Type by Genome-Wide Deep Sequencing. PLoS ONE 7 (8):e43760. doi:10.1371/journal.pone.0043760

Ai XY, Lin G, Sun LM, Hu CG, Guo WW, Deng XX, Zhang JZ (2012) A global view of gene activity at the flowering transition phase in precocious trifoliate orange and its wild- type [Poncirus trifoliata (L.) Raf.] by transcriptome and proteome analysis. Gene 510 (1):47-58. doi:10.1016/j.gene.2012.07.090

Huang X, Zhao Y, Wei X, Li C, Wang A, Zhao Q, Li W, Guo Y, Deng L, Zhu C, Fan D, Lu Y, Weng Q, Liu K, Zhou T, Jing Y, Si L, Dong G, Huang T, Lu T, Feng Q, Qian Q, Li J, Han B (2012) Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nat Genet 44 (1):32-39. doi:10.1038/ng.1018 Hsu CY, Adams JP, No K, Liang H, Meilan R, Pechanova O, Barakat A, Carlson JE, Page GP, Yuceer C (2012) Overexpression of Constans Homologs CO1 and CO2 Fails to Alter Normal Reproductive Onset and Fall Bud Set in Woody Perennial Poplar. PLoS ONE 7 (9):e45448. doi:10.1371/journal.pone.0045448

Freiman A, Shlizerman L, Golobovitch S, Yablovitz Z, Korchinsky R, Cohen Y, Samach A, Chevreau E, Le Roux P-M, Patocchi A, Flaishman M (2012) Development of a transgenic early flowering pear (Pyrus communis L.) genotype by RNAi silencing of PcTFL1-1 and PcTFL1-2. Planta 235 (6):1239-1251. doi:10.1007/s00425-011-1571-0

El-Assal Salah E-D, Abd-Alla SM, El-Tarras AA, El-Awady MA (2011) Production of early flowering transgenic barley expressing the early flowering allele of Cryptochrome2 gene. GM Crops 2 (1):50-57. doi:10.4161/gmcr.2.1.15627

Zhong X, Dai X, Xv J, Wu H, Liu B, Li H (2012) Cloning and expression analysis of GmGAL1, SOC1 homolog gene in soybean. Mol Biol Rep. doi:10.1007/s11033-012- 1524-0

Kikuchi R, Kawahigashi H, Oshima M, Ando T, Handa H (2012) The differential expression of HvCO9, a member of the CONSTANS-like gene family, contributes to the control of flowering under short-day conditions in barley. J Exp Bot 63 (2):773-784. doi:10.1093/jxb/err299

Wang J, Hu J, Qian Q, Xue HW (2012) LC2 and OsVIL2 Promote Rice Flowering by Photoperoid-induced Epigenetic Silencing of OsLF. Mol Plant. doi:10.1093/mp/sss096

Cockram J, Thiel T, Steuernagel B, Stein N, Taudien S, Bailey PC, O'Sullivan DM (2012) Genome Dynamics Explain the Evolution of Flowering Time CCT Domain Gene Families in the Poaceae. PLoS ONE 7 (9):e45307. doi:10.1371/journal.pone.0045307

Zhang J, Wang Y, Wu S, Yang J, Liu H, Zhou Y (2012) A single nucleotide polymorphism at the Vrn-D1 promoter region in common wheat is associated with vernalization response. TAG Theoretical and Applied Genetics:1-8. doi:10.1007/s00122- 012-1946-z

Wang XL, Liu XX, Chen W, Li WC, Wu JH, Wang SY, Yang YC, Xi LQ (2012) Characterization of the FaVRT-2 gene encoding a MADS-box transcription factor responsive to vernalization in tall fescue (Festuca arundinacea). Plant Biosyst 146 (2):419- 427. doi:10.1080/11263504.2012.657713

Huang L, Wang Q, Zhang L-Q, Yuan Z-W, Wang J-R, Zhang H-G, Zheng Y-L, Liu D-C (2012) Haplotype variations of gene Ppd-D1 in Aegilops tauschii and their implications on wheat origin. Genet Resour Crop Evol 59 (6):1027-1032. doi:10.1007/s10722-011- 9741-2

Sun X, Qin Q, Zhang J, Zhang C, Zhou M, Paek K, Cui Y (2012) Isolation and characterization of the FVE gene of a Doritaenopsis hybrid involved in the regulation of flowering. Plant Growth Regul 68 (1):77-86. doi:10.1007/s10725-012-9695-1

Kinjo H, Shitsukawa N, Takumi S, Murai K (2012) Diversification of three APETALA1/FRUITFULL-like genes in wheat. Molecular Genet Genom 287 (4):283-294. doi:10.1007/s00438-012-0679-7 Li C, Xie H, Zhang L, Xu Y, Li Y-F, Ma R-C (2012) Molecular characterization of the PpMADS1 gene from peach. Tree Genet Genomes 8 (4):831-840. doi:10.1007/s11295- 012-0468-9

Yang Y, Peng Q, Chen GX, Li XH, Wu CY (2012) OsELF3 is Involved in Circadian Clock Regulation for Promoting Flowering under Long-Day Conditions in Rice. Mol Plant. doi:10.1093/mp/sss062

Diaz A, Zikhali M, Turner AS, Isaac P, Laurie DA (2012) Copy Number Variation Affecting the Photoperiod-B1 and Vernalization-A1 Genes Is Associated with Altered Flowering Time in Wheat (Triticum aestivum). PLoS ONE 7 (3):e33234. doi:10.1371/journal.pone.0033234

Saito H, Ogiso-Tanaka E, Okumoto Y, Yoshitake Y, Izumi H, Yokoo T, Matsubara K, Hori K, Yano M, Inoue H, Tanisaka T (2012) Ef7 Encodes an ELF3-like Protein and Promotes Rice Flowering by Negatively Regulating the Floral Repressor Gene Ghd7 under Both Short- and Long-Day Conditions. Plant Cell Physiol. doi:10.1093/pcp/pcs029

Chang L, Wu L, Chen Y, Ku L, Yang S, Zhang S, Wang X, Wei X (2012) Expression and Functional Analysis of the ZCN1(ZmTFL1) Gene, a TERMINAL FLOWER 1 Homologue that Regulates the Vegetative to Reproductive Transition in Maize. Plant Mol Biol Report 30 (1):55-66. doi:10.1007/s11105-011-0317-2

Oda A, Narumi T, Li T, Kando T, Higuchi Y, Sumitomo K, Fukai S, Hisamatsu T (2012) CsFTL3, a chrysanthemum FLOWERING LOCUS T-like gene, is a key regulator of photoperiodic flowering in chrysanthemums. J Exp Bot 63 (3):1461-1477. doi:10.1093/jxb/err387

Shcherban AB, Efremova TT, Salina EA (2012) Identification of a new Vrn-B1 allele using two near-isogenic wheat lines with difference in heading time. Mol Breed 29:675– 685. doi:10.1007/s11032-011-9581-y

Irwin JA, Lister C, Soumpourou E, Zhang Y, Howell EC, Teakle G, Dean C (2012) Functional alleles of the flowering time regulator FRIGIDA in the Brassica oleracea genome. BMC Plant Biol 12 (1):21. doi:10.1186/1471-2229-12-21

Shen L, Chen Y, Su X, Zhang S, Pan H, Huang M (2012) Two FT orthologs from Populus simonii Carrière induce early flowering in Arabidopsis and poplar trees. Plant Cell, Tissue and Organ Culture 108 (3):371-379. doi:10.1007/s11240-011-0048-y

Matsubara K, Ogiso-Tanaka E, Hori K, Ebana K, Ando T, Yano M (2012) Natural variation in Hd17, a homolog of Arabidopsis ELF3 that is involved in rice photoperiodic flowering. Plant Cell Physiol. doi:10.1093/pcp/pcs028

Abou-Elwafa SF, Büttner B, Kopisch-Obuch FJ, Jung C, Müller AE (2012) Genetic identification of a novel bolting locus in Beta vulgaris which promotes annuality independently of the bolting gene B. Mol Breed 29 (4):989–998. doi:10.1007/s11032-011- 9671-x

Lakis G, Navascues M, Rekima S, Simon M, Remigereau MS, Leveugle M, Takvorian N, Lamy F, Depaulis F, Robert T (2012) Evolution of Neutral and Flowering Genes along Pearl Millet (Pennisetum glaucum) Domestication. PLoS ONE 7 (5):e36642. doi:10.1371/journal.pone.0036642 Ren X, Li C, Cakir M, Zhang W, Grime C, Zhang X-Q, Broughton S, Sun D, Lance R (2012) A quantitative trait locus for long photoperiod response mapped on chromosome 4H in barley. Mol Breed 30 (2):1121-1130. doi:10.1007/s11032-012-9700-4

Takenaka S, Kawahara T (2012) Evolution and dispersal of emmer wheat (Triticum sp.) from novel haplotypes of Ppd-1 (photoperiod response) genes and their surrounding DNA sequences. TAG Theoretical and Applied Genetics 125 (5):999-1014. doi:10.1007/s00122-012-1890-y

Duchene E, Butterlin G, Dumas V, Merdinoglu D (2012) Towards the adaptation of grapevine varieties to climate change: QTLs and candidate genes for developmental stages. Theor Appl Genet 124 (4):623-635. doi:10.1007/s00122-011-1734-1

Bhosale SU, Stich B, Rattunde HF, Weltzien E, Haussmann BI, Hash CT, Ramu P, Cuevas HE, Paterson AH, Melchinger AE, Parzies HK (2012) Association analysis of photoperiodic flowering time genes in West and Central African sorghum [Sorghum bicolor (L.) Moench]. BMC Plant Biol 12 (1):32. doi:10.1186/1471-2229-12-32

Kitagawa S, Shimada S, Murai K (2012) Effect of Ppd-1 on the expression of flowering- time genes in vegetative and reproductive growth stages of wheat. Genes Genet Syst 87 (3):161-168

Cruz-Izquierdo S, Avila CM, Satovic Z, Palomino C, Gutierrez N, Ellwood SR, Phan HT, Cubero JI, Torres AM (2012) Comparative genomics to bridge Vicia faba with model and closely-related legume species: stability of QTLs for flowering and yield-related traits. Theor Appl Genet. doi:10.1007/s00122-012-1952-1

Zou G, Zhai G, Feng Q, Yan S, Wang A, Zhao Q, Shao J, Zhang Z, Zou J, Han B, Tao Y (2012) Identification of QTLs for eight agronomically important traits using an ultra-high- density map based on SNPs generated from high-throughput sequencing in sorghum under contrasting photoperiods. J Exp Bot 63 (15):5451-5462. doi:10.1093/jxb/ers205

Yamaguchi A, Abe M (2012) Regulation of reproductive development by non-coding RNA in Arabidopsis: to flower or not to flower. J Plant Res. doi:10.1007/s10265-012- 0513-7

Pena L, Martin-Trillo M, Juarez J, Pina JA, Navarro L, Martinez-Zapater JM (2001) Constitutive expression of Arabidopsis LEAFY or APETALA1 genes in citrus reduces their generation time. Nat Biotechnol 19 (3):263-267. doi:10.1038/85719

Mimida N, Ureshino A, Tanaka N, Shigeta N, Sato N, Moriya-Tanaka Y, Iwanami H, Honda C, Suzuki A, Komori S, Wada M (2011) Expression patterns of several floral genes during flower initiation in the apical buds of apple (Malus x domestica Borkh.) revealed by in situ hybridization. Plant Cell Rep 30 (8):1485-1492. doi:10.1007/s00299- 011-1057-3

Zhu Y, Cao Z, Xu F, Huang Y, Chen M, Guo W, Zhou W, Zhu J, Meng J, Zou J, Jiang L (2012) Analysis of gene expression profiles of two near-isogenic lines differing at a QTL region affecting oil content at high temperatures during seed maturation in oilseed rape (Brassica napus L.). TAG Theoretical and applied genetics Theoretische und angewandte Genetik 124 (3):515-531. doi:10.1007/s00122-011-1725-2 Nagel DH, Kay SA (2012) Complexity in the wiring and regulation of plant circadian networks. Current biology : CB 22 (16):R648-657. doi:10.1016/j.cub.2012.07.025

Malapeira J, Khaitova LC, Mas P (2012) Ordered changes in histone modifications at the core of the Arabidopsis circadian clock. Proc Natl Acad Sci U S A 109 (52):21540-21545. doi:10.1073/pnas.1217022110

Zhang Y, Lian L, Liu Q, Xiao N, Fang R, Chen X (2012) Altered expression of CmNRRa changes flowering time of Chrysanthemum morifolium. Plant Biotechnol J. doi:10.1111/pbi.12026

Van Inghelandt D, Melchinger AE, Martinant JP, Stich B (2012) Genome-wide association mapping of flowering time and northern corn leaf blight (Setosphaeria turcica) resistance in a vast commercial maize germplasm set. BMC Plant Biol 12 (1):56. doi:10.1186/1471-2229-12-56

Hara T, Iwata H, Okuno K, Matsui K, Ohsawa R (2011) QTL analysis of photoperiod sensitivity in common buckwheat by using markers for expressed sequence tags and photoperiod-sensitivity candidate genes. Breed Sci 61 (4):394-404. doi:10.1270/jsbbs.61.394

El Mannai Y, Shehzad T, Okuno K (2012) Mapping of QTLs underlying flowering time in sorghum [Sorghum bicolor (L.) Moench]. Breed Sci 62 (2):151-159. doi:10.1270/jsbbs.62.151

Liang D, White RG, Waterhouse PM (2012) Gene silencing in Arabidopsis spreads from the root to the shoot, through a gating barrier, by template-dependent, nonvascular, cell- to-cell movement. Plant Physiol 159 (3):984-1000. doi:10.1104/pp.112.197129

Zhang L, Cheng Z, Qin R, Qiu Y, Wang JL, Cui X, Gu L, Zhang X, Guo X, Wang D, Jiang L, Wu CY, Wang H, Cao X, Wan J (2012) Identification and Characterization of an Epi-Allele of FIE1 Reveals a Regulatory Linkage between Two Epigenetic Marks in Rice. Plant Cell 24 (11):4407-4421. doi:10.1105/tpc.112.102269

Troncoso-Ponce MA, Kilaru A, Cao X, Durrett TP, Fan J, Jensen JK, Thrower NA, Pauly M, Wilkerson C, Ohlrogge JB (2011) Comparative deep transcriptional profiling of four developing oilseeds. The Plant journal : for cell and molecular biology 68 (6):1014-1027. doi:10.1111/j.1365-313X.2011.04751.x

Ben Sadok I, Moutier N, Garcia G, Dosba F, Grati-Kamoun N, Rebai A, Khadari B, Costes E (2013) Genetic determinism of the vegetative and reproductive traits in an F1 olive tree progeny. Tree Genet Genomes 9 (1):205-221. doi:10.1007/s11295-012-0548-x

Liu S, Wang F, Gao LJ, Li JH, Li RB, Gao HL, Deng GF, Yang JS, Luo XJ (2012) Genetic analysis and fine mapping of LH1 and LH2, a set of complementary genes controlling late heading in rice (Oryza sativa L.). Breed Sci 62 (4):310-319. doi:10.1270/jsbbs.62.310

Tsuda M, Okuzaki A, Kaneko Y, Tabei Y (2012) Persistent C genome chromosome regions identified by SSR analysis in backcross progenies between Brassica juncea and B. napus. Breed Sci 62 (4):328-333. doi:10.1270/jsbbs.62.328 Ellwood ER, Temple SA, Primack RB, Bradley NL, Davis CC (2013) Record-breaking early flowering in the eastern United States. PLoS ONE 8 (1):e53788. doi:10.1371/journal.pone.0053788

Li L, Petsch K, Shimizu R, Liu S, Xu WW, Ying K, Yu J, Scanlon MJ, Schnable PS, Timmermans MC, Springer NM, Muehlbauer GJ (2013) Mendelian and non-mendelian regulation of gene expression in maize. PLoS Genet 9 (1):e1003202. doi:10.1371/journal.pgen.1003202

Zhao L, Yuanda L, Caiping C, Xiangchao T, Xiangdong C, Wei Z, Hao D, Xiuhua G, Wangzhen G (2012) Toward allotetraploid cotton genome assembly: integration of a high- density molecular genetic linkage map with DNA sequence information. BMC Genomics 13:539. doi:10.1186/1471-2164-13-539

Zhu L, Liu D, Li Y, Li N (2013) Functional phosphoproteomic analysis reveals that a serine-62-phosphorylated isoform of ethylene response factor110 is involved in Arabidopsis bolting. Plant Physiol 161 (2):904-917. doi:10.1104/pp.112.204487

Agusti J, Greb T (2013) Going with the wind - Adaptive dynamics of plant secondary meristems. Mech Dev 130 (1):34-44. doi:10.1016/j.mod.2012.05.011

Mendez-Vigo B, Gomaa NH, Alonso-Blanco C, Xavier Pico F (2013) Among- and within-population variation in flowering time of Iberian Arabidopsis thaliana estimated in field and glasshouse conditions. New Phytol 197 (4):1332-1343. doi:10.1111/nph.12082

Takeda S, Iwasaki A, Matsumoto N, Uemura T, Tatematsu K, Okada K (2013) Physical interaction of floral organs controls petal morphogenesis in Arabidopsis thaliana. Plant Physiol. doi:10.1104/pp.112.212084

Jeong SW, Park S, Jin JS, Seo ON, Kim GS, Kim YH, Bae H, Lee G, Kim ST, Lee WS, Shin SC (2012) Influences of four different light-emitting diode lights on flowering and polyphenol variations in the leaves of chrysanthemum (Chrysanthemum morifolium). J Agric Food Chem 60 (39):9793-9800. doi:10.1021/jf302272x

Rolauffs S, Fackendahl P, Sahm J, Fiene G, Hoecker U (2012) Arabidopsis COP1 and SPA genes are essential for plant elongation but not for acceleration of flowering time in response to a low red light to far-red light ratio. Plant Physiol 160 (4):2015-2027. doi:10.1104/pp.112.207233

Funck D, Winter G, Baumgarten L, Forlani G (2012) Requirement of proline synthesis during Arabidopsis reproductive development. BMC Plant Biol 12:191. doi:10.1186/1471-2229-12-191

Diaz-Riquelme J, Grimplet J, Martinez-Zapater JM, Carmona MJ (2012) Transcriptome variation along bud development in grapevine (Vitis vinifera L.). BMC Plant Biol 12:181. doi:10.1186/1471-2229-12-181

Shalom L, Samuels S, Zur N, Shlizerman L, Zemach H, Weissberg M, Ophir R, Blumwald E, Sadka A (2012) Alternate Bearing in Citrus: Changes in the Expression of Flowering Control Genes and in Global Gene Expression in ON- versus OFF-Crop Trees. PLoS ONE 7 (10):e46930. doi:10.1371/journal.pone.0046930 Olesen JE, Borgesen CD, Elsgaard L, Palosuo T, Rotter RP, Skjelvag AO, Peltonen- Sainio P, Borjesson T, Trnka M, Ewert F, Siebert S, Brisson N, Eitzinger J, van Asselt ED, Oberforster M, van der Fels-Klerx HJ (2012) Changes in time of sowing, flowering and maturity of cereals in Europe under climate change. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 29 (10):1527-1542. doi:10.1080/19440049.2012.712060

Nakamichi N, Kiba T, Kamioka M, Suzuki T, Yamashino T, Higashiyama T, Sakakibara H, Mizuno T (2012) Transcriptional repressor PRR5 directly regulates clock-output pathways. Proc Natl Acad Sci U S A. doi:10.1073/pnas.1205156109

Martin SL, Husband BC (2012) Whole genome duplication affects evolvability of flowering time in an autotetraploid plant. PLoS ONE 7 (9):e44784. doi:10.1371/journal.pone.0044784

Lee JH, Kim JJ, Kim SH, Cho HJ, Kim J, Ahn JH (2012) The E3 ubiquitin ligase HOS1 Regulates Low Ambient Temperature-Responsive Flowering in Arabidopsis thaliana. Plant Cell Physiol. doi:10.1093/pcp/pcs123

Lai AG, Doherty CJ, Mueller-Roeber B, Kay SA, Schippers JH, Dijkwel PP (2012) CIRCADIAN CLOCK-ASSOCIATED 1 regulates ROS homeostasis and oxidative stress responses. Proc Natl Acad Sci U S A. doi:10.1073/pnas.1209148109

Klintenas M, Pin PA, Benlloch R, Ingvarsson PK, Nilsson O (2012) Analysis of conifer FLOWERING LOCUS T/TERMINAL FLOWER1-like genes provides evidence for dramatic biochemical evolution in the angiosperm FT lineage. New Phytol. doi:10.1111/j.1469-8137.2012.04332.x

Hwan Lee J, Joon Kim J, Ahn JH (2012) Role of SEPALLATA3 (SEP3) as a downstream gene of miR156-SPL3-FT circuitry in ambient temperature-responsive flowering. Plant Signal Behav 7 (9)

Matsumoto T, Yasumoto AA, Nitta K, Yahara T, Tachida H (2013) Difference in flowering time as an isolating barrier. J Theor Biol 317:161-167. doi:10.1016/j.jtbi.2012.10.001

Dignat G, Welcker C, Sawkins M, Ribaut JM, Tardieu F (2012) The growths of leaves, shoots, roots and reproductive organs partly share their genetic control in maize plants. Plant Cell Environ. doi:10.1111/pce.12045

Kafer J, Talianova M, Bigot T, Michu E, Gueguen L, Widmer A, Zluvova J, Glemin S, Marais GA (2013) Patterns of molecular evolution in dioecious and non-dioecious Silene. J Evol Biol 26 (2):335-346. doi:10.1111/jeb.12052

Henry WB (2013) Maize aflatoxin accumulation segregates with early maturing selections from an s2 breeding cross population. Toxins (Basel) 5 (1):162-172. doi:10.3390/toxins5010162

Glemin S, Ronfort J (2013) Adaptation and maladaptation in selfing and outcrossing species: new mutations versus standing variation. Evolution 67 (1):225-240. doi:10.1111/j.1558-5646.2012.01778.x

Edwards D, Batley J, Snowdon R (2013) Accessing complex crop genomes with next- generation sequencing. Theor Appl Genet 126 (1):1-11. doi:10.1007/s00122-012-1964-x Sun C, Fang J, Zhao T, Xu B, Zhang F, Liu L, Tang J, Zhang G, Deng X, Chen F, Qian Q, Cao X, Chu C (2012) The Histone Methyltransferase SDG724 Mediates H3K36me2/3 Deposition at MADS50 and RFT1 and Promotes Flowering in Rice. The Plant Cell Online 24 (8):3235-3247. doi:10.1105/tpc.112.101436

Okon S, Kowalczyk K, Miazga D (2012) Identification of Ppd-B1 alleles in common wheat cultivars by CAPS marker. Genetika 48 (5):628-633

Li W, Dai L, Wang GL (2012) PUB13, a U-box/ARM E3 ligase, regulates plant defense, cell death, and flowering time. Plant Signal Behav 7 (8)

Ebine K, Uemura T, Nakano A, Ueda T (2012) Flowering Time Modulation by a Vacuolar SNARE via FLOWERING LOCUS C in Arabidopsis thaliana. PLoS ONE 7 (7):e42239. doi:10.1371/journal.pone.0042239

Cohen O, Borovsky Y, David-Schwartz R, Paran I (2012) CaJOINTLESS is a MADS-box gene involved in suppression of vegetative growth in all shoot meristems in pepper. J Exp Bot 63 (13):4947-4957. doi:10.1093/jxb/ers172

Goremykin VV, Nikiforova SV, Biggs PJ, Zhong B, Delange P, Martin W, Woetzel S, Atherton RA, McLenachan PA, Lockhart PJ (2012) The Evolutionary Root of Flowering Plants. Syst Biol. doi:10.1093/sysbio/sys070

Buerstmayr M, Huber K, Heckmann J, Steiner B, Nelson JC, Buerstmayr H (2012) Mapping of QTL for Fusarium head blight resistance and morphological and developmental traits in three backcross populations derived from Triticum dicoccum x Triticum durum. Theor Appl Genet 125 (8):1751-1765. doi:10.1007/s00122-012-1951-2

Peng Y, Li C, Fritschi FB (2012) Apoplastic infusion of sucrose into stem internodes during female flowering does not increase grain yield in maize plants grown under nitrogen limiting conditions. Physiol Plant. doi:10.1111/j.1399-3054.2012.01711.x

Lee JH, Kim SH, Kim JJ, Ahn JH (2012) Alternative splicing and expression analysis of High expression of osmotically responsive genes1 (HOS1) in Arabidopsis. BMB Rep 45 (9):515-520

Kim MY, Van K, Kang YJ, Kim KH, Lee SH (2012) Tracing soybean domestication history: From nucleotide to genome. Breed Sci 61 (5):445-452. doi:10.1270/jsbbs.61.445

Kemi U, Niittyvuopio A, Toivainen T, Pasanen A, Quilot-Turion B, Holm K, Lagercrantz U, Savolainen O, Kuittinen H (2013) Role of vernalization and of duplicated FLOWERING LOCUS C in the perennial Arabidopsis lyrata. New Phytol 197 (1):323- 335. doi:10.1111/j.1469-8137.2012.04378.x

Jung JH, Seo PJ, Park CM (2012) The E3 ubiquitin ligase HOS1 regulates Arabidopsis flowering by mediating CONSTANS degradation under cold stress. J Biol Chem. doi:10.1074/jbc.M112.394338

Jensen E, Robson P, Norris J, Cookson A, Farrar K, Donnison I, Clifton-Brown J (2012) Flowering induction in the bioenergy grass Miscanthus sacchariflorus is a quantitative short-day response, whilst delayed flowering under long days increases biomass accumulation. J Exp Bot. doi:10.1093/jxb/ers346 Fernandez L, Chaib J, Martinez-Zapater JM, Thomas MR, Torregrosa L (2012) Misexpression of a PISTILLATA-like MADS-box gene prevents fruit development in grapevine. Plant J. doi:10.1111/tpj.12083

Chen C, Declerck G, Tian F, Spooner W, McCouch S, Buckler E (2012) PICARA, an Analytical Pipeline Providing Probabilistic Inference about A Priori Candidates Genes Underlying Genome-Wide Association QTL in Plants. PLoS ONE 7 (11):e46596. doi:10.1371/journal.pone.0046596

Wang M, Jiang N, Jia T, Leach L, Cockram J, Comadran J, Shaw P, Waugh R, Luo Z (2012) Genome-wide association mapping of agronomic and morphologic traits in highly structured populations of barley cultivars. TAG Theoretical and applied genetics Theoretische und angewandte Genetik 124 (2):233-246. doi:10.1007/s00122-011-1697-2

Farre A, Cuadrado A, Lacasa-Benito I, Cistue L, Schubert I, Comadran J, Jansen J, Romagosa I (2012) Genetic characterization of a reciprocal translocation present in a widely grown barley variety. Molecular breeding : new strategies in plant improvement 30 (2):1109-1119. doi:10.1007/s11032-011-9698-z

Brenchley R, Spannagl M, Pfeifer M, Barker GLA, D/'Amore R, Allen AM, McKenzie N, Kramer M, Kerhornou A, Bolser D, Kay S, Waite D, Trick M, Bancroft I, Gu Y, Huo N, Luo M-C, Sehgal S, Gill B, Kianian S, Anderson O, Kersey P, Dvorak J, McCombie WR, Hall A, Mayer KFX, Edwards KJ, Bevan MW, Hall N (2012) Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 491 (7426):705-710. doi:http://www.nature.com/nature/journal/v491/n7426/abs/nature11650.html#supplementa ry-information

Liu R, Jia H, Cao X, Huang J, Li F, Tao Y, Qiu F, Zheng Y, Zhang Z (2012) Fine Mapping and Candidate Gene Prediction of a Pleiotropic Quantitative Trait Locus for Yield-Related Trait in Zea mays. PLoS ONE 7 (11):e49836. doi:10.1371/journal.pone.0049836

English AC, Richards S, Han Y, Wang M, Vee V, Qu J, Qin X, Muzny DM, Reid JG, Worley KC, Gibbs RA (2012) Mind the Gap: Upgrading Genomes with Pacific Biosciences RS Long-Read Sequencing Technology. PLoS ONE 7 (11):e47768. doi:10.1371/journal.pone.0047768

Johnson MTJ, Carpenter EJ, Tian Z, Bruskiewich R, Burris JN, Carrigan CT, Chase MW, Clarke ND, Covshoff S, dePamphilis CW, Edger PP, Goh F, Graham S, Greiner S, Hibberd JM, Jordon-Thaden I, Kutchan TM, Leebens-Mack J, Melkonian M, Miles N, Myburg H, Patterson J, Pires JC, Ralph P, Rolf M, Sage RF, Soltis D, Soltis P, Stevenson D, Stewart CN, Jr., Surek B, Thomsen CJM, Villarreal JC, Wu X, Zhang Y, Deyholos MK, Wong GK-S (2012) Evaluating Methods for Isolating Total RNA and Predicting the Success of Sequencing Phylogenetically Diverse Plant Transcriptomes. PLoS ONE 7 (11):e50226. doi:10.1371/journal.pone.0050226

Hsu PY, Harmer SL (2012) Circadian Phase Has Profound Effects on Differential Expression Analysis. PLoS ONE 7 (11):e49853. doi:10.1371/journal.pone.0049853

Yang L, Liu T, Li B, Sui Y, Chen J, Shi J, Wing RA, Chen M (2012) Comparative Sequence Analysis of the Ghd7 Orthologous Regions Revealed Movement of Ghd7 in the Grass Genomes. PLoS ONE 7 (11):e50236. doi:10.1371/journal.pone.0050236 Kumawat G, Raje R, Bhutani S, Pal J, Mithra A, Gaikwad K, Sharma T, Singh N (2012) Molecular mapping of QTLs for plant type and earliness traits in pigeonpea (Cajanus cajan L. Millsp.). BMC Genet 13 (1):84

Pestsova E, Meinhard J, Menze A, Fischer U, Windhovel A, Westhoff P (2008) Transcript profiles uncover temporal and stress-induced changes of metabolic pathways in germinating sugar beet seeds. BMC Plant Biol 8:122. doi:10.1186/1471-2229-8-122

Shin J, Lee S-H (2012) Molecular markers for the E2 and E3 genes controlling flowering and maturity in soybean. Mol Breed 30 (4):1793-1798. doi:10.1007/s11032-012-9743-6

Tsehaye Y, Bjørnstad Å, Abay F (2012) Phenotypic and genotypic variation in flowering time in Ethiopian barleys. Euphytica 188 (3):309-323. doi:10.1007/s10681-012-0764-3

Zhang JZ, Ai XY, Sun LM, Zhang DL, Guo WW, Deng XX, Hu CG (2011) Transcriptome profile analysis of flowering molecular processes of early flowering trifoliate orange mutant and the wild-type [Poncirus trifoliata (L.) Raf.] by massively parallel signature sequencing. BMC Genomics 12:63. doi:10.1186/1471-2164-12-63

Porri A, Torti S, Romera-Branchat M, Coupland G (2012) Spatially distinct regulatory roles for gibberellins in the promotion of flowering of Arabidopsis under long photoperiods. Development 139 (12):2198-2209. doi:10.1242/dev.077164

Osnato M, Castillejo C, Matias-Hernandez L, Pelaz S (2012) TEMPRANILLO genes link photoperiod and gibberellin pathways to control flowering in Arabidopsis. Nat Commun 3:808. doi:10.1038/ncomms1810

Khan MR, Khan IU, Ali GM (2012) MPF2-Like MADS-Box Genes Affecting Expression of SOC1 and MAF1 are Recruited to Control Flowering Time. Mol Biotechnol:1-12

He Y (2012) Chromatin regulation of flowering. Trends Plant Sci. doi:10.1016/j.tplants.2012.05.001

Huang J, Zhao X, Weng X, Wang L, Xie W (2012) The Rice B-Box Zinc Finger Gene Family: Genomic Identification, Characterization, Expression Profiling and Diurnal Analysis. PLoS ONE 7 (10):e48242. doi:10.1371/journal.pone.0048242

Zhang JZ, Ai XY, Sun LM, Zhang DL, Guo WW, Deng XX, Hu CG (2011) Molecular cloning and functional characterization of genes associated with flowering in citrus using an early-flowering trifoliate orange (Poncirus trifoliata L. Raf.) mutant. Plant Mol Biol 76 (1-2):187-204. doi:10.1007/s11103-011-9780-2

Zhang JZ, Ai XY, Guo WW, Peng SA, Deng XX, Hu CG (2012) Identification of miRNAs and their target genes using deep sequencing and degradome analysis in trifoliate orange [Poncirus trifoliata L. Raf] [corrected]. Mol Biotechnol 51 (1):44-57. doi:10.1007/s12033-011-9439-x

Vadez V, Hash T, Bidinger FR, Kholova J (2012) II.1.5 Phenotyping pearl millet for adaptation to drought. Front Physiol 3:386. doi:10.3389/fphys.2012.00386

Sehgal D, Rajaram V, Armstead IP, Vadez V, Yadav YP, Hash CT, Yadav RS (2012) Integration of gene-based markers in a pearl millet genetic map for identification of candidate genes underlying drought tolerance quantitative trait loci. BMC Plant Biol 12:9. doi:10.1186/1471-2229-12-9

Hamama L, Naouar A, Gala R, Voisine L, Pierre S, Jeauffre J, Cesbron D, Leplat F, Foucher F, Dorion N, Hibrand-Saint Oyant L (2012) Overexpression of RoDELLA impacts the height, branching, and flowering behaviour of Pelargonium × domesticum transgenic plants. Plant Cell Rep 31 (11):2015-2029. doi:10.1007/s00299-012-1313-1

Thiruvengadam M, Chung I-M, Yang C-H (2012) Overexpression of Oncidium MADS box (OMADS1) gene promotes early flowering in transgenic orchid (Oncidium Gower Ramsey). Acta Physiol Plant 34 (4):1295-1302. doi:10.1007/s11738-012-0926-x

Wang ZJ, Huang JQ, Huang YJ, Chen FF, Zheng BS (2012) Cloning and Characterization of a Homologue of the FLORICAULA/LEAFY Gene in Hickory (Carya cathayensis Sarg). Plant Mol Biol Report 30 (3):794-805. doi:10.1007/s11105-011-0389-z

Wang Z-Y, Brummer EC (2012) Is genetic engineering ever going to take off in forage, turf and bioenergy crop breeding? Ann Bot 110 (6):1317-1325. doi:10.1093/aob/mcs027

Nakaya A, Isobe SN (2012) Will genomic selection be a practical method for plant breeding? Ann Bot 110 (6):1303-1316. doi:10.1093/aob/mcs109

Pons E, Peris JE, Pena L (2012) Field performance of transgenic citrus trees: Assessment of the long-term expression of uidA and nptII transgenes and its impact on relevant agronomic and phenotypic characteristics. BMC Biotechnol 12 (1):41

Guo Y-L, Todesco M, Hagmann J, Das S, Weigel D (2012) Independent FLC Mutations as Causes of Flowering-Time Variation in Arabidopsis thaliana and Capsella rubella. Genetics 192 (2):729-739. doi:10.1534/genetics.112.143958

Ersoz ES, Wright MH, Pangilinan JL, Sheehan MJ, Tobias C, Casler MD, Buckler ES, Costich DE (2012) SNP Discovery with EST and NextGen Sequencing in Switchgrass (Panicum virgatum L.). PLoS ONE 7 (9):e44112. doi:10.1371/journal.pone.0044112

Duan Y, Xing Z, Diao Z, Xu W, Li S, Du X, Wu G, Wang C, Lan T, Meng Z, Liu H, Wang F, Wu W, Xue Y (2012) Characterization of Osmads6-5, a null allele, reveals that OsMADS6 is a critical regulator for early flower development in rice (Oryza sativa L.). Plant Mol Biol 80 (4):429-442. doi:10.1007/s11103-012-9958-2

Steinhoff J, Liu W, Reif J, Porta G, Ranc N, Würschum T (2012) Detection of QTL for flowering time in multiple families of elite maize. TAG Theoretical and Applied Genetics 125 (7):1539-1551. doi:10.1007/s00122-012-1933-4

Polstein LR, Gersbach CA (2012) Light-Inducible Spatiotemporal Control of Gene Activation by Customizable Zinc Finger Transcription Factors. J Am Chem Soc 134 (40):16480-16483. doi:10.1021/ja3065667

Li R, Wang A, Sun S, Liang S, Wang X, Ye Q, Li H (2012) Functional characterization of FT and MFT ortholog genes in orchid (Dendrobium nobile Lindl) that regulate the vegetative to reproductive transition in Arabidopsis. Plant Cell, Tissue and Organ Culture 111 (2):143-151. doi:10.1007/s11240-012-0178-x Matsoukas IG, Massiah AJ, Thomas B (2012) Florigenic And Antiflorigenic Signalling In Plants. Plant Cell Physiol. doi:10.1093/pcp/pcs130

Noctor G, Mhamdi A, Chaouch S, Han Y, Neukermans J, Marquez-Garcia B, Queval G, Foyer CH (2011) Glutathione in plants: an integrated overview. Plant, Cell and Environment:no-no. doi:10.1111/j.1365-3040.2011.02400.x

Saleh O, Issman N, Seumel GI, Stav R, Samach A, Reski R, Frank W, Arazi T (2011) MicroRNA534a control of BLADE-ON-PETIOLE 1 and 2 mediates juvenile-to-adult gametophyte transition in Physcomitrella patens. Plant J 65 (4):661-674. doi:10.1111/j.1365-313X.2010.04451.x

Meitzel T, Radchuk R, Nunes-Nesi A, Fernie AR, Link W, Weschke W, Weber H (2011) Hybrid embryos of Vicia faba develop enhanced sink strength, which is established during early development. Plant J 65 (4):517-531. doi:10.1111/j.1365-313X.2010.04450.x

Zenoni S, Fasoli M, Tornielli GB, Dal Santo S, Sanson A, de Groot P, Sordo S, Citterio S, Monti F, Pezzotti M (2011) Overexpression of PhEXPA1 increases cell size, modifies cell wall polymer composition and affects the timing of axillary meristem development in Petunia hybrida. New Phytol 191 (3):662-677. doi:10.1111/j.1469-8137.2011.03726.x

Krusell L, Sato N, Fukuhara I, Koch BEV, Grossmann C, Okamoto S, Oka-Kira E, Otsubo Y, Aubert G, Nakagawa T, Sato S, Tabata S, Duc G, Parniske M, Wang TL, Kawaguchi M, Stougaard J (2011) The Clavata2 genes of pea and Lotus japonicus affect autoregulation of nodulation. Plant J 65 (6):861-871. doi:10.1111/j.1365- 313X.2010.04474.x

Asante DKA, Yakovlev IA, Fossdal CG, Holefors A, Opseth L, Olsen JE, Junttila O, Johnsen Ø (2011) Gene expression changes during short day induced terminal bud formation in Norway spruce. Plant, Cell and Environment 34 (2):332-346. doi:10.1111/j.1365-3040.2010.02247.x

Streisfeld MA, Liu D, Rausher MD (2011) Predictable patterns of constraint among anthocyanin-regulating transcription factors in Ipomoea. New Phytol 191 (1):264-274. doi:10.1111/j.1469-8137.2011.03671.x

Salleh FM, Evans K, Goodall B, Machin H, Mowla SB, Mur LAJ, Runions J, Theodoulou FL, Foyer CH, Rogers HJ (2011) A novel function for a redox-related LEA protein (SAG21/AtLEA5) in root development and biotic stress responses. Plant, Cell and Environment:no-no. doi:10.1111/j.1365-3040.2011.02394.x

Hong SY, Park JH, Cho SH, Yang MS, Park CM (2011) Phenological growth stages of Brachypodium distachyon: codification and description. Weed Research:no-no. doi:10.1111/j.1365-3180.2011.00877.x

Rogers HJ (2011) Is there an important role for reactive oxygen species and redox regulation during floral senescence? Plant, Cell and Environment:no-no. doi:10.1111/j.1365-3040.2011.02373.x

Field DL, Ayre DJ, Whelan RJ, Young AG (2011) The importance of pre-mating barriers and the local demographic context for contemporary mating patterns in hybrid zones of and . Mol Ecol 20 (11):2367-2379. doi:10.1111/j.1365-294X.2011.05054.x Ainsworth EA, Yendrek CR, Skoneczka JA, Long SP (2011) Accelerating yield potential in soybean: potential targets for biotechnological improvement. Plant, Cell and Environment:no-no. doi:10.1111/j.1365-3040.2011.02378.x

Assefa K, Yu JK, Zeid M, Belay G, Tefera H, Sorrells ME (2011) Breeding tef [Eragrostis tef (Zucc.) trotter]: conventional and molecular approaches. Plant Breed 130 (1):1-9. doi:10.1111/j.1439-0523.2010.01782.x

Watson JM, Brill EM (2004) Eucalyptus grandis has at least two functional SOC1-like floral activator genes. Funct Plant Biol 31 (3):225-234. doi:10.1071/fp03181

Carmona MJ, Cubas P, Calonje M, Martinez-Zapater JM (2007) Flowering transition in grapevine (Vitis vinifera L.). Can J Bot 85 (8):701-711. doi:10.1139/b07-059

Rasmussen HN, Veierskov B, Hansen-Moller J, Norbaek R, Nielsen UB (2009) Cytokinin Profiles in the Conifer Tree Abies nordmanniana: Whole-Plant Relations in Year-Round Perspective. J Plant Growth Regul 28 (2):154-166. doi:10.1007/s00344-009-9084-9

Wollenberg AC, Amasino RM (2012) Natural variation in the temperature range permissive for vernalization in accessions of Arabidopsis thaliana. Plant Cell Environ. doi:10.1111/j.1365-3040.2012.02548.x

Yun J, Kim YS, Jung JH, Seo PJ, Park CM (2012) The AT-hook motif-containing protein AHL22 regulates flowering initiation by modifying FLOWERING LOCUS T chromatin in Arabidopsis. J Biol Chem. doi:10.1074/jbc.M111.318477

Yang H, Mo H, Fan D, Cao Y, Cui S, Ma L (2012) Overexpression of a histone H3K4 demethylase, JMJ15, accelerates flowering time in Arabidopsis. Plant Cell Rep 31 (7):1297-1308. doi:10.1007/s00299-012-1249-5

Yang H, Han Z, Cao Y, Fan D, Li H, Mo H, Feng Y, Liu L, Wang Z, Yue Y, Cui S, Chen S, Chai J, Ma L (2012) A Companion Cell-Dominant and Developmentally Regulated H3K4 Demethylase Controls Flowering Time in Arabidopsis via the Repression of FLC Expression. PLoS Genet 8 (4):496-512. doi:e1002664 10.1371/journal.pgen.1002664

Tsaftaris A, Pasentsis K, Kalivas A, Michailidou S, Madesis P, Argiriou A (2012) Isolation of a CENTRORADIALIS/TERMINAL FLOWER1 homolog in saffron (Crocus sativus L.): characterization and expression analysis. Mol Biol Rep. doi:10.1007/s11033- 012-1634-8

Truntzler M, Ranc N, Sawkins MC, Nicolas S, Manicacci D, Lespinasse D, Ribiere V, Galaup P, Servant F, Muller C, Madur D, Betran J, Charcosset A, Moreau L (2012) Diversity and linkage disequilibrium features in a composite public/private dent maize panel: consequences for association genetics as evaluated from a case study using flowering time. Theor Appl Genet. doi:10.1007/s00122-012-1866-y

Torti S, Fornara F, Vincent C, Andres F, Nordstrom K, Gobel U, Knoll D, Schoof H, Coupland G (2012) Analysis of the Arabidopsis Shoot Meristem Transcriptome during Floral Transition Identifies Distinct Regulatory Patterns and a Leucine-Rich Repeat Protein That Promotes Flowering. Plant Cell 24 (2):444-462. doi:10.1105/tpc.111.092791 Teaster ND, Keereetaweep J, Kilaru A, Wang YS, Tang Y, Tran CN, Ayre BG, Chapman KD, Blancaflor EB (2012) Overexpression of Fatty Acid Amide Hydrolase Induces Early Flowering in Arabidopsis thaliana. Front Plant Sci 3:32. doi:10.3389/fpls.2012.00032

Tanaka N, Itoh J, Nagato Y (2012) Role of rice PPS in late vegetative and reproductive growth. Plant Signal Behav 7 (1):50-52. doi:10.4161/psb.7.1.18533

Staldal V, Cierlik I, Chen S, Landberg K, Baylis T, Myrenas M, Sundstrom JF, Eklund DM, Ljung K, Sundberg E (2012) The Arabidopsis thaliana transcriptional activator STYLISH1 regulates genes affecting stamen development, cell expansion and timing of flowering. Plant Mol Biol. doi:10.1007/s11103-012-9888-z

Song YH, Smith RW, To BJ, Millar AJ, Imaizumi T (2012) FKF1 conveys timing information for CONSTANS stabilization in photoperiodic flowering. Science 336 (6084):1045-1049. doi:10.1126/science.1219644

Song Y, Gao Z, Luan W (2012) Interaction between temperature and photoperiod in regulation of flowering time in rice. Science China-Life Sciences 55 (3):241-249. doi:10.1007/s11427-012-4300-4

Shaw LM, Turner AS, Laurie DA (2012) The impact of photoperiod insensitive Ppd-1a mutations on the photoperiod pathway across the three genomes of hexaploid wheat (Triticum aestivum). Plant J. doi:10.1111/j.1365-313X.2012.04971.x

Samis KE, Murren CJ, Bossdorf O, Donohue K, Fenster CB, Malmberg RL, Purugganan MD, Stinchcombe JR (2012) Longitudinal trends in climate drive flowering time clines in North American Arabidopsis thaliana. Ecol Evol 2 (6):1162-1180. doi:10.1002/ece3.262

Rutishauser T, Stockli R, Harte J, Kueppers L (2012) Climate change: Flowering in the greenhouse. Nature 485 (7399):448-449. doi:10.1038/485448a

Richards CL, Rosas U, Banta J, Bhambhra N, Purugganan MD (2012) Genome-wide patterns of Arabidopsis gene expression in nature. PLoS Genet 8 (4):e1002662. doi:10.1371/journal.pgen.1002662

Rafferty NE, Ives AR (2012) Pollinator effectiveness varies with experimental shifts in flowering time. Ecology 93 (4):803-814

Niu L, Lu F, Zhao T, Liu C, Cao X (2012) The enzymatic activity of Arabidopsis protein arginine methyltransferase 10 is essential for flowering time regulation. Protein Cell. doi:10.1007/s13238-012-2935-3

Mulekar JJ, Huq E (2012) Does CK2 affect flowering time by modulating the autonomous pathway in Arabidopsis? Plant Signal Behav 7 (2)

Malek MA, Ismail MR, Rafii MY, Rahman M (2012) Synthetic Brassica napus L.: Development and Studies on Morphological Characters, Yield Attributes, and Yield. ScientificWorldJournal 2012:416901. doi:10.1100/2012/416901

Lv L, Duan J, Xie J, Wei C, Liu Y, Liu S, Sun G (2012) Isolation and characterization of a FLOWERING LOCUS T homolog from pineapple (Ananas comosus (L.) Merr). Gene. doi:10.1016/j.gene.2012.06.011 Leinonen PH, Remington DL, Leppala J, Savolainen O (2012) Genetic basis of local adaptation and flowering time variation in Arabidopsis lyrata. Mol Ecol. doi:10.1111/j.1365-294X.2012.05678.x

Lee JH, Park SH, Ahn JH (2012) Functional conservation and diversification between rice OsMADS22/OsMADS55 and Arabidopsis SVP proteins. Plant Sci 185-186:97-104. doi:10.1016/j.plantsci.2011.09.003

Lazaro A, Valverde F, Pineiro M, Jarillo JA (2012) The Arabidopsis E3 ubiquitin ligase HOS1 negatively regulates CONSTANS abundance in the photoperiodic control of flowering. Plant Cell 24 (3):982-999. doi:10.1105/tpc.110.081885

Kumar SV, Lucyshyn D, Jaeger KE, Alos E, Alvey E, Harberd NP, Wigge PA (2012) Transcription factor PIF4 controls the thermosensory activation of flowering. Nature 484:242-246. doi:10.1038/nature10928

Kumar S, Sharma V, Chaudhary S, Tyagi A, Mishra P, Priyadarshini A, Singh A (2012) Genetics of flowering time in bread wheat Triticum aestivum: complementary interaction between vernalization-insensitive and photoperiod-insensitive mutations imparts very early flowering habit to spring wheat. J Genet 91 (1):33-47. doi:10.1007/s12041-012- 0149-3

Koyama K, Hatano H, Nakamura J, Takumi S (2012) Characterization of three VERNALIZATION INSENSITIVE3-like (VIL) homologs in wild wheat, Aegilops tauschii Coss. Hereditas 149 (2):62-71. doi:10.1111/j.1601-5223.2012.02255.x

Koornneef M (2012) My favourite flowering image. J Exp Bot. doi:10.1093/jxb/err413

Kim Y, Yeom M, Kim H, Lim J, Koo HJ, Hwang D, Somers D, Nam HG (2012) GIGANTEA and EARLY FLOWERING 4 in Arabidopsis Exhibit Differential Phase- Specific Genetic Influences over a Diurnal Cycle. Mol Plant. doi:10.1093/mp/sss005

Kim JJ, Lee JH, Kim W, Jung HS, Huijser P, Ahn JH (2012) The microRNA156- SQUAMOSA PROMOTER BINDING PROTEIN-LIKE3 module regulates ambient temperature-responsive flowering via FLOWERING LOCUS T in Arabidopsis. Plant Physiol 159 (1):461-478. doi:10.1104/pp.111.192369

Keller SR, Levsen N, Olson MS, Tiffin P (2012) Local Adaptation in the Flowering-Time Gene Network of Balsam Poplar, Populus balsamifera L. Mol Biol Evol. doi:10.1093/molbev/mss121

Jung CH, Wong CE, Singh MB, Bhalla PL (2012) Comparative genomic analysis of soybean flowering genes. PLoS ONE 7 (6):e38250. doi:10.1371/journal.pone.0038250

Huang HR, Yan PC, Lascoux M, Ge XJ (2012) Flowering time and transcriptome variation in Capsella bursa-pastoris (Brassicaceae). New Phytol. doi:10.1111/j.1469- 8137.2012.04101.x

Funck D, Clauss K, Frommer WB, Hellmann HA (2012) The Arabidopsis CstF64-Like RSR1/ESP1 Protein Participates in Glucose Signaling and Flowering Time Control. Front Plant Sci 3:80. doi:10.3389/fpls.2012.00080 Durand E, Bouchet S, Bertin P, Ressayre A, Jamin P, Charcosset A, Dillmann C, Tenaillon MI (2012) Flowering time in Maize: Linkage and Epistasis at a Major Effect Locus. Genetics. doi:10.1534/genetics.111.136903

Chew YH, Wilczek AM, Williams M, Welch SM, Schmitt J, Halliday KJ (2012) An augmented Arabidopsis phenology model reveals seasonal temperature control of flowering time. New Phytol. doi:10.1111/j.1469-8137.2012.04069.x

Breza LC, Souza L, Sanders NJ, Classen AT (2012) Within and between population variation in plant traits predicts ecosystem functions associated with a dominant plant species. Ecol Evol 2 (6):1151-1161. doi:10.1002/ece3.223

Anderson JT, Inouye DW, McKinney AM, Colautti RI, Mitchell-Olds T (2012) Phenotypic plasticity and adaptive evolution contribute to advancing flowering phenology in response to climate change. Proc Biol Sci 279 (1743):3843-3852. doi:10.1098/rspb.2012.1051

Aceto S, Gaudio L (2011) The MADS and the Beauty: Genes Involved in the Development of Orchid Flowers. Curr Genomics 12 (5):342-356. doi:10.2174/138920211796429754

Moreau M, Azzopardi M, Clement G, Dobrenel T, Marchive C, Renne C, Martin- Magniette ML, Taconnat L, Renou JP, Robaglia C, Meyer C (2012) Mutations in the Arabidopsis homolog of LST8/GbetaL, a partner of the target of Rapamycin kinase, impair plant growth, flowering, and metabolic adaptation to long days. Plant Cell 24 (2):463-481. doi:10.1105/tpc.111.091306

Yun JY, Tamada Y, Kang YE, Amasino RM (2012) Arabidopsis trithorax-related3/SET domain GROUP2 is required for the winter-annual habit of Arabidopsis thaliana. Plant Cell Physiol 53 (5):834-846. doi:10.1093/pcp/pcs021

Moore S, Lukens L (2011) An Evaluation of Arabidopsis thaliana Hybrid Traits and Their Genetic Control. G3 (Bethesda) 1 (7):571-579. doi:10.1534/g3.111.001156

Lopez-Vernaza M, Yang S, Muller R, Thorpe F, de Leau E, Goodrich J (2012) Antagonistic roles of SEPALLATA3, FT and FLC genes as targets of the polycomb group gene CURLY LEAF. PLoS ONE 7 (2):e30715. doi:10.1371/journal.pone.0030715

McGarry RC, Ayre BG (2012) Geminivirus-mediated delivery of florigen promotes determinate growth in aerial organs and uncouples flowering from photoperiod in cotton. PLoS ONE 7 (5):e36746. doi:10.1371/journal.pone.0036746

Nagy L, Kreyling J, Gellesch E, Beierkuhnlein C, Jentsch A (2012) Recurring weather extremes alter the flowering phenology of two common temperate shrubs. Int J Biometeorol. doi:10.1007/s00484-012-0585-z

Kwon E, Feechan A, Yun BW, Hwang BH, Pallas JA, Kang JG, Loake GJ (2012) AtGSNOR1 function is required for multiple developmental programs in Arabidopsis. Planta 236 (3):887-900. doi:10.1007/s00425-012-1697-8

Immink RG, Pose D, Ferrario S, Ott F, Kaufmann K, Valentim FL, de Folter S, van der Wal F, van Dijk AD, Schmid M, Angenent GC (2012) Characterization of SOC1's Central Role in Flowering by the Identification of Its Upstream and Downstream Regulators. Plant Physiol 160 (1):433-449. doi:10.1104/pp.112.202614

Himanen K, Woloszynska M, Boccardi TM, De Groeve S, Nelissen H, Bruno L, Vuylsteke M, Van Lijsebettens M (2012) Histone H2B monoubiquitination is required to reach maximal transcript levels of circadian clock genes in Arabidopsis. Plant J. doi:10.1111/j.1365-313X.2012.05071.x

Bolmgren K, Vanhoenacker D, Miller-Rushing AJ (2012) One man, 73 years, and 25 species. Evaluating phenological responses using a lifelong study of first flowering dates. Int J Biometeorol. doi:10.1007/s00484-012-0560-8

Inigo S, Giraldez A, Chory J, Cerdan P (2012) Proteasome-Mediated Turnover of Arabidopsis MED25 Is Coupled to the Activation of FLOWERING LOCUS T Transcription. Plant Physiol. doi:10.1104/pp.112.205500

Muhlemann JK, Maeda H, Chang CY, San Miguel P, Baxter I, Cooper B, Perera MA, Nikolau BJ, Vitek O, Morgan JA, Dudareva N (2012) Developmental changes in the metabolic network of snapdragon flowers. PLoS ONE 7 (7):e40381. doi:10.1371/journal.pone.0040381

Kant S, Seneweera S, Rodin J, Materne M, Burch D, Rothstein SJ, Spangenberg G (2012) Improving yield potential in crops under elevated CO2: Integrating the photosynthetic and nitrogen utilization efficiencies. Front Plant Sci 3:162. doi:10.3389/fpls.2012.00162

Coneva V, Guevara D, Rothstein SJ, Colasanti J (2012) Transcript and metabolite signature of maize source leaves suggests a link between transitory starch to sucrose balance and the autonomous floral transition. J Exp Bot. doi:10.1093/jxb/ers158

Cheng F, Wu J, Fang L, Wang X (2012) Syntenic gene analysis between Brassica rapa and other Brassicaceae species. Front Plant Sci 3. doi:10.3389/fpls.2012.00198

Lavagi I, Estelle M, Weckwerth W, Beynon J, Bastow RM (2012) From Bench to Bountiful Harvests: A Road Map for the Next Decade of Arabidopsis Research. The Plant Cell Online 24 (6):2240-2247. doi:10.1105/tpc.112.096982

Parent J-S, Martinez de Alba AE, Vaucheret H (2012) The origin and effect of small RNA signaling in plants. Front Plant Sci 3. doi:10.3389/fpls.2012.00179

Lee C-M, Thomashow MF (2012) Photoperiodic regulation of the C-repeat binding factor (CBF) cold acclimation pathway and freezing tolerance in Arabidopsis thaliana. Proc Natl Acad Sci U S A 109 (37):15054-15059. doi:10.1073/pnas.1211295109

Nava I, Wight C, Pacheco M, Federizzi L, Tinker N (2012) Tagging and mapping candidate loci for vernalization and flower initiation in hexaploid oat. Mol Breed 30 (3):1295-1312. doi:10.1007/s11032-012-9715-x

Huang X, Kurata N, Wei X, Wang Z-X, Wang A, Zhao Q, Zhao Y, Liu K, Lu H, Li W, Guo Y, Lu Y, Zhou C, Fan D, Weng Q, Zhu C, Huang T, Zhang L, Wang Y, Feng L, Furuumi H, Kubo T, Miyabayashi T, Yuan X, Xu Q, Dong G, Zhan Q, Li C, Fujiyama A, Toyoda A, Lu T, Feng Q, Qian Q, Li J, Han B (2012) A map of rice genome variation reveals the origin of cultivated rice. Nature advance online publication. doi:http://www.nature.com/nature/journal/vaop/ncurrent/abs/nature11532.html#suppleme ntary-information

Mao S, Han Y, Wu X, An T, Tang J, Shen J, Li Z (2012) Comparative genomic in situ hybridization (cGISH) analysis of the genomic relationships among Sinapis arvensis, Brassica rapa and Brassica nigra. Hereditas 149 (3):86-90. doi:10.1111/j.1601- 5223.2012.02248.x

Bagheri H, El-Soda M, van Oorschot I, Hanhart C, Bonnema G, Jansen-van den Bosch T, Mank R, Keurentjes JJ, Meng L, Wu J, Koornneef M, Aarts MG (2012) Genetic analysis of morphological traits in a new, versatile, rapid-cycling Brassica rapa recombinant inbred line population. Front Plant Sci 3:183. doi:10.3389/fpls.2012.00183

Lou P, Wu J, Cheng F, Cressman LG, Wang X, McClung CR (2012) Preferential Retention of Circadian Clock Genes during Diploidization following Whole Genome Triplication in Brassica rapa. Plant Cell 24 (6):2415-2426. doi:10.1105/tpc.112.099499

Cheng F, Wu J, Fang L, Sun S, Liu B, Lin K, Bonnema G, Wang X (2012) Biased gene fractionation and dominant gene expression among the subgenomes of Brassica rapa. PLoS ONE 7 (5):e36442. doi:10.1371/journal.pone.0036442

Jackson SD, Hong Y (2012) Systemic movement of FT mRNA and a possible role in floral induction. Front Plant Sci 3:127. doi:10.3389/fpls.2012.00127

Huang X, Effgen S, Meyer RC, Theres K, Koornneef M (2012) Epistatic Natural Allelic Variation Reveals a Function of AGAMOUS-LIKE6 in Axillary Bud Formation in Arabidopsis. Plant Cell. doi:10.1105/tpc.112.099168

Srinivasan C, Dardick C, Callahan A, Scorza R (2012) Plum (Prunus domestica) Trees Transformed with Poplar FT1 Result in Altered Architecture, Dormancy Requirement, and Continuous Flowering. PLoS ONE 7 (7):e40715. doi:10.1371/journal.pone.0040715

Tang H, Lyons E (2012) Unleashing the genome of Brassica rapa. Front Plant Sci 3:172. doi:10.3389/fpls.2012.00172

Tang H, Woodhouse MR, Cheng F, Schnable JC, Pedersen BS, Conant G, Wang X, Freeling M, Pires JC (2012) Altered patterns of fractionation and exon deletions in Brassica rapa support a two-step model of paleohexaploidy. Genetics 190 (4):1563-1574. doi:10.1534/genetics.111.137349

Xiao L, Zhao Z, Du D, Yao Y, Xu L, Tang G (2012) Genetic characterization and fine mapping of a yellow-seeded gene in Dahuang (a Brassica rapa landrace). Theor Appl Genet 124 (5):903-909. doi:10.1007/s00122-011-1754-x

Yang HL, Liu YJ, Wang CL, Zeng QY (2012) Molecular Evolution of Trehalose-6- Phosphate Synthase (TPS) Gene Family in Populus, Arabidopsis and Rice. PLoS ONE 7 (8):e42438. doi:10.1371/journal.pone.0042438

Andrés F, Coupland G (2012) The genetic basis of flowering responses to seasonal cues. Nat Rev Genet 13:627-639. doi:10.1038/nrg3291 Sun X, Qin Q, Zhang J, Zhang C, Zhou M, Paek K, Cui Y (2012) Cloning and characterization of a Doritaenopsis hybrid PRP39 gene involved in flowering time. Plant Cell, Tissue and Organ Culture 110 (3):347-357. doi:10.1007/s11240-012-0156-3

Le Roux P-M, Flachowsky H, Hanke M-V, Gessler C, Patocchi A (2012) Use of a transgenic early flowering approach in apple (Malus domestica Borkh.) to introgress fire blight resistance from cultivar Evereste. Mol Breed 30 (2):857-874. doi:10.1007/s11032- 011-9669-4

Gawroński P, Schnurbusch T (2012) High-density mapping of the earliness per se-3Am (Eps-3Am) locus in diploid einkorn wheat and its relation to the syntenic regions in rice and Brachypodium distachyon L. Mol Breed 30 (2):1097-1108. doi:10.1007/s11032-011- 9697-0

Kirchhoff M, Svirshchevskaya A, Hoffmann C, Schechert A, Jung C, Obuch FJK (2012) High Degree of Genetic Variation of Winter Hardiness in a Panel of Beta vulgaris L. Crop Sci 52:179–188. doi:10.2135/cropsci2011.04.0185

Klose C, Buche C, Fernandez AP, Schafer E, Zwick E, Kretsch T (2012) The Mediator Complex Subunit PFT1 Interferes with COP1 and HY5 in the Regulation of Arabidopsis Light-signaling. Plant Physiol. doi:10.1104/pp.112.197319

Sosnowski O, Charcosset A, Joets J (2012) BioMercator V3: an upgrade of genetic map compilation and quantitative trait loci meta-analysis algorithms. Bioinformatics 28 (15):2082-2083. doi:10.1093/bioinformatics/bts313

Zobell O, Coupland G, Reiss B (2005) The family of CONSTANS-like genes in Physcomitrella patens. Plant Biol 7 (3):266-275. doi:10.1055/s-2005-865621

Yoshida R, Fekih R, Fujiwara S, Oda A, Miyata K, Tomozoe Y, Nakagawa M, Niinuma K, Hayashi K, Ezura H, Coupland G, Mizoguchi T (2009) Possible role of early flowering 3 (ELF3) in clock-dependent floral regulation by short vegetative phase (SVP) in Arabidopsis thaliana. New Phytol 182 (4):838-850. doi:10.1111/j.1469- 8137.2009.02809.x

Wilczek AM, Roe JL, Knapp MC, Cooper MD, Lopez-Gallego C, Martin LJ, Muir CD, Sim S, Walker A, Anderson J, Egan JF, Moyers BT, Petipas R, Giakountis A, Charbit E, Coupland G, Welch SM, Schmitt J (2009) Effects of Genetic Perturbation on Seasonal Life History Plasticity. Science 323 (5916):930-934. doi:10.1126/science.1165826

Wang R, Albani MC, Vincent C, Bergonzi S, Luan M, Bai Y, Kiefer C, Castillo R, Coupland G (2011) Aa TFL1 confers an age-dependent response to vernalization in perennial Arabis alpina. Plant Cell 23 (4):1307-1321. doi:10.1105/tpc.111.083451

Valverde F, Mouradov A, Soppe W, Ravenscroft D, Samach A, Coupland G (2004) Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science 303 (5660):1003-1006. doi:10.1126/science.1091761

Turck F, Fornara F, Coupland G (2008) Regulation and identity of florigen: FLOWERING LOCUS T moves center stage. Annu Rev Plant Biol 59:573-594. doi:10.1146/annurev.arplant.59.032607.092755 Sonmez C, Baurle I, Magusin A, Dreos R, Laubinger S, Weigel D, Dean C (2011) RNA 3' processing functions of Arabidopsis FCA and FPA limit intergenic transcription. Proc Natl Acad Sci U S A 108 (20):8508-8513. doi:10.1073/pnas.1105334108

Serrano G, Herrera-Palau R, Romero JM, Serrano A, Coupland G, Valverde F (2009) Chlamydomonas CONSTANS and the Evolution of Plant Photoperiodic Signaling. Curr Biol 19 (5):359-368. doi:10.1016/j.cub.2009.01.044

Searle I, Coupland G (2004) Induction of flowering by seasonal changes in photoperiod. EMBO J 23 (6):1217-1222. doi:10.1038/sj.emboj.7600117

Schwartz C, Balasubramanian S, Warthmann N, Michael TP, Lempe J, Sureshkumar S, Kobayashi Y, Maloof JN, Borevitz JO, Chory J, Weigel D (2009) Cis-regulatory Changes at FLOWERING LOCUS T Mediate Natural Variation in Flowering Responses of Arabidopsis thaliana. Genetics 183 (2):723-732. doi:10.1534/genetics.109.104984

Schneeberger K, Ossowski S, Ott F, Klein JD, Wang X, Lanz C, Smith LM, Cao J, Fitz J, Warthmann N, Henz SR, Huson DH, Weigel D (2011) Reference-guided assembly of four diverse Arabidopsis thaliana genomes. Proc Natl Acad Sci U S A 108 (25):10249-10254. doi:10.1073/pnas.1107739108

Salome PA, Bomblies K, Laitinen RA, Yant L, Mott R, Weigel D (2011) Genetic architecture of flowering-time variation in Arabidopsis thaliana. Genetics 188 (2):421- 433. doi:10.1534/genetics.111.126607

Salome PA, Bomblies K, Fitz J, Laitinen RA, Warthmann N, Yant L, Weigel D (2012) The recombination landscape in Arabidopsis thaliana F2 populations. Heredity 108 (4):447-455. doi:10.1038/hdy.2011.95

Rosloski SM, Jali SS, Balasubramanian S, Weigel D, Grbic V (2010) Natural diversity in flowering responses of Arabidopsis thaliana caused by variation in a tandem gene array. Genetics 186 (1):263-276. doi:10.1534/genetics.110.116392

Rehrauer H, Aquino C, Gruissem W, Henz SR, Hilson P, Laubinger S, Naouar N, Patrignani A, Rombauts S, Shu H, Van de Peer Y, Vuylsteke M, Weigel D, Zeller G, Hennig L (2010) AGRONOMICS1: a new resource for Arabidopsis transcriptome profiling. Plant Physiol 152 (2):487-499. doi:10.1104/pp.109.150185

Pineiro M, Gomez-Mena C, Schaffer R, Martinez-Zapater JM, Coupland G (2003) EARLY BOLTING IN SHORT DAYS is related to chromatin remodeling factors and regulates flowering in Arabidopsis by repressing FT. Plant Cell 15 (7):1552-1562

Murtas G, Reeves PH, Fu YF, Bancroft I, Dean C, Coupland G (2003) A nuclear protease required for flowering-time regulation in Arabidopsis reduces the abundance of SMALL UBIQUITIN-RELATED MODIFIER conjugates. Plant Cell 15 (10):2308-2319. doi:10.1105/tpc.015487

Mizoguchi T, Wright L, Fujiwara S, Cremer F, Lee K, Onouchi H, Mouradov A, Fowler S, Kamada H, Putterill J, Coupland G (2005) Distinct roles of GIGANTEA in promoting flowering and regulating circadian rhythms in Arabidopsis. Plant Cell 17 (8):2255-2270. doi:10.1105/tpc.105.033464 Koo SC, Bracko O, Park MS, Schwab R, Chun HJ, Park KM, Seo JS, Grbic V, Balasubramanian S, Schmid M, Godard F, Yun DJ, Lee SY, Cho MJ, Weigel D, Kim MC (2010) Control of lateral organ development and flowering time by the Arabidopsis thaliana MADS-box Gene AGAMOUS-LIKE6. Plant J 62 (5):807-816. doi:TPJ4192 [pii]

10.1111/j.1365-313X.2010.04192.x

Jang S, Torti S, Coupland G (2009) Genetic and spatial interactions between FT, TSF and SVP during the early stages of floral induction in Arabidopsis. Plant J 60 (4):614-625. doi:10.1111/j.1365-313X.2009.03986.x

Jang S, Marchal V, Panigrahi KC, Wenkel S, Soppe W, Deng XW, Valverde F, Coupland G (2008) Arabidopsis COP1 shapes the temporal pattern of CO accumulation conferring a photoperiodic flowering response. EMBO J 27 (8):1277-1288. doi:10.1038/emboj.2008.68

Hu TT, Pattyn P, Bakker EG, Cao J, Cheng JF, Clark RM, Fahlgren N, Fawcett JA, Grimwood J, Gundlach H, Haberer G, Hollister JD, Ossowski S, Ottilar RP, Salamov AA, Schneeberger K, Spannagl M, Wang X, Yang L, Nasrallah ME, Bergelson J, Carrington JC, Gaut BS, Schmutz J, Mayer KF, Van de Peer Y, Grigoriev IV, Nordborg M, Weigel D, Guo YL (2011) The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nat Genet 43 (5):476-481. doi:10.1038/ng.807

Hermkes R, Fu YF, Nurrenberg K, Budhiraja R, Schmelzer E, Elrouby N, Dohmen RJ, Bachmair A, Coupland G (2011) Distinct roles for Arabidopsis SUMO protease ESD4 and its closest homolog ELS1. Planta 233 (1):63-73. doi:10.1007/s00425-010-1281-z

Hayama R, Coupland G (2004) The molecular basis of diversity in the photoperiodic flowering responses of Arabidopsis and rice. Plant Physiol 135 (2):677-684. doi:10.1104/pp.104.042614

Hayama R, Coupland G (2003) Shedding light on the circadian clock and the photoperiodic control of flowering. Curr Opin Plant Biol 6 (1):13-19

Hayama R, Agashe B, Luley E, King R, Coupland G (2007) A circadian rhythm set by dusk determines the expression of FT homologs and the short-day photoperiodic flowering response in Pharbitis. Plant Cell 19 (10):2988-3000. doi:10.1105/tpc.107.052480

Griffiths S, Dunford RP, Coupland G, Laurie DA (2003) The evolution of CONSTANS- like gene families in barley, rice, and Arabidopsis. Plant Physiol 131 (4):1855-1867. doi:10.1104/pp.102.016188

Giakountis A, Coupland G (2008) Phloem transport of flowering signals. Curr Opin Plant Biol 11 (6):687-694. doi:10.1016/j.pbi.2008.10.003

Farrona S, Coupland G, Turck F (2008) The impact of chromatin regulation on the floral transition. Semin Cell Dev Biol 19 (6):560-573. doi:10.1016/j.semcdb.2008.07.015

Dorca-Fornell C, Gregis V, Grandi V, Coupland G, Colombo L, Kater MM (2011) The Arabidopsis SOC1-like genes AGL42, AGL71 and AGL72 promote flowering in the shoot apical and axillary meristems. Plant J:no-no. doi:10.1111/j.1365- 313X.2011.04653.x de Felippes FF, Ott F, Weigel D (2011) Comparative analysis of non-autonomous effects of tasiRNAs and miRNAs in Arabidopsis thaliana. Nucleic Acids Res 39 (7):2880-2889. doi:10.1093/nar/gkq1240

Corbesier L, Coupland G (2006) The quest for florigen: a review of recent progress. J Exp Bot 57 (13):3395-3403. doi:10.1093/jxb/erl095

Cominelli E, Galbiati M, Albertini A, Fornara F, Conti L, Coupland G, Tonelli C (2011) DOF-binding sites additively contribute to guard cell-specificity of AtMYB60 promoter. BMC Plant Biol 11 (1):162. doi:10.1186/1471-2229-11-162

Cao J, Schneeberger K, Ossowski S, Gunther T, Bender S, Fitz J, Koenig D, Lanz C, Stegle O, Lippert C, Wang X, Ott F, Muller J, Alonso-Blanco C, Borgwardt K, Schmid KJ, Weigel D (2011) Whole-genome sequencing of multiple Arabidopsis thaliana populations. Nat Genet 43:956-963. doi:10.1038/ng.911

Ben-Naim O, Eshed R, Parnis A, Teper-Bamnolker P, Shalit A, Coupland G, Samach A, Lifschitz E (2006) The CCAAT binding factor can mediate interactions between CONSTANS-like proteins and DNA. Plant J 46 (3):462-476. doi:10.1111/j.1365- 313X.2006.02706.x

Becker C, Hagmann J, Muller J, Koenig D, Stegle O, Borgwardt K, Weigel D (2011) Spontaneous epigenetic variation in the Arabidopsis thaliana methylome. Nature advance online publication. doi:10.1038/nature10555

An H, Roussot C, Suarez-Lopez P, Corbesier L, Vincent C, Pineiro M, Hepworth S, Mouradov A, Justin S, Turnbull C, Coupland G (2004) CONSTANS acts in the phloem to regulate a systemic signal that induces photoperiodic flowering of Arabidopsis. Development 131 (15):3615-3626. doi:10.1242/dev.01231

Adrian J, Farrona S, Reimer JJ, Albani MC, Coupland G, Turck F (2010) cis-Regulatory elements and chromatin state coordinately control temporal and spatial expression of FLOWERING LOCUS T in Arabidopsis. Plant Cell 22 (5):1425-1440. doi:10.1105/tpc.110.074682

Lao NT, Long D, Kiang S, Coupland G, Shoue DA, Carpita NC, Kavanagh TA (2003) Mutation of a family 8 glycosyltransferase gene alters cell wall carbohydrate composition and causes a humidity-sensitive semi-sterile dwarf phenotype in Arabidopsis. Plant Mol Biol 53 (5):647-661. doi:10.1023/B:PLAN.0000019074.60542.6c

Cremer F, Coupland G (2003) Distinct photoperiodic responses are conferred by the same genetic pathway in Arabidopsis and in rice. Trends Plant Sci 8 (9):405-407. doi:10.1016/S1360-1385(03)00192-4

Oda A, Fujiwara S, Kamada H, Coupland G, Mizoguchi T (2004) Antisense suppression of the Arabidopsis PIF3 gene does not affect circadian rhythms but causes early flowering and increases FT expression. FEBS Lett 557 (1-3):259-264

Novatchkova M, Budhiraja R, Coupland G, Eisenhaber F, Bachmair A (2004) SUMO conjugation in plants. Planta 220 (1):1-8. doi:10.1007/s00425-004-1370-y

Casal JJ, Fankhauser C, Coupland G, Blazquez MA (2004) Signalling for developmental plasticity. Trends Plant Sci 9 (6):309-314. doi:10.1016/j.tplants.2004.04.007 Coupland G, Prat Monguio S (2005) Cell signalling and gene regulation signalling mechanisms in plants: examples from the present and the future. Curr Opin Plant Biol 8 (5):457-461. doi:10.1016/j.pbi.2005.07.016

Arnaud-Haond S, Teixeira S, Massa SI, Billot C, Saenger P, Coupland G, Duarte CM, Serrao EA (2006) Genetic structure at range edge: low diversity and high inbreeding in Southeast Asian mangrove (Avicennia marina) populations. Mol Ecol 15 (12):3515-3525. doi:10.1111/j.1365-294X.2006.02997.x

Benhamed M, Martin-Magniette ML, Taconnat L, Bitton F, Servet C, De Clercq R, De Meyer B, Buysschaert C, Rombauts S, Villarroel R, Aubourg S, Beynon J, Bhalerao RP, Coupland G, Gruissem W, Menke FL, Weisshaar B, Renou JP, Zhou DX, Hilson P (2008) Genome-scale Arabidopsis promoter array identifies targets of the histone acetyltransferase GCN5. The Plant journal : for cell and molecular biology 56 (3):493- 504. doi:10.1111/j.1365-313X.2008.03606.x

Coupland G (2008) Mechanisms and variation in plant development: sorting the wood from the trees in Vermont. Development 135 (23):3813-3816. doi:10.1242/dev.027383

Budhiraja R, Hermkes R, Muller S, Schmidt J, Colby T, Panigrahi K, Coupland G, Bachmair A (2009) Substrates related to chromatin and to RNA-dependent processes are modified by Arabidopsis SUMO isoforms that differ in a conserved residue with influence on desumoylation. Plant Physiol 149 (3):1529-1540. doi:10.1104/pp.108.135053

Khanna R, Kronmiller B, Maszle DR, Coupland G, Holm M, Mizuno T, Wu SH (2009) The Arabidopsis B-box zinc finger family. Plant Cell 21 (11):3416-3420. doi:10.1105/tpc.109.069088

Fornara F, Coupland G (2009) Plant phase transitions make a SPLash. Cell 138 (4):625- 627. doi:10.1016/j.cell.2009.08.011

Fornara F, de Montaigu A, Coupland G (2010) SnapShot: Control of flowering in Arabidopsis. Cell 141 (3):550, 550 e551-552. doi:10.1016/j.cell.2010.04.024

Elrouby N, Coupland G (2010) Proteome-wide screens for small ubiquitin-like modifier (SUMO) substrates identify Arabidopsis proteins implicated in diverse biological processes. Proc Natl Acad Sci U S A 107 (40):17415-17420. doi:10.1073/pnas.1005452107 de Montaigu A, Toth R, Coupland G (2010) Plant development goes like clockwork. Trends in genetics : TIG 26 (7):296-306. doi:10.1016/j.tig.2010.04.003

Turck F, Coupland G (2011) Plant science. When vernalization makes sense. Science 331 (6013):36-37. doi:10.1126/science.1200786

D'Aloia M, Bonhomme D, Bouche F, Tamseddak K, Ormenese S, Torti S, Coupland G, Perilleux C (2011) Cytokinin promotes flowering of Arabidopsis via transcriptional activation of the FT paralogue TSF. The Plant journal : for cell and molecular biology 65 (6):972-979. doi:10.1111/j.1365-313X.2011.04482.x

Castrillo G, Turck F, Leveugle M, Lecharny A, Carbonero P, Coupland G, Paz-Ares J, Onate-Sanchez L (2011) Speeding cis-trans regulation discovery by phylogenomic analyses coupled with screenings of an arrayed library of Arabidopsis transcription factors. PLoS ONE 6 (6):e21524. doi:10.1371/journal.pone.0021524

Toth R, Gerding-Reimers C, Deeks MJ, Menninger S, Gallegos RM, Tonaco IA, Hubel K, Hussey PJ, Waldmann H, Coupland G (2012) Prieurianin/endosidin 1 is an actin- stabilizing small molecule identified from a chemical genetic screen for circadian clock effectors in Arabidopsis thaliana. The Plant journal : for cell and molecular biology. doi:10.1111/j.1365-313X.2012.04991.x

Manavella PA, Koenig D, Weigel D (2012) Plant secondary siRNA production determined by microRNA-duplex structure. Proc Natl Acad Sci U S A 109 (7):2461-2466. doi:10.1073/pnas.1200169109

Felippes FF, Wang JW, Weigel D (2012) MIGS: miRNA-induced gene silencing. The Plant journal : for cell and molecular biology 70 (3):541-547. doi:10.1111/j.1365- 313X.2011.04896.x

Rutter MT, Roles A, Conner JK, Shaw RG, Shaw FH, Schneeberger K, Ossowski S, Weigel D, Fenster CB (2012) Fitness of Arabidopsis Thaliana Mutation Accumulation Lines Whose Spontaneous Mutations Are Known. Evolution; international journal of organic evolution 66 (7):2335-2339. doi:10.1111/j.1558-5646.2012.01583.x

Joshi HJ, Christiansen KM, Fitz J, Cao J, Lipzen A, Martin J, Smith-Moritz AM, Pennacchio LA, Schackwitz WS, Weigel D, Heazlewood JL (2012) 1001 Proteomes: a functional proteomics portal for the analysis of Arabidopsis thaliana accessions. Bioinformatics 28 (10):1303-1306. doi:10.1093/bioinformatics/bts133

Blair C, Weigel DE, Balazik M, Keeley AT, Walker FM, Landguth E, Cushman S, Murphy M, Waits L, Balkenhol N (2012) A simulation-based evaluation of methods for inferring linear barriers to gene flow. Mol Ecol Resour. doi:10.1111/j.1755- 0998.2012.03151.x

Weigel D (2011) What developmental biologists can learn from plant pathogens. Dev Cell 20 (2):e2. doi:10.1016/j.devcel.2011.02.003

Wang JW, Park MY, Wang LJ, Koo Y, Chen XY, Weigel D, Poethig RS (2011) miRNA control of vegetative phase change in trees. PLoS Genet 7 (2):e1002012. doi:10.1371/journal.pgen.1002012

Schneeberger K, Weigel D (2011) Fast-forward genetics enabled by new sequencing technologies. Trends Plant Sci 16 (5):282-288. doi:10.1016/j.tplants.2011.02.006

Hollister JD, Smith LM, Guo YL, Ott F, Weigel D, Gaut BS (2011) Transposable elements and small RNAs contribute to gene expression divergence between Arabidopsis thaliana and Arabidopsis lyrata. Proc Natl Acad Sci U S A 108 (6):2322-2327. doi:10.1073/pnas.1018222108

Willing EM, Hoffmann M, Klein JD, Weigel D, Dreyer C (2011) Paired-end RAD-seq for de novo assembly and marker design without available reference. Bioinformatics 27 (16):2187-2193. doi:10.1093/bioinformatics/btr346

Rubio-Somoza I, Weigel D (2011) MicroRNA networks and developmental plasticity in plants. Trends Plant Sci 16 (5):258-264. doi:10.1016/j.tplants.2011.03.001 Moyroud E, Minguet EG, Ott F, Yant L, Pose D, Monniaux M, Blanchet S, Bastien O, Thevenon E, Weigel D, Schmid M, Parcy F (2011) Prediction of regulatory interactions from genome sequences using a biophysical model for the Arabidopsis LEAFY transcription factor. Plant Cell 23 (4):1293-1306. doi:10.1105/tpc.111.083329

Manavella PA, Weigel D, Wu L (2011) Argonaute10 as a miRNA locker. Cell 145 (2):173-174. doi:10.1016/j.cell.2011.03.045

Gou JY, Felippes FF, Liu CJ, Weigel D, Wang JW (2011) Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor. Plant Cell 23 (4):1512-1522. doi:10.1105/tpc.111.084525

Smith LM, Bomblies K, Weigel D (2011) Complex evolutionary events at a tandem cluster of Arabidopsis thaliana genes resulting in a single-locus genetic incompatibility. PLoS Genet 7 (7):e1002164. doi:10.1371/journal.pgen.1002164

Rowan BA, Weigel D, Koenig D (2011) Developmental genetics and new sequencing technologies: the rise of nonmodel organisms. Dev Cell 21 (1):65-76. doi:10.1016/j.devcel.2011.05.021

Muhlebner A, Coras R, Kobow K, Feucht M, Czech T, Stefan H, Weigel D, Buchfelder M, Holthausen H, Pieper T, Kudernatsch M, Blumcke I (2012) Neuropathologic measurements in focal cortical dysplasias: validation of the ILAE 2011 classification system and diagnostic implications for MRI. Acta Neuropathol 123 (2):259-272. doi:10.1007/s00401-011-0920-1

Klein JD, Ossowski S, Schneeberger K, Weigel D, Huson DH (2011) LOCAS--a low coverage assembly tool for resequencing projects. PLoS ONE 6 (8):e23455. doi:10.1371/journal.pone.0023455

Huttner HB, Corbeil D, Thirmeyer C, Coras R, Kohrmann M, Mauer C, Kuramatsu JB, Kloska SP, Doerfler A, Weigel D, Klucken J, Winkler J, Pauli E, Schwab S, Hamer HM, Kasper BS (2012) Increased membrane shedding--indicated by an elevation of CD133- enriched membrane particles--into the CSF in partial epilepsy. Epilepsy Res 99 (1-2):101- 106. doi:10.1016/j.eplepsyres.2011.10.029

Guo YL, Zhao X, Lanz C, Weigel D (2011) Evolution of the S-locus region in Arabidopsis relatives. Plant Physiol 157 (2):937-946. doi:10.1104/pp.111.174912

Guo YL, Fitz J, Schneeberger K, Ossowski S, Cao J, Weigel D (2011) Genome-wide comparison of nucleotide-binding site-leucine-rich repeat-encoding genes in Arabidopsis. Plant Physiol 157 (2):757-769. doi:10.1104/pp.111.181990

Cortese VS, Seeger JT, Stokka GS, Hunsaker BD, Lardy GP, Weigel DJ, Brumbaugh GW (2011) Serologic response to Mannheimia haemolytica in calves concurrently inoculated with inactivated or modified-live preparations of M. haemolytica and viral combination vaccines containing modified-live bovine herpesvirus type 1. Am J Vet Res 72 (11):1541- 1549. doi:10.2460/ajvr.72.11.1541

Weigel D, Foerster R, Babovsky H, Kiessling A, Kowarschik R (2011) Enhanced resolution of microscopic objects by image inversion interferometry. Opt Express 19 (27):26451-26462. doi:10.1364/OE.19.026451 Smith LM, Weigel D (2012) On epigenetics and epistasis: hybrids and their non-additive interactions. The EMBO journal 31 (2):249-250. doi:10.1038/emboj.2011.473

Rubio-Somoza I, Weigel D, Franco-Zorilla JM, Garcia JA, Paz-Ares J (2011) ceRNAs: miRNA target mimic mimics. Cell 147 (7):1431-1432. doi:10.1016/j.cell.2011.12.003

Werner S, Wollmann H, Schneeberger K, Weigel D (2010) Structure determinants for accurate processing of miR172a in Arabidopsis thaliana. Current biology : CB 20 (1):42- 48. doi:10.1016/j.cub.2009.10.073

Schwab R, Ossowski S, Warthmann N, Weigel D (2010) Directed gene silencing with artificial microRNAs. Methods Mol Biol 592:71-88. doi:10.1007/978-1-60327-005-2_6

Rodriguez RE, Mecchia MA, Debernardi JM, Schommer C, Weigel D, Palatnik JF (2010) Control of cell proliferation in Arabidopsis thaliana by microRNA miR396. Development 137 (1):103-112. doi:10.1242/dev.043067 de Felippes FF, Weigel D (2010) Transient assays for the analysis of miRNA processing and function. Methods Mol Biol 592:255-264. doi:10.1007/978-1-60327-005-2_17

Wollmann H, Weigel D (2010) Small RNAs in flower development. Eur J Cell Biol 89 (2- 3):250-257. doi:10.1016/j.ejcb.2009.11.004

Tautz D, Ellegren H, Weigel D (2010) Next generation molecular ecology. Mol Ecol 19 Suppl 1:1-3. doi:10.1111/j.1365-294X.2009.04489.x

Skylar A, Hong F, Chory J, Weigel D, Wu X (2010) STIMPY mediates cytokinin signaling during shoot meristem establishment in Arabidopsis seedlings. Development 137 (4):541-549. doi:10.1242/dev.041426

Platt A, Horton M, Huang YS, Li Y, Anastasio AE, Mulyati NW, Agren J, Bossdorf O, Byers D, Donohue K, Dunning M, Holub EB, Hudson A, Le Corre V, Loudet O, Roux F, Warthmann N, Weigel D, Rivero L, Scholl R, Nordborg M, Bergelson J, Borevitz JO (2010) The scale of population structure in Arabidopsis thaliana. PLoS Genet 6 (2):e1000843. doi:10.1371/journal.pgen.1000843

Ossowski S, Schneeberger K, Lucas-Lledo JI, Warthmann N, Clark RM, Shaw RG, Weigel D, Lynch M (2010) The rate and molecular spectrum of spontaneous mutations in Arabidopsis thaliana. Science 327 (5961):92-94. doi:10.1126/science.1180677

Massonnet C, Vile D, Fabre J, Hannah MA, Caldana C, Lisec J, Beemster GT, Meyer RC, Messerli G, Gronlund JT, Perkovic J, Wigmore E, May S, Bevan MW, Meyer C, Rubio- Diaz S, Weigel D, Micol JL, Buchanan-Wollaston V, Fiorani F, Walsh S, Rinn B, Gruissem W, Hilson P, Hennig L, Willmitzer L, Granier C (2010) Probing the reproducibility of leaf growth and molecular phenotypes: a comparison of three Arabidopsis accessions cultivated in ten laboratories. Plant Physiol 152 (4):2142-2157. doi:10.1104/pp.109.148338

Laitinen RA, Schneeberger K, Jelly NS, Ossowski S, Weigel D (2010) Identification of a spontaneous frame shift mutation in a nonreference Arabidopsis accession using whole genome sequencing. Plant Physiol 153 (2):652-654. doi:10.1104/pp.110.156448 Khraiwesh B, Arif MA, Seumel GI, Ossowski S, Weigel D, Reski R, Frank W (2010) Transcriptional control of gene expression by microRNAs. Cell 140 (1):111-122. doi:10.1016/j.cell.2009.12.023

Fahlgren N, Jogdeo S, Kasschau KD, Sullivan CM, Chapman EJ, Laubinger S, Smith LM, Dasenko M, Givan SA, Weigel D, Carrington JC (2010) MicroRNA gene evolution in Arabidopsis lyrata and Arabidopsis thaliana. Plant Cell 22 (4):1074-1089. doi:10.1105/tpc.110.073999

Bomblies K, Yant L, Laitinen RA, Kim ST, Hollister JD, Warthmann N, Fitz J, Weigel D (2010) Local-scale patterns of genetic variability, outcrossing, and spatial structure in natural stands of Arabidopsis thaliana. PLoS Genet 6 (3):e1000890. doi:10.1371/journal.pgen.1000890

Bomblies K, Weigel D (2010) Arabidopsis and relatives as models for the study of genetic and genomic incompatibilities. Philosophical transactions of the Royal Society of London Series B, Biological sciences 365 (1547):1815-1823. doi:10.1098/rstb.2009.0304

Todesco M, Rubio-Somoza I, Paz-Ares J, Weigel D (2010) A collection of target mimics for comprehensive analysis of microRNA function in Arabidopsis thaliana. PLoS Genet 6 (7):e1001031. doi:10.1371/journal.pgen.1001031

Todesco M, Balasubramanian S, Hu TT, Traw MB, Horton M, Epple P, Kuhns C, Sureshkumar S, Schwartz C, Lanz C, Laitinen RA, Huang Y, Chory J, Lipka V, Borevitz JO, Dangl JL, Bergelson J, Nordborg M, Weigel D (2010) Natural allelic variation underlying a major fitness trade-off in Arabidopsis thaliana. Nature 465 (7298):632-636. doi:10.1038/nature09083

Heard E, Tishkoff S, Todd JA, Vidal M, Wagner GP, Wang J, Weigel D, Young R (2010) Ten years of genetics and genomics: what have we achieved and where are we heading? Nature reviews Genetics 11 (10):723-733. doi:10.1038/nrg2878

Gleick PH, Adams RM, Amasino RM, Anders E, Anderson DJ, Anderson WW, Anselin LE, Arroyo MK, Asfaw B, Ayala FJ, Bax A, Bebbington AJ, Bell G, Bennett MV, Bennetzen JL, Berenbaum MR, Berlin OB, Bjorkman PJ, Blackburn E, Blamont JE, Botchan MR, Boyer JS, Boyle EA, Branton D, Briggs SP, Briggs WR, Brill WJ, Britten RJ, Broecker WS, Brown JH, Brown PO, Brunger AT, Cairns J, Jr., Canfield DE, Carpenter SR, Carrington JC, Cashmore AR, Castilla JC, Cazenave A, Chapin FS, 3rd, Ciechanover AJ, Clapham DE, Clark WC, Clayton RN, Coe MD, Conwell EM, Cowling EB, Cowling RM, Cox CS, Croteau RB, Crothers DM, Crutzen PJ, Daily GC, Dalrymple GB, Dangl JL, Darst SA, Davies DR, Davis MB, De Camilli PV, Dean C, DeFries RS, Deisenhofer J, Delmer DP, DeLong EF, DeRosier DJ, Diener TO, Dirzo R, Dixon JE, Donoghue MJ, Doolittle RF, Dunne T, Ehrlich PR, Eisenstadt SN, Eisner T, Emanuel KA, Englander SW, Ernst WG, Falkowski PG, Feher G, Ferejohn JA, Fersht A, Fischer EH, Fischer R, Flannery KV, Frank J, Frey PA, Fridovich I, Frieden C, Futuyma DJ, Gardner WR, Garrett CJ, Gilbert W, Goldberg RB, Goodenough WH, Goodman CS, Goodman M, Greengard P, Hake S, Hammel G, Hanson S, Harrison SC, Hart SR, Hartl DL, Haselkorn R, Hawkes K, Hayes JM, Hille B, Hokfelt T, House JS, Hout M, Hunten DM, Izquierdo IA, Jagendorf AT, Janzen DH, Jeanloz R, Jencks CS, Jury WA, Kaback HR, Kailath T, Kay P, Kay SA, Kennedy D, Kerr A, Kessler RC, Khush GS, Kieffer SW, Kirch PV, Kirk K, Kivelson MG, Klinman JP, Klug A, Knopoff L, Kornberg H, Kutzbach JE, Lagarias JC, Lambeck K, Landy A, Langmuir CH, Larkins BA, Le Pichon XT, Lenski RE, Leopold EB, Levin SA, Levitt M, Likens GE, Lippincott-Schwartz J, Lorand L, Lovejoy CO, Lynch M, Mabogunje AL, Malone TF, Manabe S, Marcus J, Massey DS, McWilliams JC, Medina E, Melosh HJ, Meltzer DJ, Michener CD, Miles EL, Mooney HA, Moore PB, Morel FM, Mosley-Thompson ES, Moss B, Munk WH, Myers N, Nair GB, Nathans J, Nester EW, Nicoll RA, Novick RP, O'Connell JF, Olsen PE, Opdyke ND, Oster GF, Ostrom E, Pace NR, Paine RT, Palmiter RD, Pedlosky J, Petsko GA, Pettengill GH, Philander SG, Piperno DR, Pollard TD, Price PB, Jr., Reichard PA, Reskin BF, Ricklefs RE, Rivest RL, Roberts JD, Romney AK, Rossmann MG, Russell DW, Rutter WJ, Sabloff JA, Sagdeev RZ, Sahlins MD, Salmond A, Sanes JR, Schekman R, Schellnhuber J, Schindler DW, Schmitt J, Schneider SH, Schramm VL, Sederoff RR, Shatz CJ, Sherman F, Sidman RL, Sieh K, Simons EL, Singer BH, Singer MF, Skyrms B, Sleep NH, Smith BD, Snyder SH, Sokal RR, Spencer CS, Steitz TA, Strier KB, Sudhof TC, Taylor SS, Terborgh J, Thomas DH, Thompson LG, Tjian RT, Turner MG, Uyeda S, Valentine JW, Valentine JS, Van Etten JL, van Holde KE, Vaughan M, Verba S, von Hippel PH, Wake DB, Walker A, Walker JE, Watson EB, Watson PJ, Weigel D, Wessler SR, West-Eberhard MJ, White TD, Wilson WJ, Wolfenden RV, Wood JA, Woodwell GM, Wright HE, Jr., Wu C, Wunsch C, Zoback ML (2010) Climate change and the integrity of science. Science 328 (5979):689-690. doi:10.1126/science.328.5979.689

Wollmann H, Mica E, Todesco M, Long JA, Weigel D (2010) On reconciling the interactions between APETALA2, miR172 and AGAMOUS with the ABC model of flower development. Development 137 (21):3633-3642. doi:10.1242/dev.036673

Salome PA, Weigel D, McClung CR (2010) The role of the Arabidopsis morning loop components CCA1, LHY, PRR7, and PRR9 in temperature compensation. Plant Cell 22 (11):3650-3661. doi:10.1105/tpc.110.079087

Laubinger S, Zeller G, Henz SR, Buechel S, Sachsenberg T, Wang JW, Ratsch G, Weigel D (2010) Global effects of the small RNA biogenesis machinery on the Arabidopsis thaliana transcriptome. Proc Natl Acad Sci U S A 107 (41):17466-17473. doi:10.1073/pnas.1012891107

Zeller G, Henz SR, Widmer CK, Sachsenberg T, Ratsch G, Weigel D, Laubinger S (2009) Stress-induced changes in the Arabidopsis thaliana transcriptome analyzed using whole- genome tiling arrays. The Plant journal : for cell and molecular biology 58 (6):1068-1082. doi:10.1111/j.1365-313X.2009.03835.x

Sureshkumar S, Todesco M, Schneeberger K, Harilal R, Balasubramanian S, Weigel D (2009) A genetic defect caused by a triplet repeat expansion in Arabidopsis thaliana. Science 323 (5917):1060-1063. doi:10.1126/science.1164014

Plantegenet S, Weber J, Goldstein DR, Zeller G, Nussbaumer C, Thomas J, Weigel D, Harshman K, Hardtke CS (2009) Comprehensive analysis of Arabidopsis expression level polymorphisms with simple inheritance. Mol Syst Biol 5:242. doi:10.1038/msb.2008.79

Felippes FF, Weigel D (2009) Triggering the formation of tasiRNAs in Arabidopsis thaliana: the role of microRNA miR173. EMBO Rep 10 (3):264-270. doi:10.1038/embor.2008.247

Balasubramanian S, Schwartz C, Singh A, Warthmann N, Kim MC, Maloof JN, Loudet O, Trainer GT, Dabi T, Borevitz JO, Chory J, Weigel D (2009) QTL mapping in new Arabidopsis thaliana advanced intercross-recombinant inbred lines. PLoS ONE 4 (2):e4318. doi:10.1371/journal.pone.0004318

Weigel D, Mott R (2009) The 1001 genomes project for Arabidopsis thaliana. Genome Biol 10 (5):107. doi:10.1186/gb-2009-10-5-107

Trigueros M, Navarrete-Gomez M, Sato S, Christensen SK, Pelaz S, Weigel D, Yanofsky MF, Ferrandiz C (2009) The NGATHA genes direct style development in the Arabidopsis gynoecium. Plant Cell 21 (5):1394-1409. doi:10.1105/tpc.109.065508

McNally KL, Childs KL, Bohnert R, Davidson RM, Zhao K, Ulat VJ, Zeller G, Clark RM, Hoen DR, Bureau TE, Stokowski R, Ballinger DG, Frazer KA, Cox DR, Padhukasahasram B, Bustamante CD, Weigel D, Mackill DJ, Bruskiewich RM, Ratsch G, Buell CR, Leung H, Leach JE (2009) Genomewide SNP variation reveals relationships among landraces and modern varieties of rice. Proc Natl Acad Sci U S A 106 (30):12273- 12278. doi:10.1073/pnas.0900992106

Maier AT, Stehling-Sun S, Wollmann H, Demar M, Hong RL, Haubeiss S, Weigel D, Lohmann JU (2009) Dual roles of the bZIP transcription factor PERIANTHIA in the control of floral architecture and homeotic gene expression. Development 136 (10):1613- 1620. doi:10.1242/dev.033647

Guo YL, Bechsgaard JS, Slotte T, Neuffer B, Lascoux M, Weigel D, Schierup MH (2009) Recent speciation of Capsella rubella from Capsella grandiflora, associated with loss of self-incompatibility and an extreme bottleneck. Proc Natl Acad Sci U S A 106 (13):5246- 5251. doi:10.1073/pnas.0808012106

Buchfelder M, Weigel D, Droste M, Mann K, Saller B, Brubach K, Stalla GK, Bidlingmaier M, Strasburger CJ (2009) Pituitary tumor size in acromegaly during pegvisomant treatment: experience from MR re-evaluations of the German Pegvisomant Observational Study. European journal of endocrinology / European Federation of Endocrine Societies 161 (1):27-35. doi:10.1530/EJE-08-0910

Wu G, Park MY, Conway SR, Wang JW, Weigel D, Poethig RS (2009) The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138 (4):750-759. doi:10.1016/j.cell.2009.06.031

Weigel D, Glazebrook J (2009) Dellaporta miniprep for plant DNA isolation. CSH Protoc 2009 (3):pdb prot5178. doi:10.1101/pdb.prot5178

Weigel D, Glazebrook J (2009) Quick miniprep for plant DNA isolation. CSH Protoc 2009 (3):pdb prot5179. doi:10.1101/pdb.prot5179

Weigel D, Glazebrook J (2009) Phenotypic analysis of Arabidopsis mutants: bacterial pathogens. CSH Protoc 2009 (7):pdb prot4983. doi:10.1101/pdb.prot4983

Weigel D (2009) [The need to make ethics conflict situations visible: nutrition and fluid care in inpatient geriatric nursing]. Pflege Z 62 (11):652-655

Schneeberger K, Ossowski S, Lanz C, Juul T, Petersen AH, Nielsen KL, Jorgensen JE, Weigel D, Andersen SU (2009) SHOREmap: simultaneous mapping and mutation identification by deep sequencing. Nat Meth 6 (8):550-551. doi:10.1038/nmeth0809-550 Schneeberger K, Hagmann J, Ossowski S, Warthmann N, Gesing S, Kohlbacher O, Weigel D (2009) Simultaneous alignment of short reads against multiple genomes. Genome Biol 10 (9):R98. doi:10.1186/gb-2009-10-9-r98

Rubio-Somoza I, Cuperus JT, Weigel D, Carrington JC (2009) Regulation and functional specialization of small RNA-target nodes during plant development. Curr Opin Plant Biol 12 (5):622-627. doi:10.1016/j.pbi.2009.07.003

Out AA, van Minderhout IJ, Goeman JJ, Ariyurek Y, Ossowski S, Schneeberger K, Weigel D, van Galen M, Taschner PE, Tops CM, Breuning MH, van Ommen GJ, den Dunnen JT, Devilee P, Hes FJ (2009) Deep sequencing to reveal new variants in pooled DNA samples. Hum Mutat 30 (12):1703-1712. doi:10.1002/humu.21122

Mirouze M, Reinders J, Bucher E, Nishimura T, Schneeberger K, Ossowski S, Cao J, Weigel D, Paszkowski J, Mathieu O (2009) Selective epigenetic control of retrotransposition in Arabidopsis. Nature 461 (7262):427-430. doi:10.1038/nature08328

Weingartner M, Subert C, Sauer N (2011) LATE, a C2H2 zinc-finger protein that acts as floral repressor. Plant J:no-no. doi:10.1111/j.1365-313X.2011.04717.x

Tarkowska D, Filek M, Biesaga-Koscielniak J, Marcinska I, Machackova I, Krekule J, Strnad M (2012) Cytokinins in shoot apices of Brassica napus plants during vernalization. Plant Sci 187:105-112. doi:10.1016/j.plantsci.2012.02.003

Tao Z, Shen L, Liu C, Liu L, Yan Y, Yu H (2012) Genome-wide identification of SOC1 and SVP targets during the floral transition in Arabidopsis. Plant Journal 70 (4):549-561. doi:10.1111/j.1365-313X.2012.04919.x

Siriwardana NS, Lamb RS (2012) The poetry of reproduction: the role of LEAFY in Arabidopsis thaliana flower formation. The International journal of developmental biology 56 (4):207-221

Shen L, Yu H (2011) J3 regulation of flowering time is mainly contributed by its activity in leaves. Plant Signal Behav 6 (4):601-603

Ryu JY, Park CM, Seo PJ (2011) The floral repressor BROTHER OF FT AND TFL1 (BFT) modulates flowering initiation under high salinity in Arabidopsis. Mol Cells. doi:10.1007/s10059-011-0112-9

Rinalducci S, Egidi MG, Mahfoozi S, Godehkahriz SJ, Zolla L (2011) The influence of temperature on plant development in a vernalization-requiring winter wheat: A 2-DE based proteomic investigation. Journal of Proteomics 74 (5):643-659. doi:10.1016/j.jprot.2011.02.005

Plackett AR, Powers SJ, Fernandez-Garcia N, Urbanova T, Takebayashi Y, Seo M, Jikumaru Y, Benlloch R, Nilsson O, Ruiz-Rivero O, Phillips AL, Wilson ZA, Thomas SG, Hedden P (2012) Analysis of the developmental roles of the Arabidopsis gibberellin 20- oxidases demonstrates that GA20ox1, -2, and -3 are the dominant paralogs. Plant Cell 24 (3):941-960. doi:10.1105/tpc.111.095109

Park SJ, Jiang K, Schatz MC, Lippman ZB (2012) Rate of meristem maturation determines inflorescence architecture in tomato. Proc Natl Acad Sci U S A 109 (2):639- 644. doi:10.1073/pnas.1114963109 Ness RW, Siol M, Barrett SC (2011) De novo sequence assembly and characterization of the floral transcriptome in cross- and self-fertilizing plants. BMC Genomics 12:298. doi:10.1186/1471-2164-12-298

Liang S, Ye QS, Li RH, Leng JY, Li MR, Wang XJ, Li HQ (2012) Transcriptional Regulations on the Low-Temperature-Induced Floral Transition in an Orchidaceae Species, Dendrobium nobile: An Expressed Sequence Tags Analysis. Comp Funct Genomics 2012:757801. doi:10.1155/2012/757801

Li W, Wang Z, Li J, Yang H, Cui S, Wang X, Ma L (2011) Overexpression of AtBMI1C, a Polycomb Group Protein Gene, Accelerates Flowering in Arabidopsis. PLoS ONE 6 (6):e21364

Kobayashi M, Takato H, Fujita K, Suzuki S (2012) HSG1, a grape Bcl-2-associated athanogene, promotes floral transition by activating CONSTANS expression in transgenic Arabidopsis plant. Mol Biol Rep 39 (4):4367-4374. doi:10.1007/s11033-011-1224-1

Kawanabe T, Fujimoto R (2011) Inflorescence abnormalities occur with overexpression of Arabidopsis lyrata FT in the fwa mutant of Arabidopsis thaliana. Plant Sci 181 (4):496- 503

Jiang D, Kong NC, Gu X, Li Z, He Y (2011) Arabidopsis COMPASS-like complexes mediate histone H3 lysine-4 trimethylation to control floral transition and plant development. PLoS Genet 7 (3):e1001330. doi:10.1371/journal.pgen.1001330

Immink R, Pose D, Ferrario S, Ott F, Kaufmann K, Leal Valentim F, De Folter S, Van der Wal F, van Dijk AD, Schmid M, Angenent GC (2012) Characterisation of SOC1's central role in flowering by the identification of its up- and downstream regulators. Plant Physiol. doi:10.1104/pp.112.202614

Hirai M, Yamagishi M, Kanno A (2012) Reduced transcription of a LEAFY-like gene in Alstroemeria sp cultivar Green Coral that cannot develop floral meristems. Plant Sci 185:298-308. doi:10.1016/j.plantsci.2011.12.017

Heo JB, Sung S, Assmann SM (2012) Ca2+-dependent GTPase, Extra-large G Protein 2 (XLG2), Promotes Activation of DNA-binding Protein Related to Vernalization 1 (RTV1), Leading to Activation of Floral Integrator Genes and Early Flowering in Arabidopsis. J Biol Chem 287 (11):8242-8253. doi:10.1074/jbc.M111.317412

Guan H, Zheng Z, Grey PH, Li Y, Oppenheimer DG (2011) Conservation and divergence of plant LHP1 protein sequences and expression patterns in angiosperms and gymnosperms. Molecular Genet Genom 285 (5):357-373. doi:10.1007/s00438-011-0609- 0

Fukuda M, Matsuo S, Kikuchi K, Kawazu Y, Fujiyama R, Honda I (2011) Isolation and functional characterization of the FLOWERING LOCUS T homolog, the LsFT gene, in lettuce. J Plant Physiol 168 (13):1602-1607. doi:10.1016/j.jplph.2011.02.004

Fu C, Sunkar R, Zhou C, Shen H, Zhang JY, Matts J, Wolf J, Mann DG, Stewart CN, Jr., Tang Y, Wang ZY (2012) Overexpression of miR156 in switchgrass (Panicum virgatum L.) results in various morphological alterations and leads to improved biomass production. Plant Biotechnol J. doi:10.1111/j.1467-7652.2011.00677.x Farrona S, Hurtado L, March-Diaz R, Schmitz RJ, Florencio FJ, Turck F, Amasino RM, Reyes JC (2011) BRAHMA Is Required for Proper Expression of the Floral Repressor FLC in Arabidopsis. PLoS ONE 6 (3). doi:e17997 10.1371/journal.pone.0017997

Dubois A, Remay A, Raymond O, Balzergue S, Chauvet A, Maene M, Pecrix Y, Yang SH, Jeauffre J, Thouroude T, Boltz V, Martin-Magniette ML, Janczarski S, Legeai F, Renou JP, Vergne P, Le Bris M, Foucher F, Bendahmane M (2011) Genomic Approach to Study Floral Development Genes in Rosa sp. PLoS ONE 6 (12):e28455. doi:10.1371/journal.pone.0028455

Ballerini ES, Kramer EM (2011) Environmental and molecular analysis of the floral transition in the lower eudicot Aquilegia formosa. EvoDevo 2:4. doi:10.1186/2041-9139- 2-4

Pan ZJ, Cheng CC, Tsai WC, Chung MC, Chen WH, Hu JM, Chen HH (2011) The duplicated B-class MADS-box genes display dualistic characters in orchid floral organ identity and growth. Plant Cell Physiol 52 (9):1515-1531. doi:10.1093/pcp/pcr092

Dart SR, Samis KE, Austen E, Eckert CG (2012) Broad geographic covariation between floral traits and the mating system in Camissoniopsis cheiranthifolia (): multiple stable mixed mating systems across the species' range? Ann Bot 109 (3):599-611. doi:10.1093/aob/mcr266

Chandler JW, Werr W (2011) The role of Dornroschen-like in early floral organogenesis. Plant Signal Behav 6 (8):1244-1246. doi:10.4161/psb.6.8.16456

Wang B, Zheng J, Liu Y, Wang J, Wang G (2012) Cloning and characterization of the stress-induced bZIP gene ZmbZIP60 from maize. Mol Biol Rep 39 (5):6319-6327. doi:10.1007/s11033-012-1453-y

Khan M, Tabb P, Hepworth SR (2012) BLADE-ON-PETIOLE1 and 2 regulate Arabidopsis inflorescence architecture in conjunction with homeobox genes KNAT6 and ATH1. Plant Signal Behav 7 (7)

Springate DA, Scarcelli N, Rowntree J, Kover PX (2011) Correlated response in plasticity to selection for early flowering in Arabidopsis thaliana. J Evol Biol. doi:10.1111/j.1420- 9101.2011.02360.x

Scarcelli N, Kover PX (2009) Standing genetic variation in FRIGIDA mediates experimental evolution of flowering time in Arabidopsis. Mol Ecol 18 (9):2039-2049. doi:MEC4145 [pii] 10.1111/j.1365-294X.2009.04145.x

Laudencia-Chingcuanco D, Fowler DB (2012) Genotype-dependent Burst of Transposable Element Expression in Crowns of Hexaploid Wheat (Triticum aestivum L.) during Cold Acclimation. Comp Funct Genomics 2012:232530. doi:10.1155/2012/232530

Gan X, Stegle O, Behr J, Steffen JG, Drewe P, Hildebrand KL, Lyngsoe R, Schultheiss SJ, Osborne EJ, Sreedharan VT, Kahles A, Bohnert R, Jean G, Derwent P, Kersey P, Belfield EJ, Harberd NP, Kemen E, Toomajian C, Kover PX, Clark RM, Ratsch G, Mott R (2011) Multiple reference genomes and transcriptomes for Arabidopsis thaliana. Nature 477 (7365):419-423. doi:10.1038/nature10414 Ehrenreich IM, Hanzawa Y, Chou L, Roe JL, Kover PX, Purugganan MD (2009) Candidate gene association mapping of Arabidopsis flowering time. Genetics 183 (1):325- 335. doi:genetics.109.105189 [pii] 10.1534/genetics.109.105189

Campoli C, Shtaya M, Davis SJ, von Korff M (2012) Expression conservation within the circadian clock of a monocot: natural variation at barley Ppd-H1 affects circadian expression of flowering time genes, but not clock orthologs. BMC Plant Biol 12 (1):97. doi:10.1186/1471-2229-12-97

Ballerini ES, Brothers AN, Tang S, Knapp SJ, Bouck A, Taylor SJ, Arnold ML, Martin NH (2012) QTL mapping reveals the genetic architecture of loci affecting pre- and post- zygotic isolating barriers in Louisiana Iris. BMC Plant Biol 12 (1):91. doi:10.1186/1471- 2229-12-91

Christians MJ, Gingerich DJ, Hua Z, Lauer TD, Vierstra RD (2012) THE LIGHT- RESPONSE BTB 1 AND 2 PROTEINS ASSEMBLE NUCLEAR UBIQUITIN LIGASES THAT MODIFY PHYTOCHROME B AND D SIGNALING IN ARABIDOPSIS. Plant Physiol. doi:10.1104/pp.112.199109

Bieker S, Riester L, Stahl M, Franzaring J, Zentgraf U (2012) Senescence-specific Alteration of Hydrogen Peroxide Levels in Arabidopsis thaliana and Oil seed Rape Spring Variety Brassica napus L. cv. Mozart. J Integr Plant Biol. doi:10.1111/j.1744- 7909.2012.01147.x

Heyndrickx KS, Vandepoele K (2012) Systematic Identification of Functional Plant Modules through the Integration of Complementary Data Sources. Plant Physiol 159 (3):884-901. doi:10.1104/pp.112.196725

Peng X, Zhao Y, Cao J, Zhang W, Jiang H, Li X, Ma Q, Zhu S, Cheng B (2012) CCCH- Type Zinc Finger Family in Maize: Genome-Wide Identification, Classification and Expression Profiling under Abscisic Acid and Drought Treatments. PLoS ONE 7 (7):e40120. doi:10.1371/journal.pone.0040120

Liu MS, Chen LF, Lin CH, Lai YM, Huang JY, Sung ZR (2012) Molecular and Functional Characterization of Broccoli EMBRYONIC FLOWER 2 Genes. Plant Cell Physiol 53 (7):1217-1231. doi:10.1093/pcp/pcs063

Ishibashi N, Setoguchi H (2012) Polymorphism of DNA sequences of cryptochrome genes is not associated with the photoperiodic flowering of wild soybean along a latitudinal cline. J Plant Res 125 (4):483-488. doi:10.1007/s10265-011-0470-6

Banta JA, Ehrenreich IM, Gerard S, Chou L, Wilczek A, Schmitt J, Kover PX, Purugganan MD, Ris Lambers JH (2012) Climate envelope modelling reveals intraspecific relationships among flowering phenology, niche breadth and potential range size in Arabidopsis thaliana. Ecol Lett 15 (8):769-777. doi:10.1111/j.1461- 0248.2012.01796.x

Brock MT, Kover PX, Weinig C (2012) Natural variation in GA1 associates with floral morphology in Arabidopsis thaliana. New Phytol 195 (1):58-70. doi:10.1111/j.1469- 8137.2012.04145.x Kover PX, Mott R (2012) Mapping the genetic basis of ecologically and evolutionarily relevant traits in Arabidopsis thaliana. Curr Opin Plant Biol 15 (2):212-217. doi:10.1016/j.pbi.2012.02.002

Wolf JB, Mutic JJ, Kover PX (2011) Functional genetics of intraspecific ecological interactions in Arabidopsis thaliana. Philosophical transactions of the Royal Society of London Series B, Biological sciences 366 (1569):1358-1367. doi:10.1098/rstb.2010.0239

Kover PX, Valdar W, Trakalo J, Scarcelli N, Ehrenreich IM, Purugganan MD, Durrant C, Mott R (2009) A Multiparent Advanced Generation Inter-Cross to fine-map quantitative traits in Arabidopsis thaliana. PLoS Genet 5 (7):e1000551. doi:10.1371/journal.pgen.1000551

Kover PX, Rowntree JK, Scarcelli N, Savriama Y, Eldridge T, Schaal BA (2009) Pleiotropic effects of environment-specific adaptation in Arabidopsis thaliana. New Phytol 183 (3):816-825. doi:10.1111/j.1469-8137.2009.02943.x

Hickey SF, Sridhar M, Westermann AJ, Qin Q, Vijayendra P, Liou G, Hammond MC (2012) Transgene regulation in plants by alternative splicing of a suicide exon. Nucleic Acids Res 40 (10):4701-4710. doi:10.1093/nar/gks032

Tsai AY-L, Gazzarrini S (2012) AKIN10 and FUSCA3 interact to control lateral organ development and phase transitions in Arabidopsis. Plant Journal 69 (5):809-821. doi:10.1111/j.1365-313X.2011.04832.x

Jung J-H, Ju Y, Seo PJ, Lee J-H, Park C-M (2012) The SOC1-SPL module integrates photoperiod and gibberellic acid signals to control flowering time in Arabidopsis. Plant Journal 69 (4):577-588. doi:10.1111/j.1365-313X.2011.04813.x

Jung J-H, Seo PJ, Ahn JH, Park C-M (2012) Arabidopsis RNA-binding Protein FCA Regulates MicroRNA172 Processing in Thermosensory Flowering. J Biol Chem 287 (19):16007-16016. doi:10.1074/jbc.M111.337485

Thouet J, Quinet M, Lutts S, Kinet J-M, Perilleux C (2012) Repression of Floral Meristem Fate Is Crucial in Shaping Tomato Inflorescence. PLoS ONE 7 (2). doi:e31096 10.1371/journal.pone.0031096

Allard V, Otto V, Bela K, Rousset M, Le Gouis J, Martre P (2012) The quantitative response of wheat vernalization to environmental variables indicates that vernalization is not a response to cold temperature. J Exp Bot 63 (2):847-857. doi:10.1093/jxb/err316

Willige BC, Isono E, Richter R, Zourelidou M, Schwechheimer C (2011) Gibberellin regulates PIN-FORMED abundance and is required for auxin transport-dependent growth and development in Arabidopsis thaliana. Plant Cell 23 (6):2184-2195. doi:10.1105/tpc.111.086355

Ragni L, Nieminen K, Pacheco-Villalobos D, Sibout R, Schwechheimer C, Hardtke CS (2011) Mobile gibberellin directly stimulates Arabidopsis hypocotyl xylem expansion. Plant Cell 23 (4):1322-1336. doi:10.1105/tpc.111.084020

Katsiarimpa A, Anzenberger F, Schlager N, Neubert S, Hauser MT, Schwechheimer C, Isono E (2011) The Arabidopsis deubiquitinating enzyme AMSH3 interacts with ESCRT- III subunits and regulates their localization. Plant Cell 23 (8):3026-3040. doi:10.1105/tpc.111.087254

Lin SI, Wang JG, Poon SY, Su CL, Wang SS, Chiou TJ (2005) Differential regulation of FLOWERING LOCUS C expression by vernalization in cabbage and Arabidopsis. Plant Physiol 137 (3):1037-1048. doi:10.1104/pp.104.058974

Arabidopsis GI (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408 (6814):796

Christians MJ, Gingerich DJ, Hua Z, Lauer TD, Vierstra RD (2012) The light-response BTB 1 and 2 Proteins Assemble Nuclear Ubiquitin Ligases that Modify Phytochrome B and Signaling in Arabidopsis. Plant Physiol. doi:10.1104/pp.112.199109

Wang B, Jin SH, Hu HQ, Sun YG, Wang YW, Han P, Hou BK (2012) UGT87A2, an Arabidopsis glycosyltransferase, regulates flowering time via FLOWERING LOCUS C. New Phytol 194 (3):666-675. doi:10.1111/j.1469-8137.2012.04107.x

Hudson D, Guevara D, Yaish MW, Hannam C, Long N, Clarke JD, Bi YM, Rothstein SJ (2011) GNC and CGA1 modulate chlorophyll biosynthesis and glutamate synthase (GLU1/Fd-GOGAT) expression in Arabidopsis. PLoS ONE 6 (11):e26765. doi:10.1371/journal.pone.0026765

Ikeda-Kawakatsu K, Maekawa M, Izawa T, Itoh J, Nagato Y (2012) ABERRANT PANICLE ORGANIZATION 2/RFL, the rice ortholog of Arabidopsis LEAFY, suppresses the transition from inflorescence meristem to floral meristem through interaction with APO1. Plant J 69 (1):168-180. doi:10.1111/j.1365-313X.2011.04781.x

Mendez-Vigo B, Pico FX, Ramiro M, Martinez-Zapater JM, Alonso-Blanco C (2011) Altitudinal and climatic adaptation is mediated by flowering traits and FRI, FLC, and PHYC genes in Arabidopsis. Plant Physiol 157 (4):1942-1955. doi:10.1104/pp.111.183426

Lu SX, Webb CJ, Knowles SM, Kim SH, Wang Z, Tobin EM (2012) CCA1 and ELF3 Interact in the Control of Hypocotyl Length and Flowering Time in Arabidopsis. Plant Physiol 158 (2):1079-1088. doi:10.1104/pp.111.189670

Lu SX, Liu H, Knowles SM, Li J, Ma L, Tobin EM, Lin C (2011) A role for protein kinase casein Kinase2 alpha-subunits in the Arabidopsis circadian clock. Plant Physiol 157 (3):1537-1545. doi:10.1104/pp.111.179846

Zhang D, Zhou S, Liu K, Xia Q, Hong X (2011) [Studies of floral biology, breeding characters of Lamium barbatum]. Zhongguo Zhong Yao Za Zhi 36 (16):2166-2169

Yang J, Yang MF, Zhang WP, Chen F, Shen SH (2011) A putative flowering-time-related Dof transcription factor gene, JcDof3, is controlled by the circadian clock in Jatropha curcas. Plant Sci (Shannon) 181 (6):667-674. doi:10.1016/j.plantsci.2011.05.003

Xia K, Wang R, Ou X, Fang Z, Tian C, Duan J, Wang Y, Zhang M (2012) OsTIR1 and OsAFB2 Downregulation via OsmiR393 Overexpression Leads to More Tillers, Early Flowering and Less Tolerance to Salt and Drought in Rice. PLoS ONE 7 (1):e30039. doi:10.1371/journal.pone.0030039 Uptmoor R, Li J, Schrag T, Stutzel H (2012) Prediction of flowering time in Brassica oleracea using a quantitative trait loci-based phenology model. Plant Biol (Stuttg) 14 (1):179-189. doi:10.1111/j.1438-8677.2011.00478.x

Takumi S, Koyama K, Fujiwara K, Kobayashi F (2011) Identification of a large deletion in the first intron of the Vrn-D1 locus, associated with loss of vernalization requirement in wild wheat progenitor Aegilops tauschii Coss. Genes Genet Syst 86 (3):183-195

Sun H, Jia Z, Cao D, Jiang B, Wu C, Hou W, Liu Y, Fei Z, Zhao D, Han T (2011) GmFT2a, a Soybean Homolog of FLOWERING LOCUS T, Is Involved in Flowering Transition and Maintenance. PLoS ONE 6 (12):e29238. doi:10.1371/journal.pone.0029238

Murphy RL, Klein RR, Morishige DT, Brady JA, Rooney WL, Miller FR, Dugas DV, Klein PE, Mullet JE (2011) Coincident light and clock regulation of pseudoresponse regulator protein 37 (PRR37) controls photoperiodic flowering in Sorghum. Proc Natl Acad Sci U S A. doi:10.1073/pnas.1106212108

Lewandowska-Sabat AM, Winge P, Fjellheim S, Dorum G, Bones AM, Rognli OA (2012) Genome wide transcriptional profiling of acclimation to photoperiod in high- latitude accessions of Arabidopsis thaliana. Plant Sci 185-186:143-155. doi:10.1016/j.plantsci.2011.10.009

Le Gouis J, Bordes J, Ravel C, Heumez E, Faure S, Praud S, Galic N, Remoue C, Balfourier F, Allard V, Rousset M (2012) Genome-wide association analysis to identify chromosomal regions determining components of earliness in wheat. Theor Appl Genet 124 (3):597-611. doi:10.1007/s00122-011-1732-3

Lai D, Li H, Fan S, Song M, Pang C, Wei H, Liu J, Wu D, Gong W, Yu S (2011) Generation of ESTs for flowering gene discovery and SSR marker development in upland cotton. PLoS ONE 6 (12):e28676. doi:10.1371/journal.pone.0028676

Hanano S, Goto K (2011) Arabidopsis TERMINAL FLOWER1 Is Involved in the Regulation of Flowering Time and Inflorescence Development through Transcriptional Repression. Plant Cell. doi:10.1105/tpc.111.088641

Chi Y, Huang F, Liu H, Yang S, Yu D (2011) An APETALA1-like gene of soybean regulates flowering time and specifies floral organs. J Plant Physiol 168 (18):2251-2259. doi:10.1016/j.jplph.2011.08.007

Chen G, Wu J, Variath MT, Shi C (2011) Timing of gene expression from different genetic systems in shaping leucine and isoleucine contents of rapeseed (Brassica napus L.) meal. J Genet 90 (3):459-468

Chawade A, Linden P, Brautigam M, Jonsson R, Jonsson A, Moritz T, Olsson O (2012) Development of a model system to identify differences in spring and winter oat. PLoS ONE 7 (1):e29792. doi:10.1371/journal.pone.0029792

Casao MC, Karsai I, Igartua E, Gracia MP, Veisz O, Casas AM (2011) Adaptation of barley to mild winters: A role for PPDH2. BMC Plant Biol 11:164. doi:10.1186/1471- 2229-11-164 Brown PJ, Upadyayula N, Mahone GS, Tian F, Bradbury PJ, Myles S, Holland JB, Flint- Garcia S, McMullen MD, Buckler ES, Rocheford TR (2011) Distinct genetic architectures for male and female inflorescence traits of maize. PLoS Genet 7 (11):e1002383. doi:10.1371/journal.pgen.1002383

Schneemilch M, Kokkinn M, Williams CR (2012) Flowering timing prediction in Australian native understorey species (Acrotriche R.Br ) using meteorological data. Int J Biometeorol 56 (1):95-105. doi:10.1007/s00484-010-0400-7

Wu FQ, Zhang XM, Li DM, Fu YF (2011) Ectopic expression reveals a conserved PHYB homolog in soybean. PLoS ONE 6 (11):e27737. doi:10.1371/journal.pone.0027737

Kantar M, Akpinar BA, Valarik M, Lucas SJ, Dolezel J, Hernandez P, Budak H (2012) Subgenomic analysis of microRNAs in polyploid wheat. Funct Integr Genomics. doi:10.1007/s10142-012-0285-0

Jackson SD (2009) Plant responses to photoperiod. New Phytol 181 (3):517-531. doi:10.1111/j.1469-8137.2008.02681.x

Thrall PH, Bever JD, Burdon JJ (2010) Evolutionary change in agriculture: the past, present and future. Evol Appl 3 (5-6):405-408 van der Hoorn RA, Colby T, Nickel S, Richau KH, Schmidt J, Kaiser M (2011) Mining the Active Proteome of Arabidopsis thaliana. Front Plant Sci 2:89. doi:10.3389/fpls.2011.00089

Cubillos FA, Yansouni J, Khalili H, Balzergue S, Elftieh S, Martin-Magniette ML, Serrand Y, Lepiniec L, Baud S, Dubreucq B, Renou JP, Camilleri C, Loudet O (2012) Expression variation in connected recombinant populations of Arabidopsis thaliana highlights distinct transcriptome architectures. BMC Genomics 13:117. doi:10.1186/1471- 2164-13-117

Benning UF, Tamot B, Guelette BS, Hoffmann-Benning S (2012) New aspects of Phloem-mediated long-distance lipid signaling in plants. Front Plant Sci 3:53. doi:10.3389/fpls.2012.00053

Hunt AG (2011) RNA regulatory elements and polyadenylation in plants. Front Plant Sci 2:109. doi:10.3389/fpls.2011.00109 van Bakel H, Stout JM, Cote AG, Tallon CM, Sharpe AG, Hughes TR, Page JE (2011) The draft genome and transcriptome of Cannabis sativa. Genome Biol 12 (10):R102. doi:10.1186/gb-2011-12-10-r102

Moyle LC, Muir CD (2010) Reciprocal insights into adaptation from agricultural and evolutionary studies in tomato. Evol Appl 3 (5-6):409-421. doi:DOI 10.1111/j.1752- 4571.2010.00143.x

Koncz C, Dejong F, Villacorta N, Szakonyi D, Koncz Z (2012) The spliceosome- activating complex: molecular mechanisms underlying the function of a pleiotropic regulator. Front Plant Sci 3:9. doi:10.3389/fpls.2012.00009

Jaspert N, Throm C, Oecking C (2011) Arabidopsis 14-3-3 proteins: fascinating and less fascinating aspects. Front Plant Sci 2:96. doi:10.3389/fpls.2011.00096 Wagner D, Meyerowitz EM (2011) Switching on Flowers: Transient LEAFY Induction Reveals Novel Aspects of the Regulation of Reproductive Development in Arabidopsis. Front Plant Sci 2:60. doi:10.3389/fpls.2011.00060

Yamaguchi N, Yamaguchi A, Abe M, Wagner D, Komeda Y (2012) LEAFY controls Arabidopsis pedicel length and orientation by affecting adaxial-abaxial cell fate. Plant J 69 (5):844-856. doi:10.1111/j.1365-313X.2011.04836.x

Ballerini ES, Kramer EM (2011) In the Light of Evolution: A Reevaluation of Conservation in the CO-FT Regulon and Its Role in Photoperiodic Regulation of Flowering Time. Front Plant Sci 2:81. doi:10.3389/fpls.2011.00081

Lu S-J, Wei H, Wang Y, Wang H-M, Yang R-F, Zhang X-B, Tu J-M (2012) Overexpression of a Transcription Factor OsMADS15 Modifies Plant Architecture and Flowering Time in Rice (Oryza sativa L.). Plant Mol Biol Report:1-9. doi:10.1007/s11105-012-0468-9

Würschum T (2012) Mapping QTL for agronomic traits in breeding populations. TAG Theoretical and Applied Genetics 125 (2):201-210. doi:10.1007/s00122-012-1887-6

Song H-R (2012) Interaction between the Late Elongated hypocotyl (LHY) and Early flowering 3 (ELF3) genes in the Arabidopsis circadian clock. Genes and Genomics 34 (3):329-337. doi:10.1007/s13258-012-0011-2

Dijk HV, Boudry P, McCombre H, Vernet P (1997) Flowering time in wild beet (Beta vulgaris ssp. maritima) along a latitudinal cline. Acta Oecol 18 (1):47-60. doi:10.1016/s1146-609x(97)80080-x

Somerville C, Koornneef M (2002) Timeline - A fortunate choice: the history of Arabidopsis as a model plant. Nat Rev Genet 3 (11):883-889. doi:Doi 10.1038/Nrg927

Redei GP (1975) Arabidopsis as a Genetic Tool. Annu Rev Genet 9:111-127

Ratcliffe OJ, Amaya I, Vincent CA, Rothstein S, Carpenter R, Coen ES, Bradley DJ (1998) A common mechanism controls the life cycle and architecture of plants. Development 125 (9):1609-1615

Michaels SD, Amasino RM (2000) Memories of winter: vernalization and the competence to flower. Plant Cell Environ 23 (11):1145-1153

Pang PP, Meyerowitz EM (1987) Arabidopsis thaliana - a Model System for Plant Molecular Biology. Bio-Technol 5 (11):1177-&

Meyerowitz EM (1987) Arabidopsis thaliana. Annu Rev Genet 21:93-111

Levy YY, Dean C (1998) The transition to flowering. Plant Cell 10 (12):1973-1990

Jung C, Qian W, Büttner B, Hohmann U, Mutasa-Goettgens ES, Chia T, Mueller A (2007) Using genomic information for altering bolting and flowering behaviour of crop plants. Molecular Plant Breeding 5:156-158

Jaggard K, Werker A (1999) An evaluation of the potential benefits and costs of autumn- sown sugarbeet in NW Europe. J Agric Sci 132:91-102 Abe J, Guan GP, Shimamoto Y (1997) A gene complex for annual habit in sugar beet (Beta vulgaris L). Euphytica 94 (2):129-135

Abegg FA (1936) A genetic factor for the annual habit in beets and linkage relationship. Journal of Argicultural Research 53:493 – 511

Liu J-J (2012) Ectopic expression of a truncated Pinus radiata AGAMOUS homolog (PrAG1) causes alteration of inflorescence architecture and male sterility in Nicotiana tabacum. Mol Breed 30 (1):453-467. doi:10.1007/s11032-011-9635-1

Milec Z, Tomková L, Sumíková T, Pánková K (2012) A new multiplex PCR test for the determination of Vrn-B1 alleles in bread wheat (Triticum aestivum L.). Mol Breed 30 (1):317-323. doi:10.1007/s11032-011-9621-7

Troggio M, Gleave A, Salvi S, Chagné D, Cestaro A, Kumar S, Crowhurst R, Gardiner S (2012) Apple, from genome to breeding. Tree Genet Genomes 8:509-529. doi:10.1007/s11295-012-0492-9

Chagne D, Crowhurst RN, Troggio M, Davey MW, Gilmore B, Lawley C, Vanderzande S, Hellens RP, Kumar S, Cestaro A, Velasco R, Main D, Rees JD, Iezzoni A, Mockler T, Wilhelm L, Van de Weg E, Gardiner SE, Bassil N, Peace C (2012) Genome-wide SNP detection, validation, and development of an 8K SNP array for apple. PLoS ONE 7 (2):e31745. doi:10.1371/journal.pone.0031745

Xia Z, Zhai H, Liu B, Kong F, Yuan X, Wu H, Cober ER, Harada K (2012) Molecular identification of genes controlling flowering time, maturity, and photoperiod response in soybean. Plant Syst Evol:1-11. doi:10.1007/s00606-012-0628-2

Haroldsen VM, Szczerba MW, Aktas H, Lopez-Baltazar J, Odias MJ, Chi-Ham CL, Labavitch JM, Bennett AB, Powell AL (2012) Mobility of Transgenic Nucleic Acids and Proteins within Grafted Rootstocks for Agricultural Improvement. Front Plant Sci 3:39. doi:10.3389/fpls.2012.00039

Leroy P, Guilhot N, Sakai H, Bernard A, Choulet F, Theil S, Reboux S, Amano N, Flutre T, Pelegrin C, Ohyanagi H, Seidel M, Giacomoni F, Reichstadt M, Alaux M, Gicquello E, Legeai F, Cerutti L, Numa H, Tanaka T, Mayer K, Itoh T, Quesneville H, Feuillet C (2012) TriAnnot: A Versatile and High Performance Pipeline for the Automated Annotation of Plant Genomes. Front Plant Sci 3:5. doi:10.3389/fpls.2012.00005

Rogers MF, Thomas J, Reddy AS, Ben-Hur A (2012) SpliceGrapher: detecting patterns of alternative splicing from RNA-Seq data in the context of gene models and EST data. Genome Biol 13 (1):R4. doi:10.1186/gb-2012-13-1-r4

Reddy AS, Rogers MF, Richardson DN, Hamilton M, Ben-Hur A (2012) Deciphering the plant splicing code: experimental and computational approaches for predicting alternative splicing and splicing regulatory elements. Front Plant Sci 3:18. doi:10.3389/fpls.2012.00018

Escobar-Guzman R, De Folter S, Marsch-Martinez N (2011) Hot and retro meet Arabidopsis. Front Plant Sci 2:22. doi:10.3389/fpls.2011.00022 Marsch-Martinez N (2011) A transposon-based activation tagging system for gene function discovery in Arabidopsis. Methods Mol Biol 754:67-83. doi:10.1007/978-1- 61779-154-3_4

Marsch-Martinez N, Wu W, de Folter S (2011) The MADS Symphonies of Transcriptional Regulation. Front Plant Sci 2:26. doi:10.3389/fpls.2011.00026

Rosas-Cardenas Fde F, Duran-Figueroa N, Vielle-Calzada JP, Cruz-Hernandez A, Marsch-Martinez N, de Folter S (2011) A simple and efficient method for isolating small RNAs from different plant species. Plant Methods 7:4. doi:10.1186/1746-4811-7-4

Schwechheimer C (2011) Gibberellin signaling in plants - the extended version. Front Plant Sci 2:107. doi:10.3389/fpls.2011.00107

Hakenjos JP, Richter R, Dohmann EM, Katsiarimpa A, Isono E, Schwechheimer C (2011) MLN4924 is an efficient inhibitor of NEDD8 conjugation in plants. Plant Physiol 156 (2):527-536. doi:10.1104/pp.111.176677

Maier AT, Stehling-Sun S, Offenburger SL, Lohmann JU (2011) The bZIP Transcription Factor PERIANTHIA: A Multifunctional Hub for Meristem Control. Front Plant Sci 2:79. doi:10.3389/fpls.2011.00079

Pasam RK, Sharma R, Malosetti M, van Eeuwijk FA, Haseneyer G, Kilian B, Graner A (2012) Genome-wide association studies for agronomical traits in a world wide spring barley collection. BMC Plant Biol 12:16. doi:10.1186/1471-2229-12-16

De Mita S, Siol M (2012) EggLib: processing, analysis and simulation tools for population genetics and genomics. BMC Genet 13:27. doi:10.1186/1471-2156-13-27

Pimenta Lange MJ, Knop N, Lange T (2012) Stamen-derived bioactive gibberellin is essential for male flower development of Cucurbita maxima L. J Exp Bot 63 (7):2681- 2691. doi:10.1093/jxb/err448

Li S, Yang X, Wu F, He Y (2012) HYL1 controls the miR156-mediated juvenile phase of vegetative growth. J Exp Bot 63 (7):2787-2798. doi:10.1093/jxb/err465

Wang YW, Wang WC, Jin SH, Wang J, Wang B, Hou BK (2012) Over-expression of a putative poplar glycosyltransferase gene, PtGT1, in tobacco increases lignin content and causes early flowering. J Exp Bot 63 (7):2799-2808. doi:10.1093/jxb/ers001

Jiang S, Kumar S, Eu YJ, Jami SK, Stasolla C, Hill RD (2012) The Arabidopsis mutant, fy-1, has an ABA-insensitive germination phenotype. J Exp Bot 63 (7):2693-2703. doi:10.1093/jxb/err452

Choi CQ (2012) A blossoming field of research: how florigen is transported to create flowers. PLoS Biol 10 (4):e1001311. doi:10.1371/journal.pbio.1001311

Brachi B, Morris GP, Borevitz JO (2011) Genome-wide association studies in plants: the missing heritability is in the field. Genome Biol 12 (10):232. doi:10.1186/gb-2011-12-10- 232 Kunova A, Zubko E, Meyer P (2012) A pair of partially overlapping Arabidopsis genes with antagonistic circadian expression. Int J Plant Genomics 2012:349527. doi:10.1155/2012/349527

An D, Yang J, Zhang P (2012) Transcriptome profiling of low temperature-treated cassava apical shoots showed dynamic responses of tropical plant to cold stress. BMC Genomics 13:64. doi:10.1186/1471-2164-13-64

Lu Y, Xie L, Chen J (2012) A novel procedure for absolute real-time quantification of gene expression patterns. Plant Methods 8:9. doi:10.1186/1746-4811-8-9

Valverde Albacete F, Serrano Delgado A, Romero Rodríguez JM (2010) Use of a Nucleotide Sequence that Regulates Flowering Time, Plants Expressing Same and Production Thereof. WO Patent WO/2010/094,825,

Liu L, Liu C, Hou X, Xi W, Shen L, Tao Z, Wang Y, Yu H (2012) FTIP1 Is an Essential Regulator Required for Florigen Transport. PLoS Biol 10 (4):e1001313. doi:10.1371/journal.pbio.1001313

Yant L (2012) Genome-wide mapping of transcription factor binding reveals developmental process integration and a fresh look at evolutionary dynamics. Am J Bot 99 (2):277-290. doi:10.3732/ajb.1100333

Kim JJ, Lee JH, Kim W, Jung HS, Huijser P, Ahn JH (2012) The miR156-SPL3 Module Regulates Ambient Temperature-Responsive Flowering via FT in Arabidopsis thaliana. Plant Physiol. doi:10.1104/pp.111.192369

Song YL, Gao ZC, Luan WJ (2012) Interaction between temperature and photoperiod in regulation of flowering time in rice. SCIENCE CHINA Life Sciences 55 (3):241-249. doi:10.1007/s11427-012-4300-4

Tsai YC, Weir NR, Hill K, Zhang W, Kim HJ, Shiu SH, Schaller GE, Kieber JJ (2012) Characterization of genes involved in cytokinin signaling and metabolism from rice. Plant Physiol 158 (4):1666-1684. doi:10.1104/pp.111.192765

Pokhilko A, Fernandez AP, Edwards KD, Southern MM, Halliday KJ, Millar AJ (2012) The clock gene circuit in Arabidopsis includes a repressilator with additional feedback loops. Mol Syst Biol 8:574. doi:10.1038/msb.2012.6

Hackenberg D, Keetman U, Grimm B (2012) Homologous NF-YC2 Subunit from Arabidopsis and Tobacco Is Activated by Photooxidative Stress and Induces Flowering. International Journal of Molecular Sciences 13 (3):3458-3477. doi:10.3390/ijms13033458

Xu F, Rong X, Huang X, Cheng S (2012) Recent advances of flowering locus T gene in higher plants. International Journal of Molecular Sciences 13 (3):3773-3781. doi:10.3390/ijms13033773

Harloff HJ, Lemcke S, Mittasch J, Frolov A, Wu JG, Dreyer F, Leckband G, Jung C (2012) A mutation screening platform for rapeseed (Brassica napus L.) and the detection of sinapine biosynthesis mutants. Theor Appl Genet 124 (5):957-969. doi:10.1007/s00122-011-1760-z Pose D, Yant L, Schmid M (2012) The end of innocence: flowering networks explode in complexity. Curr Opin Plant Biol 15 (1):45-50. doi:10.1016/j.pbi.2011.09.002

Huang W, Perez-Garcia P, Pokhilko A, Millar AJ, Antoshechkin I, Riechmann JL, Mas P (2012) Mapping the Core of the Arabidopsis Circadian Clock Defines the Network Structure of the Oscillator. Science. doi:10.1126/science.1219075

Chai L, Wang J, Fan Z, Liu Z, Wen G, Li X, Yang Y (2012) Regulation of the flowering time of Arabidopsis thaliana by thylakoid ascorbate peroxidase. Afr J Biotechnol 11 (28):7151-7157. doi:10.5897/AJB11.3718

Suarez C, Castro AJ, Rapoport HF, Rodriguez-Garcia MI (2012) Morphological, histological and ultrastructural changes in the olive pistil during flowering. Sex Plant Reprod. doi:10.1007/s00497-012-0186-3

Seymour DK, Filiault DL, Henry IM, Monson-Miller J, Ravi M, Pang A, Comai L, Chan SW, Maloof JN (2012) Rapid creation of Arabidopsis doubled haploid lines for quantitative trait locus mapping. Proc Natl Acad Sci U S A. doi:10.1073/pnas.1117277109

Zhao L, Hao D, Chen L, Lu Q, Zhang Y, Li Y, Duan Y, Li W (2012) Roles for a soybean RAV-like orthologue in shoot regeneration and photoperiodicity inferred from transgenic plants. J Exp Bot. doi:10.1093/jxb/ers056

Lumba S, Tsuchiya Y, Delmas F, Hezky J, Provart NJ, Shi Lu Q, McCourt P, Gazzarrini S (2012) The embryonic leaf identity gene FUSCA3 regulates vegetative phase transitions by negatively modulating ethylene-regulated gene expression in Arabidopsis. BMC Biol 10:8. doi:10.1186/1741-7007-10-8

Sánchez-Perez R, Dicenta F, Martinez-Gomez P (2012) Inheritance of chilling and heat requirements for flowering in almond and QTL analysis. Tree Genet Genomes 8:379-389. doi:10.1007/s11295-011-0448-5

Gendron JM, Pruneda-Paz JL, Doherty CJ, Gross AM, Kang SE, Kay SA (2012) Arabidopsis circadian clock protein, TOC1, is a DNA-binding transcription factor. Proc Natl Acad Sci U S A 109 (8):3167-3172. doi:10.1073/pnas.1200355109

Lloyd J, Meinke D (2012) A Comprehensive Dataset of Genes with a Loss-of-Function Mutant Phenotype in Arabidopsis. Plant Physiol 158 (3):1115-1129. doi:10.1104/pp.111.192393

Delgado Sandoval Sdel C, Abraham Juarez MJ, Simpson J (2012) Agave tequilana MADS genes show novel expression patterns in meristems, developing bulbils and floral organs. Sex Plant Reprod 25 (1):11-26. doi:10.1007/s00497-011-0176-x

Krizek BA, Eaddy M (2012) AINTEGUMENTA-LIKE6 regulates cellular differentiation in flowers. Plant Mol Biol 78 (3):199-209. doi:10.1007/s11103-011-9844-3

Khan M, Xu M, Murmu J, Tabb P, Liu Y, Storey K, McKim SM, Douglas CJ, Hepworth SR (2012) Antagonistic interaction of BLADE-ON-PETIOLE1 and 2 with BREVIPEDICELLUS and PENNYWISE regulates Arabidopsis inflorescence architecture. Plant Physiol 158 (2):946-960. doi:10.1104/pp.111.188573 Yadav OP, Singh M (2012) Prospects of enhancing biomass yield to improve both grain and stover yields of arid zone pearl millet (Pennisetum glaucum L. R. Br.). Euphytica 183 (1):11-18. doi:10.1007/s10681-011-0435-9

Toorop PE, Campos Cuerva R, Begg GS, Locardi B, Squire GR, Iannetta PP (2012) Co- adaptation of seed dormancy and flowering time in the arable weed Capsella bursa- pastoris (shepherd's purse). Ann Bot 109 (2):481-489. doi:10.1093/aob/mcr301

Li W, Ahn IP, Ning Y, Park CH, Zeng L, Whitehill J, Lu H, Zhao Q, Ding B, Xie Q, Zhou JM, Dai L, Wang GL (2012) The U-box/ARM E3 ligase PUB13 regulates cell death, defense and flowering time in Arabidopsis. Plant Physiol. doi:10.1104/pp.111.192617

Wang B-G, Zhang Q, Wang L-G, Duan K, Pan A-H, Tang X-M, Sui S-Z, Li M-Y (2011) The AGL6-like Gene CpAGL6, a Potential Regulator of Floral Time and Organ Identity in Wintersweet (Chimonanthus praecox). J Plant Growth Regul 30 (3):343-352. doi:10.1007/s00344-011-9196-x

Huijser P, Schmid M (2011) The control of developmental phase transitions in plants. Development 138 (19):4117-4129. doi:10.1242/dev.063511

Benlloch R, Kim MC, Sayou C, Thevenon E, Parcy F, Nilsson O (2011) Integrating long- day flowering signals: a LEAFY binding site is essential for proper photoperiodic activation of APETALA1. Plant J 67 (6):1094-1102. doi:10.1111/j.1365- 313X.2011.04660.x

Wu RM, Walton EF, Richardson AC, Wood M, Hellens RP, Varkonyi-Gasic E (2012) Conservation and divergence of four kiwifruit SVP-like MADS-box genes suggest distinct roles in kiwifruit bud dormancy and flowering. J Exp Bot 63 (2):797-807. doi:10.1093/jxb/err304

Wang W, Liu Z, Guo Z, Song G, Cheng Q, Jiang D, Zhu Y, Yang D (2011) Comparative Transcriptomes Profiling of Photoperiod-sensitive Male Sterile Rice Nongken 58S During the Male Sterility Transition between Short-day and Long-day. BMC Genomics 12:462. doi:10.1186/1471-2164-12-462

Shan H, Chen S, Jiang J, Chen F, Chen Y, Gu C, Li P, Song A, Zhu X, Gao H, Zhou G, Li T, Yang X (2011) Heterologous Expression of the Chrysanthemum R2R3-MYB Transcription Factor CmMYB2 Enhances Drought and Salinity Tolerance, Increases Hypersensitivity to ABA and Delays Flowering in Arabidopsis thaliana. Mol Biotechnol. doi:10.1007/s12033-011-9451-1

Reagon M, Thurber CS, Olsen KM, Jia Y, Caicedo AL (2011) The long and the short of it: SD1 polymorphism and the evolution of growth trait divergence in U.S. weedy rice. Mol Ecol. doi:10.1111/j.1365-294X.2011.05216.x

Osugi A, Itoh H, Ikeda-Kawakatsu K, Takano M, Izawa T (2011) Molecular dissection of the roles of phytochrome in photoperiodic flowering in rice. Plant Physiol 157 (3):1128- 1137. doi:10.1104/pp.111.181792

Mannan A, Ahmed I, Arshad W, Hussain I, Mirza B (2011) Effects of vegetative and flowering stages on the biosynthesis of artemisinin in Artemisia species. Arch Pharm Res (Seoul) 34 (10):1657-1661. doi:10.1007/s12272-011-1010-6 Danilevskaya ON, Meng X, McGonigle B, Muszynski MG (2011) Beyond flowering time: Pleiotropic function of the maize flowering hormone florigen. Plant Signal Behav 6 (9):1267-1270

Cote FX, Folliot M, Domergue R, Dubois C (2000) Field performance of embryogenic cell suspension-derived banana plants (Musa AAA, cv. Grande naine). Euphytica 112 (3):245-251. doi:10.1023/a:1003960724547

Pabon-Mora N, Ambrose B, Litt A (2012) Poppy APETALA1/FRUITFULL orthologs control flowering time, branching, perianth identity and fruit development. Plant Physiol. doi:10.1104/pp.111.192104

Lopez L, Carbone F, Bianco L, Giuliano G, Facella P, Perrotta G (2011) Tomato plants overexpressing cryptochrome 2 reveal altered expression of energy and stress-related gene products in response to diurnal cues. Plant Cell Environ. doi:10.1111/j.1365- 3040.2011.02467.x

Tiwari SB, Belachew A, Ma SF, Young M, Ade J, Shen Y, Marion CM, Holtan HE, Bailey A, Stone JK, Edwards L, Wallace AD, Canales RD, Adam L, Ratcliffe OJ, Repetti PP (2012) The EDLL Motif: A Potent Plant Transcriptional Activation Domain from AP2/ERF Transcription Factors. Plant J. doi:10.1111/j.1365-313X.2012.04935.x

Sabadin PK, Malosetti M, Boer MP, Tardin FD, Santos FG, Guimaraes CT, Gomide RL, Andrade CL, Albuquerque PE, Caniato FF, Mollinari M, Margarido GR, Oliveira BF, Schaffert RE, Garcia AA, van Eeuwijk FA, Magalhaes JV (2012) Studying the genetic basis of drought tolerance in sorghum by managed stress trials and adjustments for phenological and plant height differences. Theor Appl Genet. doi:10.1007/s00122-012- 1795-9

Reeves PH, Ellis CM, Ploense SE, Wu MF, Yadav V, Tholl D, Chetelat A, Haupt I, Kennerley BJ, Hodgens C, Farmer EE, Nagpal P, Reed JW (2012) A regulatory network for coordinated flower maturation. PLoS Genet 8 (2):e1002506. doi:10.1371/journal.pgen.1002506

Imura Y, Kobayashi Y, Yamamoto S, Furutani M, Tasaka M, Abe M, Araki T (2012) CRYPTIC PRECOCIOUS/MED12 is a Novel Flowering Regulator with Multiple Target Steps in Arabidopsis. Plant Cell Physiol 53 (2):287-303. doi:10.1093/pcp/pcs002

Paddock T, Lima D, Mason ME, Apel K, Armstrong GA (2012) Arabidopsis light- dependent protochlorophyllide oxidoreductase A (PORA) is essential for normal plant growth and development. Plant Mol Biol 78 (4-5):447-460. doi:10.1007/s11103-012- 9873-6

Varkonyi-Gasic E, Lough RH, Moss SM, Wu R, Hellens RP (2012) Kiwifruit floral gene APETALA2 is alternatively spliced and accumulates in aberrant indeterminate flowers in the absence of miR172. Plant Mol Biol. doi:10.1007/s11103-012-9877-2

Menzel G, Krebs C, Diez M, Holtgrawe D, Weisshaar B, Minoche AE, Dohm JC, Himmelbauer H, Schmidt T (2012) Survey of sugar beet (Beta vulgaris L.) hAT transposons and MITE-like hATpin derivatives. Plant Mol Biol 78 (4-5):393-405. doi:10.1007/s11103-011-9872-z Santos R, Pires J, Correa R (2012) Morphological characterization of leaf, flower, fruit and seed traits among Brazilian Theobroma L. species. Genet Resour Crop Evol 59 (3):327-345

Schaller GE (2012) Ethylene and the regulation of plant development. BMC Biol 10 (1):9. doi:10.1186/1741-7007-10-9

Wilkins MR, Williams KL, Appel RD, Hochstrasser DF (1997) Proteome Research: New Frontiers in Functional Genomics. Springer-Verlag Berlin, Heidelberg, New York

Gantait S, Sinniah UR, Suranthran P (2012) Influence of gibberellin A3 application, pH of the medium, photoperiod and temperature on the enhancement of in vitro flowering in Vitex negundo L. Plant Growth Regul 66 (2):203–209. doi:10.1007/s10725-011-9640-8

Cai H-Y, Diao S, He Y-G, Zhang L-P, Liu S-J, Zhu Y-G, Zhang Z-H (2012) Genetic and physical mapping of qHY-8, a pleiotropic QTL for heading date and yield-related traits in rice. Euphytica 184 (1):109-118. doi:10.1007/s10681-011-0581-0

Jalal-ud-Din B, Munir M, Abid M, Iqbal M (2012) Effects of Varied Irradiance on Flowering Time of Facultative Long-Day Ornamental Annuals. Pak J Biol Sci 44 (1):111- 117

Lv L-L, Duan J, Xie J-H, Liu Y-G, Wei C-B, Liu S-H, Zhang J-X, Sun G-M (2012) Cloning and Expression Analysis of a PISTILLATA Homologous Gene from Pineapple (Ananas comosus L. Merr). International Journal of Molecular Sciences 13 (1):1039-1053

Yasui Y, Mori M, Aii J, Abe T, Matsumoto D, Sato S, Hayashi Y, Ohnishi O, Ota T (2012) S-LOCUS EARLY FLOWERING 3 Is Exclusively Present in the Genomes of Short-Styled Buckwheat Plants that Exhibit Heteromorphic Self-Incompatibility. PLoS ONE 7 (2):e31264. doi:10.1371/journal.pone.0031264 de Souza ME, Leonel S, Fragoso AM (2011) Growth and production of banana genotypes in subtropical climate. Cienc Rural 41 (4):587-591

Fortescue JA, Turner DW, Romero R (2011) Evidence that banana (Musa spp.), a tropical , has a facultative long-day response to photoperiod. Funct Plant Biol 38 (11):867-878. doi:Doi 10.1071/Fp11128

Kumar S, Bink M, Volz R, Bus V, Chagné D (2012) Towards genomic selection in apple (Malus × domestica Borkh.) breeding programmes: Prospects, challenges and strategies. Tree Genet Genomes 8 (1):1-14. doi:10.1007/s11295-011-0425-z

Mou B (2011) Mutations in Lettuce Improvement. Int J Plant Genomics 2011. doi:10.1155/2011/723518

Childs KL, Konganti K, Buell CR (2012) The Biofuel Feedstock Genomics Resource: a web-based portal and database to enable functional genomics of plant biofuel feedstock species. Database (Oxford) 2012 (0):bar061. doi:10.1093/database/bar061

Hunt HV, Campana MG, Lawes MC, Park YJ, Bower MA, Howe CJ, Jones MK (2011) Genetic diversity and phylogeography of broomcorn millet (Panicum miliaceum L.) across Eurasia. Mol Ecol 20 (22):4756-4771. doi:10.1111/j.1365-294X.2011.05318.x Proost S, Fostier J, De Witte D, Dhoedt B, Demeester P, Van de Peer Y, Vandepoele K (2012) i-ADHoRe 3.0--fast and sensitive detection of genomic homology in extremely large data sets. Nucleic Acids Res 40 (2):e11. doi:10.1093/nar/gkr955

McNamara JM, Barta Z, Klaassen M, Bauer S (2011) Cues and the optimal timing of activities under environmental changes. Ecol Lett 14 (12):1183-1190. doi:10.1111/j.1461- 0248.2011.01686.x

Barrio RA, Hernandez-Machado A, Varea C, Romero-Arias JR, Alvarez-Buylla E (2010) Flower development as an interplay between dynamical physical fields and genetic networks. PLoS ONE 5 (10):e13523. doi:10.1371/journal.pone.0013523

Clouse SD (2011) Brassinosteroids. The Arabidopsis Book:e0151. doi:10.1199/tab.0151

Li J, Li G, Wang H, Wang Deng X (2011) Phytochrome Signaling Mechanisms. The Arabidopsis Book:e0148. doi:10.1199/tab.0148

Wang H, Deng XW (2002) Phytochrome Signaling Mechanism*. The Arabidopsis Book:e0074.0071. doi:10.1199/tab.0074.1

Riechmann JL (2002) Transcriptional Regulation: a Genomic Overview. The Arabidopsis Book:e0085. doi:10.1199/tab.0085

Clouse SD (2002) Brassinosteroids. The Arabidopsis Book:e0009. doi:10.1199/tab.0009

McClung CR, Salomé PA, Michael TP (2002) The Arabidopsis Circadian System. The Arabidopsis Book:e0044. doi:10.1199/tab.0044

Pigliucci M (2002) Ecology and Evolutionary Biology of Arabidopsis. The Arabidopsis Book:e0003. doi:10.1199/tab.0003

Wang H, Chevalier D, Larue C, Ki Cho S, Walker JC (2007) The Protein Phosphatases and Protein Kinases of Arabidopsis thaliana. The Arabidopsis Book:e0106. doi:10.1199/tab.0106

Sun T-p (2008) Gibberellin Metabolism, Perception and Signaling Pathways in Arabidopsis. The Arabidopsis Book:e0103. doi:10.1199/tab.0103

Lu Y, Last RL (2008) Web-Based Arabidopsis Functional and Structural Genomics Resources. The Arabidopsis Book:e0118. doi:10.1199/tab.0118

Alvarez-Venegas R (2010) Regulation by Polycomb and Trithorax Group Proteins in Arabidopsis. The Arabidopsis Book:e0128. doi:10.1199/tab.0128

Yu X, Liu H, Klejnot J, Lin C (2010) The Cryptochrome Blue Light Receptors. The Arabidopsis Book:e0135. doi:10.1199/tab.0135

Alvarez-Buylla ER, Benítez M, Corvera-Poiré A, Chaos Cador Á, de Folter S, Gamboa de Buen A, Garay-Arroyo A, García-Ponce B, Jaimes-Miranda F, Pérez-Ruiz RV, Piñeyro- Nelson A, Sánchez-Corrales YE (2010) Flower Development. The Arabidopsis Book:e0127. doi:10.1199/tab.0127 Okazaki Y, Saito K (2012) Recent advances of metabolomics in plant biotechnology. Plant Biotechnology Reports 6 (1):1-15. doi:10.1007/s11816-011-0191-2

Pascarella JB (2011) The Relationship Between Soil Environmental Factors and Flowering Phenology in Two Sympatric Southeastern Gelsemium Species—Does Habitat Specialization Determine Differences in Flowering Time? Castanea 76 (4):410-425. doi:10.2179/11-007.1

Lemmetyinen J, Hassinen M, Elo A, Porali I, Keinonen K, Makela H, Sopanen T (2004) Functional characterization of SEPALLATA3 and AGAMOUS orthologues in silver birch. Physiol Plant 121 (1):149-162

Curtis IS, Nam HG, Yun JY, Seo KH (2002) Expression of an antisense GIGANTEA (GI) gene fragment in transgenic radish causes delayed bolting and flowering. Transgenic Res 11 (3):249-256

Chujo A, Zhang Z, Kishino H, Shimamoto K, Kyozuka J (2003) Partial conservation of LFY function between rice and Arabidopsis. Plant Cell Physiol 44 (12):1311-1319

Jeon JS, Lee S, Jung KH, Yang WS, Yi GH, Oh BG, An GH (2000) Production of transgenic rice plants showing reduced heading date and plant height by ectopic expression of rice MADS-box genes. Mol Breed 6 (6):581-592

He Z, Zhu Q, Dabi T, Li D, Weigel D, Lamb C (2000) Transformation of rice with the Arabidopsis floral regulator LEAFY causes early heading. Transgenic Res 9 (3):223-227

Sanewski G, Smith M, Pepper P, Giles J Review of Genetic Improvement of Pineapple. In: Abdullah H, Bartholomew DP, Latifah MN (eds) ISHS Acta Horticulturae 902, VII International Pineapple Symposium, Johor Bahru, Malaysia July 2011 2010. pp 95-108

Wang P, Zhou G, Yu H, Yu S (2011) Fine mapping a major QTL for flag leaf size and yield-related traits in rice. TAG Theoretical and applied genetics Theoretische und angewandte Genetik 123 (8):1319-1330. doi:10.1007/s00122-011-1669-6

Neumann K, Kobiljski B, Dencic S, Varshney RK, Boerner A (2011) Genome-wide association mapping: a case study in bread wheat (Triticum aestivum L.). Mol Breed 27 (1):37-58. doi:10.1007/s11032-010-9411-7

Wadl PA, Saxton AM, Wang X, Pantalone VR, Rinehart TA, Trigiano RN (2011) Quantitative trait loci associated with red foliage in Cornus florida L. Mol Breed 27 (3):409-416. doi:10.1007/s11032-011-9551-4

Jestin C, Lode M, Vallee P, Domin C, Falentin C, Horvais R, Coedel S, Manzanares- Dauleux MJ, Delourme R (2011) Association mapping of quantitative resistance for Leptosphaeria maculans in oilseed rape (Brassica napus L.). Mol Breed 27 (3):271-287. doi:10.1007/s11032-010-9429-x

Pierre J-B, Bogard M, Herrmann D, Huyghe C, Julier B (2011) A CONSTANS-like gene candidate that could explain most of the genetic variation for flowering date in Medicago truncatula. Mol Breed 28 (1):25-35. doi:10.1007/s11032-010-9457-6

Cristina Casao M, Igartua E, Karsai I, Bhat PR, Cuadrado N, Pilar Gracia M, Lasa JM, Casas AM (2011) Introgression of an intermediate VRNH1 allele in barley (Hordeum vulgare L.) leads to reduced vernalization requirement without affecting freezing tolerance. Mol Breed 28 (4):475-484. doi:10.1007/s11032-010-9497-y

Yang X, Gao S, Xu S, Zhang Z, Prasanna BM, Li L, Li J, Yan J (2011) Characterization of a global germplasm collection and its potential utilization for analysis of complex quantitative traits in maize. Mol Breed 28 (4):511-526. doi:10.1007/s11032-010-9500-7

Berckmans B, Lammens T, Van Den Daele H, Magyar Z, Bogre L, De Veylder L (2011) Light-dependent regulation of DEL1 is determined by the antagonistic action of E2Fb and E2Fc. Plant Physiol 157 (3):1440-1451. doi:10.1104/pp.111.183384

Guillon F, Larre C, Petipas F, Berger A, Moussawi J, Rogniaux H, Santoni A, Saulnier L, Jamme F, Miquel M, Lepiniec L, Dubreucq B (2012) A comprehensive overview of grain development in Brachypodium distachyon variety Bd21. J Exp Bot 63 (2):739-755. doi:10.1093/jxb/err298

Zhang T, Maruhnich SA, Folta KM (2011) Green light induces shade avoidance symptoms. Plant Physiol 157 (3):1528-1536. doi:10.1104/pp.111.180661

Sharoni AM, Nuruzzaman M, Satoh K, Moumeni A, Attia K, Venuprasad R, Serraj R, Kumar A, Leung H, Islam AK, Kikuchi S (2012) Comparative transcriptome analysis of AP2/EREBP gene family under normal and hormone treatments, and under two drought stresses in NILs setup by Aday Selection and IR64. Mol Genet Genomics 287 (1):1-19. doi:10.1007/s00438-011-0659-3

Wozny M, Schattat MH, Mathur N, Barton K, Mathur J (2012) Color Recovery after Photoconversion of H2B::mEosFP Allows Detection of Increased Nuclear DNA Content in Developing Plant Cells. Plant Physiol 158 (1):95-106. doi:10.1104/pp.111.187062

Stein RJ, Waters BM (2012) Use of natural variation reveals core genes in the transcriptome of iron-deficient Arabidopsis thaliana roots. J Exp Bot 63 (2):1039-1055. doi:10.1093/jxb/err343

Martel C, Vrebalov J, Tafelmeyer P, Giovannoni JJ (2011) The tomato MADS-Box transcription factor RIPENING INHIBITOR interacts with promoters involved in numerous ripening processes in a COLORLESS NONRIPENING-dependent manner. Plant Physiol 157 (3):1568-1579. doi:10.1104/pp.111.181107

Yu X, Wang H, Lu Y, de Ruiter M, Cariaso M, Prins M, van Tunen A, He Y (2012) Identification of conserved and novel microRNAs that are responsive to heat stress in Brassica rapa. J Exp Bot 63 (2):1025-1038. doi:10.1093/jxb/err337

Narsai R, Law SR, Carrie C, Xu L, Whelan J (2011) In-depth temporal transcriptome profiling reveals a crucial developmental switch with roles for RNA processing and organelle metabolism that are essential for germination in Arabidopsis. Plant Physiol 157 (3):1342-1362. doi:10.1104/pp.111.183129

Chen MK, Hsieh WP, Yang CH (2012) Functional analysis reveals the possible role of the C-terminal sequences and PI motif in the function of lily (Lilium longiflorum) PISTILLATA (PI) orthologues. J Exp Bot 63 (2):941-961. doi:10.1093/jxb/err323 Causier B, Ashworth M, Guo W, Davies B (2012) The TOPLESS Interactome: A Framework for Gene Repression in Arabidopsis. Plant Physiol 158 (1):423-438. doi:10.1104/pp.111.186999

Flachowsky H, Haettasch C, Hofer M, Peil A, Hanke MV (2010) Overexpression of LEAFY in apple leads to a columnar phenotype with shorter internodes. Planta 231 (2):251-263. doi:DOI 10.1007/s00425-009-1041-0

Zhang YS, Jiang L, Liu X, Liu S, Chen L, Zhai H, Wan J (2011) Heading date QTL in rice derived from an analysis of chromosome segment substitution lines. Plant Breed 130 (2):185-191. doi:10.1111/j.1439-0523.2010.01807.x

Shahin A, Arens P, van Heusden AW, van der Linden G, van Kaauwen M, Khan N, Schouten HJ, van de Weg WE, Visser RGF, van Tuyl JM (2011) Genetic mapping in Lilium: mapping of major genes and quantitative trait loci for several ornamental traits and disease resistances. Plant Breed 130 (3):372-382. doi:10.1111/j.1439- 0523.2010.01812.x

McMurray LS, Davidson JA, Lines MD, Leonforte A, Salam MU (2011) Combining management and breeding advances to improve field pea (Pisum sativum L.) grain yields under changing climatic conditions in south-eastern Australia. Euphytica 180 (1):69-88. doi:10.1007/s10681-011-0362-9

Martinez-Garcia PJ, Manas F, Lopez P, Dicenta F, Ortega E (2011) Molecular and phenotypic characterization of the S-locus and determination of flowering time in new 'Marcona' and 'Desmayo Largueta'-type almond (Prunus dulcis) selections. Euphytica 177 (1):67-78. doi:10.1007/s10681-010-0258-0

Berger JD, Milroy SP, Turner NC, Siddique KHM, Imtiaz M, Malhotra R (2011) Chickpea evolution has selected for contrasting phenological mechanisms among different habitats. Euphytica 180 (1):1-15. doi:10.1007/s10681-011-0391-4

Bashtanova UB, Flowers TJ (2011) Diversity and physiological plasticity of vegetable genotypes of coriander improves herb yield, habit and harvesting window in any season. Euphytica 180 (3):369-384. doi:10.1007/s10681-011-0396-z

Zhang F, Chen SM, Chen FD, Fang WM, Deng YM, Chang QS, Liu PS (2011) Genetic analysis and associated SRAP markers for flowering traits of chrysanthemum (Chrysanthemum morifolium). Euphytica 177 (1):15-24. doi:10.1007/s10681-010-0239-3

Njontie C, Foueillassar X, Christov NK, Husken A (2011) The impact of GM seed admixture on the non-GM harvest product in maize (Zea mays L.). Euphytica 180 (2):163- 172. doi:10.1007/s10681-010-0341-6

Ariyarathna H, Gunasekare MTK, Kottawa-Arachchige JD, Paskarathevan R, Ranaweera KK, Ratnayake M, Kumara J (2011) Morpho-physiological and phenological attributes of reproductive biology of tea (Camellia sinensis (L.) O. Kuntze) in Sri Lanka. Euphytica 181 (2):203-215. doi:10.1007/s10681-011-0399-9

Demeyer R, De Loose M, Van Bockstaele E, Van Droogenbroeck B (2012) Exploiting the natural variation of Arabidopsis thaliana for the seed-specific production of proteins. Euphytica 183 (1):83-93. doi:10.1007/s10681-011-0502-2 Hegde VS (2011) Morphology and genetics of a new found determinate genotype in chickpea. Euphytica 182 (1):35-42. doi:10.1007/s10681-011-0447-5

Adhikari K, Buirchell B, Yan GJ, Sweetingham M (2011) Two complementary dominant genes control flowering time in albus lupin (Lupinus albus L.). Plant Breed 130 (4):496- 499. doi:10.1111/j.1439-0523.2011.01858.x

Hou JF, Wang CL, Hong XJ, Zhao JM, Xue CC, Guo N, Gai JY, Xing H (2011) Association analysis of vegetable soybean quality traits with SSR markers. Plant Breed 130 (4):444-449. doi:10.1111/j.1439-0523.2011.01852.x

Crane O, Halaly T, Pang X, Lavee S, Perl A, Vankova R, Or E (2012) Cytokinin-induced VvTFL1A expression may be involved in the control of grapevine fruitfulness. Planta 235 (1):181-192. doi:10.1007/s00425-011-1497-6

Kang DJ, Seo YJ, Futakuchi K, Vijarnsorn P, Ishii R (2011) Effect of aluminum toxicity on flowering time and grain yield on rice genotypes differing in Al-tolerance. Journal of Crop Science and Biotechnology 14 (4):305-309. doi:10.1007/s12892-011-0056-9

Penfield S, Springthorpe V (2012) Understanding chilling responses in Arabidopsis seeds and their contribution to life history. Philosophical Transactions of the Royal Society B: Biological Sciences 367 (1586):291-297. doi:10.1098/rstb.2011.0186

Liu W, Kim MY, Kang YJ, Van K, Lee YH, Srinives P, Yuan DL, Lee SH (2011) QTL identification of flowering time at three different latitudes reveals homeologous genomic regions that control flowering in soybean. Theor Appl Genet 123 (4):545-553. doi:10.1007/s00122-011-1606-8

Jones H, Civan P, Cockram J, Leigh FJ, Smith LM, Jones MK, Charles MP, Molina-Cano JL, Powell W, Jones G, Brown TA (2011) Evolutionary history of barley cultivation in Europe revealed by genetic analysis of extant landraces. BMC Evol Biol 11 (1):320. doi:10.1186/1471-2148-11-320

Cheng L, Wang Y, Zhang C, Wu C, Xu J, Zhu H, Leng J, Bai Y, Guan R, Hou W, Zhang L, Han T (2011) Genetic analysis and QTL detection of reproductive period and post- flowering photoperiod responses in soybean. Theor Appl Genet 123 (3):421-429. doi:10.1007/s00122-011-1594-8

Ramachandran E, Bhattacharya SK, John SA, Bhattacharya PS, Abraham G (2011) Heterologous expression of Aspen PTM3, a MADS box gene in cotton. J Biotechnol 155 (2):140-146. doi:10.1016/j.jbiotec.2011.06.015

Suji KK, Biji KR, Poornima R, Prince KS, Amudha K, Kavitha S, Mankar S, Babu RC (2011) Mapping QTLs for Plant Phenology and Production Traits Using Indica Rice (Oryza sativa L.) Lines Adapted to Rainfed Environment. Mol Biotechnol. doi:10.1007/s12033-011-9482-7

Phan HA, Li SF, Parish RW (2012) MYB80, a regulator of tapetal and pollen development, is functionally conserved in crops. Plant Mol Biol 78 (1-2):171-183. doi:10.1007/s11103-011-9855-0 Phan HA, Iacuone S, Li SF, Parish RW (2011) The MYB80 transcription factor is required for pollen development and the regulation of tapetal programmed cell death in Arabidopsis thaliana. Plant Cell 23 (6):2209-2224. doi:10.1105/tpc.110.082651

Cenci A, Combes MC, Lashermes P (2012) Genome evolution in diploid and tetraploid Coffea species as revealed by comparative analysis of orthologous genome segments. Plant Mol Biol 78 (1-2):135-145. doi:10.1007/s11103-011-9852-3

Hu L, Liu S (2011) Genome-wide identification and phylogenetic analysis of the ERF gene family in cucumbers. Genet Mol Biol 34 (4):624-633. doi:10.1590/S1415- 47572011005000054

Rieben S, Kalinina O, Schmid B, Zeller SL (2011) Gene flow in genetically modified wheat. PLoS ONE 6 (12):e29730. doi:10.1371/journal.pone.0029730

Wei S, Peng Z, Zhou Y, Yang Z, Wu K, Ouyang Z (2011) Nucleotide diversity and molecular evolution of the WAG-2 gene in common wheat (Triticum aestivum L) and its relatives. Genet Mol Biol 34 (4):606-615. doi:10.1590/S1415-47572011000400013

Lu MZ, Hu JJ A brief overview of field testing and commercial application of transgenic trees in China. In: IUFRO Tree Biotechnology Conference 2011: From Genomes to Integration and Delivery, Arraial d’Ajuda, Bahia, Brazil, 2011. BioMed Central Ltd, p O63

Qi X, Jiang Y, Tang F, Zhao ST, Lu MZ An Arabidopsis thaliana (Ler) inbred line exhibiting stacked stem/ mainly due to the reduced AP1 expression. In: IUFRO Tree Biotechnology Conference 2011: From Genomes to Integration and Delivery, Arraial d’Ajuda, Bahia, Brazil, 26 June - 2 July 2011 2011. BioMed Central Ltd, p P68

Leite V, Otto JS, Sagawa CD, Gonzalez E, Fagundes M, Oda S, Marino C Identification of genomic regions related to early flowering in Eucalyptus. In: IUFRO Tree Biotechnology Conference 2011: From Genomes to Integration and Delivery, Arraial d’Ajuda, Bahia, Brazil, 26 June - 2 July 2011 2011. BioMed Central Ltd, p P53

Riaz T, Shehzad W, Viari A, Pompanon F, Taberlet P, Coissac E (2011) ecoPrimers: inference of new DNA barcode markers from whole genome sequence analysis. Nucleic Acids Res 39 (21):e145. doi:10.1093/nar/gkr732

Rousset M, Bonnin I, Remoue C, Falque M, Rhone B, Veyrieras JB, Madur D, Murigneux A, Balfourier F, Le Gouis J, Santoni S, Goldringer I (2011) Deciphering the genetics of flowering time by an association study on candidate genes in bread wheat (Triticum aestivum L.). Theor Appl Genet 123:907-926. doi:10.1007/s00122-011-1636-2

Cervera M, Navarro L, Pena L (2009) Gene stacking in 1-year-cycling APETALA1 citrus plants for a rapid evaluation of transgenic traits in reproductive tissues. J Biotechnol 140 (3-4):278-282. doi:DOI 10.1016/j.jbiotec.2009.01.024 d'Almeida G, Breton M, Camargo S, Frazzon J, Pasquali G Phylogenetic comparative and expression analysis of genes encoding dof transcription factors from Eucalyptus grandis. In, 2011. BioMed Central Ltd, p P159 Qiu Q, Ma T, Hu Q, Liu B, Wu Y, Zhou H, Wang Q, Wang J, Liu J (2011) Genome-scale transcriptome analysis of the desert poplar, Populus euphratica. Tree Physiol 31 (4):452- 461. doi:10.1093/treephys/tpr015

Liu CC, Liu CF, Wang HX, Shen ZY, Yang CP, Wei ZG (2011) Identification and analysis of phosphorylation status of proteins in dormant terminal buds of poplar. BMC Plant Biol 11 (1):158. doi:10.1186/1471-2229-11-158

Yun H, Hyun Y, Kang MJ, Noh YS, Noh B, Choi Y (2011) Identification of regulators required for the reactivation of FLOWERING LOCUS C during Arabidopsis reproduction. Planta. doi:10.1007/s00425-011-1484-y

Mochida K, Uehara-Yamaguchi Y, Yoshida T, Sakurai T, Shinozaki K (2011) Global landscape of a co-expressed gene network in barley and its application to gene discovery in Triticeae crops. Plant Cell Physiol 52 (5):785

Mochida K, Shinozaki K (2010) Genomics and bioinformatics resources for crop improvement. Plant Cell Physiol 51 (4):497-523. doi:10.1093/pcp/pcq027

Donaire L, Pedrola L, de la Rosa R, Llave C (2011) High-Throughput Sequencing of RNA Silencing-Associated Small RNAs in Olive (Olea europaea L.). PLoS ONE 6 (11):e27916. doi:10.1371/journal.pone.0027916

Abouelhoda MI, Kurtz S, Ohlebusch E (2008) CoCoNUT: an efficient system for the comparison and analysis of genomes. BMC Bioinformatics 9:476. doi:10.1186/1471- 2105-9-476

Nei M, Nozawa M (2011) Roles of mutation and selection in speciation: from Hugo de Vries to the modern genomic era. Genome Biol Evol 3:812-829. doi:10.1093/gbe/evr028

Jofuku KD, Omidyar PK, Gee Z, Okamuro JK (2005) Control of seed mass and seed yield by the floral homeotic gene APETALA2. Proc Natl Acad Sci U S A 102 (8):3117-3122. doi:10.1073/pnas.0409893102

Chuck GS, Tobias C, Sun L, Kraemer F, Li C, Dibble D, Arora R, Bragg JN, Vogel JP, Singh S, Simmons BA, Pauly M, Hake S (2011) Overexpression of the maize Corngrass1 microRNA prevents flowering, improves digestibility, and increases starch content of switchgrass. Proc Natl Acad Sci U S A 108 (42):17550-17555. doi:10.1073/pnas.1113971108

Chuck G, Cigan AM, Saeteurn K, Hake S (2007) The heterochronic maize mutant Corngrass1 results from overexpression of a tandem microRNA. Nat Genet 39 (4):544- 549. doi:10.1038/ng2001

Okamuro JK, Caster B, Villarroel R, Van Montagu M, Jofuku KD (1997) The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. Proc Natl Acad Sci U S A 94 (13):7076-7081

Axtell MJ, Westholm JO, Lai EC (2011) Vive la difference: biogenesis and evolution of microRNAs in plants and animals. Genome Biol 12 (4):221. doi:10.1186/gb-2011-12-4- 221 Taudien S, Steuernagel B, Ariyadasa R, Schulte D, Schmutzer T, Groth M, Felder M, Petzold A, Scholz U, Mayer KF, Stein N, Platzer M (2011) Sequencing of BAC pools by different next generation sequencing platforms and strategies. BMC Res Notes 4:411. doi:10.1186/1756-0500-4-411

Sun G, Xie F, Zhang B (2011) Transcriptome-wide identification and stress properties of the 14-3-3 gene family in cotton (Gossypium hirsutum L.). Funct Integr Genomics 11 (4):627-636. doi:10.1007/s10142-011-0242-3

Xie F, Sun G, Stiller JW, Zhang B (2011) Genome-Wide Functional Analysis of the Cotton Transcriptome by Creating an Integrated EST Database. PLoS ONE 6 (11):e26980. doi:10.1371/journal.pone.0026980

Li Z, Zhang Z, Yan P, Huang S, Fei Z, Lin K (2011) RNA-Seq improves annotation of protein-coding genes in the cucumber genome. BMC Genomics 12:540. doi:10.1186/1471-2164-12-540

Zuccolo A, Bowers JE, Estill JC, Xiong Z, Luo M, Sebastian A, Goicoechea JL, Collura K, Yu Y, Jiao Y, Duarte J, Tang H, Ayyampalayam S, Rounsley S, Kudrna D, Paterson AH, Pires JC, Chanderbali A, Soltis DE, Chamala S, Barbazuk B, Soltis PS, Albert VA, Ma H, Mandoli D, Banks J, Carlson JE, Tomkins J, Depamphilis CW, Wing RA, Leebens-Mack J (2011) A physical map for the Amborella trichopoda genome sheds light on the evolution of angiosperm genome structure. Genome Biol 12 (5):R48. doi:10.1186/gb-2011-12-5-r48

Chung U, Mack L, Yun JI, Kim SH (2011) Predicting the Timing of Cherry Blossoms in Washington, DC and Mid-Atlantic States in Response to Climate Change. PLoS ONE 6 (11):e27439. doi:10.1371/journal.pone.0027439

Zhao K, Tung CW, Eizenga GC, Wright MH, Ali ML, Price AH, Norton GJ, Islam MR, Reynolds A, Mezey J, McClung AM, Bustamante CD, McCouch SR (2011) Genome- wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nat Commun 2:467. doi:10.1038/ncomms1467

Trivellini A, Ferrante A, Vernieri P, Serra G (2011) Effects of abscisic acid on ethylene biosynthesis and perception in Hibiscus rosa-sinensis L. flower development. J Exp Bot 62 (15):5437-5452. doi:10.1093/jxb/err218

Gore P, Potts B (1995) The genetic control of flowering time in Eucalyptus globulus, E. nitens and their F1 hybrids.

Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA, Minx P, Reily AD, Courtney L, Kruchowski SS, Tomlinson C, Strong C, Delehaunty K, Fronick C, Courtney B, Rock SM, Belter E, Du F, Kim K, Abbott RM, Cotton M, Levy A, Marchetto P, Ochoa K, Jackson SM, Gillam B, Chen W, Yan L, Higginbotham J, Cardenas M, Waligorski J, Applebaum E, Phelps L, Falcone J, Kanchi K, Thane T, Scimone A, Thane N, Henke J, Wang T, Ruppert J, Shah N, Rotter K, Hodges J, Ingenthron E, Cordes M, Kohlberg S, Sgro J, Delgado B, Mead K, Chinwalla A, Leonard S, Crouse K, Collura K, Kudrna D, Currie J, He R, Angelova A, Rajasekar S, Mueller T, Lomeli R, Scara G, Ko A, Delaney K, Wissotski M, Lopez G, Campos D, Braidotti M, Ashley E, Golser W, Kim H, Lee S, Lin J, Dujmic Z, Kim W, Talag J, Zuccolo A, Fan C, Sebastian A, Kramer M, Spiegel L, Nascimento L, Zutavern T, Miller B, Ambroise C, Muller S, Spooner W, Narechania A, Ren L, Wei S, Kumari S, Faga B, Levy MJ, McMahan L, Van Buren P, Vaughn MW, Ying K, Yeh C-T, Emrich SJ, Jia Y, Kalyanaraman A, Hsia A-P, Barbazuk WB, Baucom RS, Brutnell TP, Carpita NC, Chaparro C, Chia J-M, Deragon J-M, Estill JC, Fu Y, Jeddeloh JA, Han Y, Lee H, Li P, Lisch DR, Liu S, Liu Z, Nagel DH, McCann MC, SanMiguel P, Myers AM, Nettleton D, Nguyen J, Penning BW, Ponnala L, Schneider KL, Schwartz DC, Sharma A, Soderlund C, Springer NM, Sun Q, Wang H, Waterman M, Westerman R, Wolfgruber TK, Yang L, Yu Y, Zhang L, Zhou S, Zhu Q, Bennetzen JL, Dawe RK, Jiang J, Jiang N, Presting GG, Wessler SR, Aluru S, Martienssen RA, Clifton SW, McCombie WR, Wing RA, Wilson RK (2009) The B73 Maize Genome: Complexity, Diversity, and Dynamics. Science 326 (5956):1112-1115. doi:10.1126/science.1178534

Traenkner C, Lehmann S, Hoenicka H, Hanke MV, Fladung M, Lenhardt D, Dunemann F, Gau A, Schlangen K, Malnoy M, Flachowsky H (2010) Over-expression of an FT- homologous gene of apple induces early flowering in annual and perennial plants. Planta 232 (6):1309-1324. doi:DOI 10.1007/s00425-010-1254-2

Traenkner C, Lehmann S, Hoenicka H, Hanke MV, Fladung M, Lenhardt D, Dunemann F, Gau A, Schlangen K, Malnoy M, Flachowsky H (2011) Note added in proof to: Over- expression of an FT-homologous gene of apple induces early flowering in annual and perennial plants. Planta 233 (1):217-218. doi:DOI 10.1007/s00425-010-1317-4

Flachowsky H, Peil A, Sopanen T, Elo A, Hanke V (2007) Overexpression of BpMADS4 from silver birch (Betula pendula Roth.) induces early-flowering in apple (Malus x domestica Borkh.). Plant Breed 126 (2):137-145. doi:10.1111/j.1439-0523.2007.01344.x

Schlangen K, Halbwirth H, Fischer T, Flachowsky H, Treutter D, Hanke V, Stich K (2007) Breeding for fire blight resistance in apple trees. J Biotechnol 131 (2):S34-S35. doi:DOI 10.1016/j.jbiotec.2007.07.057

Li HH, Flachowsky H, Fischer TC, Hanke MV, Forkmann G, Treutter D, Schwab W, Hoffmann T, Szankowski I (2007) Maize Lc transcription factor enhances biosynthesis of anthocyanins, distinct proanthocyanidins and phenylpropanoids in apple (Malus domestica Borkh.). Planta 226 (5):1243-1254. doi:DOI 10.1007/s00425-007-0573-4

Boudichevskaia A, Flachowsky H, Peil A, Fischer C, Dunemann F (2006) Development of a multiallelic SCAR marker for the scab resistance gene Vr1/Vh4/Vx from R12740-7A apple and its utility for molecular breeding. Tree Genet Genomes 2 (4):186-195. doi:DOI 10.1007/s11295-006-0043-3

Flachowsky H, Riedel M, Reim S, Hanke MV (2008) Evaluation of the uniformity and stability of T-DNA integration and gene expression in transgenic apple plants. Electron J Biotechn 11 (1). doi:ARTN 10

DOI 10.2225/vol11-issue1-fulltext-10

Flachowsky H, Richter K, Kim WS, Geider K, Hanke MV (2008) Transgenic expression of a viral EPS-depolymerase is potentially useful to induce fire blight resistance in apple. Ann Appl Biol 153 (3):345-355. doi:DOI 10.1111/j.1744-7348.2008.00264.x

Szankowski I, Flachowsky H, Li HH, Halbwirth H, Treutter D, Regos I, Hanke MV, Stich K, Fischer TC (2009) Shift in polyphenol profile and sublethal phenotype caused by silencing of anthocyanidin synthase in apple (Malus sp.). Planta 229 (3):681-692. doi:DOI 10.1007/s00425-008-0864-4

Milcevicova R, Gosch C, Halbwirth H, Stich K, Hanke MV, Peil A, Flachowsky H, Rozhon W, Jonak C, Oufir M, Hausman JF, Matusikova I, Fluch S, Wilhelm E (2010) Erwinia amylovora-induced defense mechanisms of two apple species that differ in susceptibility to fire blight. Plant Sci 179 (1-2):60-67. doi:DOI 10.1016/j.plantsci.2010.04.013

Hattasch C, Flachowsky H, Hanke MV (2009) Evaluation of an alternative D-amino acid/DAAO selection system for transformation in apple (Malus X domestica Borkh.). J Hortic Sci Biotechnol:188-194

Flachowsky H, Szankowski I, Fischer TC, Richter K, Peil A, Hofer M, Dorschel C, Schmoock S, Gau AE, Halbwirth H, Hanke MV (2010) Transgenic apple plants overexpressing the Lc gene of maize show an altered growth habit and increased resistance to apple scab and fire blight. Planta 231 (3):623-635. doi:DOI 10.1007/s00425- 009-1074-4

Boudichevskaia A, Flachowsky H, Dunemann F (2009) Identification and molecular analysis of candidate genes homologous to HcrVf genes for scab resistance in apple. Plant Breed 128 (1):84-91. doi:DOI 10.1111/j.1439-0523.2008.01537.x

Vanblaere T, Szankowski I, Schaart J, Schouten H, Flachowsky H, Broggini GAL, Gessler C (2011) The development of a cisgenic apple plant. J Biotechnol 154 (4):304- 311. doi:DOI 10.1016/j.jbiotec.2011.05.013

Bian XF, Liu X, Zhao ZG, Jiang L, Gao H, Zhang YH, Zheng M, Chen LM, Liu SJ, Zhai HQ, Wan JM (2011) Heading date gene, dth3 controlled late flowering in O. Glaberrima Steud. by down-regulating Ehd1. Plant Cell Rep 30 (12):2243-2254. doi:10.1007/s00299- 011-1129-4

Lee DY, An G (2011) Two AP2 family genes, SUPERNUMERARY BRACT (SNB) and OsINDETERMINATE SPIKELET 1 (OsIDS1), synergistically control inflorescence architecture and floral meristem establishment in rice. Plant J. doi:10.1111/j.1365- 313X.2011.04804.x

Dart SR, Samis KE, Austen E, Eckert CG (2011) Broad geographic covariation between floral traits and the mating system in Camissoniopsis cheiranthifolia (Onagraceae): multiple stable mixed mating systems across the species' range? Ann Bot. doi:10.1093/aob/mcr266

Bennett D, Izanloo A, Edwards J, Kuchel H, Chalmers K, Tester M, Reynolds M, Schnurbusch T, Langridge P (2011) Identification of novel quantitative trait loci for days to ear emergence and flag leaf glaucousness in a bread wheat (Triticum aestivum L.) population adapted to southern Australian conditions. Theor Appl Genet. doi:10.1007/s00122-011-1740-3

Karlberg A, Bako L, Bhalerao RP (2011) Short Day-Mediated Cessation of Growth Requires the Downregulation of AINTEGUMENTALIKE1 Transcription Factor in Hybrid Aspen. PLoS Genet 7 (11):e1002361. doi:10.1371/journal.pgen.1002361 Lokk IE, Sokolov DD, Remizova MV (2011) Morphogenetic lability of reproductive structures in Ruppia maritima (Ruppiaceae, Alismatales): from two lateral flowers to a terminal flower. Ontogenez 42 (4):285-299

Hatsuda Y, Nishio S, Komori S, Nishiyama M, Kanahama K, Kanayama Y (2011) Relationship between MdMADS11 Gene Expression and Juvenility in Apple. J Jpn Soc Hortic Sci 80 (4):396-403

Cheng F, Liu S, Wu J, Fang L, Sun S, Liu B, Li P, Hua W, Wang X (2011) BRAD, the genetics and genomics database for Brassica plants. BMC Plant Biol 11:136. doi:10.1186/1471-2229-11-136

Li CY, Gu M, Shi NN, Zhang H, Yang X, Osman T, Liu YL, Wang HZ, Vatish M, Jackson S, Hong YG (2011) Mobile FT mRNA contributes to the systemic florigen signalling in floral induction. Sci Rep-Uk 1. doi:Artn 73

Doi 10.1038/Srep00073

Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10 (1):57-63. doi:Doi 10.1038/Nrg2484

Doyle MR, Davis SJ, Bastow RM, McWatters HG, Kozma-Bognar L, Nagy F, Millar AJ, Amasino RM (2002) The ELF4 gene controls circadian rhythms and flowering time in Arabidopsis thaliana. Nature 419 (6902):74-77. doi:10.1038/nature00954

Jagosz B (2011) The relationship between heterosis and genetic distances based on RAPD and AFLP markers in carrot. Plant Breed 130 (5):574-579. doi:DOI 10.1111/j.1439- 0523.2011.01877.x

Jiao YL, Lau OS, Deng XW (2007) Light-regulated transcriptional networks in higher plants. Nat Rev Genet 8 (3):217-230. doi:Doi 10.1038/Nrg2049

Lin HX, Liang ZW, Sasaki T, Yano M (2003) Fine mapping and characterization of quantitative trait loci Hd4 and Hd5 controlling heading date in rice. Breed Sci 53 (1):51- 59

Chung YY, Kim SR, Finkel D, Yanofsky MF, An GH (1994) Early Flowering and Reduced Apical Dominance Result from Ectopic Expression of a Rice Mads Box Gene. Plant Mol Biol 26 (2):657-665

An XM, Wang DM, Wang ZL, Li B, Bo WH, Cao GL, Zhang ZY (2011) Isolation of a LEAFY homolog from Populus tomentosa: expression of PtLFY in P. tomentosa floral buds and PtLFY-IR-mediated gene silencing in tobacco (Nicotiana tabacum). Plant Cell Rep 30 (1):89-100. doi:10.1007/s00299-010-0947-0

Munoz-Fambuena N, Mesejo C, Carmen Gonzalez-Mas M, Primo-Millo E, Agusti M, Iglesias DJ (2011) Fruit regulates seasonal expression of flowering genes in alternate- bearing 'Moncada' mandarin. Ann Bot 108 (3):511-519. doi:10.1093/aob/mcr164

Dong ZC, Zhao Z, Liu CW, Luo JH, Yang J, Huang WH, Hu XH, Wang TL, Luo D (2005) Floral patterning in Lotus japonicus. Plant Physiol 137 (4):1272-1282. doi:10.1104/pp.104.054288 Bassel GW, Glaab E, Marquez J, Holdsworth MJ, Bacardit J (2011) Functional network construction in Arabidopsis using rule-based machine learning on large-scale data sets. Plant Cell 23 (9):3101-3116. doi:10.1105/tpc.111.088153

Wang Y, Itaya A, Zhong X, Wu Y, Zhang J, van der Knaap E, Olmstead R, Qi Y, Ding B (2011) Function and Evolution of a MicroRNA That Regulates a Ca2+-ATPase and Triggers the Formation of Phased Small Interfering RNAs in Tomato Reproductive Growth. Plant Cell 23 (9):3185-3203. doi:10.1105/tpc.111.088013

Nakamura S, Abe F, Kawahigashi H, Nakazono K, Tagiri A, Matsumoto T, Utsugi S, Ogawa T, Handa H, Ishida H, Mori M, Kawaura K, Ogihara Y, Miura H (2011) A Wheat Homolog of MOTHER OF FT AND TFL1 Acts in the Regulation of Germination. Plant Cell 23 (9):3215-3229. doi:10.1105/tpc.111.088492

Farrona S, Thorpe FL, Engelhorn J, Adrian J, Dong X, Sarid-Krebs L, Goodrich J, Turck F (2011) Tissue-Specific Expression of FLOWERING LOCUS T in Arabidopsis Is Maintained Independently of Polycomb Group Protein Repression. Plant Cell 23 (9):3204- 3214. doi:10.1105/tpc.111.087809

Rotem N, David-Schwartz R, Peretz Y, Sela I, Rabinowitch HD, Flaishman M, Kamenetsky R (2011) Flower development in garlic: the ups and downs of gaLFY expression. Planta 233 (5):1063-1072. doi:10.1007/s00425-011-1361-8

Southerton SG, Strauss SH, Olive MR, Harcourt RL, Decroocq V, Zhu XM, Llewellyn DJ, Peacock WJ, Dennis ES (1998) Eucalyptus has a functional equivalent of the Arabidopsis floral meristem identity gene LEAFY. Plant Mol Biol 37 (6):897-910

Udall JA, Quijada PA, Osborn TC (2005) Detection of chromosomal rearrangements derived from homeologous recombination in four mapping populations of Brassica napus L. Genetics 169 (2):967-979. doi:DOI 10.1534/genetics.104.033209

Sheerin DJ, Buchanan J, Kirk C, Harvey D, Sun X, Spagnuolo J, Li S, Liu T, Woods VA, Foster T, Jones WT, Rakonjac J (2011) Inter- and intra-molecular interactions of Arabidopsis thaliana DELLA protein RGL1. Biochem J 435:629-639. doi:Doi 10.1042/Bj20101941

Mimida N, Sakamoto W, Murata M, Motoyoshi F (1999) TERMINAL FLOWER 1-like genes in Brassica species. Plant Sci 142 (2):155-162

Zhao JY, Becker HC, Ding HD, Zhang YF, Zhang DQ, Ecke W (2005) QTL of three agronomically important traits and their interactions with environment in a European x Chinese rapeseed population. Yi Chuan Xue Bao 32 (9):969-978

Zhao J, Kulkarni V, Liu N, Del Carpio DP, Bucher J, Bonnema G (2010) BrFLC2 (FLOWERING LOCUS C) as a candidate gene for a vernalization response QTL in Brassica rapa. J Exp Bot 61 (6):1817-1825. doi:erq048 [pii]

10.1093/jxb/erq048

Zhao J, Artemyeva A, Del Carpio DP, Basnet RK, Zhang N, Gao J, Li F, Bucher J, Wang X, Visser RG, Bonnema G (2010) Design of a Brassica rapa core collection for association mapping studies. Genome 53 (11):884-898. doi:10.1139/g10-082 Yang M, Yang Q, Fu T, Zhou Y (2011) Overexpression of the Brassica napus BnLAS gene in Arabidopsis affects plant development and increases drought tolerance. Plant Cell Rep 30 (3):373-388. doi:10.1007/s00299-010-0940-7

Weis AE, Kossler TM (2004) Genetic variation in flowering time induces phenological assortative mating: quantitative genetic methods applied to Brassica rapa. Am J Bot 91 (6):825-836. doi:10.3732/ajb.91.6.825

Wang J, Long Y, Wu B, Liu J, Jiang C, Shi L, Zhao J, King GJ, Meng J (2009) The evolution of Brassica napus FLOWERING LOCUS T paralogues in the context of inverted chromosomal duplication blocks. BMC Evol Biol 9:271. doi:1471-2148-9-271 [pii] 10.1186/1471-2148-9-271

Schranz ME, Quijada P, Sung SB, Lukens L, Amasino R, Osborn TC (2002) Characterization and effects of the replicated flowering time gene FLC in Brassica rapa. Genetics 162 (3):1457-1468

Schranz ME, Osborn TC (2000) Novel flowering time variation in the resynthesized polyploid Brassica napus. J Hered 91 (3):242-246

Osborn TC, Kole C, Parkin IA, Sharpe AG, Kuiper M, Lydiate DJ, Trick M (1997) Comparison of flowering time genes in Brassica rapa, B. napus and Arabidopsis thaliana. Genetics 146 (3):1123-1129

Okazaki K, Sakamoto K, Kikuchi R, Saito A, Togashi E, Kuginuki Y, Matsumoto S, Hirai M (2007) Mapping and characterization of FLC homologs and QTL analysis of flowering time in Brassica oleracea. Theor Appl Genet 114 (4):595-608. doi:10.1007/s00122-006- 0460-6

Lou P, Zhao J, Kim JS, Shen S, Del Carpio DP, Song X, Jin M, Vreugdenhil D, Wang X, Koornneef M, Bonnema G (2007) Quantitative trait loci for flowering time and morphological traits in multiple populations of Brassica rapa. J Exp Bot 58 (14):4005- 4016. doi:10.1093/jxb/erm255

Lou P, Xie Q, Xu X, Edwards CE, Brock MT, Weinig C, McClung CR (2011) Genetic architecture of the circadian clock and flowering time in Brassica rapa. Theor Appl Genet. doi:10.1007/s00122-011-1592-x

Li F, Kitashiba H, Inaba K, Nishio T (2009) A Brassica rapa linkage map of EST-based SNP markers for identification of candidate genes controlling flowering time and leaf morphological traits. DNA Res 16 (6):311-323. doi:dsp020 [pii]

10.1093/dnares/dsp020

Hawkins GP, Deng Z, Kubik TJ, Johnson-Flanagan AM (2002) Characterization of freezing tolerance and vernalization in Vern-, a spring-type Brassica napus line derived from a winter cross. Planta 216 (2):220-226. doi:10.1007/s00425-002-0850-1

Franks SJ, Sim S, Weis AE (2007) Rapid evolution of flowering time by an annual plant in response to a climate fluctuation. Proc Natl Acad Sci U S A 104 (4):1278-1282. doi:10.1073/pnas.0608379104 Cai CC, Tu JX, Fu TD, Chen BY (2008) The genetic basis of flowering time and photoperiod sensitivity in rapeseed (Brassica napus L.). Genetika 44 (3):381-388

Axeisson T, Shavorskaya O, Lagercrantz U (2001) Multiple flowering time QTLs within several Brassica species could be the result of duplicated copies of one ancestral gene. Genome 44 (5):856-864

Legere A (2005) Risks and consequences of gene flow from herbicide-resistant crops: canola (Brassica napus L) as a case study. Pest Manag Sci 61 (3):292-300. doi:10.1002/ps.975

Zhao J, Becker HC, Zhang D, Zhang Y, Ecke W (2006) Conditional QTL mapping of oil content in rapeseed with respect to protein content and traits related to plant development and grain yield. Theor Appl Genet 113 (1):33-38. doi:10.1007/s00122-006-0267-5

Weis AE (2005) Direct and indirect assortative mating: a multivariate approach to plant flowering schedules. J Evol Biol 18 (3):536-546. doi:10.1111/j.1420-9101.2005.00891.x

Van Dijk H, Hautekeete N (2007) Long day plants and the response to global warming: rapid evolutionary change in day length sensitivity is possible in wild beet. J Evol Biol 20 (1):349-357. doi:10.1111/j.1420-9101.2006.01192.x

Van Dijk H (2009) Evolutionary change in flowering phenology in the iteroparous herb Beta vulgaris ssp. maritima: a search for the underlying mechanisms. J Exp Bot 60 (11):3143-3155. doi:10.1093/jxb/erp142

Xing D, Li QQ (2011) Alternative polyadenylation and gene expression regulation in plants. Wiley Interdiscip Rev RNA 2 (3):445-458. doi:10.1002/wrna.59

Hodgins KA, Rieseberg L (2011) Genetic differentiation in life-history traits of introduced and native common ragweed (Ambrosia artemisiifolia) populations. J Evol Biol. doi:10.1111/j.1420-9101.2011.02404.x

Wollmann H, Berger F (2011) Epigenetic reprogramming during plant reproduction and seed development. Curr Opin Plant Biol. doi:10.1016/j.pbi.2011.10.001

Liang M, Hole D, Wu J, Blake T, Wu Y (2011) Expression and functional analysis of NUCLEAR FACTOR-Y, subunit B genes in barley. Planta. doi:10.1007/s00425-011- 1539-0

Robert LS, Robson F, Sharpe A, Lydiate D, Coupland G (1998) Conserved structure and function of the Arabidopsis flowering time gene CONSTANS in Brassica napus. Plant Mol Biol 37 (5):763-772

Ge Y, Ramchiary N, Wang T, Liang C, Wang N, Wang Z, Choi SR, Lim YP, Piao ZY (2011) Development and linkage mapping of unigene-derived microsatellite markers in Brassica rapa L. Breed Sci 61 (2):160-167. doi:Doi 10.1270/Jsbbs.61.160

Shalit A, Rozman A, Goldshmidt A, Alvarez JP, Bowman JL, Eshed Y, Lifschitz E (2009) The flowering hormone florigen functions as a general systemic regulator of growth and termination. Proc Natl Acad Sci U S A 106 (20):8392-8397. doi:DOI 10.1073/pnas.0810810106 Wang X, Roig-Villanova I, Khan S, Shanahan H, Quail PH, Martinez-Garcia JF, Devlin PF (2011) A novel high-throughput in vivo molecular screen for shade avoidance mutants identifies a novel phyA mutation. J Exp Bot 62 (8):2973-2987. doi:10.1093/jxb/err062

Pons E, Navarro A, Ollitrault P, Pena L (2011) Pollen Competition as a Reproductive Isolation Barrier Represses Transgene Flow between Compatible and Co-Flowering Citrus Genotypes. PLoS ONE 6 (10):e25810. doi:10.1371/journal.pone.0025810

De Mita S, Chantret N, Loridon K, Ronfort J, Bataillon T (2011) Molecular adaptation in flowering and symbiotic recognition pathways: insights from patterns of polymorphism in the legume Medicago truncatula. BMC Evol Biol 11:229. doi:10.1186/1471-2148-11-229

Chen YH, Carver BF, Wang SW, Cao SH, Yan LL (2010) Genetic regulation of developmental phases in winter wheat. Mol Breed 26 (4):573-582. doi:DOI 10.1007/s11032-010-9392-6

Jeon JS, Jang S, Lee S, Nam J, Kim C, Lee SH, Chung YY, Kim SR, Lee YH, Cho YG, An G (2000) leafy hull sterile1 is a homeotic mutation in a rice MADS box gene affecting rice flower development. Plant Cell 12 (6):871-884

Jeon JS, Lee S, Jung KH, Jun SH, Jeong DH, Lee J, Kim C, Jang S, Lee S, Yang K, Nam J, An K, Han MJ, Sung RJ, Choi HS, Yu JH, Choi JH, Cho SY, Cha SS, Kim SI, An G (2000) T-DNA insertional mutagenesis for functional genomics in rice. Plant J 22 (6):561- 570

Pontoppidan MB, Petersen PM, Philipp M (2011) For she that hath, to her shall be given...Implications of flowering in Anemone nemorosa L. Plant Biol (Stuttg) 13 (6):842- 847. doi:10.1111/j.1438-8677.2011.00442.x

Bergonzi S, Albani MC (2011) Reproductive competence from an annual and a perennial perspective. J Exp Bot 62 (13):4415-4422. doi:10.1093/jxb/err192

Chang Y-Y, Chu Y-W, Chen C-W, Leu W-M, Hsu H-F, Yang C-H (2011) Characterization of Oncidium 'Gower Ramsey' Transcriptomes using 454 GS-FLX Pyrosequencing and Their Application to the Identification of Genes Associated with Flowering Time. Plant Cell Physiol 52 (9):1532-1545. doi:10.1093/pcp/pcr101

Zhou Z, An L, Sun L, Zhu S, Xi W, Broun P, Yu H, Gan Y (2011) Zinc finger protein5 is required for the control of trichome initiation by acting upstream of zinc finger protein8 in Arabidopsis. Plant Physiol 157 (2):673-682. doi:10.1104/pp.111.180281

Xu J, Wang B, Wu Y, Du P, Wang J, Wang M, Yi C, Gu M, Liang G (2011) Fine mapping and candidate gene analysis of ptgms2-1, the photoperiod-thermo-sensitive genic male sterile gene in rice (Oryza sativa L.). Theor Appl Genet 122 (2):365-372. doi:10.1007/s00122-010-1452-0

Wang X, Torres MJ, Pierce G, Lemke C, Nelson LK, Yuksel B, Bowers JE, Marler B, Xiao Y, Lin L, Epps E, Sarazen H, Rogers C, Karunakaran S, Ingles J, Giattina E, Mun JH, Seol YJ, Park BS, Amasino RM, Quiros CF, Osborn TC, Pires JC, Town C, Paterson AH (2011) A physical map of Brassica oleracea shows complexity of chromosomal changes following recursive paleopolyploidizations. BMC Genomics 12:470. doi:10.1186/1471-2164-12-470 Ahuja I, Borgen BH, Hansen M, Honne BI, Muller C, Rohloff J, Rossiter JT, Bones AM (2011) Oilseed rape seeds with ablated defence cells of the glucosinolate-myrosinase system. Production and characteristics of double haploid MINELESS plants of Brassica napus L. J Exp Bot 62 (14):4975-4993. doi:10.1093/jxb/err195

Dhandapani V, Ramchiary N, Paul P, Kim J, Choi SH, Lee J, Hur Y, Lim YP (2011) Identification of potential microRNAs and their targets in Brassica rapa L. Mol Cells 32 (1):21-37. doi:10.1007/s10059-011-2313-7

Ramchiary N, Nguyen VD, Li X, Hong CP, Dhandapani V, Choi SR, Yu G, Piao ZY, Lim YP (2011) Genic Microsatellite Markers in Brassica rapa: Development, Characterization, Mapping, and Their Utility in Other Cultivated and Wild Brassica Relatives. DNA Res 18 (5):305-320. doi:10.1093/dnares/dsr017

Wang X, Wang H, Wang J, Sun R, Wu J, Liu S, Bai Y, Mun JH, Bancroft I, Cheng F, Huang S, Li X, Hua W, Freeling M, Pires JC, Paterson AH, Chalhoub B, Wang B, Hayward A, Sharpe AG, Park BS, Weisshaar B, Liu B, Li B, Tong C, Song C, Duran C, Peng C, Geng C, Koh C, Lin C, Edwards D, Mu D, Shen D, Soumpourou E, Li F, Fraser F, Conant G, Lassalle G, King GJ, Bonnema G, Tang H, Belcram H, Zhou H, Hirakawa H, Abe H, Guo H, Jin H, Parkin IA, Batley J, Kim JS, Just J, Li J, Xu J, Deng J, Kim JA, Yu J, Meng J, Min J, Poulain J, Hatakeyama K, Wu K, Wang L, Fang L, Trick M, Links MG, Zhao M, Jin M, Ramchiary N, Drou N, Berkman PJ, Cai Q, Huang Q, Li R, Tabata S, Cheng S, Zhang S, Sato S, Sun S, Kwon SJ, Choi SR, Lee TH, Fan W, Zhao X, Tan X, Xu X, Wang Y, Qiu Y, Yin Y, Li Y, Du Y, Liao Y, Lim Y, Narusaka Y, Wang Z, Li Z, Xiong Z, Zhang Z (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43:1035-1039. doi:10.1038/ng.919

Jiang C, Ramchiary N, Ma Y, Jin M, Feng J, Li R, Wang H, Long Y, Choi SR, Zhang C, Cowling WA, Park BS, Lim YP, Meng J (2011) Structural and functional comparative mapping between the Brassica A genomes in allotetraploid Brassica napus and diploid Brassica rapa. Theor Appl Genet 123 (6):927-941. doi:10.1007/s00122-011-1637-1

Kurowska M, Daszkowska-Golec A, Gruszka D, Marzec M, Szurman M, Szarejko I, Maluszynski M (2011) TILLING - a shortcut in functional genomics. J Appl Genet 52 (4):371-390. doi:10.1007/s13353-011-0061-1

Wang Y, Wu JF, Nakamichi N, Sakakibara H, Nam HG, Wu SH (2011) LIGHT- REGULATED WD1 and PSEUDO-RESPONSE REGULATOR9 form a positive feedback regulatory loop in the Arabidopsis circadian clock. Plant Cell 23 (2):486-498. doi:10.1105/tpc.110.081661

Nakamichi N (2011) Molecular mechanisms underlying the Arabidopsis circadian clock. Plant Cell Physiol 52 (10):1709-1718. doi:10.1093/pcp/pcr118

Ma H, Zhao H, Liu Z, Zhao J (2011) The Phytocyanin Gene Family in Rice (Oryza sativa L.): Genome-Wide Identification, Classification and Transcriptional Analysis. PLoS ONE 6 (10):e25184. doi:10.1371/journal.pone.0025184

Würschum T, Maurer HP, Schulz B, Mohring J, Reif JC (2011) Genome-wide association mapping reveals epistasis and genetic interaction networks in sugar beet. Theor Appl Genet 123 (1):109-118. doi:10.1007/s00122-011-1570-3 Würschum T, Maurer HP, Kraft T, Janssen G, Nilsson C, Reif JC (2011) Genome-wide association mapping of agronomic traits in sugar beet. Theor Appl Genet 123 (7):1121- 1131. doi:10.1007/s00122-011-1653-1

Shibaya T, Nonoue Y, Ono N, Yamanouchi U, Hori K, Yano M (2011) Genetic interactions involved in the inhibition of heading by heading date QTL, Hd2 in rice under long-day conditions. Theor Appl Genet 123 (7):1133-1143. doi:10.1007/s00122-011- 1654-0

Wang F, Wei H, Tong Z, Zhang X, Yang Z, Lan T, Duan Y, Wu W (2011) Knockdown of NtMed8, a Med8-like gene, causes abnormal development of vegetative and floral organs in tobacco (Nicotiana tabacum L.). Plant Cell Rep 30 (11):2117-2129. doi:10.1007/s00299-011-1118-7

Darracq A, Varre JS, Marechal-Drouard L, Courseaux A, Castric V, Saumitou-Laprade P, Oztas S, Lenoble P, Vacherie B, Barbe V, Touzet P (2011) Structural and content diversity of mitochondrial genome in beet: a comparative genomic analysis. Genome Biol Evol 3:723-736. doi:10.1093/gbe/evr042

Narbona E, Ortiz PL, Arista M (2011) Linking self-incompatibility, dichogamy, and flowering synchrony in two Euphorbia species: alternative mechanisms for avoiding self- fertilization? PLoS ONE 6 (6):e20668. doi:10.1371/journal.pone.0020668

Saavedra S, Stouffer DB, Uzzi B, Bascompte J (2011) Strong contributors to network persistence are the most vulnerable to extinction. Nature. doi:10.1038/nature10433

Zhang FP, Cai XH, Wang H, Ren ZX, Larson-Rabin Z, Li DZ (2011) Dark purple nectar as a foraging signal in a bird-pollinated Himalayan plant. The New phytologist. doi:10.1111/j.1469-8137.2011.03894.x

Flachowsky H, Le Roux P-M, Peil A, Patocchi A, Richter K, Hanke M-V (2011) Application of a high-speed breeding technology to apple (Malus × domestica) based on transgenic early flowering plants and marker-assisted selection. New Phytol:no-no. doi:10.1111/j.1469-8137.2011.03813.x

Hajdari A, Mustafa B, Franz C, Novak J (2011) Variability of essential oils of Betonica officinalis (Lamiaceae) from different wild populations in Kosovo. Nat Prod Commun 6 (9):1343-1346

Hadfield J, Linderme D, Shepherd DN, Bezuidenhout M, Lefeuvre P, Martin DP, Varsani A (2011) Complete genome sequence of a dahlia common mosaic virus isolate from New Zealand. Arch Virol. doi:10.1007/s00705-011-1112-y

Rossetto M, Thurlby KA, Offord CA, Allen CB, Weston PH (2011) The impact of distance and a shifting temperature gradient on genetic connectivity across a heterogeneous landscape. BMC Evol Biol 11:126. doi:10.1186/1471-2148-11-126

Torimaru T, Wennstrom U, Lindgren D, Wang XR (2011) Effects of male fecundity, interindividual distance and anisotropic pollen dispersal on mating success in a Scots pine (Pinus sylvestris) seed orchard. Heredity. doi:10.1038/hdy.2011.76 Guo Z, Tucker DM, Lu J, Kishore V, Gay G (2011) Evaluation of genome-wide selection efficiency in maize nested association mapping populations. Theor Appl Genet. doi:10.1007/s00122-011-1702-9

Guo B, Beavis WD (2011) In silico genotyping of the maize nested association mapping population. Mol Breed 27 (1):107-113. doi:10.1007/s11032-010-9503-4

Borras-Gelonch G, Rebetzke GJ, Richards RA, Romagosa I (2011) Genetic control of duration of pre-anthesis phases in wheat (Triticum aestivum L.) and relationships to leaf appearance, tillering, and dry matter accumulation. J Exp Bot. doi:10.1093/jxb/err230

Senapathi D, Nicoll MA, Teplitsky C, Jones CG, Norris K (2011) Climate change and the risks associated with delayed breeding in a tropical wild bird population. Proc Biol Sci 278 (1722):3184-3190. doi:10.1098/rspb.2011.0212

Takumi S, Mizumoto K, Hatano H, Hirabayashi C, Murai K (2011) Characterization of wheat Bell1-type homeobox genes in floral organs of alloplasmic lines with Aegilops crassa cytoplasm. BMC Plant Biol 11. doi:Artn 2 Doi 10.1186/1471-2229-11-2

King RW, Pharis RP, Mander LN (1987) Gibberellins in Relation to Growth and Flowering in Pharbitis nil Chois. Plant Physiol 84 (4):1126-1131

Zheng X, Hu C, Spooner D, Liu J, Cao J, Teng Y (2011) Molecular evolution of Adh and LEAFY and the phylogenetic utility of their introns in Pyrus (Rosaceae). BMC Evol Biol 11:255. doi:10.1186/1471-2148-11-255

Zuo JR, Tan HL, Yang XH, Zhang FX, Zheng X, Qu CM, Mu JY, Fu FY, Li JA, Guan RZ, Zhang HS, Wang GD (2011) Enhanced Seed Oil Production in Canola by Conditional Expression of Brassica napus LEAFY COTYLEDON1 and LEC1-LIKE in Developing Seeds. Plant Physiol 156 (3):1577-1588. doi:DOI 10.1104/pp.111.175000

Bou-Torrent J, Martinez-Garcia JF, Garcia-Martinez JL, Prat S (2011) Gibberellin a(1) metabolism contributes to the control of photoperiod-mediated tuberization in potato. PLoS ONE 6 (9):e24458. doi:10.1371/journal.pone.0024458

Ainsworth CCe (2006) Flowering and its manipulation, vol 20. Annual Plant Reviews. Blackwell Publishing Ltd, Oxford Ames Victoria listed Na (1884) Blooming times for flowers. Science 4 (99):573-575

Zeevaart JAD (1958) Flower formation as studied by grafting. Meded Landbouwhogesch Wageningen 58:1-88

Tournois J (1912) Influence de la lumière sur la floraison du houblon japonais et du chanvre déterminées par des semis haitifs. C R Acad Sci Paris 155:297-300

Thomas B, Vince-Prue D (1997) Photoperiodism in plants. Academic Press, New York

Sachs J (1865) Handbuch der Experimentalphysiologie der Pflanzen. Leipzig, Germany

Pittendrigh CS, Minis DH (1964) The entrainment of circadian oscillations by light and their role as photoperiodic clocks. Am Nat 98:261-294 Pittendrigh CS (1972) Circadian surfaces and the diversity of possible roles of circadian organization in photoperiodic induction. Proc Natl Acad Sci U S A 69:2734-2737

Pittendrigh CS (1960) Circadian rhythms and the circadian organization of living systems. Cold Spring Harbor Symp Quant Biol 25:159-184

Pharis RP, Evans LT, King RW, Mander LN (1987) Gibberellins, Endogenous and Applied, in Relation to Flower Induction in the Long-Day Plant Lolium temulentum. Plant Physiol 84 (4):1132-1138

Rood SB, Kaufman PB, Abe H, Pharis RP (1987) Gibberellins and Gravitropism in Maize Shoots - Endogenous Gibberellin-Like Substances and Movement and Metabolism of [H- 3] Gibberellin-A20. Plant Physiol 83 (3):645-651

Pharis RP, King RW, Evans LT, Mander LN (1987) Gibberellins (Gas) in Relation to Flowering in Short (Sd) and Long-Day (Ld) Plants. J Cell Biochem:22-22

Rood SB, Pearce D, Pharis RP (1987) Identification of Endogenous Gibberellins from Oilseed Rape. Plant Physiol 85 (3):605-607

Naylor AW (1941) Effect of nutrition and age upon rate of development of terminal staminate inflorescences of Xanthium pennsylvanicum. Bot Gaz 103:342-353

Napp-Zinn K (1969) Arabidopsis thaliana (L.) Heynh. In: Evans LT (ed) The Induction of Flowering: Some case histories. MacMillan, Melbourne, Australia, pp 291-304

Laibach F (1951) Über sommer- und winterannuelle Rassen von Arabidopsis thaliana (L.) Heynh. Ein Beitrag zur Ätiologie der Blütenbildung. Beitr Biol Pflanzen 28:173-210

Lang A, Melchers G (1948) Auslösung der Blütenbildung bei Langtagpflanzen in Kurztagbedingungen durch Aufpfropfung von Kurztagpflanzen. Zeitschrift für Naturforschung 3b:108-111

Melchers G (1937) Die Wirkung von Genen, tiefen Temperaturen und blühenden Pfropfpartnern auf die Blühreife von Hyoscyamus. Biol Zbl 57:568-614

Ji L, Liu X, Yan J, Wang W, Yumul RE, Kim YJ, Dinh TT, Liu J, Cui X, Zheng B, Agarwal M, Liu C, Cao X, Tang G, Chen X (2011) ARGONAUTE10 and ARGONAUTE1 regulate the termination of floral stem cells through two microRNAs in Arabidopsis. PLoS Genet 7 (3):e1001358. doi:10.1371/journal.pgen.1001358

Hammond JP, Mayes S, Bowen HC, Graham NS, Hayden RM, Love CG, Spracklen WP, Wang J, Welham SJ, White PJ, King GJ, Broadley MR (2011) Regulatory hotspots are associated with plant gene expression under varying soil phosphorus supply in Brassica rapa. Plant Physiol 156 (3):1230-1241. doi:10.1104/pp.111.175612

Wang H, Wu J, Sun S, Liu B, Cheng F, Sun R, Wang X (2011) Glucosinolate biosynthetic genes in Brassica rapa. Gene 487 (2):135-142. doi:10.1016/j.gene.2011.07.021

Wang L, Yu X, Wang H, Lu YZ, de Ruiter M, Prins M, He YK (2011) A novel class of heat-responsive small RNAs derived from the chloroplast genome of Chinese cabbage (Brassica rapa). BMC Genomics 12:289. doi:10.1186/1471-2164-12-289 Feng H, Zhang Y, Wang AJ, Liu Y, Wang YS (2011) Effects of the antiauxin PCIB on microspore embryogenesis and plant regeneration in Brassica rapa. Sci Hortic-Amsterdam 130 (1):32-37. doi:DOI 10.1016/j.scienta.2011.06.047

He YK, Wang L, Yu X, Wang H, Lu YZ, de Ruiter M, Prins M (2011) A novel class of heat-responsive small RNAs derived from the chloroplast genome of Chinese cabbage (Brassica rapa). BMC Genomics 12. doi:Artn 289

Doi 10.1186/1471-2164-12-289

Piao ZY, Ge Y, Ramchiary N, Wang T, Liang C, Wang N, Wang Z, Choi SR, Lim YP (2011) Development and linkage mapping of unigene-derived microsatellite markers in Brassica rapa L. Breed Sci 61 (2):160-167. doi:Doi 10.1270/Jsbbs.61.160

Wu J, Wang Y, Sun SL, Liu B, Wang H, Deng J, Liao YC, Wang Q, Cheng F, Wang XW (2011) A sequence-based genetic linkage map as a reference for Brassica rapa pseudochromosome assembly. BMC Genomics 12. doi:Artn 239. Doi 10.1186/1471- 2164-12-239

King GJ, Wang J, Lydiate DJ, Parkin IAP, Falentin C, Delourme R, Carion PWC (2011) Integration of linkage maps for the Amphidiploid Brassica napus and comparative mapping with Arabidopsis and Brassica rapa. BMC Genomics 12. doi:Artn 101 Doi 10.1186/1471-2164-12-101

Knott JE (1934) Effect of a localized photoperiod on spinach. Proceedings of the American Society of Horticultural Science 31 ((Suppl.)):152-154

Klebs G (1913) Über das Verhältnis der Außenwelt zur Entwicklung der Pflanze. Sitzungsberichte der Akademie der Wissenschaften Heidelberg B 5:1-47

King RW, Evans LT, Wardlaw IF (1968) Translocation of the floral stimulus in Pharbitis nil in relation to that of assimilates. Z Pflanzenphysiol 59:377-388

Imamura S (1967) Photoperiodic induction and the floral stimulus. In: Imamura S (ed) Physiology of flowering in Pharbitis nil. Japanese Society of Plant Physiologists, Tokyo, pp 15-28

Henfrey A (1852) The vegetation of europe, its conditions and causes. J van Voorst (London)

Harder R, Bode O (1943) Über die Wirkung von Zwischenbelichtungen während der Dunkelperiode auf das Blühen, die Verlaubung und die Blattsukkulenz bei der Kurztagspflanze Kalanchoe blossfeldiana. Planta 33:469-504

Hamner KC, Bonner J (1938) Photoperiodism in relation to hormones as factors in floral initiation and development. Bot Gaz 100:388-431

Garner WW, Allard HA (1923) Further studies on photoperiodism, the response of plants to relative length of day and night. J Agric Res 23:871-920

Garner WW, Allard HA (1920) Effect of the relative length of day and night and other factors of the environment on growth and reproduction in plants. J Agric Res 18:553-606 Chailakhyan MK (1936) [About the mechanism of the photooeriodic response] (in Russian). CR Acad Sci USSR 1:85-89

Chailakhyan MK (1936) [New facts supporting the hormonal theory of plant development] (in Russian). CR Acad Sci USSR 4:77-81

Chailakhyan MK (1937) [Hormonal theory of plant development] (in Russian). Acad Sci USSR

Bünning E, Stern K (1930) Über die tagesperiodischen Bewegungen der Primärblätter von Phaseolus multiflorus. II. Die Bewegungen bei Thermokonstanz. Ber Dt Bot Ges 48:227- 252

Bünning E (1936) Die endogene Tagesrhythmik als Grundlage der photoperiodischen Reaktion. Ber Dt Bot Ges 54:590-607

Möller-Steinbach Y, Alexandre C, Hennig L (2010) Flowering time control. Methods Mol Biol 655:229-237. doi:10.1007/978-1-60761-765-5_15

Meyerowitz EM, Pruitt RE (1985) Arabidopsis thaliana and plant molecular genetics. Science 229 (4719):1214-1218. doi:10.1126/science.229.4719.1214

Parcy F, Lohmann JU (2011) June bloom in Maratea. Development 138 (20):4335-4340. doi:10.1242/dev.067215

Chen X, Hu Y, Zhou D-X (2011) Epigenetic gene regulation by plant Jumonji group of histone demethylase. Biochimica Et Biophysica Acta-Gene Regulatory Mechanisms 1809 (8):421-426. doi:10.1016/j.bbagrm.2011.03.004

Kim J-S, Seo S-G, Jun B-K, Lee Y, Jeon SB, Choe J, Kim J-B, Kim ST, Kim S-H (2011) An IbEF1 from sweet potato promotes flowering in transgenic tobacco. Genes & Genomics 33 (4):335-341. doi:10.1007/s13258-011-0040-2

Aryamanesh N, Nelson MN, Yan G, Clarke HJ, Siddique KHM (2010) Mapping a major gene for growth habit and QTLs for ascochyta blight resistance and flowering time in a population between chickpea and Cicer reticulatum. Euphytica 173 (3):307-319. doi:10.1007/s10681-009-0086-2

Higuchi Y, Sage-Ono K, Sasaki R, Ohtsuki N, Hoshino A, Iida S, Kamada H, Ono M (2011) Constitutive expression of the GIGANTEA ortholog affects circadian rhythms and suppresses one-shot induction of flowering in Pharbitis nil, a typical short-day plant. Plant Cell Physiol 52 (4):638-650. doi:10.1093/pcp/pcr023

Gao X, Kong F, Wang F, Matsuura H, Yoshihara T (2006) Inhibitory role of gibberellins in theobroxide-induced flowering of Pharbitis nil. J Plant Physiol 163 (4):398-404. doi:10.1016/j.jplph.2005.04.028

Chen D, Guo B, Hexige S, Zhang T, Shen D, Ming F (2007) SQUA-like genes in the orchid Phalaenopsis are expressed in both vegetative and reproductive tissues. Planta 226 (2):369-380. doi:10.1007/s00425-007-0488-0 Blanchard MG, Runkle ES (2006) Temperature during the day, but not during the night, controls flowering of Phalaenopsis orchids. J Exp Bot 57 (15):4043-4049. doi:10.1093/jxb/erl176

Trusov Y, Botella JR (2006) Silencing of the ACC synthase gene ACACS2 causes delayed flowering in pineapple Ananas comosus (L.) Merr. J Exp Bot 57 (14):3953-3960. doi:10.1093/jxb/erl167

Lejeune-Henaut I, Hanocq E, Bethencourt L, Fontaine V, Delbreil B, Morin J, Petit A, Devaux R, Boilleau M, Stempniak JJ, Thomas M, Laine AL, Foucher F, Baranger A, Burstin J, Rameau C, Giauffret C (2008) The flowering locus Hr colocalizes with a major QTL affecting winter frost tolerance in Pisum sativum L. Theor Appl Genet 116 (8):1105- 1116. doi:10.1007/s00122-008-0739-x

Wenden B, Dun EA, Hanan J, Andrieu B, Weller JL, Beveridge CA, Rameau C (2009) Computational analysis of flowering in pea (Pisum sativum). New Phytol 184 (1):153- 167. doi:10.1111/j.1469-8137.2009.02952.x

Horibata S, Hasegawa SF, Kudo G (2007) Cost of reproduction in a spring ephemeral species, Adonis ramosa (Ranunculaceae): Carbon budget for seed production. Ann Bot 100 (3):565-571. doi:10.1093/aob/mcm131

Itagaki T, Sakai S (2006) Relationship between floral longevity and sex allocation among flowers within inflorescences in Aquilegia buergeriana var. oxysepala (Ranunculaceae). Am J Bot 93 (9):1320-1327. doi:10.3732/ajb.93.9.1320

Katayama N, Kato M, Nishiuchi T, Yamada T (2011) Comparative anatomy of embryogenesis in three species of Podostemaceae and evolution of the loss of embryonic shoot and root meristems. Evolution & Development 13 (4):333-342. doi:10.1111/j.1525- 142X.2011.00488.x

Santos-Gally R, Vargas P, Arroyo J (2011) Insights into Neogene Mediterranean biogeography based on phylogenetic relationships of mountain and lowland lineages of Narcissus (Amaryllidaceae). J Biogeogr:no-no. doi:10.1111/j.1365-2699.2011.02526.x

Harris JC, Song J, Jameson PE, Clemens J (2009) Autonomous, environmental and exogenous gibberellin regulation of floral development and isolation of a putative partial FLORICAULA/LEAFY homologue in Phormium cookianum (Agavaceae). Plant Growth Regul 58 (2):191-199. doi:10.1007/s10725-009-9367-y

Zheng CC, Potter D, O'Neill SD (2009) Phytochrome gene expression and phylogenetic analysis in the short -day plant Pharbitis nil (Convolvulaceae): differential regulation by light and endogenous clock. Am J Bot 96 (7):1319-1336. doi:10.3732/ajb.0800340

Routhier MC, Lapointe L (2002) Impact of tree leaf phenology on growth rates and reproduction in the spring flowering species Trillium erectum (). Am J Bot 89 (3):500-505. doi:10.3732/ajb.89.3.500

Collier MH, Rogstad SH (2004) Clonal variation in floral stage timing in the common dandelion Taraxacum officinale (Asteraceae). Am J Bot 91 (11):1828-1833. doi:10.3732/ajb.91.11.1828 Campos KO, Kerbauy GB (2004) Thermoperiodic effect on flowering and endogenous hormonal status in Dendrobium (Orchidaceae). J Plant Physiol 161 (12):1385-1387

Nakamura T, Song IJ, Fukuda T, Yokoyama J, Maki M, Ochiai T, Kameya T, Kanno A (2005) Characterization of TrcMADS1 gene of Trillium camtschatcense (Trilliaceae) reveals functional evolution of the SOC1/TM3-like gene family. J Plant Res 118 (3):229- 234. doi:10.1007/s10265-005-0215-5

Ellis AG, Weis AE, Gaut BS (2006) Evolutionary radiation of "stone plants" in the genus Argyroderma (Aizoaceae): unraveling the effects of landscape, habitat, and flowering time. Evolution 60 (1):39-55

Zhou XR, Wang YZ, Smith JF, Chen R (2008) Altered expression patterns of TCP and MYB genes relating to the floral developmental transition from initial zygomorphy to actinomorphy in Bournea (Gesneriaceae). New Phytol 178 (3):532-543. doi:10.1111/j.1469-8137.2008.02384.x

Syamsuwida D, Owens JN (1997) Time and method of floral initiation and effect of paclobutrazol on flower and fruit development in Shorea stenoptera (Dipterocarpaceae). Tree Physiol 17 (4):211-219

Kelly MG, Levin DA (2000) Directional selection on initial flowering date in Phlox drummondii (). Am J Bot 87 (3):382-391

Carroll AB, Pallardy SG, Galen C (2001) Drought stress, plant water status, and floral trait expression in fireweed, Epilobium angustifolium (Onagraceae). Am J Bot 88 (3):438- 446

Anderson GJ, Hill JD (2002) Many to flower, few to fruit: the reproductive biology of Hamamelis virginiana (Hamamelidaceae). Am J Bot 89 (1):67-78. doi:10.3732/ajb.89.1.67

Sim GE, Goh CJ, Loh CS (2008) Induction of in vitro flowering in Dendrobium Madame Thong-In (Orchidaceae) seedlings is associated with increase in endogenous N-6- (Delta(2)-isopentenyl)-adenine (iP) and N-6-(Delta(2)- isopentenyl)-adenosine (iPA) levels. Plant Cell Rep 27 (8):1281-1289. doi:10.1007/s00299-008-0551-8

Montague JL, Barrett SCH, Eckert CG (2008) Re-establishment of clinal variation in flowering time among introduced populations of purple loosestrife (Lythrum salicaria, Lythraceae). J Evol Biol 21 (1):234-245. doi:10.1111/j.1420-9101.2007.01456.x

Andersen JR, Schrag T, Melchinger AE, Zein I, Lubberstedt T (2005) Validation of Dwarf8 polymorphisms associated with flowering time in elite European inbred lines of maize (Zea mays L.). Theor Appl Genet 111 (2):206-217. doi:10.1007/s00122-005-1996-6

Ku L-x, Li S-y, Chen X, Wu L-c, Wang X-t, Chen Y-h (2011) Cloning and Characterization of Putative Hd6 Ortholog Associated with Zea mays L. Photoperiod Sensitivity. Agric Sci China 10 (1):18-27. doi:10.1016/s1671-2927(11)60303-9

Li H-Y, Wang T-Y, Shi Y-S, Fu J-J, Song Y-C, Wang G-Y, Li Y (2007) Isolation and characterization of induced genes under drought stress at the flowering stage in maize (Zea mays). DNA Seq 18 (6):443-458. doi:10.1080/10425170701292051 Lin YR, Schertz KF, Paterson AH (1995) Comparative analysis of QTLs affecting plant height and maturity across the Poaceae, in reference to an interspecific sorghum population. Genetics 141 (1):391-411

Ofir M, Kigel J (2006) Opposite effects of daylength and temperature on flowering and summer dormancy of Poa bulbosa. Ann Bot 97 (4):659-666. doi:10.1093/aob/mcl021

Tamura K, Yamada T (2007) A perennial ryegrass CBF gene cluster is located in a region predicted by conserved synteny between Poaceae species. Theor Appl Genet 114 (2):273- 283. doi:10.1007/s00122-006-0430-z

Zhang J-Z, Ai X-Y, Sun L-M, Zhang D-L, Guo W-W, Deng X-X, Hu C-G (2011) Molecular cloning and functional characterization of genes associated with flowering in citrus using an early-flowering trifoliate orange (Poncirus trifoliata L. Raf.) mutant. Plant Mol Biol 76 (1-2):187-204. doi:10.1007/s11103-011-9780-2

Myers MY, Farrant JM, Roden LC (2010) Preliminary characterization of floral response of Xerophyta humilis to desiccation, vernalisation, photoperiod and light intensity. Plant Growth Regul 62 (3):213-216. doi:10.1007/s10725-010-9460-2

Nordli EF, Strom M, Torre S (2011) Temperature and photoperiod control of morphology and flowering time in two greenhouse grown Hydrangea macrophylla cultivars. Sci Hortic-Amsterdam 127 (3):372-377. doi:10.1016/j.scienta.2010.09.019

Arsenault PR, Vail D, Wobbe KK, Erickson K, Weathers PJ (2010) Reproductive Development Modulates Gene Expression and Metabolite Levels with Possible Feedback Inhibition of Artemisinin in Artemisia annua. Plant Physiol 154 (2):958-968. doi:10.1104/pp.110.162552

Hernandez Y, Gimenez C, Gomez Lim M (2010) Flowering Locus T and Constan in Musa: new genes that participate in the floral transition in plantain Musa AAB cv. Dwarf Horn. Revista De La Facultad De Agronomia De La Universidad Del Zulia 27 (4):521- 544

Esumi T, Kitamura Y, Hagihara C, Yamane H, Tao R (2010) Identification of a TFL1 ortholog in Japanese apricot (Prunus mume Sieb. et Zucc.). Sci Hortic-Amsterdam 125 (4):608-616. doi:10.1016/j.scienta.2010.05.016

Perera PIP, Hocher V, Weerakoon LK, Yakandawala DMD, Fernando SC, Verdeil JL (2010) Early inflorescence and floral development in Cocos nucifera L. (Arecaceae: Arecoideae). S Afr J Bot 76 (3):482-492. doi:10.1016/j.sajb.2010.03.006

Noy-Porat T, Kamenetsky R, Eshel A, Flaishman MA (2010) Temporal and spatial expression patterns of the LEAFY homologue NLF during florogenesis in Narcissus tazetta. Plant Sci 178 (2):105-113. doi:10.1016/j.plantsci.2009.10.003

Zhang J-X, Wu K-L, Zeng S-J, Duan J, Tian L-N (2010) Characterization and expression analysis of PhalLFY, a homologue in Phalaenopsis of FLORICAULA/LEAFY genes. Sci Hortic-Amsterdam 124 (4):482-489. doi:10.1016/j.scienta.2010.02.004

Stewart PJ, Folta KM (2010) A Review of Photoperiodic Flowering Research in Strawberry (Fragaria spp.). Crit Rev Plant Sci 29 (1):1-13. doi:Pii 91857026610.1080/07352680903436259 Noy-Porat T, Flaishman MA, Eshel A, Sandler-Ziv D, Kamenetsky R (2009) Florogenesis of the Mediterranean geophyte Narcissus tazetta and temperature requirements for flower initiation and differentiation. Sci Hortic-Amsterdam 120 (1):138-142. doi:10.1016/j.scienta.2008.09.016

Andreini L, Bartolini S, Guivarc'h A, Chriqui D, Vitagliano C (2008) Histological and immunohistochemical studies on flower induction in the olive tree (Olea europaea L.). Plant Biol 10 (5):588-595. doi:10.1111/j.1438-8677.2008.00057.x

Du X, Xiao Q, Zhao R, Wu F, Xu Q, Chong K, Meng Z (2008) TrMADS3, a new MADS- box gene, from a perennial species Taihangia rupestris (Rosaceae) is upregulated by cold and experiences seasonal fluctuation in expression level. Dev Genes Evol 218 (6):281- 292. doi:10.1007/s00427-008-0218-z

Dornelas MC, Boscariol Camargo RL, Morimoto Figueiredo LH, Takita MA (2007) A genetic framework for flowering-time pathways in Citrus spp. Genet Mol Biol 30 (3):769- 779

Teichmanov M, Maskova P, Vojvodova P, Krekule J, Francis D, Lipavska H (2007) The fission yeast mitotic activator cdc25 and sucrose induce early flowering synergistically in the day-neutral Nicotiana tabacum cv. Samsun. New Phytol 176 (4):804-812. doi:10.1111/j.1469-8137.2007.02243.x

Kobayashi NI, Tanoi K, Nakanishi TM (2006) Magnesium localization in shoot apices during flower induction in Pharbitis nil. Canadian Journal of -Revue Canadienne De Botanique 84 (12):1908-1916. doi:10.1139/b06-145

Schlessman MA, Barrie FR (2004) Protogyny in Apiaceae, subfamily Apioideae: systematic and geographic distributions, associated traits, and evolutionary hypotheses. S Afr J Bot 70 (3):475-487

Dielen V, Quinet M, Chao J, Batoko H, Havelange A, Kinet JM (2004) UNIFLORA, a pivotal gene that regulates floral transition and meristem identity in tomato (Lycopersicon esculentum). New Phytol 161 (2):393-400. doi:10.1046/j.1469-8137.2003.00937.x

Bernier G, Corbesier L, Perilleux C (2002) The flowering process: On the track of controlling factors in Sinapis alba. Russ J Plant Physiol 49 (4):445-450. doi:10.1023/a:1016343421814

Gardner M, Macnair M (2000) Factors affecting the co-existence of the serpentine endemic Mimulus nudatus Curran and its presumed progenitor, Mimulus guttatus Fischer ex DC. Biol J Linn Soc 69 (4):443-459. doi:10.1006/bijl.1999.0387

Daoudi EH, Bonnet-Masimbert M (1998) Conjugated polyamines and flowering differentiation in the Douglas fir (Pseudotsuga menziesii (Mirb.) Franco). Canadian Journal of Botany-Revue Canadienne De Botanique 76 (5):782-790

Dielen V, Marc D, Kinet JM (1998) Flowering in the uniflora mutant of tomato (Lycopersicon esculentum Mill.): description of the reproductive structure and manipulation of flowering time. Plant Growth Regul 25 (3):149-157. doi:10.1023/a:1006094318083 Allen KD, Sussex IM (1996) Falsiflora and anantha control early stages of floral meristem development in tomato (Lycopersicon esculentum Mill). Planta 200 (2):254-264

Sundberg MD, Orr AR (1996) Early inflorescence and floral development in Zea mays land race Chapalote (Poaceae). Am J Bot 83 (10):1255-1265. doi:10.2307/2446109

Almeida JAS, Pereira M (1996) The control of flower initiation by gibberellin in Helianthus annuus L (sunflower), a non-photoperiodic plant. Plant Growth Regul 19 (2):109-115. doi:10.1007/bf00024576

Havelange A, Lejeune P, Bernier G, KaurSawhney R, Galston AW (1996) Putrescine export from leaves in relation to floral transition in Sinapis alba. Physiol Plant 96 (1):59- 65. doi:10.1111/j.1399-3054.1996.tb00183.x

Lughadha EN, Proenca C (1996) A survey of the reproductive biology of the Myrtoideae (Myrtaceae). Ann Mo Bot Gard 83 (4):480-503. doi:10.2307/2399990

Milyaeva EL, Komarova EN, Kochankov VG (1996) Floral evocation and the content of carbohydrates in stem apices of Rudbeckia bicolor at floral transition in complete darkness. Russ J Plant Physiol 43 (2):259-262

NunezElisea R, Davenport TL, Caldeira ML (1996) Control of bud morphogenesis in mango (Mangifera indica L) by girdling, defoliation and temperature modification. J Hortic Sci 71 (1):25-39

Nakanishi F, Fujii T (1992) Appearance of Peroxidase Isozymes in floral-initiated shoot apices of Pharbitis nil. Physiol Plant 86 (2):197-201. doi:10.1034/j.1399- 3054.1992.860202.x

Kinet JM, Lejeune P, Bernier G (1993) Shoot-root interactions during floral transition - a possible role for Cytokinins. Environ Exp Bot 33 (4):459-469. doi:10.1016/0098- 8472(93)90019-c

Kinet JM, Houssa P, Requier MC, Bernier G (1994) Alteration of cytokinin levels in root and leaf exudates of the short-day plant Xanthium strumarium in response to a single long night inducing flowering. Plant Physiol Biochem 32 (3):379-383

Hume L, Devine MD, Shirriff S (1995) The influence of temperature upon physiological processes in early-flowering and late-flowering strains of Thlaspi arvense L. Int J Plant Sci 156 (4):445-449. doi:10.1086/297266

Herbert RJ, Francis D, Ormrod JC (1992) Cellular and morphological changes at the terminal shoot apex of the short-day plant Pharbitis nil during the transition to flowering. Physiol Plant 86 (1):85-92. doi:10.1111/j.1399-3054.1992.tb01315.x

Heide OM (1994) Control of flowering and reproduction in temperate grasses. New Phytol 128 (2):347-362. doi:10.1111/j.1469-8137.1994.tb04019.x

Perry LE, Dorken ME (2011) The evolution of males: support for predictions from sex allocation theory using mating arrays of Sagittaria latifolia (Alismataceae). Evolution:no- no. doi:10.1111/j.1558-5646.2011.01344.x McGuire AD, Armbruster WS (1991) An experimental test for reproductive Interactions between 2 sequentially blooming species () Am J Bot 78 (2):214- 219. doi:10.2307/2445244

McDaniel CN, Singer SR, Smith SME (1992) Developmental states associated with the floral transition. Dev Biol 153 (1):59-69. doi:10.1016/0012-1606(92)90091-t

Green PB, Havelange A, Bernier G (1991) Floral morphogenesis in Anagallis - Scanning Slectron Micrograph sequences from individual growing meristems before, during, and after the transition to flowering. Planta 185 (4):502-512

Crevecoeur M, Crespi P, Lefort F, Greppin H (1992) Sterols and plasmalemma modifications in Spinach apex during transition to flowering J Plant Physiol 139 (5):595- 599

Bernier G, Kinet JM, Jacqmard A, Havelange A, Bodson M (1977) Cytokinin as a possible component of floral stimulus in Sinapis alba. Plant Physiol 60 (2):282-285. doi:10.1104/pp.60.2.282

Zheng CC, Bui AQ, Oneill SD (1993) Abundance of a messenger RNA encoding a high- mobility group DNA-binding protein is regulated by light and endogenous rhythm. Plant Mol Biol 23 (4):813-823. doi:10.1007/bf00021536

Stafstrom JP (1995) Influence of bud position and plant ontogeny on the morphology of branch shoots in pea (Pisum sativum L. cv. Alaska). Ann Bot 76 (4):343-348. doi:10.1006/anbo.1995.1106

Zaccai M, Lugassi-Ben-Hamo M, Kitron M, Bustan A (2010) Effect of shade regime on flower development, yield and quality in Lisianthus. Sci Hortic-Amsterdam 124 (2):248- 253. doi:10.1016/j.scienta.2009.12.030

Jensen E, Farrar K, Thomas-Jones S, Hastings A, Donnison I, Clifton-Brown J (2011) Characterization of flowering time diversity in Miscanthus species. GCB Bioenergy:no- no. doi:10.1111/j.1757-1707.2011.01097.x

Schläppi M (2011) Genetic and physiological analysis of biennialism in Hyoscyamus niger. Plant Biol 13 (3):534-540. doi:10.1111/j.1438-8677.2010.00382.x

Schneemilch M, Williams C, Kokkinn M (2011) Floral visitation in the Australian native shrub genus Acrotriche R.Br (Ericaceae): an abundance of ants (Formicidae). Aust J Entomol 50 (2):130-138. doi:10.1111/j.1440-6055.2010.00805.x

Trojak-Goluch A, Berbeć A (2011) Growth, development and chemical characteristics of tobacco lines carrying black root rot resistance derived from Nicotiana glauca (Grah.). Plant Breed 130 (1):92-95. doi:10.1111/j.1439-0523.2009.01755.x

Agarwal M, Shrivastava N, Padh H (2011) Development of sex-linked AFLP markers in Simmondsia chinensis. Plant Breed 130 (1):114-116. doi:10.1111/j.1439- 0523.2009.01749.x

Bakó A, Gell G, Balázs E (2011) Quantification of transgene expression in maize (Zea mays L.) throughout the vegetation period. Plant Breed 130 (1):41-45. doi:10.1111/j.1439- 0523.2010.01804.x Rêgo MM, Rêgo ER, Bruckner CH, Otoni WC, Pedroza CM (2011) Variation of gynogenic ability in passion fruit (Passiflora edulis Sims.) accessions. Plant Breed 130 (1):86-91. doi:10.1111/j.1439-0523.2009.01746.x

Sarr D, Lacape JM, Rodier-Goud M, Jacquemin JM, Benbouza H, Toussaint A, Palm R, Ahoton L, Baudoin JP, Mergeai G (2011) Isolation of five new monosomic alien addition lines of Gossypium australe F. Muell in G. hirsutum L. by SSR and GISH analyses. Plant Breed 130 (1):60-66. doi:10.1111/j.1439-0523.2010.01819.x

Zhang C, Sun JL, Jia YH, Wang J, Xu ZJ, Du XM (2011) Morphological characters, inheritance and response to exogenous hormones of a cotton super-dwarf mutant of Gossypium hirsutum. Plant Breed 130 (1):67-72. doi:10.1111/j.1439-0523.2009.01759.x

Nakano Y, Kawashima H, Kinoshita T, Yoshikawa H, Hisamatsu T (2011) Characterization of FLC, SOC1 and FT homologs in Eustoma grandiflorum: effects of vernalization and post-vernalization conditions on flowering and gene expression. Physiol Plant 141 (4):383-393. doi:10.1111/j.1399-3054.2011.01447.x

Abbo S, Mesghenna YT, Van Oss H (2011) Interspecific hybridization in wild Cicer sp. Plant Breed 130 (2):150-155. doi:10.1111/j.1439-0523.2010.01838.x

Mondal S, Badigannavar AM, D’Souza SF (2011) Induced variability for fatty acid profile and molecular characterization of high oleate mutant in cultivated groundnut (Arachis hypogaea L.). Plant Breed 130 (2):242-247. doi:10.1111/j.1439-0523.2010.01787.x

Rabbi IY, Parzies HK, Kiambi D, Haussmann BIG, Folkertsma R, Geiger HH (2011) Experimental studies on pollen-mediated gene flow in Sorghum bicolor (L.) Moench using male-sterile bait plants. Plant Breed 130 (2):217-224. doi:10.1111/j.1439- 0523.2010.01775.x

Rousseau-Gueutin M, Richard L, Le Dantec L, Caron H, Denoyes-Rothan B (2011) Development, mapping and transferability of Fragaria EST-SSRs within the Rosodae supertribe. Plant Breed 130 (2):248-255. doi:10.1111/j.1439-0523.2010.01785.x

Frey FM, Dunton J, Garland K (2011) Floral color variation and associations with fitness- related traits in Malva moschata (Malvaceae). Plant Species Biol:no-no. doi:10.1111/j.1442-1984.2011.00325.x

Matthews ML, Endress PK (2011) Comparative floral structure and systematics in Rhizophoraceae, Erythroxylaceae and the potentially related Ctenolophonaceae, Linaceae, Irvingiaceae and Caryocaraceae (Malpighiales). Bot J Linn Soc 166 (4):331-416. doi:10.1111/j.1095-8339.2011.01162.x

Zhang J, Liu G, Guo C, He Y, Li Z, Ning G, Shi X, Bao M (2011) The FLOWERING LOCUS T orthologous gene of Platanus acerifolia is expressed as alternatively spliced forms with distinct spatial and temporal patterns. Plant Biol:no-no. doi:10.1111/j.1438- 8677.2010.00432.x

Mondragón-Palomino M, Theißen G (2011) Conserved differential expression of paralogous DEFICIENS- and GLOBOSA-like MADS-box genes in the flowers of Orchidaceae: refining the ‘orchid code’. Plant J 66 (6):1008-1019. doi:10.1111/j.1365- 313X.2011.04560.x Flanagan RJ, Mitchell RJ, Karron JD (2011) Effects of multiple competitors for pollination on bumblebee foraging patterns and Mimulus ringens reproductive success. Oikos 120 (2):200-207. doi:10.1111/j.1600-0706.2010.18777.x

Kayal WE, Allen CCG, Ju CJT, Adams ERI, King-Jones S, Zaharia LI, Abrams SR, Cooke JEK (2011) Molecular events of apical bud formation in white spruce, Picea glauca. Plant, Cell & Environment 34 (3):480-500. doi:10.1111/j.1365- 3040.2010.02257.x

Feng C-M, Xiang Q-Y, Franks RG (2011) Phylogeny-based developmental analyses illuminate evolution of inflorescence architectures in dogwoods (Cornus s. l., Cornaceae). New Phytol 191 (3):850-869. doi:10.1111/j.1469-8137.2011.03716.x

Streisfeld MA, Rausher MD (2011) Population genetics, Pleiotropy, and the preferential fixation of mutations during adaptive evolution. Evolution 65 (3):629-642. doi:10.1111/j.1558-5646.2010.01165.x

Grossenbacher DL, Whittall JB (2011) Increased floral divergence in sympatric monkeyflowers. Evolution:no-no. doi:10.1111/j.1558-5646.2011.01306.x

Spigler RB, Lewers KS, Ashman T-L (2011) Genetic architecture of sexual dimorphism in a subdioecious plant with a proto-sex chromosome. Evolution 65 (4):1114-1126. doi:10.1111/j.1558-5646.2010.01189.x

Friedman J, Barrett SCH (2011) Genetic and environmental control of temporal and size- dependent sex allocation in a wind-pollinated plant. Evolution 65 (7):2061-2074. doi:10.1111/j.1558-5646.2011.01284.x

Campbell DR, Weller SG, Sakai AK, Culley TM, Dang PN, Dunbar-Wallis AK (2011) Genetic variation and covariation in floral allocation of two species of Schiedea with contrasting levels of sexual dimorphism. Evolution 65 (3):757-770. doi:10.1111/j.1558- 5646.2010.01172.x

Van Der Niet T, Liltved WR, Johnson SD (2011) More than meets the eye: a morphological and phylogenetic comparison of long-spurred, white-flowered Satyrium species (Orchidaceae) in South Africa. Bot J Linn Soc 166 (4):417-430. doi:10.1111/j.1095-8339.2011.01143.x

Etcheverry AV, Alemán MM, Figueroa-Fleming T, López-Spahr D, Gómez CA, Yáñez C, Figueroa-Castro DM, Ortega-Baes P (2011) Pollen:ovule ratio and its relationship with other floral traits in Papilionoideae (Leguminosae): an evaluation with Argentine species. Plant Biol:no-no. doi:10.1111/j.1438-8677.2011.00489.x

Gage E, Wilkin P, Chase MW, Hawkins J (2011) Phylogenetic systematics of Sternbergia (Amaryllidaceae) based on plastid and ITS sequence data. Bot J Linn Soc 166 (2):149- 162. doi:10.1111/j.1095-8339.2011.01138.x

Holmquist KG, Mitchell RJ, Karron JD (2011) Influence of pollinator grooming on pollen-mediated gene dispersal in Mimulus ringens (Phrymaceae). Plant Species Biol:no- no. doi:10.1111/j.1442-1984.2011.00329.x

Palma-Silva C, Wendt T, Pinheiro F, BarbarÁ T, Fay MF, Cozzolino S, Lexer C (2011) Sympatric bromeliad species (Pitcairnia spp.) facilitate tests of mechanisms involved in species cohesion and reproductive isolation in Neotropical inselbergs. Mol Ecol 20 (15):3185-3201. doi:10.1111/j.1365-294X.2011.05143.x

Humphreys AM, Antonelli A, Pirie MD, Linder HP (2011) Ecology and evolution of the diaspore "burial syndrome". Evolution 65 (4):1163-1180. doi:10.1111/j.1558- 5646.2010.01184.x

Cohen JI (2011) A phylogenetic analysis of morphological and molecular characters of Lithospermum L. (Boraginaceae) and related taxa: evolutionary relationships and character evolution. Cladistics:no-no. doi:10.1111/j.1096-0031.2011.00352.x

Fenster CB (2011) Evolutionary insight from the molecular landscape. Evolution 65 (8):2412-2418. doi:10.1111/j.1558-5646.2011.01304.x

Snider JL, Oosterhuis DM, Kawakami EM (2011) Mechanisms of Reproductive Thermotolerance in Gossypium hirsutum: The Effect of Genotype and Exogenous Calcium Application. J Agron Crop Sci 197 (3):228-236. doi:10.1111/j.1439- 037X.2010.00457.x

Vanderpoorten A, Hardy OJ, Lambinon J, RaspÉ O (2011) Two reproductively isolated cytotypes and a swarm of highly inbred, disconnected populations: a glimpse into Salicornia’s evolutionary history and challenging . J Evol Biol 24 (3):630-644. doi:10.1111/j.1420-9101.2010.02198.x

Nave N, Katz E, Chayut N, Gazit S, Samach A (2011) Corrigendum to: Flower development in the passion fruit Passiflora edulis requires a photoperiod induced systemic graft-transmissible signal. Plant, Cell & Environment 33, 2065–2083. Plant, Cell & Environment 34 (2):359-361. doi:10.1111/j.1365-3040.2010.02261.x

Jamaludin NA, Ding P, Hamid AA (2011) Physico-chemical and structural changes of red-fleshed dragon fruit (Hylocereus polyrhizus) during fruit development. J Sci Food Agric 91 (2):278-285. doi:10.1002/jsfa.4182

Groth E, Tandre K, Engström P, Vergara-Silva F (2011) AGAMOUS subfamily MADS- box genes and the evolution of seed cone morphology in Cupressaceae and Taxodiaceae. Evolution & Development 13 (2):159-170. doi:10.1111/j.1525-142X.2011.00466.x

Skylar A, Wu X (2011) Regulation of Meristem Size by Cytokinin Signaling F. J Integr Plant Biol 53 (6):446-454. doi:10.1111/j.1744-7909.2011.01045.x

Valente LM, Savolainen V, Manning JC, Goldblatt P, Vargas P (2011) Explaining disparities in species richness between Mediterranean floristic regions: a case study in Gladiolus (Iridaceae). Glob Ecol Biogeogr:no-no. doi:10.1111/j.1466-8238.2010.00644.x

Voss HH, Holzapfel J, Hartl L, Korzun V, Rabenstein F, Ebmeyer E, Coester H, Kempf H, Miedaner T (2008) Effect of the Rht-D1 dwarfing locus on Fusarium head blight rating in three segregating populations of winter wheat. Plant Breed 127 (4):333-339. doi:10.1111/j.1439-0523.2008.01518.x

Miedaner T, Reinbrecht C, Lauber U, Schollenberger M, Geiger HH (2001) Effects of genotype and genotype-enviromment interaction on deoxynivalenol accumulation and resistance to Fusarium head blight in rye, triticale, and wheat. Plant Breed 120 (2):97-105 Pundir RPS, Reddy GV (1996) Pod volume and pod-filling percentage as additional traits for the characterization of chickpea (Cicer arietinum L). Plant Breed 115 (5):427-428. doi:10.1111/j.1439-0523.1996.tb00949.x

Walters SA, Wehner TC (1994) Evaluation of the United States Cucumber germplasm collection for early flowering. Plant Breed 112 (3):234-238. doi:10.1111/j.1439- 0523.1994.tb00676.x

Simpson DW (1992) The inheritance of components of fruiting season, yield and vigor in short-day strawberries and the relationship between pistillate flowers and flowering time. Plant Breed 109 (3):177-182. doi:10.1111/j.1439-0523.1992.tb00170.x

Przyborowski J, Niemirowiczszczytt K (1994) Main factors affecting Cucumber (Cucumis sativus L.) haploid embryo development and haploid plant characteristics. Plant Breed 112 (1):70-75. doi:10.1111/j.1439-0523.1994.tb01278.x

Dicenta F, Garcia JE (1993) Reciprocal crosses in almond. Plant Breed 110 (1):77- 80.doi:10.1111/j.1439-0523.1993.tb00571.x

Rayburn AL, Dudley JW, Biradar DP (1994) Selection for early flowering results in simultaneous selection for reduced nuclear DNA content in maize. Plant Breed 112 (4):318-322. doi:10.1111/j.1439-0523.1994.tb00690.x

Nirmala C, Kaul MLH (1995) Tapetal behavior, gene action and breeding value in male- sterile peas. Plant Breed 114 (1):70-73. doi:10.1111/j.1439-0523.1995.tb00762.x

Garcia JE, Dicenta F, Carbonell EA (1994) Combining ability in almond. Plant Breed 112 (2):141-150. doi:10.1111/j.1439-0523.1994.tb00662.x

Campion B, Perri E, Azzimonti MT, Vicini E, Schiavi M (1995) Spontaneous and induced chromosome doubling in gynogenic lines of onion (Allium cepa L.) Plant Breed 114 (3):243-246. doi:10.1111/j.1439-0523.1995.tb00802.x

Casey NM, Milbourne D, Barth S, Febrer M, Jenkins G, Abberton MT, Jones C, Thorogood D (2010) The genetic location of the self-incompatibility locus in white clover (Trifolium repens L.). Theor Appl Genet 121 (3):567-576. doi:10.1007/s00122-010-1330- 9

Chapman MA, Chang J, Weisman D, Kesseli RV, Burke JM (2007) Universal markers for comparative mapping and phylogenetic analysis in the Asteraceae (Compositae). Theor Appl Genet 115 (6):747-755. doi:10.1007/s00122-007-0605-2

Lewis RS, Milla SR, Kernodle SP (2007) Analysis of an introgressed Nicotiana tomentosa genomic region affecting leaf number and correlated traits in Nicotiana tabacum. Theor Appl Genet 114 (5):841-854. doi:10.1007/s00122-006-0482-0

Andersen JR, Zein I, Wenzel G, Krutzfeldt B, Eder J, Ouzunova M, Lubberstedt T (2007) High levels of linkage disequilibrium and associations with forage quality at a Phenylalanine Ammonia-Lyase locus in European maize (Zea mays L.) inbreds. Theor Appl Genet 114 (2):307-319. doi:10.1007/s00122-006-0434-8

Lichtenzveig J, Bonfil DJ, Zhang H-B, Shtienberg D, Abbo S (2006) Mapping quantitative trait loci in chickpea associated with time to flowering and resistance to Didymella rabiei the causal agent of Ascochyta blight. Theor Appl Genet 113 (7):1357- 1369. doi:10.1007/s00122-006-0390-3

Abbo S, Molina C, Jungmann R, Grusak MA, Berkovitch Z, Reifen R, Kahl G, Winter P (2005) Quantitative trait loci governing carotenoid concentration and weight in seeds of chickpea (Cicer arietinum L.). Theor Appl Genet 111 (2):185-195. doi:10.1007/s00122- 005-1930-y

Bettini P, Michelotti S, Bindi D, Giannini R, Capuana M, Buiatti M (2003) Pleiotropic effect of the insertion of the Agrobacterium rhizogenes rolD gene in tomato (Lycopersicon esculentum Mill.). Theor Appl Genet 107 (5):831-836. doi:10.1007/s00122-003-1322-0

Zhang WK, Wang YJ, Luo GZ, Zhang JS, He CY, Wu XL, Gai JY, Chen SY (2004) QTL mapping of ten agronomic traits on the soybean (Glycine max L. Merr.) genetic map and their association with EST markers. Theor Appl Genet 108 (6):1131-1139. doi:10.1007/s00122-003-1527-2

Piston F, Dorado G, Martin A, Barro F (2004) Cloning and characterization of a gamma-3 hordein mRNA (cDNA) from Hordeum chilense (Roem. et Schult.). Theor Appl Genet 108 (7):1359-1365. doi:10.1007/s00122-003-1548-x

Baum M, Grando S, Backes G, Jahoor A, Sabbagh A, Ceccarelli S (2003) QTLs for agronomic traits in the Mediterranean environment identified in recombinant inbred lines of the cross 'Arta' x H. spontaneum 41-1. Theor Appl Genet 107 (7):1215-1225. doi:10.1007/s00122-003-1357-2

Gervais L, Dedryver F, Morlais JY, Bodusseau V, Negre S, Bilous M, Groos C, Trottet M (2003) Mapping of quantitative trait loci for field resistance to Fusarium head blight in an European winter wheat. Theor Appl Genet 106 (6):961-970. doi:10.1007/s00122-002- 1160-5

Nimura M, Kato J, Mii M, Morioka K (2003) Unilateral compatibility and genotypic difference in crossability in interspecific hybridization between caryophyllus L. and Dianthus japonicus Thunb. Theor Appl Genet 106 (7):1164-1170. doi:10.1007/s00122-002-1181-0

Sreekala C, Raghava SPS (2003) Exploitation of heterosis for carotenoid content in African marigold (Tagetes erecta L.) and its correlation with esterase polymorphism. Theor Appl Genet 106 (4):771-776. doi:10.1007/s00122-002-1143-6

Hart GE, Schertz KF, Peng Y, Syed NH (2001) Genetic mapping of Sorghum bicolor (L.) Moench QTLs that control variation in tillering and other morphological characters. Theor Appl Genet 103 (8):1232-1242. doi:10.1007/s001220100582

Tsarouhas V, Gullberg U, Lagercrantz U (2002) An AFLP and RFLP linkage map and quantitative trait locus (QTL) analysis of growth traits in Salix. Theor Appl Genet 105 (2- 3):277-288. doi:10.1007/s00122-002-0918-0

Matthes M, Singh R, Cheah SC, Karp A (2001) Variation in oil palm (Elaeis guineensis Jacq.) tissue culture-derived regenerants revealed by AFLPs with methylation-sensitive enzymes. Theor Appl Genet 102 (6-7):971-979. doi:10.1007/s001220000491 Montaner C, Floris E, Alvarez JM (2001) Geitonogamy: a mechanism responsible for high selfing rates in borage (Borago officinalis L.). Theor Appl Genet 102 (2-3):375-378. doi:10.1007/s001220051656

Subudhi PK, Rosenow DT, Nguyen HT (2000) Quantitative trait loci for the stay green trait in sorghum (Sorghum bicolor L. Moench): consistency across genetic backgrounds and environments. Theor Appl Genet 101 (5-6):733-741. doi:10.1007/s001220051538

Borner A, Korzun V, Voylokov AV, Weber WE (1999) Detection of quantitative trait loci on chromosome 5R of rye (Secale cereale L.). Theor Appl Genet 98 (6-7):1087-1090. doi:10.1007/s001220051171

Ivey CT, Wyatt R (1999) Family outcrossing rates and neighborhood floral density in natural populations of swamp milkweed (Asclepias incarnata): potential statistical artifacts. Theor Appl Genet 98 (6-7):1063-1071. doi:10.1007/s001220051168

Fernando DD, Owens JN, von Aderkas P (1998) In vitro fertilization from cocultured pollen tubes and female gametophytes of Douglas fir (Pseudotsuga menziesii). Theor Appl Genet 96 (8):1057-1063. doi:10.1007/s001220050839

Korzun V, Malyshev S, Voylokov A, Borner A (1997) RFLP-based mapping of three mutant loci in rye (Secale cereale L.) and their relation to homoeologous loci within the Gramineae. Theor Appl Genet 95 (3):468-473. doi:10.1007/s001220050584

Sharma JR, Lal RK, Mishra HO, Sharma S (1992) Induced polygenic changes occurring simultaneously with major gene changes in black henbane (Hyoscyamus niger L.). Theor Appl Genet 85 (4):445-450

Natali L, Cavallini A, Cionini G, Sassoli O, Cionini PG, Durante M (1993) Nuclear DNA changes within Helianthus annuus L - changes within single progenies and their relationships with plant development Theor Appl Genet 85 (5):506-512

Lee HY, Kameya T (1991) Selection and characterization of a rice mutant resistant to 5- Methyltryptophan. Theor Appl Genet 82 (4):405-408. doi:10.1007/bf00588590

Gibori A, Cahaner A, Ashri A (1978) 9 X 9 diallel analysis in peanuts (A. hypogaea L) - Flowering time, tops weight, pod yield per plant and pod weight. Theor Appl Genet 53 (4):169-179. doi:10.1007/bf00273577

Erskine W, Hussain A, Tahir M, Bahksh A, Ellis RH, Summerfield RJ, Roberts EH (1994) Field evaluation of a model of photothermal flowering responses in a world lentil collection. Theor Appl Genet 88 (3-4):423-428

Erskine W, Ellis RH, Summerfield RJ, Roberts EH, Hussain A (1990) Characterization of responses to temperature and photoperiod for time to flowering in a world lentil collection. Theor Appl Genet 80 (2):193-199

Asins MJ, Mestre P, Garcia JE, Dicenta F, Carbonell EA (1994) Genotype x Environment interaction in QTL analysis of an intervarietal almond cross by means of genetic markers. Theor Appl Genet 89 (2-3):358-364 Jansen RC, Vanooijen JW, Stam P, Lister C, Dean C (1995) Genotype-by-Environment interaction in genetic mapping of multiple quantitative trait loci. Theor Appl Genet 91 (1):33-37

Slavens MR, Johnson PG, Bugbee B (2011) Irrigation Frequency Differentially Alters Vegetative Growth and Seed Head Development of Poa annua L. Biotypes. Crop Sci 51 (1):314-322. doi:10.2135/cropsci2010.01.0006

Hopkins AA, Rowland TL (2008) Rapid flowering under greenhouse conditions and lack of awns are widespread among tetraploid Elymus species. Crop Sci 48 (4):1482-1486. doi:10.2135/cropsci2007.09.0505

Murray SC, Sharma A, Rooney WL, Klein PE, Mullet JE, Mitchell SE, Kresovich S (2008) Genetic Improvement of Sorghum as a Biofuel Feedstock: I. QTL for Stem Sugar and Grain Nonstructural Carbohydrates. Crop Sci 48 (6):2165-2179. doi:10.2135/cropsci2008.01.0016

Murray SC, Rooney WL, Mitchell SE, Sharma A, Klein PE, Mullet JE, Kresovich S (2008) Genetic Improvement of Sorghum as a Biofuel Feedstock: II. QTL for Stem and Leaf Structural Carbohydrates. Crop Sci 48 (6):2180-2193. doi:10.2135/cropsci2008.01.0068

Chacoff NP, Aizen MA (2007) Pollination requirements of pigmented grapefruit (Citrus paradisi Macf.) from northwestern Argentina. Crop Sci 47 (3):1143-1150. doi:10.2135/cropsci2006.09.0586

Bosma TL, Dole JM, Maness NO (2003) Optimizing marigold (Tagetes erecta L.) petal and pigment yield. Crop Sci 43 (6):2118-2124

Thorup-Kristensen K (1998) Root growth of green pea (Pisum sativum L.) genotypes. Crop Sci 38 (6):1445-1451

Abedon BG, Tracy WF (1998) Direct and indirect effects of full-sib recurrent selection for resistance to common rust (Puccinia sorghi Schw.) in three sweet corn populations. Crop Sci 38 (1):56-61

Johnson PG, White DB (1997) Vernalization requirements among selected genotypes of annual bluegrass (Poa annua L.). Crop Sci 37 (5):1538-1542

Dumoulin V, Ney B, Eteve G (1994) Variability of seed and plant development in pea. Crop Sci 34 (4):992-998

Acostagallegos JA, White JW (1995) Phenological plasticity as an adaptation by comon bean to rain-fed environments Crop Sci 35 (1):199-204

Ablett GR, Buzzell RI, Beversdorf WD, Allen OB (1994) Comparative stability of 40 Indeterminate and Semideterminate Soybean lines. Crop Sci 34 (2):347-351

Munierjolain NG, Ney B, Duthion C (1994) Reproductive development of an Indeterminate soybean as affected by morphological position. Crop Sci 34 (4):1009-1013

Mumera LM, Below FE (1993) Role of nitrogen in resistance to Striga parasitism of Maize. Crop Sci 33 (4):758-763 Heitholt JJ (1993) Cotton boll retention and its relationship to lint yield. Crop Sci 33 (3):486-490

Heatherly LG (1993) Drught stress and Irrigation effects on Germination of harvested soybean seed. Crop Sci 33 (4):777-781

Dybing CD (1994) Soybean flower production as related to plant growth and seed yield. Crop Sci 34 (2):489-497

Bonhomme R, Derieux M, Edmeades GO (1994) Flowering of diverse maize cultivars in relation to temperature and photoperiod in multilocation field trials. Crop Sci 34 (1):156- 164

Steiner JJ, Leffel JA, Gingrich G, Aldrichmarkham S (1995) Red clover seed production. 3. Effect of forage removal time under varied environments. Crop Sci 35 (6):1667-1675

Ruemmele BA, Brilman LA, Huff DR (1995) Fine fescue germplasm diversity and vulnerability. Crop Sci 35 (2):313-316

Pendleton BB, Teetes GL, Peterson GC (1994) Phenology of Sorghum flowering. Crop Sci 34 (5):1263-1266

Grimm SS, Jones JW, Boote KJ, Hesketh JD (1993) Parameter-estimation for predicting flowering date of soybean cultivars. Crop Sci 33 (1):137-144

Franz RE, Jolliff GD, Seddigh M (1991) Embryo abortion in 3 meadowfoam genotypes. Crop Sci 31 (6):1651-1654

Donatelli M, Hammer GL, Vanderlip RL (1992) Genotype and water limitation effects on phenology, growth, and transpiration efficiency in grain-sorghum. Crop Sci 32 (3):781- 786

Bassetti P, Westgate ME (1993) Emergence, elongation, and senescence of maize silks. Crop Sci 33 (2):271-275

Ayisi KK, Putnam DH, Vance CP, Graham PH (1992) Dinitrogen fixation, nitrogen and dry-matter accumulation and nodulation in white lupin. Crop Sci 32 (5):1197-1202

Yuan SC, Zhang ZG, He HH, Zen HL, Lu KY, Lian JH, Wang BX (1993) 2 Photoperiodic reactions in photoperiod sensitive genic male sterile rice Crop Sci 33 (4):651-660

Walker DR, Aycock MK (1994) Development of anther-derived dihaploids to combine disease resistance in Maryland tobacco. Crop Sci 34 (2):335-338

Ouendeba B, Ejeta G, Nyquist WE, Hanna WW, Kumar A (1993) Heterosis and combining ability among African pearl-millet landraces. Crop Sci 33 (4):735-739

Oliva RN, Steiner JJ, Young WC (1994) White clover seed production. 1. Crop water requirements and irrigation timing. Crop Sci 34 (3):762-767

Ney B, Duthion C, Turc O (1994) Phenological response of pea to water stress during reproductive development. Crop Sci 34 (1):141-146 Jain SK (1979) Response to mass selection for flowering time in meadowfoam. Crop Sci 19 (3):337-339

Hogan RM, Dudley JW (1991) Evaluation of a method for identifying sources of favorable alleles to improve an elite single cross. Crop Sci 31 (3):700-704

Chaparro CJ, Sollenberger LE, Linda SB (1991) Grazing management effects on Aeschynomene seed production. Crop Sci 31 (1):197-201

Allison JCS, Daynard TB (1979) Effect of change in time of flowering, induced by altering photoperiod or temperature on attributes related to yield in maize. Crop Sci 19 (1):1-4

Sasahara T, Satoh S, Odaka K, Abe T (1993) Senescence parameters of organs constituting the panicle 1st internode, and flag leaf in rice. Crop Sci 33 (3):503-509

Norberg OS, Seddigh M, Jolliff GD, Fiez TE (1993) Flower production and honey-bee density effects on meadowfoam seed yield. Crop Sci 33 (1):108-112

Ney B, Turc O (1993) Heat unit based description of the reproductive development of pea. Crop Sci 33 (3):510-514

Ney B, Duthion C, Fontaine E (1993) Timing of reproductive abortions in relation to cell- division, water content, and growth of pea seeds. Crop Sci 33 (2):267-270

Mahalakshmi V, Bidinger FR, Rao KP, Raju DS (1992) Performance and stability of pearl-millet topcross hybrids and their variety pollinators. Crop Sci 32 (4):928-932

Lynch J, White JW (1992) Shoot nitrogen dynamics in tropical common bean. Crop Sci 32 (2):392-397

Marani A, Zur M, Eshel A, Zimmerma.H, Carmeli R, Karadavi.B (1973) Effect of Time and Rate of Application of 2 Growth Retardants on Growth, Flowering, and Yield of Upland Cotton. Crop Sci 13 (4):429-432

Bernard RL (1971) 2 major genes for time of flowering and maturity in soybeans. Crop Sci 11 (2):242-&

Baker RJ, Pesek J, McKenzie RI (1972) Genetic study of flowering time in Flax. Crop Sci 12 (1):84-&

Wilkerson GG, Jones JW, Boote KJ, Buol GS (1989) Photoperiodically sensitive interval in time to flower of soybean. Crop Sci 29 (3):721-726

Thomison PR, Kenworthy WJ, McIntosh MS (1990) Phomopsis seed decay in soybean isolines differing in stem termination, time of flowering, and maturity. Crop Sci 30 (1):183-188

Thomas RO (1975) Cotton flowering and fruiting responses to application timing of chemical growth retardants. Crop Sci 15 (1):87-90

Sinclair TR, Kitani S, Hinson K, Bruniard J, Horie T (1991) Soybean flowering date - linear and logistic models based on temperature and photoperiod. Crop Sci 31 (3):786-790 Nissly CR, Bernard RL, Hittle CN (1981) Variation in photoperiod sensitivity for time of flowering and maturity among soybean strains of maturity group III. Crop Sci 21 (6):833- 836

Nelson RL (1988) Response to selection for time of flowering in soybean. Crop Sci 28 (4):623-626

Mungoma C, Pollak LM (1991) Photoperiod sensitivity in tropical maize accessions, early inbreds and their crosses. Crop Sci 31 (2):388-391

Nichols PGH, Cocks PS, Francis CM (2009) Evolution over 16 years in a bulk-hybrid population of subterranean clover (Trifolium subterraneum L.) at two contrasting sites in south-. Euphytica 169 (1):31-48. doi:10.1007/s10681-009-9906-7

Mora F, Gleadow R, Perret S, Scapim CA (2009) Genetic variation for early flowering, survival and growth in sugar gum (Eucalyptus cladocalyx F. Muell) in southern Atacama Desert. Euphytica 169 (3):335-344. doi:10.1007/s10681-009-9962-z

Millan T, Winter P, Juengling R, Gil J, Rubio J, Cho S, Cobos MJ, Iruela M, Rajesh PN, Tekeoglu M, Kahl G, Muehlbauer FJ (2010) A consensus genetic map of chickpea (Cicer arietinum L.) based on 10 mapping populations. Euphytica 175 (2):175-189. doi:10.1007/s10681-010-0157-4

Novo M, Romo S, Rey M, Jesus Prado M, Victoria Gonzalez M (2010) Identification and sequence characterisation of molecular markers polymorphic between male kiwifruit (Actinidia chinensis var. deliciosa (A. Chev.) A. Chev.) accessions exhibiting different flowering time. Euphytica 175 (1):109-121. doi:10.1007/s10681-010-0192-1

Guo Y, McCarty JC, Jenkins JN, Saha S (2008) QTLs for node of first fruiting branch in a cross of an upland cotton, Gossypium hirsutum L., cultivar with primitive accession Texas 701. Euphytica 163 (1):113-122. doi:10.1007/s10681-007-9613-1

Jaradat AA, Rinke JL (2008) Flowering, and seed characteristics in Cuphea. Euphytica 161 (3):447-459. doi:10.1007/s10681-007-9625-x

Rodenburg J, Bastiaans L, Schapendonk AHCM, van der Putten PEL, van Ast A, Dingemanse NJ, Haussmann BIG (2008) CO(2)-assimilation and chlorophyll fluorescence as indirect selection criteria for host tolerance against Striga. Euphytica 160 (1):75-87. doi:10.1007/s10681-007-9555-7

Thomas TD (2008) The effect of in vivo and in vitro applications of ethrel and GA(3) on sex expression in bitter melon (Momordica charantia L.). Euphytica 164 (2):317-323. doi:10.1007/s10681-008-9658-9

Cheng CH, Seal AG, Murphy SJ, Lowe RG (2006) Variability and inheritance of flowering time and duration in Actinidia chinensis (kiwifruit). Euphytica 147 (3):395-402. doi:10.1007/s10681-005-9036-9

Kumar Y, Mishra SK, Tyagi MC, Singh SP, Sharma B (2005) Linkage between genes for leaf colour, plant pubescence, number of leaflets and plant height in lentil (Lens culinaris Medik.). Euphytica 145 (1-2):41-48. doi:10.1007/s10681-005-0103-z Rani S, Ravikumar RL (2006) Sporophytic and gametophytic recurrent selection for improvement of partial resistance to Alternaria leaf blight in sunflower (Helianthus annuus L.). Euphytica 147 (3):421-431. doi:10.1007/s10681-005-9039-6

Bors RH, Sullivan JA (2005) Interspecific hybridization of Fragaria moschata with two diploid species, F-nubicola and is F-viridis. Euphytica 143 (1-2):201-207. doi:10.1007/s10681-005-3496-9

Ishiyaku MF, Singh BB, Craufurd PQ (2005) Inheritance of time to flowering in cowpea (Vigna unguiculata (L.) Walp.). Euphytica 142 (3):291-300. doi:10.1007/s10681-005- 2435-0

Nair RM, Craig AD, Rowe TD, Biggins SR, Hunt CH (2004) Genetic variability and heritability estimates for hardseededness and flowering in balansa clover (Trifolium michelianum Savi) populations - Hardseededness and flowering in balansa clover. Euphytica 138 (3):197-203. doi:10.1023/B:EUPH.0000047081.18043.f5

Prats E, Bazzalo ME, Leon A, Jorrin JV (2003) Accumulation of soluble phenolic compounds in sunflower capitula correlates with resistance to Sclerotinia sclerotiorum. Euphytica 132 (3):321-329. doi:10.1023/a:1025046723320

Ayele M, Blum A, Nguyen HT (2001) Diversity for osmotic adjustment and root depth in TEF Eragrostis tef (Zucc) Trotter. Euphytica 121 (3):237-249. doi:10.1023/a:1012099914738

Morgan ER, Burge GK, Seelye JF, Hopping ME, Grant JE, Warren AGF, Brundell D (2001) Wide crosses in the Colchicaceae: Sandersonia aurantiaca (Hook.) x Littonia modesta (Hook.). Euphytica 121 (3):343-348. doi:10.1023/a:1012034015686

Sharma HC, Hariprasad KV (2002) Flowering events in sorghum in relation to expression of resistance to sorghum midge, Stenodiplosis sorghicola. Euphytica 127 (3):411-419. doi:10.1023/a:1020387322539

Sun J, Tang CM, Zhu XF, Guo WZ, Zhang TZ, Zhou WJ, Meng FX, Sheng JL (2002) Characterization of resistance to Helicoverpa armigera in three lines of transgenic Bt Upland cotton. Euphytica 123 (3):343-351. doi:10.1023/a:1015015605849

Tin HQ, Berg T, Bjornstad A (2001) Diversity and adaptation in rice varieties under static (ex situ) and dynamic (in situ) management - A case study in the Mekong Delta, Vietnam. Euphytica 122 (3):491-502. doi:10.1023/a:1017544406975

Badenes ML, Martinez-Calvo J, Llacer G (2000) Analysis of a germplasm collection of loquat (Eriobotrya japonica Lindl.). Euphytica 114 (3):187-194. doi:10.1023/a:1003950215426

Borner A, Korzun V, Voylokov AV, Worland AJ, Weber WE (2000) Genetic mapping of quantitative trait loci in rye (Secale cereale L.). Euphytica 116 (3):203-209. doi:10.1023/a:1004052505692

Hof L, Keizer LCP, Elberse IAM, Dolstra O (1999) A model describing the flowering of single plants, and the heritability of flowering traits of pluvialis. Euphytica 110 (1):35-44. doi:10.1023/a:1003701700116 Wenslaff TF, Lyrene PM (2001) Results of multiple pollination in blueberry (Vaccinium elliottii Chapm.). Euphytica 117 (3):233-240. doi:10.1023/a:1026542017389

Abraham K (1998) Occurrence of hexaploid males in Dioscorea alata L. Euphytica 99 (1):5-7. doi:10.1023/a:1018390716600

Adhikari KN, Campbell CG (1998) In vitro germination and viability of buckwheat (Fagopyrum esculentum Moench) pollen. Euphytica 102 (1):87-92. doi:10.1023/a:1018393425407

Morgan ER, Burge GK, Seelye JF, Hopping ME, Grant JE (1998) Production of inter- specific hybrids between perezii (Stapf) Hubb. and Limonium sinuatum (L.) Mill. Euphytica 102 (1):109-115. doi:10.1023/a:1018384329409

Pundir RPS, Reddy GV (1998) Two new traits - open flower and small leaf in chickpea (Cicer arietinum L.). Euphytica 102 (3):357-361. doi:10.1023/a:1018307709788

Hacker JB, Cuany RL (1997) Genetic variation in seed production and its components in four cultivars of the pasture grass Setaria sphacelata. Euphytica 93 (3):271-282. doi:10.1023/a:1002932432121

Craufurd PQ, Roberts EH, Ellis RH, Summerfield RJ (1996) A stability analysis of time to flowering as a screen for responsiveness to temperature and photoperiod in cowpea (Vigna unguiculata). Euphytica 88 (1):77-84. doi:10.1007/bf00029268

Tobutt KR (1994) Combining apetalous parthenocarpy with columnar growth habit in apple. Euphytica 77 (1-2):51-54. doi:10.1007/bf02551460

Tikader A, Vijayan K, Raghunath MK, Chakroborti SP, Roy BN, Pavankumar T (1995) Studies on sexual variation in mulberry (Morus spp.). Euphytica 84 (2):115-120. doi:10.1007/bf01677948

Theilerhedtrich R (1994) Inheritance of tree and fruir characters in progenies from crosses of sweet cherry (Prunus avium L) culivars. Euphytica 77 (1-2):37-44. doi:10.1007/bf02551458

Slafer GA, Rawson HM (1995) Intrinsic earliness and basic development rate assessed for their response to temperature in wheat. Euphytica 83 (3):175-183. doi:10.1007/bf01678127

Lindhout P, Vanheusden S, Pet G, Vanooijen JW, Sandbrink H, Verkerk R, Vrielink R, Zabel P (1994) Perspectives of molecular marker assisted breeding for earliness in tomato. Euphytica 79 (3):279-286. doi:10.1007/bf00022528

Falcinelli M, Russi L, Negri V, Veronesi F (1994) Variation within improved cultivars and landraces of Lucerne in Central Italy Euphytica 77 (3):199-203. doi:10.1007/bf02262632

Dewitte K, Keulemans J (1994) Restrictions of the efficiency of haploid plant production in apple cultivar Idared, through parthenogenesis in situ. Euphytica 77 (1-2):141-146

Buiatti M, Bogani P (1995) Physiological complecity and plant genetic manipulation. Euphytica 85 (1-3):135-147 Wade LJ, Douglas ACL, Mayer DG (1993) Defining traits for selection using isopopulations of Sorghum. Euphytica 72 (1-2):73-85

Roumen EC (1992) Partial resistance to neck blast influenced by stage of panicle development and rice genotype Euphytica 64 (3):173-182. doi:10.1007/bf00046046

Piano E, Spanu F, Pecetti L (1993) Structure and variation of subterranean clover populations from Sicily, Italy Euphytica 68 (1-2):43-51. doi:10.1007/bf00024153

Malhotra RS, Singh KB (1991) Classification of chickpea growing environments to control genotype by environment interaction Euphytica 58 (1):5-12. doi:10.1007/bf00035334

Hamon S, Koechlin J (1991) The reproductive biology of Okra. 2. Self-fertilization kinetics in the cultivated Okra (Abelmoschus esculentus), and consequences for breeding. Euphytica 53 (1):49-55. doi:10.1007/bf00032032

Engqvist GM, Becker HC (1993) Prediction of F-6 line performance from F3 families in spring oilseed rape. 1. Yield and other agronomic traits. Euphytica 69 (1-2):141-147. doi:10.1007/bf00021738

Engqvist GM, Becker HC (1991) Heterosis and epistasis in rapeseed estimated from generation means. Euphytica 58 (1):31-35. doi:10.1007/bf00035337

Ecker R, Barzilay A, Osherenko E (1993) The inheritance of flowering time in garden stock (Matthiola incana RBR). Euphytica 72 (1-2):153-156

Bazzalo ME, Dimarco P, Martinez F, Daleo GR (1991) Indicators of resistance of sunflower plant to basal stalk rot (Sclerotinia sclerotiorum) - symptomatological, biochemical, anatomical and morphological characteristics of the host. Euphytica 57 (3):195-205. doi:10.1007/bf00039666

Worland AJ, Appendino ML, Sayers EJ (1994) The distribution, in European winter wheats, of genes that influence ecoclimatic adaptability while determining photoperiodic insensitivity and plant height. Euphytica 80 (3):219-228. doi:10.1007/bf00039653

Watts LE, Stevenso.E, Crampton MJ (1970) Inheritance of flowering time in 6 pea cultivars (Pisum sativum L). Euphytica 19 (3):405-&. doi:10.1007/bf01904222

Visser T, Schaap AA (1967) Pre-selection for juvenile period flowering and picking time in apple seedlings. Euphytica 16 (1):109-&. doi:10.1007/bf00034104

Vantuyl JM (1982) Breeding for resistance to yellow disease of hyacinths. 2. Influence of flowering time, leaf characteristics, stomata and chromosome number on the degree of resistance. Euphytica 31 (3):621-628

Sparnaaij LD, Koehorstvanputten HJJ, Demmink JF (1990) Variation between genotypes of carnation (Dianthus caryophyllus and interspecific hybrids) in time of flowering and response to long days. 2. Variation in shoot development. Euphytica 50 (1):43-50. doi:10.1007/bf00023159

Sparnaaij LD, Demmink JF, Koehorstvanputten HJJ (1990) variations between genotypes of carnation (Dianthus caryophyllus cultivars abd interspecific hybrids) in time of flowering and response to long days. 1. Variation in yield distribution Euphytica 50 (1):35-42. doi:10.1007/bf00023158

Salisbury PA, Aitken Y, Halloran GM (1987) Genetic control of flowering time and its component processes in subterranean clover (Trifolium subterraneum L.). Euphytica 36 (3):887-902. doi:10.1007/bf00051874

Rood SB, Major DJ (1981) Inheritance of tillering and flowering time in early maturing maize Euphytica 30 (2):327-334. doi:10.1007/bf00033994

Dejong J (1984) Genetic analysis in Chrysanthemum morifolium. 1. Flowering time and flower number at low and optimum temperature. Euphytica 33 (2):455-463

Yu YR, Harding J, Byrne T (1993) Quantitative genetic analysis of flowering time in the Davis population of Gerbera. 2. Correlations with yield, flower quality traits and the efficiency of indirect selection. Euphytica 70 (1-2):97-103. doi:10.1007/bf00029646

Yu YR, Byrne T, Harding J (1991) Quantitative genetic analysis of flowering time in the Davis population of Gerbera. 1. Components of genetic variance and heritability. Euphytica 53 (1):19-23. doi:10.1007/bf00032027

Ramirez SR, Gravendeel B, Singer RB, Marshall CR, Pierce NE (2007) Dating the origin of the Orchidaceae from a fossil orchid with its pollinator. Nature 448 (7157):1042-1045. doi:10.1038/nature06039

Simon R, Carpenter R, Doyle S, Coen E (1994) FIMBRIATA controls flower development by mediating between meristem and organ identity genes. Cell 78 (1):99- 107. doi:10.1016/0092-8674(94)90576-2

Boschek CB, Jockusch BM, Friis RR, Back R, Grundmann E, Bauer H (1981) Early changes in the distribution and organization of microfilament proteins during cell transformation. Cell 24 (1):175-184. doi:10.1016/0092-8674(81)90513-4

Thompson K, Grime JP, Mason G (1977) Seed germination in response to diurnal fluctuations of temperature. Nature 267 (5607):147-149. doi:10.1038/267147a0

Depamphilis CW, Palmer JD (1990) Loss of photosynthetic and chlororespiratory genes from the plastid genome of a parasitic flowering plant. Nature 348 (6299):337-339. doi:10.1038/348337a0

Weiss MR (1991) Floral color changes as cues for pollinators Nature 354 (6350):227-229. doi:10.1038/354227a0

Ashman TL, Schoen DJ (1994) How long should flowers live. Nature 371 (6500):788- 791. doi:10.1038/371788a0

Evans LT (1966) Abscisin 2 - inhibitory effect on flower induction in a long-day plant. Science 151 (3706):107-&. doi:10.1126/science.151.3706.107

Bonnett OT (1954) The inflorescences of maize. Science 120 (3107):77-87. doi:10.1126/science.120.3107.77 Whitham TG (1977) Coevolution of foraging in Bombus and nectar dispensing in Chilopsis - Last Dreg Theory. Science 197 (4303):593-596. doi:10.1126/science.197.4303.593

Sanderson MJ, Donoghue MJ (1994) Shifts in diversification rate with the origin of Angiosperms. Science 264 (5165):1590-1593. doi:10.1126/science.264.5165.1590

Raskin I, Ehmann A, Melander WR, Meeuse BJD (1987) Salicylic acid - a natural inducer of heat production in Arum lilies Science 237 (4822):1601-1602. doi:10.1126/science.237.4822.1601

Hillman WS (1976) Calibrating duckweeds - light, clocks, metabolism, flowering. Science 193 (4252):453-458. doi:10.1126/science.193.4252.453

Crepet WL, Taylor DW (1985) The diversification of the Leguminosae - 1st fossil evidence of the Mimosoideae and Papilionideae. Science 228 (4703):1087-1089. doi:10.1126/science.228.4703.1087

Wolcott GN (1951) Time of flowering of Delonix regia. Science 114 (2960):307-308. doi:10.1126/science.114.2960.307

Thompson WR, Aneshans.D, Meinwald J, Eisner T (1972) Flavonols - pigments responsible for ultraviolet absorption in nectar guide of flower. Science 177 (4048):528- &. doi:10.1126/science.177.4048.528

Stiles FG (1971) Time, energy, and territoriality of Anna hummingbird (Calypte anna) Science 173 (3999):818-&. doi:10.1126/science.173.3999.818

Lewis WH (1970) Chromosomal drift, a new phenomenon in plants. Science 168 (3935):1115-&. doi:10.1126/science.168.3935.1115

Gaff DF (1971) Desiccation-tolerant flowering plants in Southern Africa. Science 174 (4013):1033-&. doi:10.1126/science.174.4013.1033

Feder WA, Sullivan F (1969) Ozone - Depression of frond multiplication and floral production in duckweed. Science 165 (3900):1373-&. doi:10.1126/science.165.3900.1373

Franssen SU, Shrestha RP, Bräutigam A, Bornberg-Bauer E, Weber AP (2011) Comprehensive transcriptome analysis of the highly complex Pisum sativum genome using next generation sequencing. BMC Genomics 12 (1):227. doi:1471-2164-12-227 [pii] 10.1186/1471-2164-12-227

Murray DR (2003) Seeds of concern - The genetic manipulation of plants. CABI Publishing, Wallingford, UK

Black B, Frisby J, Lewers K, Takeda F, Finn C (2008) Heat Unit Model for Predicting Bloom Dates in Rubus. Hortscience 43 (7):2000-2004

Blanchard MG, Runkle ES (2008) Benzyladenine promotes flowering in Doritaenopsis and Phalaenopsis orchids. J Plant Growth Regul 27 (2):141-150. doi:10.1007/s00344-008- 9040-0 Chess SKR, Raguso RA, LeBuhn G (2008) Geographic divergence in floral morphology and scent in dichotomus (Polemoniaceae). Am J Bot 95 (12):1652-1659. doi:10.3732/ajb.0800118

Hesse E, Rees M, Mueller-Schaerer H (2008) Life-History Variation in Contrasting Habitats: Flowering Decisions in a Clonal Perennial Herb (Veratrum album). Am Nat 172 (5):E196-E213. doi:10.1086/591683

Guimaraes E, Di Stasi LC, Sindronia Maimoni-Rodella RDC (2008) Pollination Biology of Jacaranda oxyphylla with an Emphasis on Staminode Function. Ann Bot 102 (5):699- 711. doi:10.1093/aob/mcn152

Funnell KA (2008) Growing degree-day requirements for scheduling flowering of Scadoxus multiflorus subsp katharinae (Baker) Friis & Nordal. Hortscience 43 (1):166- 169

Fang Q, Xu Z, Song R (2006) Cloning, characterization and genetic engineering of FLC homolog in Thellungiella halophila. Biochem Biophys Res Commun 347 (3):707-714. doi:10.1016/j.bbrc.2006.06.165

Tamseddak K, D'Aloia M, Perilleux C (2006) Cloning of CONSTANS and FLOWERING LOCUS T in Sinapis alba. Comparative Biochemistry and Physiology a-Molecular & Integrative Physiology 143 (4):S170-S170

Classen-Bockhoff R, Heller A (2008) Floral synorganization and secondary pollen presentation in four Marantaceae from Costa Rica. Int J Plant Sci 169 (6):745-760. doi:10.1086/588069

Bustamante E, Borquez A (2008) Effects of Plant Size and Weather on the Flowering Phenology of the Organ Pipe Cactus (Stenocereus thurberi). Ann Bot 102 (6):1019-1030. doi:10.1093/aob/mcn194

Sumitomo K, Kunitake T, Douzono M, Onozaki T, Shibata M, Hisamatsu T (2008) Variation in the effects of ethephon on flowering and extension growth in Chrysanthemum as a function of temperature, season, and genetics. J Hortic Sci Biotechnol 83 (6):809-815

Johnston A, Reekie E (2008) Regardless of whether rising atmospheric carbon dioxide levels increase air temperature, flowering phenology will be affected. Int J Plant Sci 169 (9):1210-1218. doi:10.1086/591978

Sasaki R, Kikuchi R, Sage-Ono K, Karnada H, Ono M (2008) Immediate induction of APETALA1-like gene expression following a single short-day in Pharbitis nil. Plant Biotechnol 25 (6):565-571. doi:10.5511/plantbiotechnology.25.565

Kikuchi R, Sage-Ono K, Kamada H, Handa H, Ono M (2008) PnMADS1, encoding an StMADS11-clade protein, acts as a repressor of flowering in Pharbitis nil. Physiol Plant 133 (4):786-793. doi:10.1111/j.1399-3054.2008.01104.x

Kai K, Takeuchi J, Kataoka T, Yokoyama M, Watanabe N (2008) Structure-activity relationship study of flowering-inducer FN against Lemna paucicostata. Tetrahedron 64 (28):6760-6769. doi:10.1016/j.tet.2008.04.115 Kesy J, Maciejewska B, Sowa M, Szumilak M, Kaealowski K, Borzuchowska M, Kopcewicz J (2008) Ethylene and IAA interactions in the inhibition of photoperiodic flower induction of Pharbitis nil. Plant Growth Regul 55 (1):43-50. doi:10.1007/s10725- 008-9256-9

Sage-Ono K, Kikuchi R, Iguchi Y, Sasaki R, Sawaya T, Nitasaka E, Hoshino A, Iida S, Kamada H, Ono M (2006) Analysis of the genes relate to the photoperiodic induction of flowering in Pharbitis (Ipomoea) nil. Plant Cell Physiol 47:S1-S1

Sasaki R, Kikuchi R, Sage-Ono K, Kamada H, Ono M (2006) Two types of FLOWERING LOCUS T (FT) homologs in Pharbitis nil. Plant Cell Physiol 47:S64-S64

Lee JS, Lee AK, Suh JK (2008) Optimum Nutrient Level on Growth, Flowering, and Production in Curcuma. J Plant Nutr 31 (12):2183-2195. doi:Pii 905122733

10.1080/01904160802463270

Zielinska M, Kesy J, Kopcewicz J (2006) Participation of polyamines in the flowering of the short-day plant Pharbitis nil. Plant Growth Regul 50 (2-3):149-158. doi:10.1007/s10725-006-9111-9

Norlia B, Norwati M, Norwati A, Rosli HM, Norihan MS (2008) Isolation and characterization of LHY homolog gene expressed in flowering tissues of Tectona grandis (teak). Afr J Biotechnol 7 (9):1302-1308

Perez-Lopez D, Ribas F, Moriana A, Rapoport HF, De Juan A (2008) Influence of temperature on the growth and development of olive (Olea europaea L.) trees. J Hortic Sci Biotechnol 83 (2):171-176

Prieto P, Penuelas J, Ogaya R, Estiarte M (2008) Precipitation-dependent flowering of Globularia alypum and multiflora in Mediterranean shrubland under experimental drought and warming, and its inter-annual variability. Ann Bot 102 (2):275-285. doi:10.1093/aob/mcn090

Read J, Sanson GD, Burd M, Jaffre T (2008) Mass flowering and parental death in the regeneration of Cerberiopsis candelabra (), a long-lived monocarpic tree in New Caledonia. Am J Bot 95 (5):558-567. doi:10.3732/ajb.2007194

Rivera J, Cozza J (2008) Reduced photoperiod induces partially synchronous flowering in an understory rain forest herb, Begonia urophylla in Costa Rica. Biotropica 40 (3):363- 365. doi:10.1111/j.1744-7429.2007.00385.x

Preston JC, Kellogg EA (2006) Reconstructing the evolutionary history of paralogous APETALA1/FRUITFULL-like genes in grasses (Poaceae). Genetics 174 (1):421-437. doi:10.1534/genetics.106.057125

Read J, Sanson GD, Jaffre T, Burd M (2006) Does tree size influence timing of flowering in Cerberiopsis candelabra (Apocynaceae), a long-lived monocarpic rain-forest tree? J Trop Ecol 22:621-629. doi:10.1017/s0266467406003464

Sim GE, Loh CS, Goh CJ (2007) High frequency early in vitro flowering of Dendrobium Madame Thong-In (Orchidaceae). Plant Cell Rep 26 (4):383-393. doi:10.1007/s00299- 006-0242-2 Tank DC, Olmstead RG (2008) From annuals to perennials: Phylogeny of subtribe Castillernae (Orobanchaceae). Am J Bot 95 (5):608-625. doi:10.3732/ajb.2007346

Yamada A, Tanigawa T, Suyama T, Matsuno T, Kunitake T (2008) Night break treatment using different light sources promotes or delays growth and flowering of Eustoma grandiflorum (Raf.) Shinn. J Jpn Soc Hortic Sci 77 (1):69-74. doi:10.2503/jjshs1.77.69

Adam H, Jouannic S, Morcillo F, Verdeil J-L, Duval Y, Tregear JW (2007) Determination of flower structure in Elaeis guineensis: Do palms use the same homeotic genes as other species? Ann Bot 100 (1):1-12. doi:10.1093/aob/mcm027

Adam H, Jouannic S, Morcillo F, Richaud F, Duval Y, Tregear JW (2006) MADS box genes in oil palm (Elaeis guineensis): Patterns in the evolution of the SQUAMOSA, DEFICIENS, GLOBOSA, AGAMOUS, and SEPALLATA subfamilies. J Mol Evol 62 (1):15-31. doi:10.1007/s00239-005-0333-7

Fagua JC, Gonzalez VH (2007) Growth rates, reproductive phenology, and pollination ecology of Espeletia grandiflora (Asteraceae), a giant Andean caulescent rosette. Plant Biol 9 (1):127-135. doi:10.1055/s-2006-924544

Hee KH, Loh CS, Yeoh HH (2007) Early in vitro flowering and seed production in culture in Dendrobium Chao Praya Smile (Orchidaceae). Plant Cell Rep 26 (12):2055-2062. doi:10.1007/s00299-007-0421-9

Zhou Q, Fu D (2007) Floral biology of Nuphar pumila (Timm) DC. (Nymphaeaceae) in China. Plant Syst Evol 264 (1-2):101-108. doi:10.1007/s00606-006-0496-8

Kondo H, Ozaki H, Itoh K, Kato A, Takeno K (2006) Flowering induced by 5- azacytidine, a DNA demethylating reagent in a short-day plant, Perilla frutescens var. crispa. Physiol Plant 127 (1):130-137. doi:10.1111/j.1399-3054.2005.00635.x

Ladinig U, Wagner J (2007) Timing of sexual reproduction and reproductive success in the high-mountain plant Saxifraga bryoides L. Plant Biol 9 (6):683-693. doi:10.1055/s- 2007-965081

Michalski SG, Durka W (2007) Synchronous pulsed flowering: Analysis of the flowering phenology in Juncus (Juncaceae). Ann Bot 100 (6):1271-1285. doi:10.1093/aob/mcm206

Nishikawa F, Endo T, Shimada T, Fujii H, Shimizu T, Omura M, Ikoma Y (2007) Increased CiFT abundance in the stem correlates with floral induction by low temperature in Satsuma mandarin (Citrus unshiu Marc.). J Exp Bot 58 (14):3915-3927. doi:10.1093/jxb/erm246

Moreau D, Salon C, Munier-Jolain N (2007) A model-based framework for the phenotypic characterization of the flowering of Medicago truncatula. Plant Cell Environ 30 (2):213-224. doi:10.1111/j.1365-3040.2006.01620.x

Duarte AMM, Garcia-Luis A, Molina RV, Monerri C, Navarro V, Nebauer SG, Sanchez- Perales M, JL (2006) Long-term effect of winter gibberellic acid sprays and auxin applications on crop value of 'Clausellina' satsuma. J Am Soc Hortic Sci 131 (5):586-592 Southerton SG (2007) Early flowering induction and Agrobacterium transformation of the hardwood tree species Eucalyptus occidentalis. Funct Plant Biol 34 (8):707-713. doi:10.1071/fp07118

Yeang H-Y (2007) Synchronous flowering of the rubber tree (Hevea brasiliensis) induced by high solar radiation intensity. New Phytol 175 (2):283-289. doi:10.1111/j.1469- 8137.2007.02089.x

Coelho FF, Capelo C, Neves ACO, Martins RP, Figueira JEC (2006) Seasonal timing of pseudoviviparous reproduction of Leiothrix (Eriocaulaceae) rupestrian species in South- eastern Brazil. Ann Bot 98 (6):1189-1195. doi:10.1093/aob/mcl214

Wu C, Ma Q, Yam KM, Cheung MY, Xu Y, Han T, Lam HM, Chong K (2006) In situ expression of the GmNMH7 gene is photoperiod-dependent in a unique soybean (Glycine max [L.] Merr.) flowering reversion system. Planta 223 (4):725-735. doi:10.1007/s00425- 005-0130-y

Liu H, Wang H, Gao P, Xu J, Xu T, Wang J, Wang B, Lin C, Fu YF (2009) Analysis of clock gene homologs using unifoliolates as target organs in soybean (Glycine max). J Plant Physiol 166 (3):278-289. doi:10.1016/j.jplph.2008.06.003

Xin D-W, Qiu H-M, Shan D-P, Shan C-Y, Liu C-Y, Hu G-H, Staehelin C, Chen Q-S (2008) Analysis of quantitative trait loci underlying the period of reproductive growth stages in soybean (Glycine max L. Merr.). Euphytica 162 (2):155-165. doi:10.1007/s10681-008-9652-2

Yu Y, Harding J, Byrne T, Famula T (1993) Estimation of components of genetic variance and heritability for flowering time and yield in Gerbera using derivative-free restricted Maximum Likelihood (DFRML). Theor Appl Genet 86 (2-3):234-236

Ikeda T, Ohnishi S, Senda M, Miyoshi T, Ishimoto M, Kitamura K, Funatsuki H (2009) A novel major quantitative trait locus controlling seed development at low temperature in soybean (Glycine max). Theor Appl Genet 118 (8):1477-1488. doi:10.1007/s00122-009- 0996-3

Masiero S, Li MA, Will I, Hartmann U, Saedler H, Huijser P, Schwarz-Sommer Z, Sommer H (2004) INCOMPOSITA: a MADS-box gene controlling prophyll development and floral meristem identity in Antirrhinum. Development 131 (23):5981-5990. doi:10.1242/dev.01517

Coen ES, Romero JM, Doyle S, Elliott R, Murphy G, Carpenter R (1990) FLORICAULA - a homeotic gene required for flower development in Antirrhinum majus. Cell 63 (6):1311-1322. doi:10.1016/0092-8674(90)90426-f

Luo D, Carpenter R, Copsey L, Vincent C, Clark J, Coen E (1999) Control of organ asymmetry in flowers of Antirrhinum. Cell 99 (4):367-376

Luo D, Carpenter R, Vincent C, Copsey L, Coen E (1996) Origin of floral asymmetry in Antirrhinum. Nature 383 (6603):794-799. doi:10.1038/383794a0

Byrne SL, Guiney E, Donnison IS, Mur LAJ, Milbourne D, Barth S (2009) Identification of genes involved in the floral transition at the shoot apical meristem of Lolium perenne L. by use of suppression subtractive hybridisation. Plant Growth Regul 59 (3):215-225. doi:10.1007/s10725-009-9407-7

Fiil A, Lenk I, Petersen K, Jensen CS, Nielsen KK, Schejbel B, Andersen JR, Luebberstedt T (2011) Nucleotide diversity and linkage disequilibrium of nine genes with putative effects on flowering time in perennial ryegrass (Lolium perenne L.). Plant Sci 180 (2):228-237. doi:10.1016/j.plantsci.2010.08.015

Armstead IP, Turner LB, Farrell M, Skot L, Gomez P, Montoya T, Donnison IS, King IP, Humphreys MO (2004) Synteny between a major heading-date QTL in perennial ryegrass (Lolium perenne L.) and the Hd3 heading-date locus in rice. Theor Appl Genet 108 (5):822-828. doi:10.1007/s00122-003-1495-6

Cogan N, Smith K, Yamada T, Francki M, Vecchies A, Jones E, Spangenberg G, Forster J (2005) QTL analysis and comparative genomics of herbage quality traits in perennial ryegrass (Lolium perenne L.). Theor Appl Genet 110 (2):364-380. doi:10.1007/s00122- 004-1848-9

Jensen LB, Andersen JR, Frei U, Xing YZ, Taylor C, Holm PB, Lubberstedt TL (2005) QTL mapping of vernalization response in perennial ryegrass (Lolium perenne L.) reveals co-location with an orthologue of wheat VRN1. Theor Appl Genet 110 (3):527-536. doi:10.1007/s00122-004-1865-8

Hayward MD, McAdam NJ (1988) The effect of isozyme selection on yield and flowering time in Lolium perenne. Plant Breed 101 (1):24-29. doi:10.1111/j.1439- 0523.1988.tb00262.x

Brown RN, Barker RE, Warnke SE, Cooper LD, Brilman LA, Mian MAR, Jung G, Sim SC (2010) Identification of quantitative trait loci for seed traits and floral morphology in a field-grown Lolium perenne x Lolium multiflorum mapping population. Plant Breed 129 (1):29-34. doi:10.1111/j.1439-0523.2009.01653.x

Perilleux C, Bernier G (1997) Leaf carbohydrate status in Lolium temulentum during the induction of flowering. New Phytol 135 (1):59-66. doi:10.1046/j.1469-8137.1997.00629.x

Ciannamea S, Kaufmann K, Frau M, Tonaco IAN, Petersen K, Nielsen KK, Angenent GC, Immink RGH (2006) Protein interactions of MADS box transcription factors involved in flowering in Lolium perenne. J Exp Bot 57 (13):3419-3431. doi:10.1093/jxb/erl144

Ciannamea S, Busscher-Lange J, de Folter S, Angenent GC, Immink RG (2006) Characterization of the vernalization response in Lolium perenne by a cDNA microarray approach. Plant Cell Physiol 47 (4):481-492. doi:10.1093/pcp/pcj015

Fernando WMU, Hayward MD, Kearsey MJ (1997) Isozyme and quantitative traits polymorphisms in European provenances of perennial ryegrass (Lolium perenne L). Euphytica 93 (3):263-269

Byrne S, Guiney E, Barth S, Donnison I, Mur LAJ, Milbourne D (2009) Identification of coincident QTL for days to heading, spike length and spikelets per spike in Lolium perenne L. Euphytica 166 (1):61-70. doi:10.1007/s10681-008-9831-1 Armstead IP, Skot L, Turner LB, Skot K, Donnison IS, Humphreys MO, King IP (2005) Identification of perennial ryegrass (Lolium perenne (L.)) and meadow fescue (Festuca pratensis (Huds.)) candidate orthologous sequences to the rice Hd1(Se1) and barley HvCO1 CONSTANS-like genes through comparative mapping and microsynteny. New Phytol 167 (1):239-247. doi:10.1111/j.1469-8137.2005.01392.x

Skot L, Humphreys J, Humphreys MO, Thorogood D, Gallagher J, Sanderson R, Armstead IP, Thomas ID (2007) Association of candidate genes with flowering time and water-soluble carbohydrate content in Lolium perenne (L.). Genetics 177 (1):535-547. doi:10.1534/genetics.107.071522

King RW, Moritz T, Evans LT, Martin J, Andersen CH, Blundell C, Kardailsky I, Chandler PM (2006) Regulation of flowering in the long-day grass Lolium temulentum by Gibberellins and the FLOWERING LOCUS T gene. Plant Physiol 141 (2):498-507. doi:10.1104/pp.106.076760

McDaniel CN, Hartnett LK (1996) Flowering as metamorphosis: two sequential signals regulate floral initiation in Lolium temulentum. Development 122 (11):3661-3668

Takumi S, Naka Y, Morihiro H, Matsuoka Y (2009) Expression of morphological and flowering time variation through allopolyploidization: an empirical study with 27 wheat synthetics and their parental Aegilops tauschii accessions. Plant Breed 128 (6):585-590. doi:10.1111/j.1439-0523.2009.01630.x

Chen MK, Lin IC, Yang CH (2008) Functional analysis of three lily (Lilium longiflorum) APETALA1-like MADS box genes in regulating floral transition and formation. Plant Cell Physiol 49 (5):704-717. doi:10.1093/pcp/pcn046

Janson J, Keijzer CJ, Reinders MC (1995) A reproductive calendar of Lilium longiflorum Thunb cv Gelria. Euphytica 86 (1):25-29. doi:10.1007/bf00035935

Barba-Gonzalez R, Miller CT, Ramanna MS, Van Tuyl JM (2006) Nitrous oxide (N2O) induces 2n gametes in sterile F(1) hybrids between Oriental x Asiatic lily (Lilium) hybrids and leads to intergenomic recombination. Euphytica 148 (3):303-309. doi:10.1007/s10681-005-9032-0

Thiruvengadam M, Yang C-H (2009) Ectopic expression of two MADS box genes from orchid (Oncidium Gower Ramsey) and lily (Lilium longiflorum) alters flower transition and formation in Eustoma grandiflorum. Plant Cell Rep 28 (10):1463-1473. doi:10.1007/s00299-009-0746-7

Khan MMR, Isshiki S (2011) Development of a cytoplasmic male-sterile line of eggplant (Solanum melongena L.) with the cytoplasm of Solanum anguivi. Plant Breed 130 (2):256-260. doi:10.1111/j.1439-0523.2010.01788.x

Drobyazina PE, Khavkin EE (2006) Homologs of APETALA1/FRUITFULL in Solanum plants. Russ J Plant Physiol 53 (2):217-222. doi:10.1134/s1021443706020117

Quinet M, Dubois C, Goffin MC, Chao J, Dielen V, Batoko H, Boutry M, Kinet JM (2006) Characterization of tomato (Solanum lycopersicum L.) mutants affected in their flowering time and in the morphogenesis of their reproductive structure. J Exp Bot 57 (6):1381-1390. doi:10.1093/jxb/erj117 Quinet M, Dielen V, Batoko H, Boutry M, Havelange A, Kinet JM (2006) Genetic interactions in the control of flowering time and reproductive structure development in tomato (Solanum lycopersicum). New Phytol 170 (4):701-710. doi:10.1111/j.1469- 8137.2006.01717.x

Quinet M, Kinet JM, Lutts S (2011) Flowering response of the uniflora:blind:self-pruning and jointless:uniflora:self-pruning tomato (Solanum lycopersicum) triple mutants. Physiol Plant 141 (2):166-176. doi:10.1111/j.1399-3054.2010.01426.x

Cagas CC, Lee ON, Nemoto K, Sugiyama N (2008) Quantitative trait loci controlling flowering time and related traits in a Solanum lycopersicum x S. pimpinellifolium cross. Sci Hortic-Amsterdam 116 (2):144-151. doi:10.1016/j.scienta.2007.12.003

Gopal J (1993) Flowering behavior, male sterility and berry setting in tetraploid Solanum tuberosum germplasm. Euphytica 72 (1-2):133-142

Camadro EL, Carputo D, Peloquin SJ (2004) Substitutes for genome differentiation in tuber-bearing Solanum: interspecific pollen-pistil incompatibility, nuclear-cytoplasmic male sterility, and endosperm. Theor Appl Genet 109 (7):1369-1376. doi:10.1007/s00122- 004-1753-2

Villalta I, Bernet GP, Carbonell EA, Asins MJ (2007) Comparative QTL analysis of salinity tolerance in terms of fruit yield using two Solanum populations of F-7 lines. Theor Appl Genet 114 (6):1001-1017. doi:10.1007/s00122-006-0494-9

Mazzucato A, Papa R, Bitocchi E, Mosconi P, Nanni L, Negri V, Picarella ME, Siligato F, Soressi GP, Tiranti B, Veronesi F (2008) Genetic diversity, structure and marker-trait associations in a collection of Italian tomato (Solanum lycopersicum L.) landraces. Theor Appl Genet 116 (5):657-669. doi:10.1007/s00122-007-0699-6

Wang LN, Liu YF, Zhang YM, Fang RX, Liu QL (2011) The expression level of ROSA TERMINAL FLOWER 1 (RTFL1) is related with recurrent flowering in roses. Mol Biol Rep. doi:10.1007/s11033-011-1149-8

Chang ST, Chen WS, Koshioka M, Mander LN, Huang KL, Du BS (2001) Gibberellins in relation to flowering in Polianthes tuberosa. Physiol Plant 112 (3):429-432

Miller-Rushing AJ, Katsuki T, Primack RB, Ishii Y, Lee SD, Higuchi H (2007) Impact of global warming on a group of related species and their hybrids: Cherry tree (Rosaceae) flowering at Mt. Takao, Japan. Am J Bot 94 (9):1470-1478. doi:10.3732/ajb.94.9.1470

Terefe D, Debener T (2011) An SSR from the leucine-rich repeat region of the rose Rdr1 gene family is a useful resistance gene analogue marker for roses and other Rosaceae. Plant Breed 130 (2):291-293. doi:10.1111/j.1439-0523.2010.01780.x

Nougarede A, Francis D, Rondet P (1991) Location of cell cycle changes in relation to morphological changes in the shoot apex of Silene coeli-rosa immediately before initiation. Protoplasma 165 (1-3):1-10. doi:10.1007/bf01322272

Mimida N, Kotoda N, Ueda T, Igarashi M, Hatsuyama Y, Iwanami H, Moriya S, Abe K (2009) Four TFL1/CEN-like genes on distinct linkage groups show different expression patterns to regulate vegetative and reproductive development in apple (Malus x domestica Borkh.). Plant Cell Physiol 50 (2):394-412. doi:10.1093/pcp/pcp001 Zeng GJ, Li CM, Zhang XZ, Han ZH, Yang FQ, Gao Y, Chen DM, Zhao YB, Wang Y, Teng YL, Dong WX (2010) Differential proteomic analysis during the vegetative phase change and the floral transition in Malus domestica. Dev Growth Differ 52 (7):635-644. doi:10.1111/j.1440-169X.2010.01199.x

Zhang XZ, Zhao YB, Li CM, Chen DM, Wang GP, Chang RF, Shu HR (2007) Potential polyphenol markers of phase change in apple (Malus domestica). J Plant Physiol 164 (5):574-580. doi:10.1016/j.jplph.2006.03.011

McMeans O, Skirvin RM, Otterbacher A, Mitiku G (1998) Assessment of tissue culture- derived 'Gala' and 'Royal Gala' apples (Malus x domestica Borkh.) for somaclonal variation. Euphytica 103 (2):251-257. doi:10.1023/a:1018316422435

Haettasch C, Flachowsky H, Kapturska D, Hanke M-V (2008) Isolation of flowering genes and seasonal changes in their transcript levels related to flower induction and initiation in apple (Malus domestica). Tree Physiol 28 (10):1459-1466

Pestsova EG, Borner A, Roder MS (2006) Development and QTL assessment of Triticum aestivum-Aegilops tauschii introgression lines. Theor Appl Genet 112 (4):634-647. doi:10.1007/s00122-005-0166-1

Chen A, Gusta LV, Brule-Babel A, Leach R, Baumann U, Fincher GB, Collins NC (2009) Varietal and chromosome 2H locus-specific frost tolerance in reproductive tissues of barley (Hordeum vulgare L.) detected using a frost simulation chamber. Theor Appl Genet 119 (4):685-694. doi:10.1007/s00122-009-1079-1

Bauer AM, Hoti F, von Korff M, Pillen K, Leon J, Sillanpaa MJ (2009) Advanced backcross-QTL analysis in spring barley (H. vulgare ssp spontaneum) comparing a REML versus a Bayesian model in multi-environmental field trials. Theor Appl Genet 119 (1):105-123. doi:10.1007/s00122-009-1021-6

Leonova I, Pestsova E, Salina E, Efremova T, Roder M, Borner A (2003) Mapping of the Vrn-B1 gene in Triticum aestivum using microsatellite markers. Plant Breed 122 (3):209- 212. doi:10.1046/j.1439-0523.2003.00818.x

Oberprieler C, Eder C, Meister J, Vogt R (2011) AFLP fingerprinting suggests an allopolyploid origin of two members of the Leucanthemum vulgare aggregate (Compositae, Anthemideae) in central Europe. Nord J Bot 29 (3):370-377. doi:10.1111/j.1756-1051.2011.01025.x

Sehgal SK, Kaur S, Gupta S, Sharma A, Kaur R, Bains NS (2011) A direct hybridization approach to gene transfer from Aegilops tauschii Coss. to Triticum aestivum L. Plant Breed 130 (1):98-100. doi:10.1111/j.1439-0523.2010.01817.x

Karsai I, Meszaros K, Hayes PM, Bedo Z (1997) Effects of loci on chromosomes 2 (2H) and 7 (5H) on developmental patterns in barley (Hordeum vulgare L) under different photoperiod regimes. Theor Appl Genet 94 (5):612-618. doi:10.1007/s001220050458

Decousset L, Griffiths S, Dunford RP, Pratchett N, Laurie DA (2000) Development of STS markers closely linked to the Ppd-H1 photoperiod response gene of barley (Hordeum vulgare L.). Theor Appl Genet 101 (8):1202-1206. doi:10.1007/s001220051598 Bullrich L, Appendino ML, Tranquilli G, Lewis S, Dubcovsky J (2002) Mapping of a thermo-sensitive earliness per se gene on Triticum monococcum chromosome 1A(m). Theor Appl Genet 105 (4):585-593. doi:10.1007/s00122-002-0982-5

Borner A, Schumann E, Furste A, Coster H, Leithold B, Roder MS, Weber WE (2002) Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet 105 (6-7):921-936. doi:10.1007/s00122-002-0994-1

Reinheimer JL, Barr AR, Eglinton JK (2004) QTL mapping of chromosomal regions conferring reproductive frost tolerance in barley (Hordeum vulgare L.). Theor Appl Genet 109 (6):1267-1274. doi:10.1007/s00122-004-1736-3

Casao MC, Igartua E, Karsai I, Lasa JM, Gracia MP, Casas AM (2011) Expression analysis of vernalization and day-length response genes in barley (Hordeum vulgare L.) indicates that VRNH2 is a repressor of PPDH2 (HvFT3) under long days. J Exp Bot 62 (6):1939-1949. doi:10.1093/jxb/erq382 von Korff M, Wang H, Leon J, Pillen K (2006) AB-QTL analysis in spring barley: II. Detection of favourable exotic alleles for agronomic traits introgressed from wild barley (H. vulgare ssp spontaneum). Theor Appl Genet 112 (7):1221-1231. doi:10.1007/s00122- 006-0223-4

Karsai I, Meszaros K, Szucs P, Hayes PM, Lang L, Bedo Z (2006) The influence of photoperiod on the Vrn-H2 locus (4H) which is a major determinant of plant development and reproductive fitness traits in a facultative X winter barley (Hordeum vulgare L.) mapping population. Plant Breed 125 (5):468-472. doi:10.1111/j.1439-0523.2006.01266.x

Karsai I, Hayes PM, Kling J, Matus IA, Meszaros K, Lang L, Bedo Z, Sato K (2004) Genetic variation in component traits of heading date in Hordeum vulgare subsp spontaneum accessions characterized in controlled environments. Crop Sci 44 (5):1622- 1632

Carter AH, Garland-Campbell K, Kidwell KK (2011) Genetic Mapping of Quantitative Trait Loci Associated with Important Agronomic Traits in the Spring Wheat (Triticum aestivum L.) Cross 'Louise' x 'Penawawa'. Crop Sci 51 (1):84-95. doi:10.2135/cropsci2010.03.0185

Karsai I, Koszegi B, Kovacs G, Szucs P, Meszaros K, Bedo Z, Veisz O (2008) Effects of temperature and light intensity on flowering of barley (Hordeum vulgare L.). Acta Biol Hung 59 (2):205-215. doi:10.1556/ABiol.59.2008.2.7

Baga M, Fowler DB, Chibbar RN (2009) Identification of genomic regions determining the phenological development leading to floral transition in wheat (Triticum aestivum L.). J Exp Bot 60 (12):3575-3585. doi:10.1093/jxb/erp199

Laurie DA, Pratchett N, Snape JW, Bezant JH (1995) RFLP mapping of five major genes and eight quantitative trait loci controlling flowering time in a winter x spring barley (Hordeum vulgare L.) cross. Genome 38 (3):575-585

Limin AE, Fowler DB (2006) Low-temperature tolerance and genetic potential in wheat (Triticum aestivum L.): response to photoperiod, vernalization, and plant development. Planta 224 (2):360-366. doi:10.1007/s00425-006-0219-y Wilhelm EP, Turner AS, Laurie DA (2009) Photoperiod insensitive Ppd-A1a mutations in tetraploid wheat (Triticum durum Desf.). Theor Appl Genet 118 (2):285-294. doi:10.1007/s00122-008-0898-9

Lacerenza JA, Parrott DL, Fischer AM (2010) A major grain protein content locus on barley (Hordeum vulgare L.) chromosome 6 influences flowering time and sequential leaf senescence. J Exp Bot 61 (11):3137-3149. doi:10.1093/jxb/erq139

Karsai I, Szucs P, Meszaros K, Filichkina T, Hayes PM, Skinner JS, Lang L, Bedo Z (2005) The Vrn-H2 locus is a major determinant of flowering time in a facultative x winter growth habit barley (Hordeum vulgare L.) mapping population. Theor Appl Genet 110 (8):1458-1466. doi:10.1007/s00122-005-1979-7

Kermani MJ, Sarasan V, Roberts AV, Yokoya K, Wentworth J, Sieber VK (2003) Oryzalin-induced chromosome doubling in Rosa and its effect on plant morphology and pollen viability. Theor Appl Genet 107 (7):1195-1200. doi:10.1007/s00122-003-1374-1

Portyanko VA, Chen G, Rines HW, Phillips RL, Leonard KJ, Ochocki GE, Stuthman DD (2005) Quantitative trait loci for partial resistance to crown rust, Puccinia coronata, in cultivated oat, Avena sativa L. Theor Appl Genet 111 (2):313-324. doi:10.1007/s00122- 005-2024-6

Fujino K, Sekiguchi H (2005) Mapping of QTLs conferring extremely early heading in rice (Oryza sativa L.). Theor Appl Genet 111 (2):393-398. doi:10.1007/s00122-005-2035- 3

Abdelkhalik AF, Shishido R, Nomura K, Ikehashi H (2005) QTL-based analysis of leaf senescence in an indica/japonica hybrid in rice (Oryza sativa L.). Theor Appl Genet 110 (7):1226-1235. doi:10.1007/s00122-005-1955-2

Bao JS, Corke H, Sun M (2006) Nucleotide diversity in starch synthase IIa and validation of single nucleotide polymorphisms in relation to starch gelatinization temperature and other physicochemical properties in rice (Oryza sativa L.). Theor Appl Genet 113 (7):1171-1183. doi:10.1007/s00122-006-0355-6

Liu G, Zhang Z, Zhu H, Zhao F, Ding X, Zeng R, Li W, Zhang G (2008) Detection of QTLs with additive effects and additive-by-environment interaction effects on panicle number in rice (Oryza sativa L.) with single-segment substitution lines. Theor Appl Genet 116 (7):923-931. doi:10.1007/s00122-008-0724-4

Iwata H, Ebana K, Fukuoka S, Jannink J-L, Hayashi T (2009) Bayesian multilocus association mapping on ordinal and censored traits and its application to the analysis of genetic variation among Oryza sativa L. germplasms. Theor Appl Genet 118 (5):865-880. doi:10.1007/s00122-008-0945-6

Linh LH, Hang NT, Jin FX, Kang KH, Lee YT, Kwon SJ, Ahn SN (2008) Introgression of a quantitative trait locus for spikelets per panicle from Oryza minuta to the O. sativa cultivar Hwaseongbyeo. Plant Breed 127 (3):262-267. doi:10.1111/j.1439- 0523.2007.01462.x

Agrama HA, Yan WG (2009) Association mapping of straighthead disorder induced by arsenic in Oryza sativa. Plant Breed 128 (6):551-558. doi:10.1111/j.1439- 0523.2009.01631.x Dingkuhn M, Asch F (1999) Phenological responses of Oryza sativa, O. glaberrima and inter-specific rice cultivars on a toposquence in West Africa. Euphytica 110 (2):109-126. doi:10.1023/a:1003790611929

Ichitani K, Inoue H, Nishida H, Okumoto Y, Tanisaka T (2002) Interactive effects of two heading-time loci, Se1 and Ef1, on pre-flowering developmental phases in rice (Oryza sativa L.). Euphytica 126 (2):227-234. doi:10.1023/a:1016357511738

Kuroda Y, Sato YI, Bounphanousay C, Kono Y, Tanaka K (2005) Gene flow from cultivated rice (Oryza sativa L.) to wild Oryza species (O. rufipogon Griff. and O. nivara Sharma and Shastry) on the Vientiane plain of Laos. Euphytica 142 (1-2):75-83. doi:10.1007/s10681-005-0529-3

Agrama HA, Eizenga GC (2008) Molecular diversity and genome-wide linkage disequilibrium patterns in a worldwide collection of Oryza sativa and its wild relatives. Euphytica 160 (3):339-355. doi:10.1007/s10681-007-9535-y

Furones-Perez P, Fernandez-Lopez J (2009) Usefulness of 13 morphological and phenological characteristics of sweet chestnut (Castanea sativa Mill.) for use in the DUS test. Euphytica 167 (1):1-21. doi:10.1007/s10681-008-9848-5

Leister D, Kurth J, Laurie DA, Yano M, Sasaki T, Graner A, Schulze-Lefert P (1999) RFLP- and physical mapping of resistance gene homologues in rice (O. sativa) and barley (H. vulgare). Theor Appl Genet 98 (3-4):509-520. doi:10.1007/s001220051099

Thomson MJ, Tai TH, McClung AM, Lai XH, Hinga ME, Lobos KB, Xu Y, Martinez CP, McCouch SR (2003) Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson. Theor Appl Genet 107 (3):479-493. doi:10.1007/s00122-003-1270-8

Septiningsih EM, Prasetiyono J, Lubis E, Tai TH, Tjubaryat T, Moeljopawiro S, McCouch SR (2003) Identification of quantitative trait loci for yield and yield components in an advanced backcross population derived from the Oryza sativa variety IR64 and the wild relative O. rufipogon. Theor Appl Genet 107 (8):1419-1432. doi:10.1007/s00122-003-1373-2

Hong F, Attia K, Wei C, Li K, He G, Su W, Zhang Q, Qian X, Yang J (2007) Overexpression of the rFCA RNA recognition motif affects morphologies modifications in rice (Oryza sativa L.). Biosci Rep 27 (4-5):225-234. doi:10.1007/s10540-007-9047-y

Peng L-T, Shi Z-Y, Li L, Shen G-Z, Zhang J-L (2008) Overexpression of transcription factor OsLFL1 delays flowering time in Oryza sativa. J Plant Physiol 165 (8):876-885. doi:10.1016/j.jplph.2007.07.010

Itoh Y, Sato S, Sano Y (2001) Developmental changes of phyllochron in near-isogenic lines of rice (Oryza sativa L.) with different growth durations. Euphytica 119 (3):271-278. doi:10.1023/a:1017577218630

Thanh PT, Phan PD, Ishikawa R, Ishii T (2010) QTL analysis for flowering time using backcross population between Oryza sativa Nipponbare and O. rufipogon. Genes Genet Syst 85 (4):273-279 Gupta M, Qiu X, Wang L, Xie W, Zhang C, Xiong L, Lian X, Zhang Q (2008) KT/HAK/KUP potassium transporters gene family and their whole-life cycle expression profile in rice (Oryza sativa). Molecular Genet Genom 280 (5):437-452. doi:10.1007/s00438-008-0377-7

Shin BS, Lee JH, Jeong HJ, Yun CH, Kim JK (2004) Circadian regulation of rice (Oryza sativa L.) CONSTANS-like gene transcripts. Mol Cells 17 (1):10-16

Morita S, Yonemaru J, Takanashi J (2005) Grain growth and endosperm cell size under high night temperatures in rice (Oryza sativa L.). Ann Bot 95 (4):695-701. doi:10.1093/aob/mci071

Li KG, Yang JS, Liu J, Du XL, Wei C, Su W, He GM, Zhang QH, Hong F, Qian XY (2006) Cloning, characterization and tissue-specific expression of a cDNA encoding a novel EMBRYONIC FLOWER 2 gene (OsEMF2) in Oryza sativa. DNA Seq 17 (1):74- 78. doi:10.1080/10425170500151961

Zhang YS, Luo LJ, Xu CG, Zhang QF, Xing YZ (2006) Quantitative trait loci for panicle size, heading date and plant height co-segregating in trait-performance derived near- isogenic lines of rice (Oryza sativa). Theor Appl Genet 113 (2):361-368. doi:10.1007/s00122-006-0305-3

Saito H, Yuan Q, Okumoto Y, Doi K, Yoshimura A, Inoue H, Teraishi M, Tsukiyama T, Tanisaka T (2009) Multiple alleles at Early flowering 1 locus making variation in the basic vegetative growth period in rice (Oryza sativa L.). Theor Appl Genet 119 (2):315- 323. doi:10.1007/s00122-009-1040-3

Andersen JR, Jensen LB, Asp T, Lubberstedt T (2006) Vernalization response in perennial ryegrass (Lolium perenne L.) involves orthologues of diploid wheat (Triticum monococcum) VRN1 and rice (Oryza sativa) Hd1. Plant Mol Biol 60 (4):481-494. doi:10.1007/s11103-005-4815-1

Gu XY, Foley ME, Chen ZX (2004) A set of three genes regulates photoperiodic responses of flowering in rice (Oryza sativa). Genetica 122 (2):127-140

Vadez V, Lasso JH, Beck DP, Drevon JJ (1999) Variability of N2 fixation in common bean (Phaseolus vulgaris L.) under P deficiency is related to P use efficiency - N2 fixation tolerance to P deficiency. Euphytica 106 (3):231-242. doi:10.1023/a:1003512519558

Coyne DP (1970) Genetic control of a photoperiod temperature response for time of flowering in beans (Phaseolus vulgaris L.). Crop Sci 10 (3):246-&

Perez-Vega E, Paneda A, Rodriguez-Suarez C, Campa A, Giraldez R, Jose Ferreira J (2010) Mapping of QTLs for morpho-agronomic and seed quality traits in a RIL population of common bean (Phaseolus vulgaris L.). Theor Appl Genet 120 (7):1367- 1380. doi:10.1007/s00122-010-1261-5

Gaafar RM (2005) Fine mapping of the bolting gene of sugar beet (Beta vulgaris L.) using BAC-derived sequences. Schriftenreihe des Instituts für Pflanzenbau und Pflanzenzüchtung CAU zu Kiel - Lehrstuhl Pflanzenzüchtung -,

Blanke AC (2010) Funktionelle Charakterisierung von BvFL1 aus annuellen und zweijährigen Arten der Gattung Beta. Lehrstuhl Pflanzenzüchtung, Universität Kiel, Abou-Elwafa SF (2011) Novel Genetic Factors Affecting Bolting and Floral Transition Control in Beta vulgaris. Schriftenreihe des Instituts für Pflanzenbau und Pflanzenzüchtung CAU zu Kiel - Lehrstuhl Pflanzenzüchtung, Kiel

Kirchhoff M (2008) Erweiterung der genetischen Variabilität von Beta vulgaris durch Introgressionen aus der Wildart Beta corolliflora. Lehrstuhl Pflanzenzüchtung, Universität Kiel,

Buettner B, Abou-Elwafa SF, Zhang W, Jung C, Mueller AE (2010) A survey of EMS- induced biennial Beta vulgaris mutants reveals a novel bolting locus which is unlinked to the bolting gene B. Theor Appl Genet 121 (6):1117-1131. doi:10.1007/s00122-010-1376- 8

Rinne PL, Welling A, Vahala J, Ripel L, Ruonala R, Kangasjarvi J, van der Schoot C (2011) Chilling of dormant buds hyperinduces FLOWERING LOCUS T and recruits GA- inducible 1,3-beta-glucanases to reopen signal conduits and release dormancy in Populus. Plant Cell 23 (1):130-146. doi:10.1105/tpc.110.081307

Malik M, Vyas P, Rangaswamy NS, Shivanna KR (1999) Development of two new cytoplasmic male-sterile lines in Brassica juncea through wide hybridization. Plant Breed 118 (1):75-78. doi:10.1046/j.1439-0523.1999.118001075.x

Mei DS, Wang HZ, Hu Q, Li YD, Xu YS, Li YC (2009) QTL analysis on plant height and flowering time in Brassica napus. Plant Breed 128 (5):458-465. doi:10.1111/j.1439- 0523.2008.01528.x

Burrell AM, Taylor KG, Williams RJ, Cantrell RT, Menz MA, Pepper AE (2011) A comparative genomic map for Caulanthus amplexicaulis and related species (Brassicaceae). Mol Ecol 20 (4):784-798. doi:10.1111/j.1365-294X.2010.04981.x

Chang CT, Kakihara F, Hondo K, Kato M (2011) The cytoplasm effect comparison between Brassica napus and Brassica carinata on floral characteristics of Brassica oleracea. Plant Breed 130 (1):73-79. doi:10.1111/j.1439-0523.2009.01761.x

Martynov VV, Khavkin EE (2005) RFLP analysis of the FLOWERING LOCUS C gene in six Brassica species. Russ J Plant Physiol 52 (3):352-358. doi:10.1007/s11183-005- 0053-2

Uptmoor R, Schrag T, Stuetzel H, Esch E (2008) Crop model based QTL analysis across environments and QTL based estimation of time to floral induction and flowering in Brassica oleracea. Mol Breed 21 (2):205-216. doi:10.1007/s11032-007-9121-y

Morinaga S-i, Nagano AJ, Miyazaki S, Kubo M, Fukuda TDH, Sakai S, Hasebe M, Fukuda H (2008) Ecogenomics of cleistogamous and chasmogamous flowering: genome- wide gene expression patterns from cross-species microarray analysis in Cardamine kokaiensis (Brassicaceae). J Ecol 96 (5):1086-1097. doi:10.1111/j.1365- 2745.2008.01392.x

Udall JA, Quijada PA, Lambert B, Osborn TC (2006) Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (Brassica napus L.): 2. Identification of alleles from unadapted germplasm. Theor Appl Genet 113 (4):597-609. doi:10.1007/s00122-006-0324-0 Salathia N, Lynn JR, Millar AJ, King GJ (2007) Detection and resolution of genetic loci affecting circadian period in Brassica oleracea. Theor Appl Genet 114 (4):683-692. doi:10.1007/s00122-006-0468-y

Quijada PA, Udall JA, Lambert B, Osborn TC (2006) Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (Brassica napus L.): 1. Identification of genomic regions from winter germplasm. Theor Appl Genet 113 (3):549- 561. doi:10.1007/s00122-006-0323-1

Chen W, Zhang Y, Liu X, Chen B, Tu J, Fu T (2007) Detection of QTL for six yield- related traits in oilseed rape (Brassica napus) using DH and immortalized F-2 populations. Theor Appl Genet 115 (6):849-858. doi:10.1007/s00122-007-0613-2

Hasan M, Friedt W, Pons-Kuehnemann J, Freitag NM, Link K, Snowdon RJ (2008) Association of gene-linked SSR markers to seed glucosinolate content in oilseed rape (Brassica napus ssp. napus). Theor Appl Genet 116 (8):1035-1049. doi:10.1007/s00122- 008-0733-3

Luis Iniguez-Luy F, Lukens L, Farnham MW, Amasino RM, Osborn TC (2009) Development of public immortal mapping populations, molecular markers and linkage maps for rapid cycling Brassica rapa and B. oleracea. Theor Appl Genet 120 (1):31-43. doi:10.1007/s00122-009-1157-4

Yang M, Ding G, Shi L, Feng J, Xu F, Meng J (2010) Quantitative trait loci for root morphology in response to low phosphorus stress in Brassica napus. Theor Appl Genet 121 (1):181-193. doi:10.1007/s00122-010-1301-1

Thurling N, Depittayanan V (1992) EMS induction of early flowering mutants in spring rape (Brassica napus) Plant Breed 108 (3):177-184. doi:10.1111/j.1439- 0523.1992.tb00118.x

Holme IB, Torp AM, Hansen LN, Andersen SB (2004) Quantitative trait loci affecting plant regeneration from protoplasts of Brassica oleracea. Theor Appl Genet 108 (8):1513- 1520. doi:10.1007/s00122-003-1570-z

Hirai M, Harada T, Kubo N, Tsukada M, Suwabe K, Matsumoto S (2004) A novel locus for clubroot resistance in Brassica rapa and its linkage markers. Theor Appl Genet 108 (4):639-643. doi:10.1007/s00122-003-1475-x

Lionneton E, Aubert G, Ochatt S, Merah O (2004) Genetic analysis of agronomic and quality traits in mustard (Brassica juncea). Theor Appl Genet 109 (4):792-799. doi:10.1007/s00122-004-1682-0

Zhao JW, Udall JA, Quijada PA, Grau CR, Meng JL, Osborn TC (2006) Quantitative trait loci for resistance to Sclerotinia sclerotiorum and its association with a homeologous non- reciprocal transposition in Brassica napus L. Theor Appl Genet 112 (3):509-516. doi:10.1007/s00122-005-0154-5

Teutonico RA, Osborn TC (1995) Mapping loci controlling vernalization requirement in Brassica rapa. Theor Appl Genet 91 (8):1279-1283

Song K, Slocum MK, Osborn TC (1995) Molecular marker analysis of genes controlling morphological variation in Brassica rapa ( syn. campestris) Theor Appl Genet 90 (1):1-10 Ferreira ME, Satagopan J, Yandell BS, Williams PH, Osborn TC (1995) Mapping loci controlling vernalization requirement and flowering time in Brassica napus. Theor Appl Genet 90 (5):727-732

Agren J, Schemske DW (1992) Artificial selection on trichome number in Brassica rapa. Theor Appl Genet 83 (6-7):673-678

Kirti PB, Banga SS, Prakash S, Chopra VL (1995) Transfer of OGU cytoplasmic male sterility to Brassica juncea and improvement of the male sterile line through somatic cell fusion. Theor Appl Genet 91 (3):517-521

Camargo LEA, Osborn TC (1996) Mapping loci controlling flowering time in Brassica oleracea. Theor Appl Genet 92 (5):610-616. doi:10.1007/bf00224565

Lan TH, Paterson AH (2001) Comparative mapping of QTLs determining the plant size of Brassica oleracea. Theor Appl Genet 103 (2-3):383-397. doi:10.1007/s001220100615

Sebastian RL, Kearsey MJ, King GJ (2002) Identification of quantitative trait loci controlling developmental characteristics of Brassica oleracea L. Theor Appl Genet 104 (4):601-609. doi:10.1007/s001220100743

Muangprom A, Osborn TC (2004) Characterization of a dwarf gene in Brassica rapa, including the identification of a candidate gene. Theor Appl Genet 108 (7):1378-1384. doi:10.1007/s00122-003-1551-2

Hodgkin T (1975) Variation of flowering time in inbred Brussels sprouts and cabbage (Brassica oleracea L). Euphytica 24 (3):691-698. doi:10.1007/bf00132907

Nozaki T, Kumazaki A, Koba T, Ishikawa K, Ikehashi H (1997) Linkage analysis among loci for RAPDs, isozymes and some agronomic traits in Brassica campestris L. Euphytica 95 (1):115-123. doi:10.1023/a:1002981208509

Ajisaka H, Kuginuki Y, Yui S, Enomoto S, Hirai M (2001) Identification and mapping of a quantitative trait locus controlling extreme late bolting in Chinese cabbage (Brassica rapa L. ssp pekinensis syn. campestris L.) using bulked segregant analysis - A QTL controlling extreme late bolting in Chinese cabbage. Euphytica 118 (1):75-81. doi:10.1023/a:1004023532005

Syafaruddin, Horisaki A, Niikura S, Yoshioka Y, Ohsawa R (2006) Effect of floral morphology on pollination in Brassica rapa L. Euphytica 149 (3):267-272. doi:10.1007/s10681-005-9074-3

Mahmood T, Rahman MH, Stringam GR, Yeh F, Good AG (2007) Quantitative trait loci for early maturity and their potential in breeding for earliness in Brassica juncea. Euphytica 154 (1-2):101-111. doi:10.1007/s10681-006-9276-3

Cruz VMV, Luhman R, Marek LF, Rife CL, Shoemaker RC, Brummer EC, Gardner CAC (2007) Characterization of flowering time and SSR marker analysis of spring and winter type Brassica napus L. germplasm. Euphytica 153 (1-2):43-57. doi:10.1007/s10681-006- 9233-1 Chen G, Geng J, Rahman M, Liu X, Tu J, Fu T, Li G, McVetty PBE, Tahir M (2010) Identification of QTL for oil content, seed yield, and flowering time in oilseed rape (Brassica napus). Euphytica 175 (2):161-174. doi:10.1007/s10681-010-0144-9

Roy SD, Saxena M, Bhalla-Sarin N (2009) Overexpression of AtLEAFY Accelerates Flowering in Brassica juncea. Crop Sci 49 (3):930-936. doi:10.2135/cropsci2008.03.0118

Radoev M, Becker HC, Ecke W (2008) Genetic analysis of heterosis for yield and yield components in rapeseed (Brassica napus L.) by quantitative trait locus mapping. Genetics 179 (3):1547-1558. doi:genetics.108.089680 [pii]

10.1534/genetics.108.089680

Parkin IA, Sharpe AG, Keith DJ, Lydiate DJ (1995) Identification of the A and C genomes of amphidiploid Brassica napus (oilseed rape). Genome 38 (6):1122-1131. doi:g95-149 [pii]

Parkin IA, Lydiate DJ (1997) Conserved patterns of chromosome pairing and recombination in Brassica napus crosses. Genome 40 (4):496-504. doi:g97-066 [pii]

Parkin IA, Clarke WE, Sidebottom C, Zhang W, Robinson SJ, Links MG, Karcz S, Higgins EE, Fobert P, Sharpe AG (2010) Towards unambiguous transcript mapping in the allotetraploid Brassica napus. Genome 53 (11):929-938. doi:g10-053 [pii] 10.1139/g10- 053

Obermeier C, Hosseini B, Friedt W, Snowdon R (2009) Gene expression profiling via LongSAGE in a non-model plant species: a case study in seeds of Brassica napus. BMC Genomics 10:295. doi:1471-2164-10-295 [pii] 10.1186/1471-2164-10-295

Howell EC, Kearsey MJ, Jones GH, King GJ, Armstrong SJ (2008) A and C genome distinction and chromosome identification in Brassica napus by sequential fluorescence in situ hybridization and genomic in situ hybridization. Genetics 180 (4):1849-1857. doi:genetics.108.095893 [pii] 10.1534/genetics.108.095893

Endrigkeit J (2007) Identifikation und Charakterisierung von Genen der Tocopherol- Biosynthese aus Raps (Brassica napus L.). Schriftenreihe des Instituts für Pflanzenbau und Pflanzenzüchtung CAU zu Kiel - Lehrstuhl Pflanzenzüchtung

Durstewitz G, Polley A, Plieske J, Luerssen H, Graner EM, Wieseke R, Ganal MW (2010) SNP discovery by amplicon sequencing and multiplex SNP genotyping in the allopolyploid species Brassica napus. Genome 53 (11):948-956. doi:g10-079 [pii] 10.1139/g10-079

Lewis AC (1986) Memory constraints and flower choice in Pieris rapae. Science 232 (4752):863-865. doi:10.1126/science.232.4752.863

Yang T-J, Kim JS, Kwon S-J, Lim K-B, Choi B-S, Kim J-A, Jin M, Park JY, Lim M-H, Kim H, II, Lim YP, Kang JJ, Hong J-H, Kim C-B, Bhak J, Bancroft I, Parka B-S (2006) Sequence-level analysis of the diploidization process in the triplicated FLOWERING LOCUS C region of Brassica rapa. Plant Cell 18 (6):1339-1347. doi:10.1105/tpc.105.040535 Burton WA, Flood RF, Norton RM, Field B, Potts DA, Robertson MJ, Salisbury PA (2008) Identification of variability in phenological responses in canola-quality Brassica juncea for utilisation in Australian breeding programs. Aust J Agric Res 59 (9):874-881. doi:10.1071/ar07415

Mathews S, McBreen K (2008) Phylogenetic relationships of B-related phytochromes in the Brassicaceae: Redundancy and the persistence of phytochrome D. Mol Phylogenet Evol 49 (2):411-423. doi:10.1016/j.ympev.2008.07.026

Li CX, Sivasithamparam K, Walton G, Salisbury P, Burton W, Banga SS, Banga S, Chattopadhyay C, Kumar A, Singh R, Singh D, Agnohotri A, Liu SY, Li YC, Fu TD, Wang YF, Barbetti MJ (2007) Expression and relationships of resistance to white rust (Albugo candida) at cotyledonary, seedling, and. flowering stages in Brassica juncea germplasm from Australia, China, and India. Aust J Agric Res 58 (3):259-264. doi:10.1071/ar06237

Krouchi F, Gustavsson S, Sjodin P, Kruskopf-Osterberg M, Lagercrantz U, Lascoux M (2008) Association between COL1 and flowering time in Brassica nigra: replication, validation, and genotypic disequilibrium. Int J Plant Sci 169 (9):1229-1237. doi:10.1086/591989

Delourme R, Falentin C, Huteau V, Clouet V, Horvais R, Gandon B, Specel S, Hanneton L, Dheu JE, Deschamps M, Margale E, Vincourt P, Renard M (2006) Genetic control of oil content in oilseed rape (Brassica napus L.). Theor Appl Genet 113 (7):1331-1345. doi:10.1007/s00122-006-0386-z

Wu G, Zhang L, Wu Y, Cao Y, Lu C (2010) Comparison of five endogenous reference genes for specific PCR detection and quantification of Brassica napus. J Agric Food Chem 58 (5):2812-2817. doi:10.1021/jf904255b

Shi J, Li R, Qiu D, Jiang C, Long Y, Morgan C, Bancroft I, Zhao J, Meng J (2009) Unraveling the complex trait of crop yield with quantitative trait loci mapping in Brassica napus. Genetics 182 (3):851-861. doi:genetics.109.101642 [pii] 10.1534/genetics.109.101642

Sharpe AG, Lydiate DJ (2003) Mapping the mosaic of ancestral genotypes in a cultivar of oilseed rape (Brassica napus) selected via pedigree breeding. Genome 46 (3):461-468. doi:g03-031 [pii] 10.1139/g03-031

Franzke A, Lysak MA, Al-Shehbaz IA, Koch MA, Mummenhoff K (2011) Cabbage family affairs: the evolutionary history of Brassicaceae. Trends Plant Sci 16 (2):108-116. doi:10.1016/j.tplants.2010.11.005

Franks SJ (2011) Plasticity and evolution in drought avoidance and escape in the annual plant Brassica rapa. New Phytolologist 190:249-257. doi:10.1111/j.1469- 8137.2010.03603.x

Rahman MH, Bennett RA, Yang R-C, Kebede B, Thiagarajah MR (2011) Exploitation of the late flowering species Brassica oleracea L. for the improvement of earliness in B. napus L.: an untraditional approach. Euphytica 177 (3):365-374. doi:10.1007/s10681-010- 0253-5 Franke DM, Ellis AG, Dharjwa M, Freshwater M, Fujikawa M, Padron A, Weis AE (2006) A steep cline in flowering time for Brassica rapa in southern California: Population-level variation in the field and the greenhouse. Int J Plant Sci 167 (1):83-92. doi:10.1086/497648

Slotte T, Holm K, McIntyre LM, Lagercrantz U, Lascoux M (2007) Differential expression of genes important for adaptation in Capsella bursa-pastoris (Brassicaceae). Plant Physiol 145 (1):160-173. doi:10.1104/pp.107.102632

Zhao J, Paulo M-J, Jamar D, Lou P, van Eeuwijk F, Bonnema G, Vreugdenhil D, Koornneef M (2007) Association mapping of leaf traits, flowering time, and phytate content in Brassica rapa. Genome 50 (10):963-973. doi:10.1139/g07-078

Osterberg MK, Shavorskaya O, Lascoux M, Lagercrantz U (2002) Naturally occurring indel variation in the Brassica nigra COL1 gene is associated with variation in flowering time. Genetics 161 (1):299-306

Lagercrantz U, Kruskopf Osterberg M, Lascoux M (2002) Sequence variation and haplotype structure at the putative flowering-time locus COL1 of Brassica nigra. Mol Biol Evol 19 (9):1474-1482

Schranz ME, Osborn TC (2004) De novo variation in life-history traits and responses to growth conditions of resynthesized polyploid Brassica napus (Brassicaceae). Am J Bot 91 (2):174-183. doi:10.3732/ajb.91.2.174

Giavalisco P, Kapitza K, Kolasa A, Buhtz A, Kehr J (2006) Towards the proteome of Brassica napus phloem sap. Proteomics 6 (3):896-909. doi:10.1002/pmic.200500155

Shavorskaya O, Lagercrantz U (2006) Sequence divergence at the putative flowering time locus COL1 in Brassicaceae. Mol Phylogenet Evol 39 (3):846-854. doi:10.1016/j.ympev.2006.01.013

Sjodin P, Hedman H, Shavorskaya O, Finet C, Lascoux M, Lagercrantz U (2007) Recent degeneration of an old duplicated flowering time gene in Brassica nigra. Heredity 98 (6):375-384. doi:10.1038/sj.hdy.6800951

Razi H, Howell EC, Newbury HJ, Kearsey MJ (2008) Does sequence polymorphism of FLC paralogues underlie flowering time QTL in Brassica oleracea? Theor Appl Genet 116 (2):179-192. doi:10.1007/s00122-007-0657-3

Pak H, Guo Y, Chen M, Chen K, Li Y, Hua S, Shamsi I, Meng H, Shi C, Jiang L (2009) The effect of exogenous methyl jasmonate on the flowering time, floral organ morphology, and transcript levels of a group of genes implicated in the development of oilseed rape flowers (Brassica napus L.). Planta 231 (1):79-91. doi:10.1007/s00425-009- 1029-9

Bohuon EJ, Ramsay LD, Craft JA, Arthur AE, Marshall DF, Lydiate DJ, Kearsey MJ (1998) The association of flowering time quantitative trait loci with duplicated regions and candidate loci in Brassica oleracea. Genetics 150 (1):393-401

Rae AM, Howell EC, Kearsey MJ (1999) More QTL for flowering time revealed by substitution lines in Brassica oleracea. Heredity 83 (Pt 5):586-596 Williams JL, Conner JK (2001) Sources of phenotypic variation in floral traits in wild radish, Raphanus raphanistrum (Brassicaceae). Am J Bot 88 (9):1577-1581

Li Z-M, Zhang J-Z, Mei L, Deng X-X, Hu C-G, Yao J-L (2010) PtSVP, an SVP homolog from trifoliate orange (Poncirus trifoliata L. Raf.), shows seasonal periodicity of meristem determination and affects flower development in transgenic Arabidopsis and tobacco plants. Plant Mol Biol 74 (1-2):129-142. doi:10.1007/s11103-010-9660-1

Xu J, Zhong X, Zhang Q, Li H (2010) Overexpression of the GmGAL2 Gene Accelerates Flowering in Arabidopsis. Plant Mol Biol Report 28 (4):704-711. doi:10.1007/s11105- 010-0201-5

Smith HMS, Ung N, Lal S, Courtier J (2011) Specification of reproductive meristems requires the combined function of SHOOT MERISTEMLESS and floral integrators FLOWERING LOCUS T and FD during Arabidopsis inflorescence development. J Exp Bot 62 (2):583-593. doi:10.1093/jxb/erq296

Shen L, Kang YGG, Liu L, Yu H (2011) The J-Domain Protein J3 Mediates the Integration of Flowering Signals in Arabidopsis. Plant Cell 23 (2):499-514. doi:10.1105/tpc.111.083048

Marin IC, Loef I, Bartetzko L, Searle I, Coupland G, Stitt M, Osuna D (2011) Nitrate regulates floral induction in Arabidopsis, acting independently of light, gibberellin and autonomous pathways. Planta 233 (3):539-552. doi:10.1007/s00425-010-1316-5

Deng W, Ying H, Helliwell CA, Taylor JM, Peacock WJ, Dennis ES (2011) FLOWERING LOCUS C (FLC) regulates development pathways throughout the life cycle of Arabidopsis. Proc Natl Acad Sci U S A 108 (16):6680-6685. doi:10.1073/pnas.1103175108

Long Y, Shi J, Qiu D, Li R, Zhang C, Wang J, Hou J, Zhao J, Shi L, Park B-S, Choi SR, Lim YP, Meng J (2007) Flowering time quantitative trait loci analysis of oilseed Brassica in multiple environments and genomewide alignment with Arabidopsis. Genetics 177 (4):2433-2444. doi:10.1531/genetics.107.080705

Tapia-Lopez R, Garcia-Ponce B, Dubrovsky JG, Garay-Arroyo A, Perez-Ruiz RV, Kim S-H, Acevedo F, Pelaz S, Alvarez-Buylla ER (2008) An AGAMOUS-related MADS-box gene, XAL1 (AGL12), regulates root meristem cell proliferation and flowering transition in Arabidopsis. Plant Physiol 146 (3):1182-1192. doi:10.1104/pp.107.108647

Liu L-J, Zhang Y-C, Li Q-H, Sang Y, Mao J, Lian H-L, Wang L, Yang H-Q (2008) COP1-mediated ubiquitination of CONSTANS is implicated in cryptochrome regulation of flowering in Arabidopsis. Plant Cell 20 (2):292-306. doi:10.1105/tpc.107.057281

Liu C, Chen H, Er HL, Soo HM, Kumar PP, Han J-H, Liou YC, Yu H (2008) Direct interaction of AGL24 and SOC1 integrates flowering signals in Arabidopsis. Development 135 (8):1481-1491. doi:10.1242/dev.020255

Baek I-S, Park H-Y, You MK, Lee JH, Kim J-K (2008) Functional Conservation and Divergence of FVE Genes that Control Flowering Time and Cold Response in Rice and Arabidopsis. Mol Cells 26 (4):368-372 Wang AX, Wang DY (2009) Regulation of the ALBINO3-mediated transition to flowering in Arabidopsis depends on the expression of CO and GA1. Biol Plant 53 (3):484-492. doi:10.1007/s10535-009-0089-9

Kim J-g, Baek S-A, Im K-H (2009) Overexpression of a Kunitz-type trypsin inhibitor (AtKTI1) causes early flowering in Arabidopsis. Plant Growth Regul 59 (1):75-81. doi:10.1007/s10725-009-9389-5

Yan Z, Liang D, Liu H, Zheng G (2010) FLC: A key regulator of flowering time in Arabidopsis. Russ J Plant Physiol 57 (2):166-174. doi:10.1134/s1021443710020020

Wang Y, Liu C, Yang D, Yu H, Liou Y-C (2010) Pin1At Encoding a Peptidyl-Prolyl cis/trans Isomerase Regulates Flowering Time in Arabidopsis. Mol Cell 37 (1):112-122. doi:10.1016/j.molcel.2009.12.020

Corbesier L, Coupland G (2005) Photoperiodic flowering of Arabidopsis: integrating genetic and physiological approaches to characterization of the floral stimulus. Plant Cell Environ 28 (1):54-66. doi:10.1111/j.1365-3040.2005.01283.x

Sreekantan L, Thomas MR (2006) VvFT and VvMADS8, the grapevine homologues of the floral integrators FT and SOC1, have unique expression patterns in grapevine and hasten flowering in Arabidopsis. Funct Plant Biol 33 (12):1129-1139. doi:10.1071/fp06144

Marquardt S, Boss PK, Hadfield J, Dean C (2006) Additional targets of the Arabidopsis autonomous pathway members, FCA and FY. J Exp Bot 57 (13):3379-3386. doi:10.1093/jxb/erl073

Zhang SZ, Zuo JR (2006) Advance in the flowering time control of Arabidopsis. Progress in Biochemistry and Biophysics 33 (4):301-309

Kim S-Y, Park B-S, Kwon S-J, Kim J, Lim M-H, Park Y-D, Kim DY, Suh S-C, Jin Y-M, Ahn JH, Lee Y-H (2007) Delayed flowering time in Arabidopsis and Brassica rapa by the overexpression of FLOWERING LOCUS C (FLC) homologs isolated from Chinese cabbage (Brassica rapa L. ssp pekinensis). Plant Cell Rep 26 (3):327-336. doi:10.1007/s00299-006-0243-1

Deal RB, Topp CN, McKinney EC, Meagher RB (2007) Repression of flowering in Arabidopsis requires activation of FLOWERING LOCUS C expression by the histone variant H2A.Z. Plant Cell 19 (1):74-83. doi:10.1105/tpc.106.048447

Ciannamea S, Jensen CS, Agerskov H, Petersen K, Lenk I, Didion T, Immink RGH, Angenent GC, Nielsen KK (2007) A new member of the LIR gene family from perennial ryegrass is cold-responsive, and promotes vegetative growth in Arabidopsis. Plant Sci 172 (2):221-227. doi:10.1016/j.plantsci.2006.08.011

Park BS, Sang WG, Yeu SY, Do Choi Y, Paek N-C, Kim MC, Song JT, Seo HS (2007) Post-translational regulation of FLC is mediated by an E3 ubiquitin ligase activity of SINAT5 in Arabidopsis. Plant Sci 173 (2):269-275. doi:10.1016/j.plantsci.2007.06.001

Araki T, Kobayashi Y, Kaya H, Iwabuchi M (1998) The flowering-time gene FT and regulation of flowering in Arabidopsis. J Plant Res 111 (1102):277-281. doi:10.1007/bf02512184 Yu TS, Lue WL, Wang SM, Chen JC (2000) Mutation of Arabidopsis plastid phosphoglucose isomerase affects leaf starch synthesis and floral initiation. Plant Physiol 123 (1):319-325. doi:10.1104/pp.123.1.319

Lee H, Suh SS, Park E, Cho E, Ahn JH, Kim SG, Lee JS, Kwon YM, Lee I (2000) The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis. Genes Dev 14 (18):2366-2376. doi:10.1101/gad.813600

Moon YH, Chen LJ, Pan RL, Chang HS, Zhu T, Maffeo DM, Sung ZR (2003) EMF genes maintain vegetative development by repressing the flower program in Arabidopsis. Plant Cell 15 (3):681-693. doi:10.1105/tpc.007831

Pouteau S, Ferret V, Gaudin V, Lefebvre D, Sabar M, Zhao GC, Prunus F (2004) Extensive phenotypic variation in early flowering mutants of Arabidopsis. Plant Physiol 135 (1):201-211. doi:10.1104/pp.104.039453

Mockler TC, Yu XH, Shalitin D, Parikh D, Michael TP, Liou J, Huang J, Smith Z, Alonso JM, Ecker JR, Chory J, Lin CT (2004) Regulation of flowering time in Arabidopsis by K homology domain proteins. Proc Natl Acad Sci U S A 101 (34):12759-12764. doi:10.1073/pnas.0404552101

Levey S, Wingler A (2005) Natural variation in the regulation of leaf senescence and relation to other traits in Arabidopsis. Plant Cell Environ 28 (2):223-231. doi:10.1111/j.1365-3040.2004.01266.x

D’Aloia M, Bonhomme D, Bouché F, Tamseddak K, Ormenese S, Torti S, Coupland G, Périlleux C (2011) Cytokinin promotes flowering of Arabidopsis via transcriptional activation of the FT paralogue TSF. Plant J 65 (6):972-979. doi:10.1111/j.1365- 313X.2011.04482.x

Schultz EA, Haughn GW (1993) Genetic analysis of the floral initiation process (FLIP) in Arabidopsis. Development 119 (3):745-765

Okada K, Shimura Y (1994) Genetic analyses of signaling in flower development using Arabidopsis. Plant Mol Biol 26 (5):1357-1377. doi:10.1007/bf00016480

Coupland G (1995) Regulation of flowering time - Arabidopsis as a model system to study genes that promote or delay flowering. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 350 (1331):27-34. doi:10.1098/rstb.1995.0133

Madueno F, RuizGarcia L, Salinas J, MartinezZapater JM (1996) Genetic interactions that promote the floral transition in Arabidopsis. Semin Cell Dev Biol 7 (3):401-407. doi:10.1006/scdb.1996.0050

Hicks KA, Sundas A, MeeksWagner DR (1996) Arabidopsis early-flowering mutants reveal multiple levels of regulation in the vegetative-to-floral transition. Semin Cell Dev Biol 7 (3):409-418. doi:10.1006/scdb.1996.0051

Aukerman MJ, Amasino RM (1996) Molecular genetic analysis of flowering time in Arabidopsis. Semin Cell Dev Biol 7 (3):427-433. doi:10.1006/scdb.1996.0053 Koornneef M, Peeters AJM (1997) Floral transition mutants in Arabidopsis. Plant Cell Environ 20 (6):779-784. doi:10.1046/j.1365-3040.1997.d01-122.x

Kieffer M, Master V, Waites R, Davies B (2011) TCP14 and TCP15 affect internode length and leaf shape in Arabidopsis. Plant J:no-no. doi:10.1111/j.1365- 313X.2011.04674.x

Vasseur F, Pantin F, Vile D (2011) Changes in light intensity reveal a major role for carbon balance in Arabidopsis responses to high temperature. Plant, Cell & Environment:no-no. doi:10.1111/j.1365-3040.2011.02353.x

Lei G, Shen M, Li Z-G, Zhang BO, Duan K-X, Wang N, Cao Y-R, Zhang W-K, Ma B, Ling H-Q, Chen S-Y, Zhang J-S (2011) EIN2 regulates salt stress response and interacts with a MA3 domain-containing protein ECIP1 in Arabidopsis. Plant, Cell & Environment:no-no. doi:10.1111/j.1365-3040.2011.02363.x

Fitzpatrick AH, Bhandari J, Crowell DN (2011) Farnesol kinase is involved in farnesol metabolism, ABA signaling and flower development in Arabidopsis. Plant J 66 (6):1078- 1088. doi:10.1111/j.1365-313X.2011.04572.x

Laluk K, Mengiste T (2011) The Arabidopsis extracellular UNUSUAL SERINE PROTEASE INHIBITOR functions in resistance to necrotrophic fungi and insect herbivory. Plant J:no-no. doi:10.1111/j.1365-313X.2011.04702.x

Peña-Castro JM, van Zanten M, Lee SC, Patel MR, Voesenek LAJC, Fukao T, Bailey- Serres J (2011) Expression of rice SUB1A and SUB1C transcription factors in Arabidopsis uncovers flowering inhibition as a submergence tolerance mechanism. Plant J 67 (3):434-446. doi:10.1111/j.1365-313X.2011.04605.x

Chen M-K, Hsu W-H, Lee P-F, Thiruvengadam M, Chen H-I, Yang C-H (2011) The MADS box gene, FOREVER YOUNG FLOWER, acts as a repressor controlling floral organ senescence and abscission in Arabidopsis. Plant J:no-no. doi:10.1111/j.1365- 313X.2011.04677.x

Anderson JT, Lee C-R, Mitchell-Olds T (2011) Life-history QTLs and natural selection on flowering time in Boechera stricta, a perennial relative of Arabidopsis. Evolution 65 (3):771-787. doi:10.1111/j.1558-5646.2010.01175.x

Giancola S, Marhadour S, Desloire S, Clouet V, Falentin-Guyomarc'h H, Laloui W, Falentin C, Pelletier G, Renard M, Bendahmane A, Delourme R, Budar F (2003) Characterization of a radish introgression carrying the Ogura fertility restorer gene Rfo in rapeseed, using the Arabidopsis genome sequence and radish genetic mapping. Theor Appl Genet 107 (8):1442-1451. doi:10.1007/s00122-003-1381-2

Skinner J, Szucs P, von Zitzewitz J, Marquez-Cedillo L, Filichkin T, Stockinger EJ, Thomashow MF, Chen THH, Hayes PM (2006) Mapping of barley homologs to genes that regulate low temperature tolerance in Arabidopsis. Theor Appl Genet 112 (5):832- 842. doi:10.1007/s00122-005-0185-y van der Valk P, Proveniers MCG, Pertijs JH, Lamers J, van Dun CMP, Smeekens JCM (2004) Late heading of perennial ryegrass caused by introducing an Arabidopsis homeobox gene. Plant Breed 123 (6):531-535. doi:10.1111/j.1439-0523.2004.01026.x Ashtiyani RK, Moghaddam AMB, Schubert V, Rutten T, Fuchs J, Demidov D, Blattner FR, Houben A (2011) AtHaspin phosphorylates histone H3 at threonine 3 during mitosis and contributes to embryonic patterning in Arabidopsis. Plant J:no-no. doi:10.1111/j.1365-313X.2011.04699.x

Zhou Z-Y, Zhang C-G, Wu L, Zhang C-G, Chai J, Wang M, Jha A, Jia P-F, Cui S-J, Yang M, Chen R, Guo G-Q (2011) Functional characterization of the CKRC1/TAA1 gene and dissection of hormonal actions in the Arabidopsis root. Plant J 66 (3):516-527. doi:10.1111/j.1365-313X.2011.04509.x

Zhang Y, Zhang B, Yan D, Dong W, Yang W, Li Q, Zeng L, Wang J, Wang L, Hicks LM, He Z (2011) Two Arabidopsis cytochrome P450 monooxygenases, CYP714A1 and CYP714A2, function redundantly in plant development through gibberellin deactivation. Plant J 67 (2):342-353. doi:10.1111/j.1365-313X.2011.04596.x

Zeng Q, Chen J-G, Ellis BE (2011) AtMPK4 is required for male-specific meiotic cytokinesis in Arabidopsis. Plant J:no-no. doi:10.1111/j.1365-313X.2011.04642.x

Kumar SV, Wigge PA (2010) H2A.Z-Containing Nucleosomes Mediate the Thermosensory Response in Arabidopsis. Cell 140 (1):136-147. doi:10.1016/j.cell.2009.11.006

Yanovsky MJ, Kay SA (2002) Molecular basis of seasonal time measurement in Arabidopsis. Nature 419 (6904):308-312. doi:10.1038/nature00996

Shalitin D, Yang HY, Mockler TC, Maymon M, Guo HW, Whitelam GC, Lin CT (2002) Regulation of Arabidopsis cryptochrome 2 by blue-light-dependent phosphorylation. Nature 417 (6890):763-767. doi:10.1038/nature00815

Bradley D, Ratcliffe O, Vincent C, Carpenter R, Coen E (1997) Inflorescence commitment and architecture in Arabidopsis. Science 275 (5296):80-83. doi:10.1126/science.275.5296.80

Devlin PF, Kay SA (2000) Plant biology - Flower arranging in Arabidopsis. Science 288 (5471):1600-1602. doi:10.1126/science.288.5471.1600

Liu F, Marquardt S, Lister C, Swiezewski S, Dean C (2010) Targeted 3 ' Processing of Antisense Transcripts Triggers Arabidopsis FLC Chromatin Silencing. Science 327 (5961):94-97. doi:10.1126/science.1180278

Yang HQ, Wu YJ, Tang RH, Liu DM, Liu Y, Cashmore AR (2000) The C termini of Arabidopsis cryptochromes mediate a constitutive light response. Cell 103 (5):815-827. doi:10.1016/s0092-8674(00)00184-7

Shindo C, Lister C, Crevillen P, Nordborg M, Dean C (2006) Variation in the epigenetic silencing of FLC contributes to natural variation in Arabidopsis vernalization response. Genes Dev 20 (22):3079-3083. doi:20/22/3079 [pii] 10.1101/gad.405306

Seo E, Lee H, Jeon J, Park H, Kim J, Noh YS, Lee I (2009) Crosstalk between cold response and flowering in Arabidopsis is mediated through the flowering-time gene SOC1 and its upstream negative regulator FLC. Plant Cell 21 (10):3185-3197. doi:tpc.108.063883 [pii] 10.1105/tpc.108.063883 Segarra S, Mir R, Martínez C, León J (2010) Genome-wide analyses of the transcriptomes of salicylic acid-deficient versus wild-type plants uncover Pathogen and Circadian Controlled 1 (PCC1) as a regulator of flowering time in Arabidopsis. Plant Cell Environ 33 (1):11-22. doi:PCE2045 [pii] 10.1111/j.1365-3040.2009.02045.x

Robinson SJ, Parkin IA (2008) Differential SAGE analysis in Arabidopsis uncovers increased transcriptome complexity in response to low temperature. BMC Genomics 9:434. doi:1471-2164-9-434 [pii] 10.1186/1471-2164-9-434

He YK, Tang RH, Hao Y, Stevens RD, Cook CW, Am SM, Jing LF, Yang ZG, Chen LG, Guo FQ, Fiorani F, Jackson RB, Crawford NM, Pei ZM (2004) Nitric oxide represses the Arabidopsis floral transition. Science 305 (5692):1968-1971. doi:10.1126/science.1098837

Sung ZR, Belachew A, Shunong B, Bertrandgarcia R (1992) EMF, an Arabidopsis gene required for vegetative shoot development. Science 258 (5088):1645-1647. doi:10.1126/science.258.5088.1645

Salome PA, Xie Q, McClung CR (2008) Circadian timekeeping during early Arabidopsis development. Plant Physiol 147 (3):1110-1125. doi:10.1104/pp.108.117622

Lin R-C, Park H-J, Wang H-Y (2008) Role of Arabidopsis RAP2.4 in regulating light- and ethylene-mediated developmental processes and drought stress tolerance. Mol Plant 1 (1):42-57. doi:10.1093/mp/ssm004

Kuittinen H, Niittyvuopio A, Rinne P, Savolainen O (2008) Natural variation in Arabidopsis lyrata vernalization requirement conferred by a FRIGIDA indel polymorphism. Mol Biol Evol 25 (2):319-329. doi:10.1093/molbev/msm257

Kim S-G, Kim S-Y, Park C-M (2007) A membrane-associated NAC transcription factor regulates salt-responsive flowering via FLOWERING LOCUS T in Arabidopsis. Planta 226 (3):647-654. doi:10.1007/s00425-007-0513-3

Kim J, Kim Y, Yeom M, Kim J-H, Nam HG (2008) FIONA1 is essential for regulating period length in the Arabidopsis circadian clock. Plant Cell 20 (2):307-319. doi:10.1105/tpc.107.055715

Laubinger S, Marchal V, Gentilhomme J, Wenkel S, Adrian J, Jang S, Kulajta C, Braun H, Coupland G, Hoecker U (2006) Arabidopsis SPA proteins regulate photoperiodic flowering and interact with the floral inducer CONSTANS to regulate its stability. Development 133 (16):3213-3222. doi:10.1242/dev.02481

Yamashino T, Ito S, Niwa Y, Kunihiro A, Nakamichi N, Mizuno T (2008) Involvement of Arabidopsis Clock-Associated Pseudo-Response Regulators in Diurnal Oscillations of Gene Expression in the Presence of Environmental Time Cues. Plant Cell Physiol 49 (12):1839-1850. doi:10.1093/pcp/pcn165

King RW, Hisamatsu T, Goldschmidt EE, Blundell C (2008) The nature of floral signals in Arabidopsis. I. Photosynthesis and a far-red photoresponse independently regulate flowering by increasing expression of FLOWERING LOCUS T (FT). J Exp Bot 59 (14):3811-3820. doi:10.1093/jxb/ern231 Hisamatsu T, King RW (2008) The nature of floral signals in Arabidopsis. II. Roles for FLOWERING LOCUS T (FT) and gibberellin. J Exp Bot 59 (14):3821-3829. doi:10.1093/jxb/ern232

Filiault DL, Wessinger CA, Dinneny JR, Lutes J, Borevitz JO, Weigel D, Chory J, Maloof JN (2008) Amino acid polymorphisms in Arabidopsis phytochrome B cause differential responses to light. Proc Natl Acad Sci U S A 105 (8):3157-3162. doi:10.1073/pnas.0712174105

Ikeda Y, Kobayashi Y, Yamaguchi A, Abe M, Araki T (2007) Molecular basis of late- flowering phenotype caused by dominant epi-alleles of the FWA locus in Arabidopsis. Plant Cell Physiol 48 (2):205-220. doi:10.1093/pcp/pcl061

Deng WW (2007) Involvement of the histone acetyltransferase AtHAC1 in the regulation of flowering time via repression of FLOWERING LOCUS C in Arabidopsis (vol 143, pg 1660, 2007). Plant Physiol 144 (2):1233-1233

Chen N-Z, Zhang X-Q, Wei P-C, Chen Q-J, Ren F, Chen J, Wang X-C (2007) AtHAP3b plays a crucial role in the regulation of flowering time in Arabidopsis during osmotic stress. J Biochem Mol Biol 40 (6):1083-1089

Al Khateeb WM, Scbroeder DF (2007) DDB2, DDB1A and DET1 exhibit complex interactions during Arabidopsis development. Genetics 176 (1):231-242. doi:10.1534/genetics.107.070359

Shindo C, Bernasconi G, Hardtke CS (2007) Natural genetic variation in Arabidopsis: Tools, traits and prospects for evolutionary ecology. Ann Bot 99 (6):1043-1054. doi:10.1093/aob/mcl281

Yang Y-J, Zuo Z-C, Zhao X-Y, Li X, Klejnot J, Li Y, Chen P, Liang S-P, Yu X-H, Liu X- M, Lin C-T (2008) Blue-light-independent activity of Arabidopsis cryptochromes in the regulation of steady-state levels of protein and mRNA expression. Mol Plant 1 (1):167- 177. doi:10.1093/mp/ssm018

Wu J-F, Wang Y, Wu S-H (2008) Two new clock proteins, LWD1 and LWD2, regulate Arabidopsis photoperiodic flowering. Plant Physiol 148 (2):948-959. doi:10.1104/pp.108.124917

Notaguchi M, Daimon Y, Abe M, Araki T (2007) Studies on the graft-transmissibility of promotion of flowering by FT in Arabidopsis. Plant Cell Physiol 48:S113-S113

Zhang X, Germann S, Blus BJ, Khorasanizadeh S, Gaudin V, Jacobsen SE (2007) The Arabidopsis LHP1 protein colocalizes with histone H3 Lys27 trimethylation. Nat Struct Mol Biol 14 (9):869-871. doi:10.1038/nsmb1283

Sivitz AB, Reinders A, Johnson ME, Krentz AD, Grof CPL, Perroux JM, Ward JM (2007) Arabidopsis sucrose transporter AtSUC9. High-affinity transport activity, intragenic control of expression, and early flowering mutant phenotype. Plant Physiol 143 (1):188- 198. doi:10.1104/pp.106.089003

Mimida N, Kidou S-i, Kotoda N (2007) Constitutive expression of two apple (Malus x domestica Borkh.) homolog genes of LIKE HETEROCHROMATIN PROTEIN1 affects flowering time and whole-plant growth in transgenic Arabidopsis. Molecular Genet Genom 278 (3):295-305. doi:10.1007/s00438-007-0250-0

Mathieu J, Warthmann N, Kuettner F, Schmid M (2007) Export of FT protein from phloem companion cells is sufficient for floral induction in Arabidopsis. Curr Biol 17 (12):1055-1060. doi:10.1016/j.cub.2007.05.009

Jung J-H, Park C-M (2007) MIR166/165 genes exhibit dynamic expression patterns in regulating shoot apical meristem and floral development in Arabidopsis. Planta 225 (6):1327-1338. doi:10.1007/s00425-006-0439-1

Jung J-H, Seo Y-H, Seo PJ, Reyes JL, Yun J, Chua N-H, Park C-M (2007) The GIGANTEA-regulated MicroRNA172 mediates photoperiodic flowering independent of CONSTANS in Arabidopsis. Plant Cell 19 (9):2736-2748. doi:10.1105/tpc.107.054528

Greb T, Mylne JS, Crevillen P, Geraldo N, An H, Gendall AR, Dean C (2007) The PHD finger protein VRN5 functions in the epigenetic silencing of Arabidopsis FLC. Curr Biol 17 (1):73-78. doi:10.1016/j.cub.2006.11.052

Endo M, Mochizuki N, Suzuki T, Nagatani A (2007) CRYPTOCHROME2 in vascular bundles regulates flowering in Arabidopsis. Plant Cell 19 (1):84-93. doi:10.1105/tpc.106.048157

Takase T, Tanihigashi H, Fujita S, Kiyosue T (2007) Analysis of flowering time in GFP- LKP2 over-expressing transgenic Arabidopsis plants. Plant Cell Physiol 48:S114-S114

Guan CM, Zhu SS, Li XG, Zhang XS (2006) Hormone-regulated inflorescence induction and TFL1 expression in Arabidopsis callus in vitro. Plant Cell Rep 25 (11):1133-1137. doi:10.1007/s00299-006-0165-y

Xu XM, Rose A, Muthuswamy S, Jeong SY, Venkatakrishnan S, Zhao Q, Meier I (2007) NUCLEAR PORE ANCHOR, the Arabidopsis homolog of Tpr/MIp1/MIp2/megator, is involved in mRNA export and SUMO horneostasis and affects diverse aspects of plant development. Plant Cell 19 (5):1537-1548. doi:10.1105/tpc.106.049239

El-Lithy ME, Bentsink L, Hanhart CJ, Ruys GJ, Rovito DI, Broekhof JLM, van der Poel HJA, van Eijk MJT, Vreugdenhil D, Koornneef M (2006) New Arabidopsis recombinant inbred line populations genotyped using SNPWave and their use for mapping flowering- time quantitative trait loci. Genetics 172 (3):1867-1876. doi:10.1534/genetics.105.050617

Datta S, Hettiarachchi G, Deng XW, Holm M (2006) Arabidopsis CONSTANS-LIKE3 is a positive regulator of red light signaling and root growth. Plant Cell 18 (1):70-84. doi:10.1105/tpc.105.038182

Zheng BL, Deng Y, Mu JY, Ji ZD, Xiang TT, Niu QW, Chua NH, Zuo JR (2006) Cytokinin affects circadian-clock oscillation in a phytochrome B- and Arabidopsis response regulator 4-dependent manner. Physiol Plant 127 (2):277-292. doi:10.1111/j.1399-3054.2006.00660.x

Wang J, Tian L, Lee H-S, Chen ZJ (2006) Nonadditive regulation of FRI and FLC loci mediates flowering-time variation in Arabidopsis allopolyploids. Genetics 173 (2):965- 974. doi:10.1534/genetics.106.056580 Salome PA, To JPC, Kieber JJ, McClung CR (2006) Arabidopsis response regulators ARR3 and ARR4 play cytokinin-independent roles in the control of circadian period. Plant Cell 18 (1):55-69. doi:10.1105/tpc.105.037994

Noh B, Noh YS (2006) Chromatin-mediated regulation of flowering time in Arabidopsis. Physiol Plant 126 (4):484-493. doi:10.1111/j.1399-3054.2006.00639.x

Martin-Trillo M, Larazo A, Poethig RS, Gomez-Mena C, Pineiro MA, Martinez-Zapater JM, Jarillo JA (2006) EARLY IN SHORT DAYS 1 (ESD1) encodes ACTIN-RELATED PROTEIN 6 (AtARP6), a putative component of chromatin remodelling complexes that positively regulates FLC accumulation in Arabidopsis. Development 133 (7):1241-1252. doi:10.1242/dev.02301

Izawa T, Takahashi Y, Yano M (2003) Comparative biology comes into bloom: genomic and genetic comparison of flowering pathways in rice and Arabidopsis. Curr Opin Plant Biol 6 (2):113-120. doi:10.1016/s1369-5266(03)00014-1

Reyes JC, Muro-Pastor MI, Florencio FJ (2004) The GATA family of transcription factors in Arabidopsis and rice. Plant Physiol 134 (4):1718-1732. doi:10.1104/pp.103.037788

Hecht V, Foucher F, Ferrandiz C, Macknight R, Navarro C, Morin J, Vardy ME, Ellis N, Beltran JP, Rameau C, Weller JL (2005) Conservation of Arabidopsis flowering genes in model legumes. Plant Physiol 137 (4):1420-1434. doi:10.1104/pp.104.057018

Chen YH, Yang XY, He K, Liu MH, Li JG, Gao ZF, Lin ZQ, Zhang YF, Wang XX, Qiu XM, Shen YP, Zhang L, Deng XH, Luo JC, Deng XW, Chen ZL, Gu HY, Qu LJ (2006) The MYB transcription factor superfamily of Arabidopsis: Expression analysis and phylogenetic comparison with the rice MYB family. Plant Mol Biol 60 (1):107-124. doi:10.1007/s11103-005-2910-y

Perales M, Mas P (2007) A functional link between rhythmic changes in chromatin structure and the Arabidopsis biological clock. Plant Cell 19 (7):2111-2123. doi:10.1105/tpc.107.050807

Pei Y, Niu L, Lu F, Liu C, Zhai J, Kong X, Cao X (2007) Mutations in the Type II Protein Arginine Methyltransferase AtPRMT5 Result in Pleiotropic Developmental Defects in Arabidopsis. Plant Physiol 144:1913-1923

Allnutt GV, Rogers HJ, Francis D, Herbert RJ (2007) A LEAFY-like gene in the long-day plant, Silene coeli-rosa is dramatically up-regulated in evoked shoot apical meristems but does not complement the Arabidopsis lfy mutant. J Exp Bot 58 (8):2249-2259. doi:10.1093/jxb/erm090

Darrah C, Taylor BL, Edwards KD, Brown PE, Hall A, McWatters HG (2006) Analysis of phase of LUCIFERASE expression reveals novel circadian quantitative trait loci in Arabidopsis. Plant Physiol 140 (4):1464-1474. doi:10.1104/pp.105.074518

Wang W, Yang D, Feldmann KA (2011) EFO1 and EFO2, encoding putative WD-domain proteins, have overlapping and distinct roles in the regulation of vegetative development and flowering of Arabidopsis. J Exp Bot 62 (3):1077-1088. doi:10.1093/jxb/erq336 Dixon LE, Knox K, Kozma-Bognar L, Southern MM, Pokhilko A, Millar AJ (2011) Temporal repression of core circadian genes is mediated through EARLY FLOWERING 3 in Arabidopsis. Curr Biol 21 (2):120-125. doi:10.1016/j.cub.2010.12.013

Niinuma K, Nakamichi N, Miyata K, Mizuno T, Kamada H, Mizoguchi T (2008) Roles of Arabidopsis PSEUDO-RESPONSE REGULATOR (PRR) genes in the opposite controls of flowering time and organ elongation under long-day and continuous light conditions. Plant Biotechnol 25 (2):165-172

Coupland G, Mizoguchi T, Wright L, Fujiwara S, Cremer F, Lee K, Onouchi H, Mouradov A, Fowler S, Kamada H, Putterill J (2005) Distinct roles of GIGANTEA in promoting flowering and regulating circadian rhythms in Arabidopsis. Plant Cell 17 (8):2255-2270. doi:10.1105/tpc.105.033464

Kay SA, Strayer C, Oyama T, Schultz TF, Raman R, Somers DE, Mas P, Panda S, Kreps JA (2000) Cloning of the Arabidopsis clock cone TOC1, an autoregulatory response regulator homolog. Science 289 (5480):768-771

Kay SA, Alabadi D, Oyama T, Yanovsky MJ, Harmon FG, Mas P (2001) Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science 293 (5531):880-883

Kay SA, Mas P, Alabadi D, Yanovsky MJ, Oyama T (2003) Dual role of TOC1 in the control of circadian and photomorphogenic responses in Arabidopsis. Plant Cell 15 (1):223-236. doi:10.1105/tpc.006734

Nah G, Jeffrey Chen Z (2010) Tandem duplication of the FLC locus and the origin of a new gene in Arabidopsis related species and their functional implications in allopolyploids. New Phytol 186 (1):228-238. doi:10.1111/j.1469-8137.2009.03164.x

Lu F, Cui X, Zhang S, Liu C, Cao X (2010) JMJ14 is an H3K4 demethylase regulating flowering time in Arabidopsis. Cell Res 20 (3):387-390. doi:10.1038/cr.2010.27 van den Burg HA, Kini RK, Schuurink RC, Takken FL (2010) Arabidopsis small ubiquitin-like modifier paralogs have distinct functions in development and defense. Plant Cell 22 (6):1998-2016. doi:10.1105/tpc.109.070961

Aikawa S, Kobayashi MJ, Satake A, Shimizu KK, Kudoh H (2010) Robust control of the seasonal expression of the Arabidopsis FLC gene in a fluctuating environment. Proc Natl Acad Sci U S A 107 (25):11632-11637. doi:10.1073/pnas.0914293107

Dalchau N, Hubbard KE, Robertson FC, Hotta CT, Briggs HM, Stan GB, Goncalves JM, Webb AA (2010) Correct biological timing in Arabidopsis requires multiple light- signaling pathways. Proc Natl Acad Sci U S A 107 (29):13171-13176. doi:10.1073/pnas.1001429107

Xu H, Chen LJ, Qu LJ, Gu HY, Li DZ (2010) Functional conservation of the plant EMBRYONIC FLOWER2 gene between bamboo and Arabidopsis. Biotechnol Lett 32 (12):1961-1968. doi:10.1007/s10529-010-0362-1

Spensley M, Kim JY, Picot E, Reid J, Ott S, Helliwell C, Carre IA (2009) Evolutionarily conserved regulatory motifs in the promoter of the Arabidopsis clock gene LATE ELONGATED HYPOCOTYL. Plant Cell 21 (9):2606-2623. doi:10.1105/tpc.109.069898 Sanchez R, Kim MY, Calonje M, Moon YH, Sung ZR (2009) Temporal and spatial requirement of EMF1 activity for Arabidopsis vegetative and reproductive development. Mol Plant 2 (4):643-653. doi:10.1093/mp/ssp004

Imaizumi T (2010) Arabidopsis circadian clock and photoperiodism: time to think about location. Curr Opin Plant Biol 13 (1):83-89. doi:10.1016/j.pbi.2009.09.007

Chen H, Huang X, Gusmaroli G, Terzaghi W, Lau OS, Yanagawa Y, Zhang Y, Li J, Lee JH, Zhu D, Deng XW (2010) Arabidopsis CULLIN4-damaged DNA binding protein 1 interacts with CONSTITUTIVELY PHOTOMORPHOGENIC1-SUPPRESSOR OF PHYA complexes to regulate photomorphogenesis and flowering time. Plant Cell 22 (1):108-123. doi:10.1105/tpc.109.065490

Thines B, Harmon FG (2010) Ambient temperature response establishes ELF3 as a required component of the core Arabidopsis circadian clock. Proc Natl Acad Sci U S A 107 (7):3257-3262. doi:10.1073/pnas.0911006107

Yu X, Li L, Guo M, Chory J, Yin Y (2008) Modulation of brassinosteroid-regulated gene expression by Jumonji domain-containing proteins ELF6 and REF6 in Arabidopsis. Proc Natl Acad Sci U S A 105 (21):7618-7623. doi:10.1073/pnas.0802254105

Jang YH, Lee JH, Kim JK (2008) Abscisic acid does not disrupt either the Arabidopsis FCA-FY interaction or its rice counterpart in vitro. Plant Cell Physiol 49 (12):1898-1901. doi:10.1093/pcp/pcn151

Ito S, Kawamura H, Niwa Y, Nakamichi N, Yamashino T, Mizuno T (2009) A genetic study of the Arabidopsis circadian clock with reference to the TIMING OF CAB EXPRESSION 1 (TOC1) gene. Plant Cell Physiol 50 (2):290-303. doi:10.1093/pcp/pcn198

Nakaminami K, Hill K, Perry SE, Sentoku N, Long JA, Karlson DT (2009) Arabidopsis cold shock domain proteins: relationships to floral and silique development. J Exp Bot 60 (3):1047-1062. doi:10.1093/jxb/ern351

Clack T, Shokry A, Moffet M, Liu P, Faul M, Sharrock RA (2009) Obligate heterodimerization of Arabidopsis phytochromes C and E and interaction with the PIF3 basic helix-loop-helix transcription factor. Plant Cell 21 (3):786-799. doi:10.1105/tpc.108.065227

Song HR, Song JD, Cho JN, Amasino RM, Noh B, Noh YS (2009) The RNA binding protein ELF9 directly reduces SUPPRESSOR OF OVEREXPRESSION OF CO1 transcript levels in Arabidopsis, possibly via nonsense-mediated mRNA decay. Plant Cell 21 (4):1195-1211. doi:10.1105/tpc.108.064774

Manzano D, Marquardt S, Jones AM, Baurle I, Liu F, Dean C (2009) Altered interactions within FY/AtCPSF complexes required for Arabidopsis FCA-mediated chromatin silencing. Proc Natl Acad Sci U S A 106 (21):8772-8777. doi:10.1073/pnas.0903444106

Tong Z, Hong B, Yang Y, Li Q, Ma N, Ma C, Gao J (2009) Overexpression of two chrysanthemum DgDREB1 group genes causing delayed flowering or dwarfism in Arabidopsis. Plant Mol Biol 71 (1-2):115-129. doi:10.1007/s11103-009-9513-y Eriksson S, Bohlenius H, Moritz T, Nilsson O (2006) GA4 is the active gibberellin in the regulation of LEAFY transcription and Arabidopsis floral initiation. Plant Cell 18 (9):2172-2181. doi:10.1105/tpc.106.042317

Keurentjes JJ, Fu J, Terpstra IR, Garcia JM, van den Ackerveken G, Snoek LB, Peeters AJ, Vreugdenhil D, Koornneef M, Jansen RC (2007) Regulatory network construction in Arabidopsis by using genome-wide gene expression quantitative trait loci. Proc Natl Acad Sci U S A 104 (5):1708-1713. doi:10.1073/pnas.0610429104

Willige BC, Ghosh S, Nill C, Zourelidou M, Dohmann EM, Maier A, Schwechheimer C (2007) The DELLA domain of GA INSENSITIVE mediates the interaction with the GA INSENSITIVE DWARF1A gibberellin receptor of Arabidopsis. Plant Cell 19 (4):1209- 1220. doi:10.1105/tpc.107.051441

Liu F, Quesada V, Crevillen P, Baurle I, Swiezewski S, Dean C (2007) The Arabidopsis RNA-binding protein FCA requires a lysine-specific demethylase 1 homolog to downregulate FLC. Mol Cell 28 (3):398-407. doi:10.1016/j.molcel.2007.10.018

Rueda EC, Dezar CA, Gonzalez DH, Chan RL (2005) Hahb-10, a sunflower homeobox- leucine zipper gene, is regulated by light quality and quantity, and promotes early flowering when expressed in Arabidopsis. Plant Cell Physiol 46 (12):1954-1963. doi:10.1093/pcp/pci210

Cao S, Ye M, Jiang S (2005) Involvement of GIGANTEA gene in the regulation of the cold stress response in Arabidopsis. Plant Cell Rep 24 (11):683-690. doi:10.1007/s00299- 005-0061-x

Lee JH, Cho YS, Yoon HS, Suh MC, Moon J, Lee I, Weigel D, Yun CH, Kim JK (2005) Conservation and divergence of FCA function between Arabidopsis and rice. Plant Mol Biol 58 (6):823-838. doi:10.1007/s11103-005-8105-8

Edwards KD, Anderson PE, Hall A, Salathia NS, Locke JC, Lynn JR, Straume M, Smith JQ, Millar AJ (2006) FLOWERING LOCUS C mediates natural variation in the high- temperature response of the Arabidopsis circadian clock. Plant Cell 18 (3):639-650. doi:10.1105/tpc.105.038315

David KM, Armbruster U, Tama N, Putterill J (2006) Arabidopsis GIGANTEA protein is post-transcriptionally regulated by light and dark. FEBS Lett 580 (5):1193-1197. doi:10.1016/j.febslet.2006.01.016

Noh B, Lee SH, Kim HJ, Yi G, Shin EA, Lee M, Jung KJ, Doyle MR, Amasino RM, Noh YS (2004) Divergent roles of a pair of homologous jumonji/zinc-finger-class transcription factor proteins in the regulation of Arabidopsis flowering time. Plant Cell 16 (10):2601- 2613. doi:10.1105/tpc.104.025353

Kim JH, Durrett TP, Last RL, Jander G (2004) Characterization of the Arabidopsis TU8 glucosinolate mutation, an allele of TERMINAL FLOWER2. Plant Mol Biol 54 (5):671- 682. doi:10.1023/b:plan.0000040897.49151.98

Caicedo AL, Stinchcombe JR, Olsen KM, Schmitt J, Purugganan MD (2004) Epistatic interaction between Arabidopsis FRI and FLC flowering time genes generates a latitudinal cline in a life history trait. Proc Natl Acad Sci U S A 101 (44):15670-15675. doi:10.1073/pnas.0406232101 Moon J, Lee H, Kim M, Lee I (2005) Analysis of flowering pathway integrators in Arabidopsis. Plant Cell Physiol 46 (2):292-299. doi:10.1093/pcp/pci024

Riihimaki M, Podolsky R, Kuittinen H, Koelewijn H, Savolainen O (2005) Studying genetics of adaptive variation in model organisms: flowering time variation in Arabidopsis lyrata. Genetica 123 (1-2):63-74

Salehi H, Ransom CB, Oraby HF, Seddighi Z, Sticklen MB (2005) Delay in flowering and increase in biomass of transgenic tobacco expressing the Arabidopsis floral repressor gene FLOWERING LOCUS C. J Plant Physiol 162 (6):711-717

Hu W, Wang Y, Bowers C, Ma H (2003) Isolation, sequence analysis, and expression studies of florally expressed cDNAs in Arabidopsis. Plant Mol Biol 53 (4):545-563. doi:10.1023/b:plan.0000019063.18097.62

Sreekantan L, Clemens J, McKenzie MJ, Lenton JR, Croker SJ, Jameson PE (2004) Flowering genes in Metrosideros fit a broad herbaceous model encompassing Arabidopsis and Antirrhinum. Physiol Plant 121 (1):163-173. doi:10.1111/j.0031-9317.2004.00304.x

Nakagawa M, Komeda Y (2004) Flowering of Arabidopsis cop1 mutants in darkness. Plant Cell Physiol 45 (4):398-406

Finnegan EJ, Sheldon CC, Jardinaud F, Peacock WJ, Dennis ES (2004) A cluster of Arabidopsis genes with a coordinate response to an environmental stimulus. Curr Biol 14 (10):911-916. doi:10.1016/j.cub.2004.04.045

Riihimaki M, Savolainen O (2004) Environmental and genetic effects on flowering differences between northern and southern populations of Arabidopsis lyrata (Brassicaceae). Am J Bot 91 (7):1036-1045. doi:10.3732/ajb.91.7.1036

Olsen KM, Halldorsdottir SS, Stinchcombe JR, Weinig C, Schmitt J, Purugganan MD (2004) Linkage disequilibrium mapping of Arabidopsis CRY2 flowering time alleles. Genetics 167 (3):1361-1369. doi:10.1534/genetics.103.024950

Henderson IR, Dean C (2004) Control of Arabidopsis flowering: the chill before the bloom. Development 131 (16):3829-3838. doi:10.1242/dev.01294

Hennig L, Taranto P, Walser M, Schonrock N, Gruissem W (2003) Arabidopsis MSI1 is required for epigenetic maintenance of reproductive development. Development 130 (12):2555-2565

Michaels SD, He Y, Scortecci KC, Amasino RM (2003) Attenuation of FLOWERING LOCUS C activity as a mechanism for the evolution of summer-annual flowering behavior in Arabidopsis. Proc Natl Acad Sci U S A 100 (17):10102-10107. doi:10.1073/pnas.1531467100

Suh SS, Choi KR, Lee I (2003) Revisiting phase transition during flowering in Arabidopsis. Plant Cell Physiol 44 (8):836-843

Wang Y, Henriksson E, Soderman E, Henriksson KN, Sundberg E, Engstrom P (2003) The Arabidopsis homeobox gene, ATHB16, regulates leaf development and the sensitivity to photoperiod in Arabidopsis. Dev Biol 264 (1):228-239 He Y, Michaels SD, Amasino RM (2003) Regulation of flowering time by histone acetylation in Arabidopsis. Science 302 (5651):1751-1754. doi:10.1126/science.1091109

Oguchi T, Sage-Ono K, Kamada H, Ono M (2004) Characterization of transcriptional oscillation of an Arabidopsis homolog of PnC401 related to photoperiodic induction of flowering in Pharbitis nil. Plant Cell Physiol 45 (2):232-235

Colucci G, Apone F, Alyeshmerni N, Chalmers D, Chrispeels MJ (2002) GCR1, the putative Arabidopsis G protein-coupled receptor gene is cell cycle-regulated, and its overexpression abolishes seed dormancy and shortens time to flowering. Proc Natl Acad Sci U S A 99 (7):4736-4741. doi:10.1073/pnas.072087699

Ratcliffe OJ, Riechmann JL (2002) Arabidopsis transcription factors and the regulation of flowering time: a genomic perspective. Curr Issues Mol Biol 4 (3):77-91

Roden LC, Song HR, Jackson S, Morris K, Carre IA (2002) Floral responses to photoperiod are correlated with the timing of rhythmic expression relative to dawn and dusk in Arabidopsis. Proc Natl Acad Sci U S A 99 (20):13313-13318. doi:10.1073/pnas.192365599

Martinez-Garcia JF, Virgos-Soler A, Prat S (2002) Control of photoperiod-regulated tuberization in potato by the Arabidopsis flowering-time gene CONSTANS. Proc Natl Acad Sci U S A 99 (23):15211-15216. doi:10.1073/pnas.222390599

Kim DH, Kang JG, Yang SS, Chung KS, Song PS, Park CM (2002) A phytochrome- associated protein phosphatase 2A modulates light signals in flowering time control in Arabidopsis. Plant Cell 14 (12):3043-3056

Mockler T, Yang H, Yu X, Parikh D, Cheng YC, Dolan S, Lin C (2003) Regulation of photoperiodic flowering by Arabidopsis photoreceptors. Proc Natl Acad Sci U S A 100 (4):2140-2145. doi:10.1073/pnas.0437826100

Poduska B, Humphrey T, Redweik A, Grbic V (2003) The synergistic activation of FLOWERING LOCUS C by FRIGIDA and a new flowering gene AERIAL ROSETTE 1 underlies a novel morphology in Arabidopsis. Genetics 163 (4):1457-1465

Somers DE (2001) Clock-associated genes in Arabidopsis: a family affair. Philos Trans R Soc Lond B Biol Sci 356 (1415):1745-1753. doi:10.1098/rstb.2001.0965

Golldack D, Popova OV, Dietz KJ (2002) Mutation of the matrix metalloproteinase At2- MMP inhibits growth and causes late flowering and early senescence in Arabidopsis. J Biol Chem 277 (7):5541-5547. doi:10.1074/jbc.M106197200

Gaudin V, Libault M, Pouteau S, Juul T, Zhao G, Lefebvre D, Grandjean O (2001) Mutations in LIKE HETEROCHROMATIN PROTEIN 1 affect flowering time and plant architecture in Arabidopsis. Development 128 (23):4847-4858

Staiger D (2002) Circadian rhythms in Arabidopsis: time for nuclear proteins. Planta 214 (3):334-344

Gisel A, Hempel FD, Barella S, Zambryski P (2002) Leaf-to-shoot apex movement of symplastic tracer is restricted coincident with flowering in Arabidopsis. Proc Natl Acad Sci U S A 99 (3):1713-1717. doi:10.1073/pnas.251675698 Simpson GG, Dean C (2002) Arabidopsis, the Rosetta stone of flowering time? Science 296 (5566):285-289. doi:10.1126/science.296.5566.285

Parcy F, Bomblies K, Weigel D (2002) Interaction of LEAFY, AGAMOUS and TERMINAL FLOWER1 in maintaining floral meristem identity in Arabidopsis. Development 129 (10):2519-2527 van Nocke S, Muszynski M, Briggs K, Amasino RM (2000) Characterization of a gene from Zea mays related to the Arabidopsis flowering-time gene LUMINIDEPENDENS. Plant Mol Biol 44 (1):107-122

Mimida N, Goto K, Kobayashi Y, Araki T, Ahn JH, Weigel D, Murata M, Motoyoshi F, Sakamoto W (2001) Functional divergence of the TFL1-like gene family in Arabidopsis revealed by characterization of a novel homologue. Genes Cells 6 (4):327-336

Gomez-Mena C, Pineiro M, Franco-Zorrilla JM, Salinas J, Coupland G, Martinez-Zapater JM (2001) early bolting in short days: an Arabidopsis mutation that causes early flowering and partially suppresses the floral phenotype of leafy. Plant Cell 13 (5):1011-1024

Liu XL, Covington MF, Fankhauser C, Chory J, Wagner DR (2001) ELF3 encodes a circadian clock-regulated nuclear protein that functions in an Arabidopsis PHYB signal transduction pathway. Plant Cell 13 (6):1293-1304

Carre IA (2001) Day-length perception and the photoperiodic regulation of flowering in Arabidopsis. J Biol Rhythms 16 (4):415-423

Aubert D, Chen L, Moon YH, Martin D, Castle LA, Yang CH, Sung ZR (2001) EMF1, a novel protein involved in the control of shoot architecture and flowering in Arabidopsis. Plant Cell 13 (8):1865-1875

Huq E, Tepperman JM, Quail PH (2000) GIGANTEA is a nuclear protein involved in phytochrome signaling in Arabidopsis. Proc Natl Acad Sci U S A 97 (17):9789-9794. doi:10.1073/pnas.170283997

Devlin PF, Kay SA (2000) Flower arranging in Arabidopsis. Science 288 (5471):1600- 1602

Guo H, Yang H, Mockler TC, Lin C (1998) Regulation of flowering time by Arabidopsis photoreceptors. Science 279 (5355):1360-1363

Gu Q, Ferrandiz C, Yanofsky MF, Martienssen R (1998) The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development. Development 125 (8):1509-1517

Devlin PF, Patel SR, Whitelam GC (1998) Phytochrome E influences internode elongation and flowering time in Arabidopsis. Plant Cell 10 (9):1479-1487

Smith HB (1999) Planned parenthood in Arabidopsis: FLOWERING LOCUS C. Plant Cell 11 (5):763-764

Sheldon CC, Burn JE, Perez PP, Metzger J, Edwards JA, Peacock WJ, Dennis ES (1999) The FLF MADS box gene: a repressor of flowering in Arabidopsis regulated by vernalization and methylation. Plant Cell 11 (3):445-458 Mockler TC, Guo H, Yang H, Duong H, Lin C (1999) Antagonistic actions of Arabidopsis cryptochromes and phytochrome B in the regulation of floral induction. Development 126 (10):2073-2082

Park DH, Somers DE, Kim YS, Choy YH, Lim HK, Soh MS, Kim HJ, Kay SA, Nam HG (1999) Control of circadian rhythms and photoperiodic flowering by the Arabidopsis GIGANTEA gene. Science 285 (5433):1579-1582

Coupland G (1995) Genetic and environmental control of flowering time in Arabidopsis. Trends Genet 11 (10):393-397

Ray A, Lang JD, Golden T, Ray S (1996) SHORT INTEGUMENT (SIN1), a gene required for ovule development in Arabidopsis, also controls flowering time. Development 122 (9):2631-2638

Madueno F, Ruiz Garcia L, Wilkinson M, Haughn G, Salinas J, Martinez Zapater J (1996) Different roles of flowering time genes in the activation of floral initiation genes in Arabidopsis. Int J Dev Biol Suppl 1:125S-126S

Pepper AE, Chory J (1997) Extragenic suppressors of the Arabidopsis det1 mutant identify elements of flowering-time and light-response regulatory pathways. Genetics 145 (4):1125-1137

Mizukami Y, Ma H (1997) Determination of Arabidopsis floral meristem identity by AGAMOUS. Plant Cell 9 (3):393-408. doi:10.1105/tpc.9.3.393

Kania T, Russenberger D, Peng S, Apel K, Melzer S (1997) FPF1 promotes flowering in Arabidopsis. Plant Cell 9 (8):1327-1338. doi:10.1105/tpc.9.8.1327

Ruiz-Garcia L, Madueno F, Wilkinson M, Haughn G, Salinas J, Martinez-Zapater JM (1997) Different roles of flowering-time genes in the activation of floral initiation genes in Arabidopsis. Plant Cell 9 (11):1921-1934. doi:10.1105/tpc.9.11.1921

Cao Y, Dai Y, Cui S, Ma L (2008) Histone H2B monoubiquitination in the chromatin of FLOWERING LOCUS C regulates flowering time in Arabidopsis. Plant Cell 20 (10):2586-2602. doi:tpc.108.062760 [pii]

10.1105/tpc.108.062760

Blazquez MA, Weigel D (2000) Integration of floral inductive signals in Arabidopsis. Nature 404 (6780):889-892. doi:10.1038/35009125

Blazquez MA, Soowal LN, Lee I, Weigel D (1997) LEAFY expression and flower initiation in Arabidopsis. Development 124 (19):3835-3844

Andersson CR, Helliwell CA, Bagnall DJ, Hughes TP, Finnegan EJ, Peacock WJ, Dennis ES (2008) The FLX Gene of Arabidopsis is required for FRI-dependent activation of FLC expression. Plant Cell Physiol 49 (2):191-200. doi:10.1093/pcp/pcm176

Adam H, Ouellet F, Kane NA, Agharbaoui Z, Major G, Tominaga Y, Sarhan F (2007) Overexpression of TaVRN1 in Arabidopsis promotes early flowering and alters development. Plant Cell Physiol 48 (8):1192-1206. doi:10.1093/pcp/pcm089 Putterill J, Robson F, Lee K, Coupland G (1993) Chromosome walking with YAC clones in Arabidopsis: isolation of 1700 kb of contiguous DNA on chromosome 5, including a 300 kb region containing the flowering-time gene CO. Mol Gen Genet 239 (1-2):145-157

Fornara F, Gregis V, Pelucchi N, Colombo L, Kater M (2008) The rice StMADS11-like genes OsMADS22 and OsMADS47 cause floral reversions in Arabidopsis without complementing the svp and agl24 mutants. J Exp Bot 59 (8):2181-2190. doi:10.1093/jxb/ern083

Fan J, Li W, Dong X, Guo W, Shu H (2007) Ectopic expression of a AGL6 homolog caused earlier flowering and homeotic conversion in Arabidopsis. Science in China Series C-Life Sciences 50 (5):676-689. doi:10.1007/s11427-007-0083-4

El-Lithy ME, Reymond M, Stich B, Koornneef M, Vreugdenhil D (2010) Relation among plant growth, carbohydrates and flowering time in the Arabidopsis Landsberg erecta x Kondara recombinant inbred line population. Plant Cell Environ 33 (8):1369-1382. doi:PCE2155 [pii] 10.1111/j.1365-3040.2010.02155.x

Du X, Qian X, Wang D, Yang J (2006) Alternative splicing and expression analysis of OsFCA (FCA in Oryza sativa L.), a gene homologous to FCA in Arabidopsis. DNA Seq 17 (1):31-40. doi:10.1080/10425170500136707

Huang T, Bohlenius H, Eriksson S, Parcy F, Nilsson O (2005) The mRNA of the Arabidopsis gene FT moves from leaf to shoot apex and induces flowering. Science 309 (5741):1694-1696. doi:10.1126/science.1117768

Hicks KA, Albertson TM, Wagner DR (2001) EARLY FLOWERING3 encodes a novel protein that regulates circadian clock function and flowering in Arabidopsis. Plant Cell 13 (6):1281-1292. doi:10.1105/tpc.13.6.1281

Hempel FD, Weigel D, Mandel MA, Ditta G, Zambryski PC, Feldman LJ, Yanofsky MF (1997) Floral determination and expression of floral regulatory genes in Arabidopsis. Development 124 (19):3845-3853

Haung MD, Yang CH (1998) EMF genes interact with late-flowering genes to regulate Arabidopsis shoot development. Plant Cell Physiol 39 (4):382-393

Hassidim M, Harir Y, Yakir E, Kron I, Green RM (2009) Over-expression of CONSTANS-LIKE 5 can induce flowering in short-day grown Arabidopsis. Planta 230 (3):481-491. doi:10.1007/s00425-009-0958-7

Gregis V, Sessa A, Colombo L, Kater MM (2006) AGL24, SHORT VEGETATIVE PHASE, and APETALA1 redundantly control AGAMOUS during early stages of flower development in Arabidopsis. Plant Cell 18 (6):1373-1382. doi:10.1105/tpc.106.041798

Kumimoto RW, Adam L, Hymus GJ, Repetti PP, Reuber TL, Marion CM, Hempel FD, Ratcliffe OJ (2008) The Nuclear Factor Y subunits NF-YB2 and NF-YB3 play additive roles in the promotion of flowering by inductive long-day photoperiods in Arabidopsis. Planta 228 (5):709-723. doi:10.1007/s00425-008-0773-6

Kotake T, Takada S, Nakahigashi K, Ohto M, Goto K (2003) Arabidopsis TERMINAL FLOWER 2 gene encodes a heterochromatin protein 1 homolog and represses both FLOWERING LOCUS T to regulate flowering time and several floral homeotic genes. Plant Cell Physiol 44 (6):555-564. doi:10.1093/pcp/pcg091

Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, Yano M (2002) Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol 43 (10):1096-1105. doi:10.1093/pcp/pcf156

Kim SY, Michaels SD (2006) SUPPRESSOR OFFRI 4 encodes a nuclear-localized protein that is required for delayed flowering in winter-annual Arabidopsis. Development 133 (23):4699-4707. doi:10.1242/dev.02684

Jiang D, Gu X, He Y (2009) Establishment of the Winter-Annual Growth Habit via FRIGIDA-Mediated Histone Methylation at FLOWERING LOCUS C in Arabidopsis. Plant Cell 21 (6):1733-1746. doi:10.1105/tpc.109.067967

Jeon J, Kim J (2011) FVE, an Arabidopsis homologue of the retinoblastoma-associated protein that regulates flowering time and cold response, binds to chromatin as a large multiprotein complex. Mol Cells. doi:10.1007/s10059-011-1022-6

Jaeger KE, Wigge PA (2007) FT protein acts as a long-range signal in Arabidopsis. Curr Biol 17 (12):1050-1054. doi:10.1016/j.cub.2007.05.008

Izawa T (2007) Adaptation of flowering-time by natural and artificial selection in Arabidopsis and rice. J Exp Bot 58 (12):3091-3097. doi:10.1093/jxb/erm159

Liu C, Zhou J, Bracha-Drori K, Yalovsky S, Ito T, Yu H (2007) Specification of Arabidopsis floral meristem identity by repression of flowering time genes. Development 134 (10):1901-1910. doi:10.1242/dev.003103

Li J, Li Y, Chen S, An L (2010) Involvement of brassinosteroid signals in the floral- induction network of Arabidopsis. J Exp Bot 61 (15):4221-4230. doi:10.1093/jxb/erq241

Li D, Liu C, Shen L, Wu Y, Chen H, Robertson M, Helliwell CA, Ito T, Meyerowitz E, Yu H (2008) A repressor complex governs the integration of flowering signals in Arabidopsis. Dev Cell 15 (1):110-120. doi:10.1016/j.devcel.2008.05.002

Lee JH, Yoo SJ, Park SH, Hwang I, Lee JS, Ahn JH (2007) Role of SVP in the control of flowering time by ambient temperature in Arabidopsis. Genes Dev 21 (4):397-402. doi:10.1101/gad.1518407

Lazaro A, Gomez-Zambrano A, Lopez-Gonzalez L, Pineiro M, Jarillo JA (2008) Mutations in the Arabidopsis SWC6 gene, encoding a component of the SWR1 chromatin remodelling complex, accelerate flowering time and alter leaf and flower development. J Exp Bot 59 (3):653-666. doi:10.1093/jxb/erm332

Mai YX, Wang L, Yang HQ (2011) A gain-of-function mutation in IAA7/AXR2 confers late flowering under short-day light in Arabidopsis. J Integr Plant Biol 53 (6):480-492. doi:10.1111/j.1744-7909.2011.01050.x

Macknight R, Duroux M, Laurie R, Dijkwel P, Simpson G, Dean C (2002) Functional significance of the alternative transcript processing of the Arabidopsis floral promoter FCA. Plant Cell 14 (4):877-888. doi:10.1105/tpc.010456 Niu L, Zhang Y, Pei Y, Liu C, Cao X (2008) Redundant requirement for a pair of PROTEIN ARGININE METHYLTRANSFERASE4 homologs for the proper regulation of Arabidopsis flowering time. Plant Physiol 148 (1):490-503. doi:10.1104/pp.108.124727

Nakamichi N, Kita M, Niinuma K, Ito S, Yamashino T, Mizoguchi T, Mizuno T (2007) Arabidopsis clock-associated pseudo-response regulators PRR9, PRR7 and PRR5 coordinately and positively regulate flowering time through the canonical CONSTANS- dependent photoperiodic pathway. Plant Cell Physiol 48 (6):822-832. doi:10.1093/pcp/pcm056

Nakamichi N, Kita M, Ito S, Sato E, Yamashino T, Mizuno T (2005) The Arabidopsis pseudo-response regulators, PRR5 and PRR7, coordinately play essential roles for circadian clock function. Plant Cell Physiol 46 (4):609-619. doi:10.1093/pcp/pci061

McCullough E, Wright KM, Alvarez A, Clark CP, Rickoll WL, Madlung A (2010) Photoperiod-dependent floral reversion in the natural allopolyploid Arabidopsis suecica. New Phytol 186 (1):239-250. doi:10.1111/j.1469-8137.2009.03141.x

Mattioli R, Marchese D, D'Angeli S, Altamura MM, Costantino P, Trovato M (2008) Modulation of intracellular proline levels affects flowering time and inflorescence architecture in Arabidopsis. Plant Mol Biol 66 (3):277-288. doi:10.1007/s11103-007- 9269-1

Mandel MA, Yanofsky MF (1995) A gene triggering flower formation in Arabidopsis. Nature 377 (6549):522-524. doi:10.1038/377522a0

Ohto M, Onai K, Furukawa Y, Aoki E, Araki T, Nakamura K (2001) Effects of sugar on vegetative development and floral transition in Arabidopsis. Plant Physiol 127 (1):252- 261. doi:10.1104/pp.127.1.252

Notaguchi M, Abe M, Kimura T, Daimon Y, Kobayashi T, Yamaguchi A, Tomita Y, Dohi K, Mori M, Araki T (2008) Long-Distance, Graft-Transmissible Action of Arabidopsis FLOWERING LOCUS T Protein to Promote Flowering. Plant Cell Physiol 49 (11):1645- 1658. doi:10.1093/pcp/pcn154

Pouteau S, Carre I, Gaudin V, Ferret V, Lefebvre D, Wilson M (2008) Diversification of Photoperiodic Response Patterns in a Collection of Early-Flowering Mutants of Arabidopsis. Plant Physiol 148 (3):1465-1473. doi:10.1104/pp.108.127639

Pouteau S, Albertini C (2011) An assessment of morphogenetic fluctuation during reproductive phase change in Arabidopsis. Ann Bot 107 (6):1017-1027. doi:10.1093/aob/mcr039

Pouteau S, Albertini C (2009) The significance of bolting and floral transitions as indicators of reproductive phase change in Arabidopsis. J Exp Bot 60 (12):3367-3377. doi:10.1093/jxb/erp173

Pien S, Fleury D, Mylne JS, Crevillen P, Inze D, Avramova Z, Dean C, Grossniklaus U (2008) Arabidopsis TRITHORAX1 dynamically regulates FLOWERING LOCUS C activation via histone 3 lysine 4 trimethylation. Plant Cell 20 (3):580-588. doi:10.1105/tpc.108.058172 Paltiel J, Amin R, Gover A, Ori N, Samach A (2006) Novel roles for GIGANTEA revealed under environmental conditions that modify its expression in Arabidopsis and Medicago truncatula. Planta 224 (6):1255-1268. doi:10.1007/s00425-006-0305-1

Onouchi H, Igeno MI, Perilleux C, Graves K, Coupland G (2000) Mutagenesis of plants overexpressing CONSTANS demonstrates novel interactions among Arabidopsis flowering-time genes. Plant Cell 12 (6):885-900. doi:10.1105/tpc.12.6.885

Samach A, Onouchi H, Gold SE, Ditta GS, Schwarz-Sommer Z, Yanofsky MF, Coupland G (2000) Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288 (5471):1613-1616. doi:10.1126/science.288.5471.1613

Sablowski R (2007) Flowering and determinacy in Arabidopsis. J Exp Bot 58 (5):899- 907. doi:10.1093/jxb/erm002

Reeves PH, Murtas G, Dash S, Coupland G (2002) early in short days 4, a mutation in Arabidopsis that causes early flowering and reduces the mRNA abundance of the floral repressor FLC. Development 129 (23):5349-5361. doi:10.1242/dev.00113

Ranjan A, Fiene G, Fackendahl P, Hoecker U (2011) The Arabidopsis repressor of light signaling SPA1 acts in the phloem to regulate seedling de-etiolation, leaf expansion and flowering time. Development 138 (9):1851-1862. doi:dev.061036 [pii]

10.1242/dev.061036

Quesada V, Dean C, Simpson GG (2005) Regulated RNA processing in the control of Arabidopsis flowering. Int J Dev Biol 49 (5-6):773-780. doi:10.1387/ijdb.051995vq

Putterill J (2001) Flowering in time: genes controlling photoperiodic flowering in Arabidopsis. Philosophical Transactions of the Royal Society of London Series B- Biological Sciences 356 (1415):1761-1767. doi:10.1098/rstb.2001.0963

Pouteau S, Ferret V, Lefebvre D (2006) Comparison of environmental and mutational variation in flowering time in Arabidopsis. J Exp Bot 57 (15):4099-4109. doi:10.1093/jxb/erl186

Sandring S, Agren J (2009) Pollinator-mediated selection on floral display and flowering time in the perennial herb Arabidopsis lyrata. Evolution 63 (5):1292-1300. doi:EVO624 [pii] 10.1111/j.1558-5646.2009.00624.x

Simpson GG, Laurie RE, Dijkwel PP, Quesada V, Stockwell PA, Dean C, Macknight RC (2010) Noncanonical Translation Initiation of the Arabidopsis Flowering Time and Alternative Polyadenylation Regulator FCA. Plant Cell 22 (11):3764-3777. doi:10.1105/tpc.110.077990

Simon R, Igeno MI, Coupland G (1996) Activation of floral meristem identity genes in Arabidopsis. Nature 384 (6604):59-62. doi:10.1038/384059a0

Sawa S, Ito T, Shimura Y, Okada K (1999) FILAMENTOUS FLOWER controls the formation and development of Arabidopsis inflorescences and floral meristems. Plant Cell 11 (1):69-86. doi:10.1105/tpc.11.1.69 Sandring S, Riihimaki MA, Savolainen O, Agren J (2007) Selection on flowering time and floral display in an alpine and a lowland population of Arabidopsis lyrata. J Evol Biol 20 (2):558-567. doi:10.1111/j.1420-9101.2006.01260.x

Thakare D, Kumudini S, Dinkins RD (2011) The alleles at the E1 locus impact the expression pattern of two soybean FT-like genes shown to induce flowering in Arabidopsis. Planta. doi:10.1007/s00425-011-1450-8

Teper-Bamnolker P, Samach A (2005) The flowering integrator FT regulates SEPALLATA3 and FRUITFULL accumulation in Arabidopsis leaves. Plant Cell 17 (10):2661-2675. doi:10.1105/tpc.105.035766

Takase T, Yasuhara M, Geekiyanage S, Ogura Y, Kiyosue T (2007) Overexpression of the chimeric gene of the floral regulator CONSTANS and the EAR motif repressor causes late flowering in Arabidopsis. Plant Cell Rep 26 (6):815-821. doi:10.1007/s00299-006-0287-2

Takase T, Nishiyama Y, Tanihigashi H, Ogura Y, Miyazaki Y, Yamada Y, Kiyosue T (2011) LOV KELCH PROTEIN2 and ZEITLUPE repress Arabidopsis photoperiodic flowering under non-inductive conditions, dependent on FLAVIN-BINDING KELCH REPEAT F-BOX1. Plant J:no-no. doi:10.1111/j.1365-313X.2011.04618.x

Tadege M, Sheldon CC, Helliwell CA, Upadhyaya NM, Dennis ES, Peacock WJ (2003) Reciprocal control of flowering time by OsSOC1 in transgenic Arabidopsis and by FLC in transgenic rice. Plant Biotechnol J 1 (5):361-369. doi:10.1046/j.1467-7652.2003.00034.x

Sung S, Schmitz RJ, Amasino RM (2006) A PHD finger protein involved in both the vernalization and photoperiod pathways in Arabidopsis. Genes Dev 20 (23):3244-3248. doi:10.1101/gad.1493306

Tzeng TY, Hsiao CC, Chi PJ, Yang CH (2003) Two lily SEPALLATA-like genes cause different effects on floral formation and floral transition in Arabidopsis. Plant Physiol 133 (3):1091-1101. doi:10.1104/pp.103.026997

Wollenberg AC, Strasser B, Cerdan PD, Amasino RM (2008) Acceleration of Flowering during Shade Avoidance in Arabidopsis Alters the Balance between FLOWERING LOCUS C-Mediated Repression and Photoperiodic Induction of Flowering. Plant Physiol 148 (3):1681-1694. doi:10.1104/pp.108.125468

Wilson IW, Kennedy GC, Peacock JW, Dennis ES (2005) Microarray analysis reveals vegetative molecular phenotypes of Arabidopsis flowering-time mutants. Plant Cell Physiol 46 (8):1190-1201. doi:10.1093/pcp/pci128

Willmann MR, Poethig RS (2011) The effect of the floral repressor FLC on the timing and progression of vegetative phase change in Arabidopsis. Development 138 (4):677- 685. doi:10.1242/dev.057448

Wigge PA, Kim MC, Jaeger KE, Busch W, Schmid M, Lohmann JU, Weigel D (2005) Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309 (5737):1056-1059. doi:10.1126/science.1114358

Weigel D, Alvarez J, Smyth DR, Yanofsky MF, Meyerowitz EM (1992) LEAFY controls floral meristem identity in Arabidopsis. Cell 69 (5):843-859. doi:10.1016/0092- 8674(92)90295-n Wang GF, Seabolt S, Hamdoun S, Ng G, Park J, Lu H (2011) Multiple Roles of WIN3 in Regulating Disease Resistance, Cell Death, and Flowering Time in Arabidopsis. Plant Physiol. doi:pp.111.176776 [pii] 10.1104/pp.111.176776

Wagner D, Meyerowitz EM (2002) SPLAYED, a novel SWI/SNF ATPase homolog, controls reproductive development in Arabidopsis. Curr Biol 12 (2):85-94. doi:10.1016/s0960-9822(01)00651-0

Yant L, Mathieu J, Schmid M (2009) Just say no: floral repressors help Arabidopsis bide the time. Curr Opin Plant Biol 12 (5):580-586. doi:10.1016/j.pbi.2009.07.006

Yant L, Mathieu J, Dinh TT, Ott F, Lanz C, Wollmann H, Chen X, Schmid M (2010) Orchestration of the Floral Transition and Floral Development in Arabidopsis by the Bifunctional Transcription Factor APETALA2. Plant Cell 22 (7):2156-2170. doi:10.1105/tpc.110.075606

Marin-de la Rosa N, Alabadi D, Blazquez MA, Arana MV (2011) Integrating circadian and gibberellin signaling in Arabidopsis: possible links between the circadian clock and the AtGID transcription. Plant Signal Behav 6 (9)

Zuo Z, Liu H, Liu B, Liu X, Lin C (2011) Blue light-dependent interaction of CRY2 with SPA1 regulates COP1 activity and floral initiation in Arabidopsis. Curr Biol 21 (10):841- 847. doi:10.1016/j.cub.2011.03.048

Zhao XY, Cheng ZJ, Zhang XS (2006) Overexpression of TaMADS1, a SEPALLATA- like gene in wheat, causes early flowering and the abnormal development of floral organs in Arabidopsis. Planta 223 (4):698-707. doi:10.1007/s00425-005-0123-x

Zhao C, Hanada A, Yamaguchi S, Kamiya Y, Beers EP (2011) The Arabidopsis Myb genes MYR1 and MYR2 are redundant negative regulators of flowering time under decreased light intensity. Plant J 66 (3):502-515. doi:10.1111/j.1365-313X.2011.04508.x

Kyozuka J, Kobayashi T, Morita M, Shimamoto K (2000) Spatially and temporally regulated expression of rice MADS box genes with similarity to Arabidopsis class A, B and C genes. Plant Cell Physiol 41 (6):710-718

Kotoda N, Wada M (2005) MdTFL1, a TFL1-like gene of apple, retards the transition from the vegetative to reproductive phase in transgenic Arabidopsis. Plant Sci 168 (1):95- 104. doi:10.1016/j.plantsci.2004.07.024

Miyata K, Calvino M, Oda AO, Sugiyama H, Mizoguchi T (2011) Suppression of Late- Flowering and Semi-Dwarf Phenotypes in the Arabidopsis Clock Mutant lhy-12;cca1-101 by phyB under Continuous Light. Plant Signal Behav 6 (8):1162-1171

Hsu HF, Huang CH, Chou LT, Yang CH (2003) Ectopic expression of an orchid (Oncidium Gower Ramsey) AGL6-like gene promotes flowering by activating flowering time genes in Arabidopsis thaliana. Plant Cell Physiol 44 (8):783-794. doi:10.1093/pcp/pcg099

Page T, Macknight R, Yang CH, Dean C (1999) Genetic interactions of the Arabidopsis flowering time gene FCA, with genes regulating floral initiation. Plant J 17 (3):231-239. doi:10.1046/j.1365-313X.1999.00364.x Gocal GFW, King RW, Blundell CA, Schwartz OM, Andersen CH, Weigel D (2001) Evolution of floral meristem identity genes. Analysis of Lolium temulentum genes related to APETALA1 and LEAFY of Arabidopsis. Plant Physiol 125 (4):1788-1801

Park H-Y, Lee S-Y, Seok H-Y, Kim S-H, Sung ZR, Moon Y-H (2011) EMF1 Interacts with EIP1, EIP6 or EIP9 Involved in the Regulation of Flowering Time in Arabidopsis. Plant Cell Physiol 52 (8):1376-1388. doi:10.1093/pcp/pcr084

Ishikawa M, Kiba T, Chua NH (2006) The Arabidopsis SPA1 gene is required for circadian clock function and photoperiodic flowering. Plant J 46 (5):736-746. doi:10.1111/j.1365-313X.2006.02737.x

Yang W, Jiang D, Jiang J, He Y (2010) A plant-specific histone H3 lysine 4 demethylase represses the floral transition in Arabidopsis. Plant J 62 (4):663-673. doi:10.1111/j.1365- 313X.2010.04182.x

Xu M, Hu T, McKim SM, Murmu J, Haughn GW, Hepworth SR (2010) Arabidopsis BLADE-ON-PETIOLE1 and 2 promote floral meristem fate and determinacy in a previously undefined pathway targeting APETALA1 and AGAMOUS-LIKE24. Plant J 63 (6):974-989. doi:10.1111/j.1365-313X.2010.04299.x

Tsuchiya T, Eulgem T (2010) The Arabidopsis defense component EDM2 affects the floral transition in an FLC-dependent manner. Plant J 62 (3):518-528. doi:10.1111/j.1365- 313X.2010.04169.x

Tessadori F, Schulkes RK, van Driel R, Fransz P (2007) Light-regulated large-scale reorganization of chromatin during the floral transition in Arabidopsis. Plant J 50 (5):848- 857. doi:10.1111/j.1365-313X.2007.03093.x

Proveniers M, Rutjens B, Brand M, Smeekens S (2007) The Arabidopsis TALE homeobox gene ATH1 controls floral competency through positive regulation of FLC. Plant J 52 (5):899-913. doi:10.1111/j.1365-313X.2007.03285.x

Aukerman MJ, Lee I, Weigel D, Amasino RM (1999) The Arabidopsis flowering-time gene LUMINIDEPENDENS is expressed primarily in regions of cell proliferation and encodes a nuclear protein that regulates LEAFY expression. Plant J 18 (2):195-203. doi:10.1046/j.1365-313X.1999.00442.x

Moon J, Suh SS, Lee H, Choi KR, Hong CB, Paek NC, Kim SG, Lee I (2003) The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis. Plant J 35 (5):613-623. doi:10.1046/j.1365-313X.2003.01833.x

Kuhn JM, Breton G, Schroeder JI (2007) mRNA metabolism of flowering-time regulators in wild-type Arabidopsis revealed by a nuclear cap binding protein mutant, abh1. Plant J 50 (6):1049-1062. doi:10.1111/j.1365-313X.2007.03110.x

Alcazar R, Garcia-Martinez JL, Cuevas JC, Tiburcio AF, Altabella T (2005) Overexpression of ADC2 in Arabidopsis induces dwarfism and late-flowering through GA deficiency. Plant J 43 (3):425-436. doi:10.1111/j.1365-313X.2005.02465.x

Gunl M, Liew EF, David K, Putterill J (2009) Analysis of a post-translational steroid induction system for GIGANTEA in Arabidopsis. BMC Plant Biol 9. doi:141 10.1186/1471-2229-9-141 Mylne JS, Mas C, Hill JM (2011) NMR assignment and secondary structure of the C- terminal DNA binding domain of Arabidopsis thaliana VERNALIZATION1. Biomol NMR Assign. doi:10.1007/s12104-011-9313-6

Kumagai T, Ito S, Nakamichi N, Niwa Y, Murakami M, Yamashino T, Mizuno T (2008) The common function of a novel subfamily of B-box zinc finger proteins with reference to circadian-associated events in Arabidopsis thaliana. Bioscience, Biotechnology, and Biochemistry 72 (6):1539-1549. doi:10.1271/bbb.80041

Wang L-L, Liang H-M, Pang J-L, Zhu M-Y (2004) Regulation network and biological roles of LEAFY in Arabidopsis thaliana in floral development. Yi chuan = Hereditas / Zhongguo yi chuan xue hui bian ji 26 (1):137-142

Brill EM, Watson JM (2004) Ectopic expression of a Eucalyptus grandis SVP orthologue alters the flowering time of Arabidopsis thaliana. Funct Plant Biol 31 (3):217-224. doi:10.1071/fp03180

Qi X, Jiang Y, Tang F, Wang M, Hu J, Zhao S, Sha W, Lu M (2011) An Arabidopsis thaliana (Ler) inbred line AFDL exhibiting abnormal flower development mainly caused by reduced AP1 expression. Chin Sci Bull 56 (1):39-47. doi:10.1007/s11434-010-4263-4

Leino M, Thyselius S, Landgren M, Glimelius K (2004) Arabidopsis thaliana chromosome III restores fertility in a cytoplasmic male-sterile Brassica napus line with A. thaliana mitochondrial DNA. Theor Appl Genet 109 (2):272-279. doi:10.1007/s00122- 004-1644-6

Babula D, Misztal LH, Jakubowicz M, Kaczmarek M, Nowak W, Sadowski J (2006) Genes involved in biosynthesis and signalisation of ethylene in Brassica oleracea and Arabidopsis thaliana: identification and genome comparative mapping of specific gene homologues. Theor Appl Genet 112 (3):410-420. doi:10.1007/s00122-005-0136-7

Sano CM, Bohn MO, Paige KN, Jacobs TW (2009) Heritable variation in the inflorescence replacement program of Arabidopsis thaliana. Theor Appl Genet 119 (8):1461-1476. doi:10.1007/s00122-009-1148-5

Guenther T, Schmid KJ (2010) Deleterious amino acid polymorphisms in Arabidopsis thaliana and rice. Theor Appl Genet 121 (1):157-168. doi:10.1007/s00122-010-1299-4

Stolz A, Riefler M, Lomin SN, Achazi K, Romanov GA, Schmülling T (2011) The specificity of cytokinin signalling in Arabidopsis thaliana is mediated by differing ligand affinities and expression profiles of the receptors. Plant J 67 (1):157-168. doi:10.1111/j.1365-313X.2011.04584.x

Siemens J, GonzÁLez M-C, Wolf S, Hofmann C, Greiner S, Du Y, Rausch T, Roitsch T, Ludwig-MÜLler J (2011) Extracellular invertase is involved in the regulation of clubroot disease in Arabidopsis thaliana. Mol Plant Pathol 12 (3):247-262. doi:10.1111/j.1364- 3703.2010.00667.x

Sarvepalli K, Nath U (2011) Hyper-activation of the TCP4 transcription factor in Arabidopsis thaliana accelerates multiple aspects of plant maturation. Plant J:no-no. doi:10.1111/j.1365-313X.2011.04616.x Van Berloo R, Stam P (1999) Comparison between marker-assisted selection and phenotypical selection in a set of Arabidopsis thaliana recombinant inbred lines. Theor Appl Genet 98 (1):113-118. doi:10.1007/s001220051047

Hopkins R, Schmitt J, Stinchcombe JR (2008) A latitudinal cline and response to vernalization in leaf angle and morphology in Arabidopsis thaliana (Brassicaceae). New Phytol 179 (1):155-164. doi:10.1111/j.1469-8137.2008.02447.x

Matsushika A, Murakami M, Ito S, Nakamichi N, Yamashino T, Mizuno T (2007) Characterization of circadian-associated pseudo-response regulators: I. Comparative studies on a series of transgenic lines misexpressing five distinctive PRR genes in Arabidopsis thaliana. Bioscience, Biotechnology, and Biochemistry 71 (2):527-534. doi:10.1271/bbb.60583

Ding Z, Millar AJ, Davis AM, Davis SJ (2007) TIME FOR COFFEE encodes a nuclear regulator in the Arabidopsis thaliana circadian clock. Plant Cell 19 (5):1522-1536. doi:10.1105/tpc.106.047241

Hsu HF, Hsieh WP, Chen MK, Chang YY, Yang CH (2010) C/D class MADS box genes from two monocots, orchid (Oncidium Gower Ramsey) and lily (Lilium longiflorum), exhibit different effects on floral transition and formation in Arabidopsis thaliana. Plant Cell Physiol 51 (6):1029-1045. doi:10.1093/pcp/pcq052

Brock MT, Maloof JN, Weinig C (2010) Genes underlying quantitative variation in ecologically important traits: PIF4 (phytochrome interacting factor 4) is associated with variation in internode length, flowering time, and fruit set in Arabidopsis thaliana. Mol Ecol 19 (6):1187-1199. doi:10.1111/j.1365-294X.2010.04538.x

Mentzer L, Yee T, Wang TY, Himelblau E (2010) FLOWERING LOCUS C influences the timing of shoot maturation in Arabidopsis thaliana. Genesis 48 (12):680-683. doi:10.1002/dvg.20683

Yamagishi N, Yoshikawa N (2011) Expression of FLOWERING LOCUS T from Arabidopsis thaliana induces precocious flowering in soybean irrespective of maturity group and stem growth habit. Planta 233 (3):561-568. doi:10.1007/s00425-010-1318-3

Nakamichi N, Kita M, Ito S, Sato E, Yamashino T, Mizuno T (2005) The circadian clock- associated PRR genes of Arabidopsis thaliana: Characterization of a series of double prr mutants. Plant Cell Physiol 46:S135-S135

Ondar UN, Vu C, Ezhova TA (2008) [A new Arabidopsis thaliana deletion mutant apetala1-20]. Ontogenez 39 (6):430-436

Niwa Y, Yamashino T, Mizuno T (2009) The circadian clock regulates the photoperiodic response of hypocotyl elongation through a coincidence mechanism in Arabidopsis thaliana. Plant Cell Physiol 50 (4):838-854. doi:10.1093/pcp/pcp028

Metcalf CJ, Mitchell-Olds T (2009) Life history in a model system: opening the black box with Arabidopsis thaliana. Ecol Lett 12 (7):593-600. doi:10.1111/j.1461- 0248.2009.01320.x Xiao C, Chen F, Yu X, Lin C, Fu YF (2009) Over-expression of an AT-hook gene, AHL22, delays flowering and inhibits the elongation of the hypocotyl in Arabidopsis thaliana. Plant Mol Biol 71 (1-2):39-50. doi:10.1007/s11103-009-9507-9

Mendez-Vigo B, de Andres MT, Ramiro M, Martinez-Zapater JM, Alonso-Blanco C (2010) Temporal analysis of natural variation for the rate of leaf production and its relationship with flowering initiation in Arabidopsis thaliana. J Exp Bot 61 (6):1611-1623. doi:10.1093/jxb/erq032

Kavai-ool UN, Karpenko O, Ezhova TA (2010) [Interaction between the ABRUPTUS/PINOID and APETALA1 genes regulating the inflorescence development in Arabidopsis thaliana]. Genetika 46 (3):373-382

Inui H, Ogura Y, Kiyosue T (2010) Overexpression of Arabidopsis thaliana LOV KELCH REPEAT PROTEIN 2 promotes tuberization in potato (Solanum tuberosum cv. May Queen). FEBS Lett 584 (11):2393-2396. doi:10.1016/j.febslet.2010.04.031

Wang JW, Schwab R, Czech B, Mica E, Weigel D (2008) Dual effects of miR156- targeted SPL genes and CYP78A5/KLUH on plastochron length and organ size in Arabidopsis thaliana. Plant Cell 20 (5):1231-1243. doi:10.1105/tpc.108.058180

Urbanus SL, de Folter S, Shchennikova AV, Kaufmann K, Immink RG, Angenent GC (2009) In planta localisation patterns of MADS domain proteins during floral development in Arabidopsis thaliana. BMC Plant Biol 9:5. doi:10.1186/1471-2229-9-5

Salome PA, McClung CR (2004) The Arabidopsis thaliana clock. J Biol Rhythms 19 (5):425-435. doi:10.1177/0748730404268112

Werner JD, Borevitz JO, Uhlenhaut NH, Ecker JR, Chory J, Weigel D (2005) FRIGIDA- independent variation in flowering time of natural Arabidopsis thaliana accessions. Genetics 170 (3):1197-1207. doi:10.1534/genetics.104.036533

Juenger TE, Sen S, Stowe KA, Simms EL (2005) Epistasis and genotype-environment interaction for quantitative trait loci affecting flowering time in Arabidopsis thaliana. Genetica 123 (1-2):87-105

Stinchcombe JR, Caicedo AL, Hopkins R, Mays C, Boyd EW, Purugganan MD, Schmitt J (2005) Vernalization sensitivity in Arabidopsis thaliana (Brassicaceae): the effects of latitude and FLC variation. Am J Bot 92 (10):1701-1707. doi:10.3732/ajb.92.10.1701

Kliebenstein DJ, West MA, van Leeuwen H, Kim K, Doerge RW, Michelmore RW, St Clair DA (2006) Genomic survey of gene expression diversity in Arabidopsis thaliana. Genetics 172 (2):1179-1189. doi:10.1534/genetics.105.049353

Le Corre V (2005) Variation at two flowering time genes within and among populations of Arabidopsis thaliana: comparison with markers and traits. Mol Ecol 14 (13):4181-4192. doi:10.1111/j.1365-294X.2005.02722.x

Wu G, Poethig RS (2006) Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development 133 (18):3539-3547. doi:10.1242/dev.02521 Ogawara T, Higashi K, Kamada H, Ezura H (2003) Ethylene advances the transition from vegetative growth to flowering in Arabidopsis thaliana. J Plant Physiol 160 (11):1335- 1340

Kim HJ, Hyun Y, Park JY, Park MJ, Park MK, Kim MD, Lee MH, Moon J, Lee I, Kim J (2004) A genetic link between cold responses and flowering time through FVE in Arabidopsis thaliana. Nat Genet 36 (2):167-171. doi:10.1038/ng1298

Stinchcombe JR, Dorn LA, Schmitt J (2004) Flowering time plasticity in Arabidopsis thaliana: a reanalysis of Westerman & Lawrence (1970). J Evol Biol 17 (1):197-207

Stinchcombe JR, Weinig C, Ungerer M, Olsen KM, Mays C, Halldorsdottir SS, Purugganan MD, Schmitt J (2004) A latitudinal cline in flowering time in Arabidopsis thaliana modulated by the flowering time gene FRIGIDA. Proc Natl Acad Sci U S A 101 (13):4712-4717. doi:10.1073/pnas.0306401101

Tseng TS, Salome PA, McClung CR, Olszewski NE (2004) SPINDLY and GIGANTEA interact and act in Arabidopsis thaliana pathways involved in light responses, flowering, and rhythms in cotyledon movements. Plant Cell 16 (6):1550-1563. doi:10.1105/tpc.019224

Komeda Y (2004) Genetic regulation of time to flower in Arabidopsis thaliana. Annu Rev Plant Biol 55:521-535. doi:10.1146/annurev.arplant.55.031903.141644

Jeong S, Clark SE (2005) Photoperiod regulates flower meristem development in Arabidopsis thaliana. Genetics 169 (2):907-915. doi:10.1534/genetics.104.033357

Corbesier L, Bernier G, Perilleux C (2002) C : N ratio increases in the phloem sap during floral transition of the long-day plants Sinapis alba and Arabidopsis thaliana. Plant Cell Physiol 43 (6):684-688

Blazquez MA, Ahn JH, Weigel D (2003) A thermosensory pathway controlling flowering time in Arabidopsis thaliana. Nat Genet 33 (2):168-171. doi:10.1038/ng1085

Weinig C, Stinchcombe JR, Schmitt J (2003) QTL architecture of resistance and tolerance traits in Arabidopsis thaliana in natural environments. Mol Ecol 12 (5):1153-1163

Scortecci K, Michaels SD, Amasino RM (2003) Genetic interactions between FLM and other flowering-time genes in Arabidopsis thaliana. Plant Mol Biol 52 (5):915-922

Clarke JH, Mithen R, Brown JK, Dean C (1995) QTL analysis of flowering time in Arabidopsis thaliana. Mol Gen Genet 248 (3):278-286

Davis SJ (2009) Integrating hormones into the floral-transition pathway of Arabidopsis thaliana. Plant Cell Environ 32 (9):1201-1210. doi:10.1111/j.1365-3040.2009.01968.x

Corbesier L, Prinsen E, Jacqmard A, Lejeune P, Van Onckelen H, Perilleux C, Bernier G (2003) Cytokinin levels in leaves, leaf exudate and shoot apical meristem of Arabidopsis thaliana during floral transition. J Exp Bot 54 (392):2511-2517. doi:10.1093/jxb/erg276

Cookson SJ, Chenu K, Granier C (2007) Day length affects the dynamics of leaf expansion and cellular development in Arabidopsis thaliana partially through floral transition timing. Ann Bot 99 (4):703-711. doi:10.1093/aob/mcm005 Niwa Y, Ito S, Nakamichi N, Mizoguchi T, Niinuma K, Yamashino T, Mizuno T (2007) Genetic linkages of the circadian clock-associated genes, TOC1, CCA1 and LHY, in the photoperiodic control of flowering time in Arabidopsis thaliana. Plant Cell Physiol 48 (7):925-937. doi:10.1093/pcp/pcm067

Nakamichi N, Kita M, Ito S, Yamashino T, Mizuno T (2005) PSEUDO-RESPONSE REGULATORS, PRR9, PRR7 and PRR5, together play essential roles close to the circadian clock of Arabidopsis thaliana. Plant Cell Physiol 46 (5):686-698. doi:10.1093/pcp/pci086

Samis KE, Heath KD, Stinchcombe JR (2008) Discordant longitudinal clines in flowering time and phytochrome C in Arabidopsis thaliana. Evolution 62 (12):2971-2983. doi:EVO484 [pii] 10.1111/j.1558-5646.2008.00484.x

O'Neill CM, Morgan C, Kirby J, Tschoep H, Deng PX, Brennan M, Rosas U, Fraser F, Hall C, Gill S, Bancroft I (2008) Six new recombinant inbred populations for the study of quantitative traits in Arabidopsis thaliana. Theor Appl Genet 116 (5):623-634. doi:10.1007/s00122-007-0696-9

Ito S, Nakamichi N, Nakamura Y, Niwa Y, Kato T, Murakami M, Kita M, Mizoguchi T, Niinuma K, Yamashino T, Mizuno T (2007) Genetic linkages between circadian clock- associated components and phytochrome-dependent red light signal transduction in Arabidopsis thaliana. Plant Cell Physiol 48 (7):971-983. doi:10.1093/pcp/pcm063

Wang Q, Sajja U, Rosloski S, Humphrey T, Kim MC, Bomblies K, Weigel D, Grbic V (2007) HUA2 caused natural variation in shoot morphology of A. thaliana. Curr Biol 17 (17):1513-1519. doi:10.1016/j.cub.2007.07.059

Wang C, Tian Q, Hou Z, Mucha M, Aukerman M, Olsen O-A (2007) The Arabidopsis thaliana AT PRP39-1 gene, encoding a tetratricopeptide repeat protein with similarity to the yeast pre-mRNA processing protein PRP39, affects flowering time. Plant Cell Rep 26 (8):1357-1366. doi:10.1007/s00299-007-0336-5

Kim JA, Yang T-J, Kim JS, Park JY, Kwon S-J, Lim M-H, Jin M, Lee SC, Lee SI, Choi B-S, Um S-H, Kim H-I, Chun C, Park B-S (2007) Isolation of circadian-associated genes in Brassica rapa by comparative genomics with Arabidopsis thaliana. Mol Cells 23 (2):145-153

Boyd EW, Dorn LA, Weinig C, Schmitt J (2007) Maternal effects and germination timing mediate the expression of winter and spring annual life histories in Arabidopsis thaliana. Int J Plant Sci 168 (2):205-214. doi:10.1086/509587

Botto JF, Paula Coluccio M (2007) Seasonal and plant-density dependency for quantitative trait loci affecting flowering time in multiple populations of Arabidopsis thaliana. Plant Cell Environ 30 (11):1465-1479. doi:10.1111/j.1365-3040.2007.01722.x

Schmitz RJ, Hong L, Fitzpatrickt KE, Amasino RM (2007) DICER-LIKE 1 and DICER- LIKE 3 Redundantly Act to promote flowering via repression of FLOWERING LOCUS C in Arabidopsis thaliana. Genetics 176 (2):1359-1362. doi:10.1534/genetics.107.070649

Thingnaes E, Torre S, Moe R (2008) The role of phytochrome B, D and E in thermoperiodic responses of Arabidopsis thaliana. Plant Growth Regul 56 (1):53-59. doi:10.1007/s10725-008-9283-6 Seligman K, Saviani EE, Oliveira HC, Pinto-Maglio CAF, Salgado I (2008) Floral transition and nitric oxide emission during flower development in Arabidopsis thaliana is affected in nitrate reductase-deficient plants. Plant Cell Physiol 49 (7):1112-1121. doi:10.1093/pcp/pcn089

Wood CC, Robertson M, Tanner G, Peacock WJ, Dennis ES, Helliwell CA (2006) The Arabidopsis thaliana vernalization response requires a polycomb-like protein complex that also includes VERNALIZATION INSENSITIVE 3. Proc Natl Acad Sci U S A 103 (39):14631-14636. doi:10.1073/pnas.0606385103

Robertson M, Helliwell CA, Dennis ES (2008) Post-Translational Modifications of the Endogenous and Transgenic FLC Protein in Arabidopsis thaliana. Plant Cell Physiol 49 (12):1859-1866. doi:10.1093/pcp/pcn167

Ochatt SJ, Sangwan RS (2008) In vitro shortening of generation time in Arabidopsis thaliana. Plant Cell Tissue Organ Cult 93 (2):133-137. doi:10.1007/s11240-008-9351-7

Hebelstrup KH, Jensen EO (2008) Expression of NO scavenging hemoglobin is involved in the timing of bolting in Arabidopsis thaliana. Planta 227 (4):917-927. doi:10.1007/s00425-007-0667-z

Cosio C, Dunand C (2010) Transcriptome analysis of various flower and silique development stages indicates a set of class III peroxidase genes potentially involved in pod shattering in Arabidopsis thaliana. BMC Genomics 11:528. doi:1471-2164-11-528 [pii] 10.1186/1471-2164-11-528

Eichner J, Zeller G, Laubinger S, Rätsch G (2011) Support vector machines-based identification of alternative splicing in Arabidopsis thaliana from whole-genome tiling arrays. BMC Bioinformatics 12:55. doi:1471-2105-12-55 [pii] 10.1186/1471-2105-12-55

Kim HJ, Cho MR, Lee KH, Hyun YB, Lee I (2007) Proteome analysis of vernalization- treated Arabidopsis thaliana by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Bulletin of the Korean Chemical Society 28 (3):427-431

Roe JL, Rivin CJ, Sessions RA, Feldmann KA, Zambryski PC (1993) The TOUSLED gene in A. thaliana encodes a protein kinase homolog that is requires for leaf and flower development. Cell 75 (5):939-950. doi:10.1016/0092-8674(93)90537-z

Atwell S, Huang YS, Vilhjalmsson BJ, Willems G, Horton M, Li Y, Meng D, Platt A, Tarone AM, Hu TT, Jiang R, Muliyati NW, Zhang X, Amer MA, Baxter I, Brachi B, Chory J, Dean C, Debieu M, de Meaux J, Ecker JR, Faure N, Kniskern JM, Jones JDG, Michael T, Nemri A, Roux F, Salt DE, Tang C, Todesco M, Traw MB, Weigel D, Marjoram P, Borevitz JO, Bergelson J, Nordborg M (2010) Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature 465 (7298):627-631. doi:10.1038/nature08800

Bandaranayake CK, Koumproglou R, Wang XY, Wilkes T, Kearsey MJ (2004) QTL analysis of morphological and developmental traits in the Ler x Cvi population of Arabidopsis thaliana - QTL analysis in Arabidopsis. Euphytica 137 (3):361-371. doi:10.1023/b:euph.0000040493.61991.01 Kuittinen H, Sillanpaa MJ, Savolainen O (1997) Genetic basis of adaptation: flowering time in Arabidopsis thaliana. Theor Appl Genet 95 (4):573-583. doi:10.1007/s001220050598

Kole C, Quijada P, Michaels SD, Amasino RM, Osborn TC (2001) Evidence for homology of flowering-time genes VFR2 from Brassica rapa and FLC from Arabidopsis thaliana. Theor Appl Genet 102 (2-3):425-430. doi:10.1007/s001220051663

Schmid K, Torjek O, Meyer R, Schmuths H, Hoffmann MH, Altmann T (2006) Evidence for a large-scale population structure of Arabidopsis thaliana from genome-wide single nucleotide polymorphism markers. Theor Appl Genet 112 (6):1104-1114. doi:10.1007/s00122-006-0212-7

Peeters AJM, Koornneef M (1996) Genetic variation flowering time in Arabidopsis thaliana. Semin Cell Dev Biol 7 (3):381-389. doi:10.1006/scdb.1996.0048

Corbesier L, Havelange A, Lejeune P, Bernier G, Perilleux C (2001) N content of phloem and xylem exudates during the transition to flowering in Sinapis alba and Arabidopsis thaliana. Plant Cell Environ 24 (3):367-375. doi:10.1046/j.1365-3040.2001.00683.x

Mendoza L, Thieffry D, Alvarez-Buylla ER (1999) Genetic control of flower morphogenesis in Arabidopsis thaliana: a logical analysis. Bioinformatics 15 (7-8):593- 606

Chou ML, Yang CH (1999) Late-flowering genes interact with early-flowering genes to regulate flowering time in Arabidopsis thaliana. Plant Cell Physiol 40 (7):702-708

Ungerer MC, Halldorsdottir SS, Modliszewski JL, Mackay TF, Purugganan MD (2002) Quantitative trait loci for inflorescence development in Arabidopsis thaliana. Genetics 160 (3):1133-1151

Hagenblad J, Nordborg M (2002) Sequence variation and haplotype structure surrounding the flowering time locus FRI in Arabidopsis thaliana. Genetics 161 (1):289-298

Le Corre V, Roux F, Reboud X (2002) DNA polymorphism at the FRIGIDA gene in Arabidopsis thaliana: extensive nonsynonymous variation is consistent with local selection for flowering time. Mol Biol Evol 19 (8):1261-1271

Matsushika A, Imamura A, Yamashino T, Mizuno T (2002) Aberrant expression of the light-inducible and circadian-regulated APRR9 gene belonging to the circadian-associated APRR1/TOC1 quintet results in the phenotype of early flowering in Arabidopsis thaliana. Plant Cell Physiol 43 (8):833-843

Tocquin P, Corbesier L, Havelange A, Pieltain A, Kurtem E, Bernier G, Perilleux C (2003) A novel high efficiency, low maintenance, hydroponic system for synchronous growth and flowering of Arabidopsis thaliana. BMC Plant Biol 3:2

Genger RK, Peacock WJ, Dennis ES, Finnegan EJ (2003) Opposing effects of reduced DNA methylation on flowering time in Arabidopsis thaliana. Planta 216 (3):461-466. doi:10.1007/s00425-002-0855-9

Sanda SL, Amasino RM (1996) Interaction of FLC and late-flowering mutations in Arabidopsis thaliana. Mol Gen Genet 251 (1):69-74 Finnegan EJ, Peacock WJ, Dennis ES (1996) Reduced DNA methylation in Arabidopsis thaliana results in abnormal plant development. Proc Natl Acad Sci U S A 93 (16):8449- 8454

Sanda S, John M, Amasino R (1997) Analysis of flowering time in ecotypes of Arabidopsis thaliana. J Hered 88 (1):69-72

Somers DE, Webb AA, Pearson M, Kay SA (1998) The short-period mutant, toc1-1, alters circadian clock regulation of multiple outputs throughout development in Arabidopsis thaliana. Development 125 (3):485-494

Larsson AS, Landberg K, Meeks-Wagner DR (1998) The TERMINAL FLOWER2 (TFL2) gene controls the reproductive transition and meristem identity in Arabidopsis thaliana. Genetics 149 (2):597-605

Corbesier L, Lejeune P, Bernier G (1998) The role of carbohydrates in the induction of flowering in Arabidopsis thaliana: comparison between the wild type and a starchless mutant. Planta 206 (1):131-137

Stratton DA (1998) Reaction norm functions and QTL-environment interactions for flowering time in Arabidopsis thaliana. Heredity 81 ( Pt 2):144-155

Nordborg M, Bergelson J (1999) The effect of seed and rosette cold treatment on germination and flowering time in some Arabidopsis thaliana (Brassicaceae) ecotypes. Am J Bot 86 (4):470-475

Chu T, Xie H, Xu Y, Ma R (2010) [Regulation pattern of the FRUITFULL (FUL) gene of Arabidopsis thaliana]. Sheng Wu Gong Cheng Xue Bao 26 (11):1546-1554

Chou ML, Haung MD, Yang CH (2001) EMF genes interact with late-flowering genes in regulating floral initiation genes during shoot development in Arabidopsis thaliana. Plant Cell Physiol 42 (5):499-507. doi:10.1093/pcp/pce062

Berardini TZ, Bollman K, Sun H, Poethig RS (2001) Regulation of vegetative phase change in Arabidopsis thaliana by cyclophilin 40. Science 291 (5512):2405-2407. doi:10.1126/science.1057144

Balasubramanian S, Sureshkumar S, Agrawal M, Michael TP, Wessinger C, Maloof JN, Clark R, Warthmann N, Chory J, Weigel D (2006) The PHYTOCHROME C photoreceptor gene mediates natural variation in flowering and growth responses of Arabidopsis thaliana. Nat Genet 38 (6):711-715. doi:10.1038/ng1818

Lawrence CW (1968) Radiation-induced polygenic mutation in Arabidopsis thaliana. II. Analysis of lines selected for flowering time. Heredity 23 (4):573-589

Lee I, Bleecker A, Amasino R (1993) Analysis of naturally occurring late flowering in Arabidopsis thaliana. Mol Gen Genet 237 (1-2):171-176

Clarke JH, Dean C (1994) Mapping FRI, a locus controlling flowering time and vernalization response in Arabidopsis thaliana. Mol Gen Genet 242 (1):81-89 Kowalski SP, Lan TH, Feldmann KA, Paterson AH (1994) QTL mapping of naturally- occurring variation in flowering time of Arabidopsis thaliana. Mol Gen Genet 245 (5):548-555

Kawamura H, Ito S, Yamashino T, Niwa Y, Nakamichi N, Mizuno T (2008) Characterization of Genetic Links between Two Clock-Associated Genes, GI and PRR5 in the Current Clock Model of Arabidopsis thaliana. Bioscience, Biotechnology, and Biochemistry 72 (10):2770-2774. doi:10.1271/bbb.80321

Murakami M, Tago Y, Yamashino T, Mizuno T (2007) Comparative overviews of clock- associated genes of Arabidopsis thaliana and Oryza sativa. Plant Cell Physiol 48 (1):110- 121. doi:10.1093/pcp/pcl043

Melzer S, Lens F, Gennen J, Vanneste S, Rohde A, Beeckman T (2008) Flowering-time genes modulate meristem determinacy and growth form in Arabidopsis thaliana. Nat Genet 40 (12):1489-1492. doi:10.1038/ng.253

Korves TM, Schmid KJ, Caicedo AL, Mays C, Stinchcombe JR, Purugganan MD, Schmitt J (2007) Fitness effects associated with the major flowering time gene FRIGIDA in Arabidopsis thaliana in the field. Am Nat 169 (5):E141-E157. doi:10.1086/513111

Kolar J, Senkova J (2008) Reduction of mineral nutrient availability accelerates flowering of Arabidopsis thaliana. J Plant Physiol 165 (15):1601-1609. doi:10.1016/j.jplph.2007.11.010

Jeong CW, Roh H, Dang TV, Choi YD, Fischer RL, Lee JS, Choi Y (2011) An E3 ligase complex regulates SET-domain polycomb group protein activity in Arabidopsis thaliana. Proc Natl Acad Sci U S A 108 (19):8036-8041. doi:10.1073/pnas.1104232108

Ito S, Niwa Y, Nakamichi N, Kawamura H, Yamashino T, Mizuno T (2008) Insight into missing genetic links between two evening-expressed pseudo-response regulator genes TOC1 and PRR5 in the circadian clock-controlled circuitry in Arabidopsis thaliana. Plant Cell Physiol 49 (2):201-213. doi:10.1093/pcp/pcm178

Ding Z, Doyle MR, Amasino RM, Davis SJ (2007) A complex genetic interaction between Arabidopsis thaliana TOC1 and CCA1/LHY in driving the circadian clock and in output regulation. Genetics 176 (3):1501-1510. doi:10.1534/genetics.107.072769

Taylor A, Massiah AJ, Thomas B (2010) Conservation of Arabidopsis thaliana photoperiodic flowering time genes in onion (Allium cepa L.). Plant Cell Physiol 51 (10):1638-1647. doi:pcq120 [pii] 10.1093/pcp/pcq120

Yang CH, Chou ML (1999) FLD interacts with CO to affect both flowering time and floral initiation in Arabidopsis thaliana. Plant Cell Physiol 40 (6):647-650

Telfer A, Poethig RS (1998) HASTY: a gene that regulates the timing of shoot maturation in Arabidopsis thaliana. Development 125 (10):1889-1898

Stangeland B, Rosenhave EM, Winge P, Berg A, Amundsen SS, Karabeg M, Mandal A, Bones AM, Grini PE, Aalen RB (2009) AtMBD8 is involved in control of flowering time in the C24 ecotype of Arabidopsis thaliana. Physiol Plant 136 (1):110-126. doi:10.1111/j.1399-3054.2009.01218.x Springer CJ, Orozco RA, Kelly JK, Ward JK (2008) Elevated CO2 influences the expression of floral-initiation genes in Arabidopsis thaliana. New Phytol 178 (1):63-67. doi:10.1111/j.1469-8137.2008.02387.x

Tsuchiya T, Eulgem T (2010) Co-option of EDM2 to distinct regulatory modules in Arabidopsis thaliana development. BMC Plant Biol 10. doi:203 10.1186/1471-2229-10- 203

Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J (2003) Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci U S A 100 (10):6263-6268

Denoeud F, Aury JM, Da Silva C, Noel B, Rogier O, Delledonne M, Morgante M, Valle G, Wincker P, Scarpelli C, Jaillon O, Artiguenave F (2008) Annotating genomes with massive-scale RNA sequencing. Genome Biol 9 (12):R175. doi:gb-2008-9-12-r175 [pii] 10.1186/gb-2008-9-12-r175

Faricelli ME, Valárik M, Dubcovsky J (2010) Control of flowering time and spike development in cereals: the earliness per se Eps-1 region in wheat, rice, and Brachypodium. Funct Integr Genomics 10 (2):293-306. doi:10.1007/s10142-009-0146-7

Buitink J, van den Dries IJ, Hoekstra FA, Alberda M, Hemminga MA (2000) High critical temperature above T(g) may contribute to the stability of biological systems. Journal of Biophysics 79 (2):1119-1128. doi:S0006-3495(00)76365-X [pii] 10.1016/S0006- 3495(00)76365-X

Formanová N, Li XQ, Ferrie AM, Depauw M, Keller WA, Landry B, Brown GG (2006) Towards positional cloning in Brassica napus: generation and analysis of doubled haploid B. rapa possessing the B. napus pol CMS and Rfp nuclear restorer gene. Plant Mol Biol 61 (1-2):269-281. doi:10.1007/s11103-006-0008-9

Wan L, Xia X, Hong D, Yang G (2010) Molecular analysis and expression of a floral organ-specific polygalacturonase gene isolated from rapeseed (Brassica napus L.). Mol Biol Rep 37 (8):3851-3862. doi:10.1007/s11033-010-0041-2

Trick M, Long Y, Meng J, Bancroft I (2009) Single nucleotide polymorphism (SNP) discovery in the polyploid Brassica napus using Solexa transcriptome sequencing. Plant Biotechnol J 7 (4):334-346. doi:PBI396 [pii] 10.1111/j.1467-7652.2008.00396.x

Gupta PK, Mir RR, Mohan A, Kumar J (2008) Wheat genomics: present status and future prospects. Int J Plant Genomics 2008:896451. doi:10.1155/2008/896451

Wang J, Hiscox AL, Miller DR, Meyer TH, Sammis TW (2009) A comparison of Lagrangian model estimates to light detection and ranging (LIDAR) measurements of dust plumes from field tilling. Journal of the Air & Waste Management Association 59 (11):1370-1378

Gilchrist E, Haughn G (2010) Reverse genetics techniques: engineering loss and gain of gene function in plants. Brief Funct Genomics 9 (2):103-110. doi:elp059 [pii] 10.1093/bfgp/elp059

Till BJ, Colbert T, Tompa R, Enns LC, Codomo CA, Johnson JE, Reynolds SH, Henikoff JG, Greene EA, Steine MN, Comai L, Henikoff S (2003) High-throughput TILLING for functional genomics. Methods Mol Biol 236:205-220. doi:1-59259-413-1-205 [pii] 10.1385/1-59259-413-1:205

Gaudeul M, Till-Bottraud I (2003) Low selfing in a mass-flowering, endangered perennial, Eryngium alpinum L. (Apiaceae). Am J Bot 90 (5):716-723. doi:90/5/716 [pii] 10.3732/ajb.90.5.716

Xie FL, Huang SQ, Guo K, Xiang AL, Zhu YY, Nie L, Yang ZM (2007) Computational identification of novel microRNAs and targets in Brassica napus. FEBS Lett 581 (7):1464-1474. doi:S0014-5793(07)00250-5 [pii] 10.1016/j.febslet.2007.02.074

Till BJ, Colbert T, Codomo C, Enns L, Johnson J, Reynolds SH, Henikoff JG, Greene EA, Steine MN, Comai L, Henikoff S (2006) High-throughput TILLING for Arabidopsis. Methods Mol Biol 323:127-135. doi:10.1385/1-59745-003-0:127

McCallum CM, Comai L, Greene EA, Henikoff S (2000) Targeted screening for induced mutations. Nat Biotechnol 18 (4):455-457. doi:10.1038/74542

King SE, Grace JB (2000) The effects of gap size and disturbance type on invasion of wet pine savanna by cogongrass, Imperata cylindrica (Poaceae). Am J Bot 87 (9):1279-1286. doi:87/9/1279 [pii]

Johnson JC, Jr., Gates RN, Newton GL, Wilson JP, Chandler LD, Utley PR (1997) Yield, composition, and in vitro digestibility of temperate and tropical corn hybrids grown as silage crops planted in summer. J Dairy Sci 80 (3):550-557. doi:S0022-0302(97)75969-1 [pii] 10.3168/jds.S0022-0302(97)75969-1

Gershenson TA, Quon H, Somerville S, Cohn E (1999) Tilling the soil: nurturing the seeds of patient and family education. J Nurs Care Qual 13 (6):83-91

Wu JL, Wu C, Lei C, Baraoidan M, Bordeos A, Madamba MR, Ramos-Pamplona M, Mauleon R, Portugal A, Ulat VJ, Bruskiewich R, Wang G, Leach J, Khush G, Leung H (2005) Chemical- and irradiation-induced mutants of indica rice IR64 for forward and reverse genetics. Plant Mol Biol 59 (1):85-97. doi:10.1007/s11103-004-5112-0

Slade AJ, Fuerstenberg SI, Loeffler D, Steine MN, Facciotti D (2005) A reverse genetic, nontransgenic approach to wheat crop improvement by TILLING. Nat Biotechnol 23 (1):75-81. doi:nbt1043 [pii] 10.1038/nbt1043

Rodriguez BA, Huang TH (2005) Tilling the chromatin landscape: emerging methods for the discovery and profiling of protein-DNA interactions. Biochem Cell Biol 83 (4):525- 534. doi:o05-055 [pii] 10.1139/o05-055

Poienaru S, Sarpe N, Sarpe I (2005) The chemical control of Shorgum halepense (Johnson grass) in soybean culture in the Danube meadow. Comm Agric Appl Biol Sci 70 (3):459- 463

Kim Y, Schumaker KS, Zhu JK (2006) EMS mutagenesis of Arabidopsis. Methods Mol Biol 323:101-103. doi:10.1385/1-59745-003-0:101

Kato T, Murakami M, Nakamura Y, Ito S, Nakamichi N, Yamashino T, Mizuno T (2007) Mutants of circadian-associated PRR genes display a novel and visible phenotype as to light responses during de-etiolation of Arabidopsis thaliana seedlings. Bioscience, Biotechnology, and Biochemistry 71 (3):834-839. doi:10.1271/bbb.60642

Yamashino T, Matsushika A, Murakami M, Ito S, Nakamichi N, Mizuno T (2007) Characterization of circadian-associated pseudo-response regulators: I. Comparative studies on a series of transgenic lines misexpressing five distinctive PRR genes in Arabidopsis thaliana. Bioscience, Biotechnology, and Biochemistry 71 (2):527-534. doi:10.1271/bbb.60583

Ito S, Nakamichi N, Matsushika A, Fujimori T, Yamashino T, Mizuno T (2005) Molecular dissection of the promoter of the light-induced and circadian-controlled APRR9 gene encoding a clock-associated component of Arabidopsis thaliana. Bioscience, Biotechnology, and Biochemistry 69 (2):382-390

Li J, Zhang J, Wang X, Chen J (2010) A membrane-tethered transcription factor ANAC089 negatively regulates floral initiation in Arabidopsis thaliana. Sci China Life Sci 53 (11):1299-1306. doi:10.1007/s11427-010-4085-2

Okatani A, Ikegami T, Takahashi W, Tanaka O (2010) Induction and promotion of flowering by heat-treated catecholamines in Lemna paucicostata. Bioscience, Biotechnology, and Biochemistry 74 (11):2339-2341

Maloof JN (2010) Recent advances in regulation of flowering. F1000 Biol Rep 2. doi:10.3410/b2-9

Zhao XY, Zhu DF, Zhou B, Peng WS, Lin JZ, Huang XQ, He RQ, Zhuo YH, Peng D, Tang DY, Li MF, Liu XM (2010) Over-expression of the AtGA2ox8 gene decreases the biomass accumulation and lignification in rapeseed (Brassica napus L.). Journal of Zhejiang University Science B 11 (7):471-481. doi:10.1631/jzus.B1000161

Fu C, Yang XO, Chen X, Chen W, Ma Y, Hu J, Li S (2009) OsEF3, a homologous gene of Arabidopsis ELF3, has pleiotropic effects in rice. Plant Biol 11 (5):751-757. doi:10.1111/j.1438-8677.2008.00156.x

Dennis ES, Peacock WJ (2009) Vernalization in cereals. J Biol 8 (6):57. doi:10.1186/jbiol156

Aghaalikhani M, Yaghoobi SR (2008) Critical period of weed control in winter canola (Brassica napus L.) in a semi-arid region. Pak J Biol Sci 11 (5):773-777

Qu L, Zhang Y, Li C, Liu M, Wang J, Huang B, Li Z, Wang S, Gu H, Chen Z (2001) Expression pattern and functional analysis of a MADS-box gene M79 from rice. Science in China Series C, Life sciences 44 (2):161-169. doi:10.1007/bf02879321

Banuelos GR, Argumedo R, Patel K, Ng V, Zhou F, Vellanoweth RL (2008) The developmental transition to flowering in Arabidopsis is associated with an increase in leaf chloroplastic lipoxygenase activity. Plant Sci 174 (3):366-373. doi:10.1016/j.plantsci.2007.12.009

Ueda HR (2006) Systems biology flowering in the plant clock field. Mol Syst Biol 2:60. doi:10.1038/msb4100105 Lu Q, Xu ZK, Song RT (2006) OsFY, a homolog of AtFY, encodes a protein that can interact with OsFCA-gamma in rice (Oryza sativa L.). Acta Biochim Biophys Sin 38 (7):492-499

Larl I, Wagner J (2006) Timing of reproductive and vegetative development in Saxifraga oppositifolia in an alpine and a subnival climate. Plant Biol 8 (1):155-166. doi:10.1055/s- 2005-872888

Munir M, Jamil M, Baloch JU, Khattak KR (2004) Impact of light intensity on flowering time and plant quality of Antirrhinum majus L. cultivar Chimes White. Journal of Zhejiang University Science B 5 (4):400-405

Simpson GG, Dean C (2000) Environmental-dependent acceleration of a developmental switch: the floral transition. Sci STKE 2000 (18):pe1. doi:10.1126/stke.2000.18.pe1

Oka M, Tasaka Y, Iwabuchi M, Mino M (2001) Elevated sensitivity to gibberellin by vernalization in the vegetative rosette plants of Eustoma grandiflorum and Arabidopsis thaliana. Plant Sci 160 (6):1237-1245

Coupland G, Igeno MI, Simon R, Schaffer R, Murtas G, Reeves P, Robson F, Pineiro M, Costa M, Lee K, Suarez-Lopez P (1998) The regulation of flowering time by daylength in Arabidopsis. Symp Soc Exp Biol 51:105-110

Dennis ES, Bilodeau P, Burn J, Finnegan EJ, Genger R, Helliwell C, Kang BJ, Sheldon CC, Peacock WJ (1998) Methylation controls the low temperature induction of flowering in Arabidopsis. Symp Soc Exp Biol 51:97-103

Schwemmle B (1960) Thermoperiodic effects and circadian rhythms in flowering of plants. Cold Spring Harbor Symp Quant Biol 25:239-243

Alvarez-Fernandez R (2010) Patented applications of gene silencing in plants: manipulation of traits and phytopathogen resistance. Recent Pat DNA Gene Seq 4 (3):167- 180

Brock MT, Stinchcombe JR, Weinig C (2009) Indirect effects of FRIGIDA: floral trait (co)variances are altered by seasonally variable abiotic factors associated with flowering time. J Evol Biol 22 (9):1826-1838. doi:JEB1794 [pii]

10.1111/j.1420-9101.2009.01794.x

Flowers JM, Hanzawa Y, Hall MC, Moore RC, Purugganan MD (2009) Population genomics of the Arabidopsis thaliana flowering time gene network. Mol Biol Evol 26 (11):2475-2486. doi:msp161 [pii] 10.1093/molbev/msp161

Caicedo AL, Richards C, Ehrenreich IM, Purugganan MD (2009) Complex rearrangements lead to novel chimeric gene fusion polymorphisms at the Arabidopsis thaliana MAF2-5 flowering time gene cluster. Mol Biol Evol 26 (3):699-711. doi:msn300 [pii] 10.1093/molbev/msn300

Kang HG, Kim J, Kim B, Jeong H, Choi SH, Kim EK, Lee HY, Lim PO (2011) Overexpression of FTL1/DDF1, an AP2 transcription factor, enhances tolerance to cold, drought, and heat stresses in Arabidopsis thaliana. Plant Sci 180 (4):634-641. doi:10.1016/j.plantsci.2011.01.002 Slade AJ, Knauf VC (2005) TILLING moves beyond functional genomics into crop improvement. Transgenic Res 14 (2):109-115

Wu GZ, Shi QM, Niu Y, Xing MQ, Xue HW (2008) Shanghai RAPESEED Database: a resource for functional genomics studies of seed development and fatty acid metabolism of Brassica. Nucleic Acids Res 36 (Database issue):D1044-1047. doi:gkm780 [pii] 10.1093/nar/gkm780

Till BJ, Reynolds SH, Greene EA, Codomo CA, Enns LC, Johnson JE, Burtner C, Odden AR, Young K, Taylor NE, Henikoff JG, Comai L, Henikoff S (2003) Large-scale discovery of induced point mutations with high-throughput TILLING. Genome Res 13 (3):524-530. doi:10.1101/gr.977903

Till BJ, Burtner C, Comai L, Henikoff S (2004) Mismatch cleavage by single-strand specific nucleases. Nucleic Acids Res 32 (8):2632-2641. doi:10.1093/nar/gkh599 32/8/2632 [pii]

Laitinen RA, Immanen J, Auvinen P, Rudd S, Alatalo E, Paulin L, Ainasoja M, Kotilainen M, Koskela S, Teeri TH, Elomaa P (2005) Analysis of the floral transcriptome uncovers new regulators of organ determination and gene families related to flower organ differentiation in Gerbera hybrida (Asteraceae). Genome Res 15 (4):475-486. doi:gr.3043705 [pii] 10.1101/gr.3043705

Zhang G, Guo G, Hu X, Zhang Y, Li Q, Li R, Zhuang R, Lu Z, He Z, Fang X, Chen L, Tian W, Tao Y, Kristiansen K, Zhang X, Li S, Yang H, Wang J (2010) Deep RNA sequencing at single base-pair resolution reveals high complexity of the rice transcriptome. Genome Res 20 (5):646-654. doi:gr.100677.109 [pii]

10.1101/gr.100677.109

Picardi E, Horner DS, Chiara M, Schiavon R, Valle G, Pesole G (2010) Large-scale detection and analysis of RNA editing in grape mtDNA by RNA deep-sequencing. Nucleic Acids Res 38 (14):4755-4767. doi:gkq202 [pii] 10.1093/nar/gkq202

Lu T, Lu G, Fan D, Zhu C, Li W, Zhao Q, Feng Q, Zhao Y, Guo Y, Huang X, Han B (2010) Function annotation of the rice transcriptome at single-nucleotide resolution by RNA-seq. Genome Res 20 (9):1238-1249. doi:gr.106120.110 [pii] 10.1101/gr.106120.110

Filichkin SA, Priest HD, Givan SA, Shen R, Bryant DW, Fox SE, Wong WK, Mockler TC (2010) Genome-wide mapping of alternative splicing in Arabidopsis thaliana. Genome Res 20 (1):45-58. doi:gr.093302.109 [pii] 10.1101/gr.093302.109

Song J, Yamamoto K, Shomura A, Itadani H, Zhong HS, Yano M, Sasaki T (1998) Isolation and mapping of a family of putative zinc-finger protein cDNAs from rice. DNA Res 5 (2):95-101. doi:10.1093/dnares/5.2.95

Yamanaka N, Ninomiya S, Hoshi M, Tsubokura Y, Yano M, Nagamura Y, Sasaki T, Harada K (2001) An informative linkage map of soybean reveals QTLs for flowering time, leaflet morphology and regions of segregation distortion. DNA Res 8 (2):61-72

Hauser TP, Shim SI (2007) Survival and flowering of hybrids between cultivated and wild carrots (Daucus carota) in Danish grasslands. Environ Biosaf Res 6 (4):237-247. doi:10.1051/ebr:2007044 Simard MJ, Legere A, Willenborg CJ (2009) Reproductive phenology of transgenic Brassica napus cultivars: Effect on intraspecific gene flow. Environ Biosaf Res 8 (3):123- 131. doi:10.1051/ebr/2009013

Lee JH, Park SH, Lee JS, Ahn JH (2007) A conserved role of SHORT VEGETATIVE PHASE (SVP) in controlling flowering time of Brassica plants. Biochimica et Biophysica Acta - Gene Structure and Expression 1769 (7-8):455-461. doi:10.1016/j.bbaexp.2007.05.001

Liu C, Xi W, Shen L, Tan C, Yu H (2009) Regulation of floral patterning by flowering time genes. Dev Cell 16 (5):711-722. doi:S1534-5807(09)00132-4 [pii] 10.1016/j.devcel.2009.03.011

Murakami M, Matsushika A, Ashikari M, Yamashino T, Mizuno T (2005) Circadian- associated rice pseudo response regulators (OsPRRs): Insight into the control of flowering time. Bioscience, Biotechnology, and Biochemistry 69 (2):410-414. doi:10.1271/bbb.69.410

Park BS, Eo HJ, Jang IC, Kang HG, Song JT, Seo HS (2010) Ubiquitination of LHY by SINAT5 regulates flowering time and is inhibited by DET1. Biochem Biophys Res Commun 398 (2):242-246. doi:S0006-291X(10)01193-9 [pii] 10.1016/j.bbrc.2010.06.067

Shi Y, Zhang X, Xu ZY, Li L, Zhang C, Schlappi M, Xu ZQ (2011) Influence of EARLI1-like genes on flowering time and lignin synthesis of Arabidopsis thaliana. Plant Biol 13 (5):731-739. doi:10.1111/j.1438-8677.2010.00428.x

Song X, Kristie DN, Reekie EG (2009) Why does elevated CO2 affect time of flowering? An exploratory study using the photoperiodic flowering mutants of Arabidopsis thaliana. New Phytol 181 (2):339-346. doi:NPH2669 [pii] 10.1111/j.1469-8137.2008.02669.x

Levin DA (2009) Flowering-time plasticity facilitates niche shifts in adjacent populations. New Phytol 183 (3):661-666. doi:NPH2889 [pii] 10.1111/j.1469-8137.2009.02889.x

Beltran JP (1991) A flourishing time for flower development. Workshop on Flower Development, sponsored by Fundacion Juan March, Madrid, Spain, March 11-13, 1991. New Biol 3 (7):667-670

Wang N, Wang Y, Tian F, King GJ, Zhang C, Long Y, Shi L, Meng J (2008) A functional genomics resource for Brassica napus: development of an EMS mutagenized population and discovery of FAE1 point mutations by TILLING. New Phytol 180 (4):751-765. doi:NPH2619 [pii] 10.1111/j.1469-8137.2008.02619.x

Blazquez MA (2005) Plant science. The right time and place for making flowers. Science 309 (5737):1024-1025. doi:10.1126/science.1117203

Tiwari SB, Shen Y, Chang HC, Hou Y, Harris A, Ma SF, McPartland M, Hymus GJ, Adam L, Marion C, Belachew A, Repetti PP, Reuber TL, Ratcliffe OJ (2010) The flowering time regulator CONSTANS is recruited to the FLOWERING LOCUS T promoter via a unique cis-element. New Phytol 187 (1):57-66. doi:NPH3251 [pii] 10.1111/j.1469-8137.2010.03251.x

Takahashi Y, Teshima KM, Yokoi S, Innan H, Shimamoto K (2009) Variations in Hd1 proteins, Hd3a promoters, and Ehd1 expression levels contribute to diversity of flowering time in cultivated rice. Proc Natl Acad Sci U S A 106 (11):4555-4560. doi:0812092106 [pii] 10.1073/pnas.0812092106

Chiang GC, Barua D, Kramer EM, Amasino RM, Donohue K (2009) Major flowering time gene, flowering locus C, regulates seed germination in Arabidopsis thaliana. Proc Natl Acad Sci U S A 106 (28):11661-11666. doi:0901367106 [pii] 10.1073/pnas.0901367106

Rees M, Childs DZ, Rose KE, Grubb PJ (2004) Evolution of size-dependent flowering in a variable environment: partitioning the effects of fluctuating selection. Proceedings of the Royal Society of London Series B, Biological sciences 271 (1538):471-475. doi:10.1098/rspb.2003.2596

Devaux C, Lande R (2008) Incipient allochronic speciation due to non-selective assortative mating by flowering time, mutation and genetic drift. Proceedings of the Royal Society of London Series B, Biological sciences 275 (1652):2723-2732. doi:10.1098/rspb.2008.0882

Forrest J, Thomson JD (2009) Pollinator experience, neophobia and the evolution of flowering time. Proceedings of the Royal Society of London Series B, Biological sciences 276 (1658):935-943. doi:10.1098/rspb.2008.1434

Ford CS, Allainguillaume J, Grilli-Chantler P, Cuccato G, Allender CJ, Wilkinson MJ (2006) Spontaneous gene flow from rapeseed (Brassica napus) to wild Brassica oleracea. Proceedings of the Royal Society of London Series B, Biological sciences 273 (1605):3111-3115. doi:WX5U162RXN011032 [pii] 10.1098/rspb.2006.3686

Sheldon CC, Hills MJ, Lister C, Dean C, Dennis ES, Peacock WJ (2008) Resetting of FLOWERING LOCUS C expression after epigenetic repression by vernalization. Proc Natl Acad Sci U S A 105 (6):2214-2219. doi:0711453105 [pii] 10.1073/pnas.0711453105

McCallum CM, Comai L, Greene EA, Henikoff S (2000) Targeting induced local lesions IN genomes (TILLING) for plant functional genomics. Plant Physiol 123 (2):439-442

Colbert T, Till BJ, Tompa R, Reynolds S, Steine MN, Yeung AT, McCallum CM, Comai L, Henikoff S (2001) High-throughput screening for induced point mutations. Plant Physiol 126 (2):480-484

Henikoff S, Till BJ, Comai L (2004) TILLING. Traditional mutagenesis meets functional genomics. Plant Physiol 135 (2):630-636. doi:10.1104/pp.104.041061 pp.104.041061 [pii]

Chen X, Truksa M, Snyder CL, El-Mezawy A, Shah S, Weselake RJ (2011) Three homologous genes encoding sn-glycerol-3-phosphate acyltransferase 4 exhibit different expression patterns and functional divergence in Brassica napus. Plant Physiol 155 (2):851-865. doi:pp.110.169482 [pii] 10.1104/pp.110.169482

Honee G, Buitink J, Jabs T, De Kloe J, Sijbolts F, Apotheker M, Weide R, Sijen T, Stuiver M, De Wit PJ (1998) Induction of defense-related responses in Cf9 tomato cells by the AVR9 elicitor peptide of Cladosporium fulvum is developmentally regulated. Plant Physiol 117 (3):809-820

Skøt L, Sanderson R, Thomas A, Skøt K, Thorogood D, Latypova G, Asp T, Armstead I (2011) Allelic variation in the perennial ryegrass FLOWERING LOCUS T gene is associated with changes in flowering time across a range of populations. Plant Physiol 155 (2):1013-1022. doi:pp.110.169870 [pii] 10.1104/pp.110.169870

Meir S, Philosoph-Hadas S, Sundaresan S, Selvaraj KS, Burd S, Ophir R, Kochanek B, Reid MS, Jiang CZ, Lers A (2010) Microarray analysis of the abscission-related transcriptome in the tomato flower abscission zone in response to auxin depletion. Plant Physiol 154 (4):1929-1956. doi:pp.110.160697 [pii] 10.1104/pp.110.160697

Zenoni S, Ferrarini A, Giacomelli E, Xumerle L, Fasoli M, Malerba G, Bellin D, Pezzotti M, Delledonne M (2010) Characterization of transcriptional complexity during berry development in Vitis vinifera using RNA-Seq. Plant Physiol 152 (4):1787-1795. doi:pp.109.149716 [pii] 10.1104/pp.109.149716

Severin AJ, Peiffer GA, Xu WW, Hyten DL, Bucciarelli B, O'Rourke JA, Bolon YT, Grant D, Farmer AD, May GD, Vance CP, Shoemaker RC, Stupar RM (2010) An integrative approach to genomic introgression mapping. Plant Physiol 154 (1):3-12. doi:pp.110.158949 [pii] 10.1104/pp.110.158949

Geraldo N, Baurle I, Kidou S, Hu X, Dean C (2009) FRIGIDA delays flowering in Arabidopsis via a cotranscriptional mechanism involving direct interaction with the nuclear cap-binding complex. Plant Physiol 150 (3):1611-1618. doi:10.1104/pp.109.137448

He F, Zhou Y, Zhang Z (2010) Deciphering the Arabidopsis floral transition process by integrating a protein-protein interaction network and gene expression data. Plant Physiol 153 (4):1492-1505. doi:10.1104/pp.110.153650

Wei X, Xu J, Guo H, Jiang L, Chen S, Yu C, Zhou Z, Hu P, Zhai H, Wan J (2010) DTH8 suppresses flowering in rice, influencing plant height and yield potential simultaneously. Plant Physiol 153 (4):1747-1758. doi:10.1104/pp.110.156943

Dhillon T, Pearce SP, Stockinger EJ, Distelfeld A, Li C, Knox AK, Vashegyi I, Vagujfalvi A, Galiba G, Dubcovsky J (2010) Regulation of freezing tolerance and flowering in temperate cereals: the VRN-1 connection. Plant Physiol 153 (4):1846-1858. doi:10.1104/pp.110.159079

Amasino RM, Michaels SD (2010) The timing of flowering. Plant Physiol 154 (2):516- 520. doi:10.1104/pp.110.161653

Feng W, Jacob Y, Veley KM, Ding L, Yu X, Choe G, Michaels SD (2011) Hypomorphic alleles reveal FCA-independent roles for FY in the regulation of FLOWERING LOCUS C. Plant Physiol 155 (3):1425-1434. doi:10.1104/pp.110.167817

Schmitz RJ, Tamada Y, Doyle MR, Zhang X, Amasino RM (2009) Histone H2B deubiquitination is required for transcriptional activation of FLOWERING LOCUS C and for proper control of flowering in Arabidopsis. Plant Physiol 149 (2):1196-1204. doi:10.1104/pp.108.131508

Cai X, Ballif J, Endo S, Davis E, Liang M, Chen D, DeWald D, Kreps J, Zhu T, Wu Y (2007) A putative CCAAT-binding transcription factor is a regulator of flowering timing in Arabidopsis. Plant Physiol 145 (1):98-105. doi:10.1104/pp.107.102079 Mayfield JD, Folta KM, Paul AL, Ferl RJ (2007) The 14-3-3 Proteins mu and upsilon influence transition to flowering and early phytochrome response. Plant Physiol 145 (4):1692-1702. doi:10.1104/pp.107.108654

Chincinska IA, Liesche J, Krugel U, Michalska J, Geigenberger P, Grimm B, Kuhn C (2008) Sucrose transporter StSUT4 from potato affects flowering, tuberization, and shade avoidance response. Plant Physiol 146 (2):515-528. doi:10.1104/pp.107.112334

Xing D, Zhao H, Li QQ (2008) Arabidopsis CLP1-SIMILAR PROTEIN3, an ortholog of human polyadenylation factor CLP1, functions in gametophyte, embryo, and postembryonic development. Plant Physiol 148 (4):2059-2069. doi:10.1104/pp.108.129817

Distelfeld A, Tranquilli G, Li C, Yan L, Dubcovsky J (2009) Genetic and molecular characterization of the VRN2 loci in tetraploid wheat. Plant Physiol 149 (1):245-257. doi:10.1104/pp.108.129353

Holefors A, Opseth L, Ree Rosnes AK, Ripel L, Snipen L, Fossdal CG, Olsen JE (2009) Identification of PaCOL1 and PaCOL2, two CONSTANS-like genes showing decreased transcript levels preceding short day induced growth cessation in Norway spruce. Plant Physiol Biochem 47 (2):105-115. doi:10.1016/j.plaphy.2008.11.003

Shindo C, Aranzana MJ, Lister C, Baxter C, Nicholls C, Nordborg M, Dean C (2005) Role of FRIGIDA and FLOWERING LOCUS C in determining variation in flowering time of Arabidopsis. Plant Physiol 138 (2):1163-1173. doi:10.1104/pp.105.061309

Macmillan CP, Blundell CA, King RW (2005) Flowering of the grass Lolium perenne: effects of vernalization and long days on gibberellin biosynthesis and signaling. Plant Physiol 138 (3):1794-1806. doi:10.1104/pp.105.062190

Loukoianov A, Yan L, Blechl A, Sanchez A, Dubcovsky J (2005) Regulation of VRN-1 vernalization genes in normal and transgenic polyploid wheat. Plant Physiol 138 (4):2364- 2373. doi:10.1104/pp.105.064287

Yoo SK, Chung KS, Kim J, Lee JH, Hong SM, Yoo SJ, Yoo SY, Lee JS, Ahn JH (2005) CONSTANS activates SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 through FLOWERING LOCUS T to promote flowering in Arabidopsis. Plant Physiol 139 (2):770-778. doi:10.1104/pp.105.066928

Kim WY, Hicks KA, Somers DE (2005) Independent roles for EARLY FLOWERING 3 and ZEITLUPE in the control of circadian timing, hypocotyl length, and flowering time. Plant Physiol 139 (3):1557-1569. doi:10.1104/pp.105.067173

Grennan AK (2006) Variations on a theme. Regulation of flowering time in Arabidopsis. Plant Physiol 140 (2):399-400. doi:10.1104/pp.104.900184

Attolico AD, De Tullio MC (2006) Increased ascorbate content delays flowering in long- day grown Arabidopsis thaliana (L.) Heynh. Plant Physiol Biochem 44 (7-9):462-466. doi:10.1016/j.plaphy.2006.08.002

Jain M, Nijhawan A, Arora R, Agarwal P, Ray S, Sharma P, Kapoor S, Tyagi AK, Khurana JP (2007) F-box proteins in rice. Genome-wide analysis, classification, temporal and spatial gene expression during panicle and seed development, and regulation by light and abiotic stress. Plant Physiol 143 (4):1467-1483. doi:10.1104/pp.106.091900

Blazquez MA, Trenor M, Weigel D (2002) Independent control of gibberellin biosynthesis and flowering time by the circadian clock in Arabidopsis. Plant Physiol 130 (4):1770-1775. doi:10.1104/pp.007625

Beveridge CA, Weller JL, Singer SR, Hofer JM (2003) Axillary meristem development. Budding relationships between networks controlling flowering, branching, and photoperiod responsiveness. Plant Physiol 131 (3):927-934. doi:10.1104/pp.102.017525

Gazzani S, Gendall AR, Lister C, Dean C (2003) Analysis of the molecular basis of flowering time variation in Arabidopsis accessions. Plant Physiol 132 (2):1107-1114. doi:10.1104/pp.103.021212

El-Lithy ME, Clerkx EJ, Ruys GJ, Koornneef M, Vreugdenhil D (2004) Quantitative trait locus analysis of growth-related traits in a new Arabidopsis recombinant inbred population. Plant Physiol 135 (1):444-458. doi:10.1104/pp.103.036822

Vaz AP, Figueiredo-Ribeiro Rd Rde C, Kerbauy GB (2004) Photoperiod and temperature effects on in vitro growth and flowering of P. pusilla, an epiphytic orchid. Plant Physiol Biochem 42 (5):411-415. doi:10.1016/j.plaphy.2004.03.008

Calonje M, Cubas P, Martinez-Zapater JM, Carmona MJ (2004) Floral meristem identity genes are expressed during tendril development in grapevine. Plant Physiol 135 (3):1491- 1501. doi:10.1104/pp.104.040832

Lin C (2000) Photoreceptors and regulation of flowering time. Plant Physiol 123 (1):39-50

Yu H, Goh CJ (2000) Identification and characterization of three orchid MADS-box genes of the AP1/AGL9 subfamily during floral transition. Plant Physiol 123 (4):1325-1336

Sakamoto T, Kobayashi M, Itoh H, Tagiri A, Kayano T, Tanaka H, Iwahori S, Matsuoka M (2001) Expression of a gibberellin 2-oxidase gene around the shoot apex is related to phase transition in rice. Plant Physiol 125 (3):1508-1516

Jensen CS, Salchert K, Nielsen KK (2001) A TERMINAL FLOWER1-like gene from perennial ryegrass involved in floral transition and axillary meristem identity. Plant Physiol 125 (3):1517-1528

Liu J, Yu J, McIntosh L, Kende H, Zeevaart JA (2001) Isolation of a CONSTANS ortholog from Pharbitis nil and its role in flowering. Plant Physiol 125 (4):1821-1830

Reeves PH, Coupland G (2001) Analysis of flowering time control in Arabidopsis by comparison of double and triple mutants. Plant Physiol 126 (3):1085-1091

King RW, Moritz T, Evans LT, Junttila O, Herlt AJ (2001) Long-day induction of flowering in Lolium temulentum involves sequential increases in specific gibberellins at the shoot apex. Plant Physiol 127 (2):624-632

Yano M, Kojima S, Takahashi Y, Lin H, Sasaki T (2001) Genetic control of flowering time in rice, a short-day plant. Plant Physiol 127 (4):1425-1429 Gocal GF, Sheldon CC, Gubler F, Moritz T, Bagnall DJ, MacMillan CP, Li SF, Parish RW, Dennis ES, Weigel D, King RW (2001) GAMYB-like genes, flowering, and gibberellin signaling in Arabidopsis. Plant Physiol 127 (4):1682-1693

Sawers RJ, Linley PJ, Farmer PR, Hanley NP, Costich DE, Terry MJ, Brutnell TP (2002) Elongated mesocotyl1, a phytochrome-deficient mutant of maize. Plant Physiol 130 (1):155-163. doi:10.1104/pp.006411

Sanda SL, Amasino RM (1996) Ecotype-Specific Expression of a Flowering Mutant Phenotype in Arabidopsis thaliana. Plant Physiol 111 (2):641-644

Pineiro M, Coupland G (1998) The control of flowering time and floral identity in Arabidopsis. Plant Physiol 117 (1):1-8

Pouteau S, Tooke F, Battey N (1998) Quantitative control of inflorescence formation in Impatiens balsamina. Plant Physiol 118 (4):1191-1201

Neff MM, Chory J (1998) Genetic interactions between phytochrome A, phytochrome B, and cryptochrome 1 during Arabidopsis development. Plant Physiol 118 (1):27-35

Hanumappa M, Pratt LH, Cordonnier-Pratt MM, Deitzer GF (1999) A photoperiod- insensitive barley line contains a light-labile phytochrome B. Plant Physiol 119 (3):1033- 1040

Devlin PF, Robson PR, Patel SR, Goosey L, Sharrock RA, Whitelam GC (1999) Phytochrome D acts in the shade-avoidance syndrome in Arabidopsis by controlling elongation growth and flowering time. Plant Physiol 119 (3):909-915

Scott DB, Jin W, Ledford HK, Jung HS, Honma MA (1999) EAF1 regulates vegetative- phase change and flowering time in Arabidopsis. Plant Physiol 120 (3):675-684

Blazquez MA, Weigel D (1999) Independent regulation of flowering by phytochrome B and gibberellins in Arabidopsis. Plant Physiol 120 (4):1025-1032

Reed JW, Nagpal P, Bastow RM, Solomon KS, Dowson-Day MJ, Elumalai RP, Millar AJ (2000) Independent action of ELF3 and phyB to control hypocotyl elongation and flowering time. Plant Physiol 122 (4):1149-1160

Lee TA, Ketring DL, Powell RD (1972) Flowering and Growth Response of Peanut Plants (Arachis hypogaea L. var. Starr) at Two Levels of Relative Humidity. Plant Physiol 49 (2):190-193

Brest DE, Hoshizaki T, Hamner KC (1971) Rhythmic leaf movements in biloxi soybean and their relation to flowering. Plant Physiol 47 (5):676-681

Bernier G, Kinet JM, Jacqmard A, Havelange A, Bodson M (1977) Cytokinin as a Possible Component of the Floral Stimulus in Sinapis alba. Plant Physiol 60 (2):282-285

Zeevaart JA, Brede JM, Cetas CB (1977) Translocation patterns in Xanthium in relation to long day inhibition of flowering. Plant Physiol 60 (5):747-753

Southwick SM, Davenport TL (1986) Characterization of water stress and low temperature effects on flower induction in citrus. Plant Physiol 81 (1):26-29 Deitzer GF, Hayes RG, Jabben M (1982) Phase Shift in the Circadian Rhythm of Floral Promotion by Far Red Energy in Hordeum vulgare L. Plant Physiol 69 (3):597-601

Wilson RN, Heckman JW, Somerville CR (1992) Gibberellin Is Required for Flowering in Arabidopsis thaliana under Short Days. Plant Physiol 100 (1):403-408

Lee I, Amasino RM (1995) Effect of Vernalization, Photoperiod, and Light Quality on the Flowering Phenotype of Arabidopsis Plants Containing the FRIGIDA Gene. Plant Physiol 108 (1):157-162

Bagnall DJ, King RW, Whitelam GC, Boylan MT, Wagner D, Quail PH (1995) Flowering responses to altered expression of phytochrome in mutants and transgenic lines of Arabidopsis thaliana (L.) Heynh. Plant Physiol 108 (4):1495-1503

Seo E, Yu J, Ryu KH, Lee MM, Lee I (2011) WEREWOLF, a Regulator of Root Hair Pattern Formation, Controls Flowering Time through the Regulation of FT mRNA Stability. Plant Physiol 156 (4):1867-1877. doi:10.1104/pp.111.176685

Kotchoni SO, Larrimore KE, Mukherjee M, Kempinski CF, Barth C (2009) Alterations in the endogenous ascorbic acid content affect flowering time in Arabidopsis. Plant Physiol 149 (2):803-815. doi:pp.108.132324 [pii] 10.1104/pp.108.132324

Jang YH, Park HY, Kim SK, Lee JH, Suh MC, Chung YS, Paek KH, Kim JK (2009) Survey of rice proteins interacting with OsFCA and OsFY proteins which are homologous to the Arabidopsis flowering time proteins, FCA and FY. Plant Cell Physiol 50 (8):1479- 1492. doi:pcp093 [pii] 10.1093/pcp/pcp093

Shumate WH, Reid HB, Hamner KC (1967) Floral Inhibition of Biloxi Soybean During a 72-hour Cycle. Plant Physiol 42 (11):1511-1518

Reid HB, Moore PH, Hamner KC (1967) Control of Flowering of Xanthium pensylvanicum by Red and Far-red Light. Plant Physiol 42 (4):532-540

Papenfuss HD, Salisbury FB (1967) Aspects of clock resetting in flowering of Xanthium. Plant Physiol 42 (11):1562-1568

Hurd-Karrer AM, Taylor JW (1929) The water content of wheat leaves at flowering time. Plant Physiol 4 (3):393-397

Halaban R (1968) The flowering response of coleus in relation to photoperiod and the circadian rhythm of leaf movement. Plant Physiol 43 (12):1894-1898

Wang Y, Liu K, Liao H, Zhuang C, Ma H, Yan X (2008) The plant WNK gene family and regulation of flowering time in Arabidopsis. Plant Biol 10 (5):548-562. doi:PLB072 [pii] 10.1111/j.1438-8677.2008.00072.x

Jarillo JA, Pineiro M (2011) Timing is everything in plant development. The central role of floral repressors. Plant Sci 181 (4):364-378

Cave RL, Birch CJ, Hammer GL, Erwin JE, Johnston ME (2011) Juvenility and flowering of Brunonia australis (Goodeniaceae) and Calandrinia sp. (Portulacaceae) in relation to vernalization and daylength. Ann Bot 108 (1):215-220. doi:10.1093/aob/mcr116 Jacqmard A, Gadisseur I, Bernier G (2003) Cell division and morphological changes in the shoot apex of Arabidopsis thaliana during floral transition. Ann Bot 91 (5):571-576

Thingnaes E, Torre S, Ernstsen A, Moe R (2003) Day and night temperature responses in Arabidopsis: effects on gibberellin and auxin content, cell size, morphology and flowering time. Ann Bot 92 (4):601-612. doi:10.1093/aob/mcg176

Adams SR, Munir M, Valdes VM, Langton FA, Jackson SD (2003) Using flowering times and leaf numbers to model the phases of photoperiod sensitivity in Antirrhinum majus L. Ann Bot 92 (5):689-696. doi:10.1093/aob/mcg194

Meyer SE, Nelson DL, Carlson SL (2004) Ecological genetics of vernalization response in Bromus tectorum L. (Poaceae). Ann Bot 93 (6):653-663. doi:10.1093/aob/mch088

Ronse DECLP (2004) Floral development of Berberidopsis corallina: a crucial link in the evolution of flowers in the core . Ann Bot 94 (5):741-751. doi:10.1093/aob/mch199

Theissen G, Melzer R (2007) Molecular mechanisms underlying origin and diversification of the angiosperm flower. Ann Bot 100 (3):603-619. doi:10.1093/aob/mcm143

Greenup A, Peacock WJ, Dennis ES, Trevaskis B (2009) The molecular biology of seasonal flowering-responses in Arabidopsis and the cereals. Ann Bot 103 (8):1165-1172. doi:10.1093/aob/mcp063

Daher A, Adam H, Chabrillange N, Collin M, Mohamed N, Tregear JW, Aberlenc- Bertossi F (2010) Cell cycle arrest characterizes the transition from a bisexual floral bud to a unisexual flower in Phoenix dactylifera. Ann Bot 106 (2):255-266. doi:10.1093/aob/mcq103

Ishimaru T, Hirabayashi H, Ida M, Takai T, San-Oh YA, Yoshinaga S, Ando I, Ogawa T, Kondo M (2010) A genetic resource for early-morning flowering trait of wild rice Oryza officinalis to mitigate high temperature-induced spikelet sterility at anthesis. Ann Bot 106 (3):515-520. doi:10.1093/aob/mcq124

Blazquez M, Koornneef M, Putterill J (2001) Flowering on time: genes that regulate the floral transition - Workshop on the molecular basis of flowering time control. EMBO Rep 2 (12):1078-1082. doi:10.1093/embo-reports/kve254

Quesada V, Macknight R, Dean C, Simpson GG (2003) Autoregulation of FCA pre- mRNA processing controls Arabidopsis flowering time. EMBO J 22 (12):3142-3152. doi:10.1093/emboj/cdg305

Wang X, Zhang Y, Ma Q, Zhang Z, Xue Y, Bao S, Chong K (2007) SKB1-mediated symmetric dimethylation of histone H4R3 controls flowering time in Arabidopsis. EMBO J 26 (7):1934-1941. doi:10.1038/sj.emboj.7601647

Hepworth SR, Valverde F, Ravenscroft D, Mouradov A, Coupland G (2002) Antagonistic regulation of flowering-time gene SOC1 by CONSTANS and FLC via separate promoter motifs. EMBO J 21 (16):4327-4337

Hames C, Ptchelkine D, Grimm C, Thevenon E, Moyroud E, Gerard F, Martiel JL, Benlloch R, Parcy F, Muller CW (2008) Structural basis for LEAFY floral switch function and similarity with helix-turn-helix proteins. EMBO J 27 (19):2628-2637. doi:10.1038/emboj.2008.184

Yamagishi N, Sasaki S, Yamagata K, Komori S, Nagase M, Wada M, Yamamoto T, Yoshikawa N (2011) Promotion of flowering and reduction of a generation time in apple seedlings by ectopical expression of the Arabidopsis thaliana FT gene using the Apple latent spherical virus vector. Plant Mol Biol 75 (1-2):193-204. doi:10.1007/s11103-010- 9718-0

Zhao XL, Shi ZY, Peng LT, Shen GZ, Zhang JL (2011) An atypical HLH protein OsLF in rice regulates flowering time and interacts with OsPIL13 and OsPIL15. N Biotechnol. doi:10.1016/j.nbt.2011.04.006

Zhang S, Yang C, Peng J, Sun S, Wang X (2009) GASA5, a regulator of flowering time and stem growth in Arabidopsis thaliana. Plant Mol Biol 69 (6):745-759. doi:10.1007/s11103-009-9452-7

Till BJ, Zerr T, Comai L, Henikoff S (2006) A protocol for TILLING and Ecotilling in plants and animals. Nature Protocols 1 (5):2465-2477. doi:nprot.2006.329 [pii] 10.1038/nprot.2006.329

Blazquez M (2008) Phenotypic analysis of Arabidopsis mutants: flowering time. CSH Protoc 2008:pdb prot4963

Gilchrist EJ, Haughn GW (2005) TILLING without a plough: a new method with applications for reverse genetics. Curr Opin Plant Biol 8 (2):211-215. doi:S1369- 5266(05)00008-7 [pii] 10.1016/j.pbi.2005.01.004

Bagge M, Xia X, Lubberstedt T (2007) Functional markers in wheat. Curr Opin Plant Biol 10 (2):211-216. doi:S1369-5266(07)00013-1 [pii] 10.1016/j.pbi.2007.01.009

Barkley NA, Wang ML (2008) Application of TILLING and EcoTILLING as Reverse Genetic Approaches to Elucidate the Function of Genes in Plants and Animals. Curr Genomics 9 (4):212-226. doi:10.2174/138920208784533656

Misra G (1950) Effect of photoperiod on the flowering time of 2 late varieties of paddy. Curr Sci 19 (4):126-127

Sung S, Amasino RM (2004) Vernalization and epigenetics: how plants remember winter. Curr Opin Plant Biol 7 (1):4-10. doi:S1369526603001419 [pii]

Folta KM, Paul A-L, Mayfield JD, Ferl RJ (2008) 14-3-3 isoforms participate in red light signaling and photoperiodic flowering. Plant Signal Behav 3 (5):304-306

Tsai YC, Delk NA, Chowdhury NI, Braam J (2007) Arabidopsis potential calcium sensors regulate nitric oxide levels and the transition to flowering. Plant Signal Behav 2 (6):446- 454

Kim SG, Park CM (2007) Membrane-mediated salt stress signaling in flowering time control. Plant Signal Behav 2 (6):517-518

Sawa M, Kay SA, Imaizumi T (2008) Photoperiodic flowering occurs under internal and external coincidence. Plant Signal Behav 3 (4):269-271 Wong CE, Singh MB, Bhalla PL (2009) Floral initiation process at the soybean shoot apical meristem may involve multiple hormonal pathways. Plant Signal Behav 4 (7):648- 651. doi:10.1111/j.1365-313X.2008.03730.x

Romero JM, Valverde F (2009) Evolutionarily conserved photoperiod mechanisms in plants: when did plant photoperiodic signaling appear? Plant Signal Behav 4 (7):642-644. doi:10.1016/j.cub.2009.01.044

Chung KS, Yoo SY, Yoo SJ, Lee JS, Ahn JH (2010) BROTHER OF FT AND TFL1 (BFT), a member of the FT/TFL1 family, shows distinct pattern of expression during the vegetative growth of Arabidopsis. Plant Signal Behav 5 (9):1102-1104. doi:10.4161/psb.5.9.12415

Kim DH, Sung S (2010) Role of VIN3-LIKE 2 in facultative photoperiodic flowering response in Arabidopsis. Plant Signal Behav 5 (12):1672-1673

Zhang DX, Nagabhyru P, Blankenship JD, Schardl CL (2010) Are loline alkaloid levels regulated in grass endophytes by gene expression or substrate availability? Plant Signal Behav 5 (11):1419-1422. doi:13395 [pii] 10.1104/pp.109.138222

Xi W, Yu H (2009) An expanding list: another flowering time gene, FLOWERING LOCUS T, regulates flower development. Plant Signal Behav 4 (12):1142-1144

Rao NN, Prasad K, Vijayraghavan U (2008) The making of a bushy grass with a branched flowering stem: Key rice plant architecture traits regulated by RFL the rice LFY homolog. Plant Signal Behav 3 (11):981-983

Jin JB, Hasegawa PM (2008) Flowering time regulation by the SUMO E3 ligase SIZ1. Plant Signal Behav 3 (10):891-892

Hemming MN, Peacock WJ, Dennis ES, Trevaskis B (2008) Integration of seasonal flowering time responses in temperate cereals. Plant Signal Behav 3 (8):601-602

Gangappa SN, Chattopadhyay S (2010) MYC2, a bHLH transcription factor, modulates the adult phenotype of SPA1. Plant Signal Behav 5 (12):1650-1652. doi:10.4161/psb.5.12.13981

Feng W, Michaels SD (2011) Dual roles for FY in the regulation of FLC. Plant Signal Behav 6 (5):703-705

Balasubramanian S, Weigel D (2006) Temperature Induced Flowering in Arabidopsis thaliana. Plant Signal Behav 1 (5):227-228. doi:10.4161/psb.1.5.3452

Sung S, Schmitz RJ, Amasino R (2007) The Role of VIN3-LIKE Genes in Environmentally Induced Epigenetic Regulation of Flowering. Plant Signal Behav 2 (2):127-128

Zhu Q-H, Upadhyaya NM, Gubler F, Helliwell CA (2009) Over-expression of miR172 causes loss of spikelet determinacy and floral organ abnormalities in rice (Oryza sativa). BMC Plant Biol 9. doi:149 10.1186/1471-2229-9-149

Molina C, Zaman-Allah M, Khan F, Fatnassi N, Horres R, Rotter B, Steinhauer D, Amenc L, Drevon JJ, Winter P, Kahl G (2011) The salt-responsive transcriptome of chickpea roots and nodules via deepSuperSAGE. BMC Plant Biol 11:31. doi:1471-2229-11-31 [pii] 10.1186/1471-2229-11-31

Martin B, Ramiro M, Martinez-Zapater JM, Alonso-Blanco C (2009) A high-density collection of EMS-induced mutations for TILLING in Landsberg erecta genetic background of Arabidopsis. BMC Plant Biol 9:147. doi:1471-2229-9-147 [pii] 10.1186/1471-2229-9-147

Till BJ, Reynolds SH, Weil C, Springer N, Burtner C, Young K, Bowers E, Codomo CA, Enns LC, Odden AR, Greene EA, Comai L, Henikoff S (2004) Discovery of induced point mutations in maize genes by TILLING. BMC Plant Biol 4:12. doi:10.1186/1471- 2229-4-12 1471-2229-4-12 [pii]

Severin AJ, Woody JL, Bolon YT, Joseph B, Diers BW, Farmer AD, Muehlbauer GJ, Nelson RT, Grant D, Specht JE, Graham MA, Cannon SB, May GD, Vance CP, Shoemaker RC (2010) RNA-Seq Atlas of Glycine max: a guide to the soybean transcriptome. BMC Plant Biol 10:160. doi:1471-2229-10-160 [pii] 10.1186/1471-2229- 10-160

Chen C, Farmer AD, Langley RJ, Mudge J, Crow JA, May GD, Huntley J, Smith AG, Retzel EF (2010) Meiosis-specific gene discovery in plants: RNA-Seq applied to isolated Arabidopsis male meiocytes. BMC Plant Biol 10:280. doi:1471-2229-10-280 [pii] 10.1186/1471-2229-10-280

Durand E, Tenaillon MI, Ridel C, Coubriche D, Jamin P, Jouanne S, Ressayre A, Charcosset A, Dillmann C (2010) Standing variation and new mutations both contribute to a fast response to selection for flowering time in maize inbreds. BMC Evol Biol 10:2. doi:1471-2148-10-2 [pii] 10.1186/1471-2148-10-2

Lindqvist C, Laakkonen L, Albert VA (2007) Polyglutamine variation in a flowering time protein correlates with island age in a Hawaiian plant radiation. BMC Evol Biol 7. doi:105 10.1186/1471-2148-7-105

Winfield MO, Lu C, Wilson ID, Coghill JA, Edwards KJ (2009) Cold- and light-induced changes in the transcriptome of wheat leading to phase transition from vegetative to reproductive growth. BMC Plant Biol 9. doi:55 10.1186/1471-2229-9-55

Salathia N, Davis SJ, Lynn JR, Michaels SD, Amasino RM, Millar AJ (2006) FLOWERING LOCUS C-dependent and -independent regulation of the circadian clock by the autonomous and vernalization pathways. BMC Plant Biol 6. doi:10 10.1186/1471- 2229-6-10

Rutitzky M, Ghiglione HO, Cura JA, Casal JJ, Yanovsky MJ (2009) Comparative genomic analysis of light-regulated transcripts in the Solanaceae. BMC Genomics 10. doi:60 10.1186/1471-2164-10-60

Colasanti J, Tremblay R, Wong AYM, Coneva V, Kozaki A, Mable BK (2006) The maize INDETERMINATEI flowering time regulator defines a highly conserved zinc finger protein family in higher plants. BMC Genomics 7. doi:158 10.1186/1471-2164-7-158

Westermeier P, Wenzel G, Mohler V (2009) Development and evaluation of single- nucleotide polymorphism markers in allotetraploid rapeseed (Brassica napus L.). Theor Appl Genet 119 (7):1301-1311. doi:10.1007/s00122-009-1135-x Piquemal J, Cinquin E, Couton F, Rondeau C, Seignoret E, Doucet I, Perret D, Villeger MJ, Vincourt P, Blanchard P (2005) Construction of an oilseed rape (Brassica napus L.) genetic map with SSR markers. Theor Appl Genet 111 (8):1514-1523. doi:10.1007/s00122-005-0080-6

Fourmann M, Barret P, Froger N, Baron C, Charlot F, Delourme R, Brunel D (2002) From Arabidopsis thaliana to Brassica napus: development of amplified consensus genetic markers (ACGM) for construction of a gene map. Theor Appl Genet 105 (8):1196-1206. doi:10.1007/s00122-002-1040-z

Werner S, Diederichsen E, Frauen M, Schondelmaier J, Jung C (2008) Genetic mapping of clubroot resistance genes in oilseed rape. Theor Appl Genet 116 (3):363-372. doi:10.1007/s00122-007-0674-2

Schulte D, Cai D, Kleine M, Fan L, Wang S, Jung C (2006) A complete physical map of a wild beet (Beta procumbens) translocation in sugar beet. Molecular Genet Genom 275 (5):504-511. doi:10.1007/s00438-006-0108-x

Qian W, Sass O, Meng J, Li M, Frauen M, Jung C (2007) Heterotic patterns in rapeseed (Brassica napus L.): I. Crosses between spring and Chinese semi-winter lines. Theor Appl Genet 115 (1):27-34. doi:10.1007/s00122-007-0537-x

Gaafar RM, Hohmann U, Jung C (2005) Bacterial artificial chromosome-derived molecular markers for early bolting in sugar beet. Theor Appl Genet 110 (6):1027-1037. doi:10.1007/s00122-005-1921-z

Himelblau E, Gilchrist EJ, Buono K, Bizzell C, Mentzer L, Vogelzang R, Osborn T, Amasino RM, Parkin IA, Haughn GW (2009) Forward and reverse genetics of rapid- cycling Brassica oleracea. Theor Appl Genet 118 (5):953-961. doi:10.1007/s00122-008- 0952-7

Stemple DL (2004) TILLING--a high-throughput harvest for functional genomics. Nat Rev Genet 5 (2):145-150. doi:10.1038/nrg1273 nrg1273 [pii]

Sangster TA, Bahrami A, Wilczek A, Watanabe E, Schellenberg K, McLellan C, Kelley A, Kong SW, Queitsch C, Lindquist S (2007) Phenotypic Diversity and Altered Environmental Plasticity in Arabidopsis thaliana with Reduced Hsp90 Levels. PLoS ONE 2 (7). doi:e648 10.1371/journal.pone.0000648

Michael TP, Breton G, Hazen SP, Priest H, Mockler TC, Kay SA, Chory J (2008) A morning-specific phytohormone gene expression program underlying rhythmic plant growth. PLoS Biol 6 (9):1887-1898. doi:e225 10.1371/journal.pbio.0060225

Lippman ZB, Cohen O, Alvarez JP, Abu-Abied M, Pekker I, Paran I, Eshed Y, Zamir D (2008) The Making of a Compound Inflorescence in Tomato and Related Nightshades. PLoS Biol 6 (11):2424-2435. doi:e288 10.1371/journal.pbio.0060288

Jeong J-H, Song H-R, Ko J-H, Jeong Y-M, Kwon YE, Seol JH, Amasino RM, Noh B, Noh Y-S (2009) Repression of FLOWERING LOCUS T Chromatin by Functionally Redundant Histone H3 Lysine 4 Demethylases in Arabidopsis. PLoS ONE 4 (11). doi:e8033 10.1371/journal.pone.0008033 Diallo A, Kane N, Agharbaoui Z, Badawi M, Sarhan F (2010) Heterologous expression of wheat VERNALIZATION 2 (TaVRN2) gene in Arabidopsis delays flowering and enhances freezing tolerance. PLoS ONE 5 (1):e8690. doi:10.1371/journal.pone.0008690

Xu Y, Deng M, Peng J, Hu Z, Bao L, Wang J, Zheng ZL (2010) OsPIE1, the rice ortholog of Arabidopsis PHOTOPERIOD-INDEPENDENT EARLY FLOWERING1, is essential for embryo development. PLoS ONE 5 (6):e11299. doi:10.1371/journal.pone.0011299

Jimenez-Gomez JM, Wallace AD, Maloof JN (2010) Network analysis identifies ELF3 as a QTL for the shade avoidance response in Arabidopsis. PLoS Genet 6 (9). doi:10.1371/journal.pgen.1001100

Turck F, Roudier F, Farrona S, Martin-Magniette M-L, Guillaume E, Buisine N, Gagnot S, Martienssen RA, Coupland G, Colot V (2007) Arabidopsis TFL2/LHP1 specifically associates with genes marked by trimethylation of histone H3 lysine 27. PLoS Genet 3 (6):855-866. doi:e86 10.1371/journal.pgen.0030086

Domagalska MA, Sarnowska E, Nagy F, Davis SJ (2010) Genetic analyses of interactions among gibberellin, abscisic acid, and brassinosteroids in the control of flowering time in Arabidopsis thaliana. PLoS ONE 5 (11):e14012. doi:10.1371/journal.pone.0014012

Brachi B, Faure N, Horton M, Flahauw E, Vazquez A, Nordborg M, Bergelson J, Cuguen J, Roux F (2010) Linkage and association mapping of Arabidopsis thaliana flowering time in nature. PLoS Genet 6 (5):e1000940. doi:10.1371/journal.pgen.1000940

Balasubramanian S, Sureshkumar S, Lempe J, Weigel D (2006) Potent induction of Arabidopsis thaliana flowering by elevated growth temperature. PLoS Genet 2 (7):980- 989. doi:e106 10.1371/journal.pgen.0020106

Lempe J, Balasubramanian S, Sureshkumar S, Singh A, Schmid M, Weigel D (2005) Diversity of flowering responses in wild Arabidopsis thaliana strains. PLoS Genet 1 (1):109-118. doi:10.1371/journal.pgen.0010006

Aranzana MJ, Kim S, Zhao K, Bakker E, Horton M, Jakob K, Lister C, Molitor J, Shindo C, Tang C, Toomajian C, Traw B, Zheng H, Bergelson J, Dean C, Marjoram P, Nordborg M (2005) Genome-wide association mapping in Arabidopsis identifies previously known flowering time and pathogen resistance genes. PLoS Genet 1 (5):e60. doi:10.1371/journal.pgen.0010060

Li Y, Roycewicz P, Smith E, Borevitz JO (2006) Genetics of local adaptation in the laboratory: flowering time quantitative trait loci under geographic and seasonal conditions in Arabidopsis. PLoS ONE 1:e105. doi:10.1371/journal.pone.0000105

Jiang D, Wang Y, He Y (2008) Repression of FLOWERING LOCUS C and FLOWERING LOCUS T by the Arabidopsis Polycomb repressive complex 2 components. PLoS ONE 3 (10):e3404. doi:10.1371/journal.pone.0003404

Teng N, Jin B, Wang Q, Hao H, Ceulemans R, Kuang T, Lin J (2009) No detectable maternal effects of elevated CO(2) on Arabidopsis thaliana over 15 generations. PLoS ONE 4 (6):e6035. doi:10.1371/journal.pone.0006035

Vigouroux Y, Mariac C, De Mita S, Pham J-L, Gerard B, Kapran I, Sagnard F, Deu M, Chantereau J, Ali A, Ndjeunga J, Luong V, Thuillet A-C, Saidou A-A, Bezancon G (2011) Selection for earlier flowering crop associated with climatic variations in the Sahel. PLoS ONE 6 (5):e19563. doi:10.1371/journal.pone.0019563

Yoo SY, Kim Y, Kim SY, Lee JS, Ahn JH (2007) Control of Flowering Time and Cold Response by a NAC-Domain Protein in Arabidopsis. PLoS ONE 2 (7). doi:e642 10.1371/journal.pone.0000642

Strange A, Li P, Lister C, Anderson J, Warthmann N, Shindo C, Irwin J, Nordborg M, Dean C (2011) Major-effect alleles at relatively few Loci underlie distinct vernalization and flowering variation in Arabidopsis accessions. PLoS ONE 6 (5):e19949. doi:10.1371/journal.pone.0019949 PONE-D-11-02809 [pii]

Matsuoka Y, Takumi S, Kawahara T (2008) Flowering Time Diversification and Dispersal in Central Eurasian Wild Wheat Aegilops tauschii Coss.: Genealogical and Ecological Framework. PLoS ONE 3 (9). doi:e3138 10.1371/journal.pone.0003138

Higgins JA, Bailey PC, Laurie DA (2010) Comparative Genomics of Flowering Time Pathways Using Brachypodium distachyon as a Model for the Temperate Grasses. PLoS ONE 5 (4). doi:e10065 10.1371/journal.pone.0010065

Deragon JM, Landry BS, Pélissier T, Tutois S, Tourmente S, Picard G (1994) An analysis of retroposition in plants based on a family of SINEs from Brassica napus. J Mol Evol 39 (4):378-386

Hagiwara WE, Uwatoko N, Sasaki A, Matsubara K, Nagano H, Onishi K, Sano Y (2009) Diversification in flowering time due to tandem FT-like gene duplication, generating novel Mendelian factors in wild and cultivated rice. Mol Ecol 18 (7):1537-1549. doi:MEC4119 [pii] 10.1111/j.1365-294X.2009.04119.x

Abou-Elwafa SF, Büttner B, Chia T, Schulze-Buxloh G, Hohmann U, Mutasa-Göttgens E, Jung C, Müller AE (2010) Conservation and divergence of autonomous pathway genes in the flowering regulatory network of Beta vulgaris. J Exp Bot. doi:erq321 [pii] 10.1093/jxb/erq321

Craufurd PQ, Wheeler TR (2009) Climate change and the flowering time of annual crops. J Exp Bot 60 (9):2529-2539. doi:erp196 [pii] 10.1093/jxb/erp196

Nefissi R, Natsui Y, Miyata K, Oda A, Hase Y, Nakagawa M, Ghorbel A, Mizoguchi T (2011) Double loss-of-function mutation in EARLY FLOWERING 3 and CRYPTOCHROME 2 genes delays flowering under continuous light but accelerates it under long days and short days: an important role for Arabidopsis CRY2 to accelerate flowering time in continuous light. J Exp Bot. doi:erq450 [pii] 10.1093/jxb/erq450

Sasani S, Hemming MN, Oliver SN, Greenup A, Tavakkol-Afshari R, Mahfoozi S, Poustini K, Sharifi HR, Dennis ES, Peacock WJ, Trevaskis B (2009) The influence of vernalization and daylength on expression of flowering-time genes in the shoot apex and leaves of barley (Hordeum vulgare). J Exp Bot 60 (7):2169-2178. doi:erp098 [pii] 10.1093/jxb/erp098

Kim BH, von Arnim AG (2009) FIERY1 regulates light-mediated repression of cell elongation and flowering time via its 3'(2'),5'-bisphosphate nucleotidase activity. Plant J 58 (2):208-219. doi:TPJ3770 [pii] 10.1111/j.1365-313X.2008.03770.x Gomez LD, Gilday A, Feil R, Lunn JE, Graham IA (2010) AtTPS1-mediated trehalose 6- phosphate synthesis is essential for embryogenic and vegetative growth and responsiveness to ABA in germinating seeds and stomatal guard cells. Plant J 64 (1):1-13. doi:10.1111/j.1365-313X.2010.04312.x

Comai L, Young K, Till BJ, Reynolds SH, Greene EA, Codomo CA, Enns LC, Johnson JE, Burtner C, Odden AR, Henikoff S (2004) Efficient discovery of DNA polymorphisms in natural populations by Ecotilling. Plant J 37 (5):778-786. doi:1999 [pii]

Arnaud P, Yukawa Y, Lavie L, Pélissier T, Sugiura M, Deragon JM (2001) Analysis of the SINE S1 Pol III promoter from Brassica; impact of methylation and influence of external sequences. Plant J 26 (3):295-305. doi:tpj1029 [pii]

Shimada S, Ogawa T, Kitagawa S, Suzuki T, Ikari C, Shitsukawa N, Abe T, Kawahigashi H, Kikuchi R, Handa H, Murai K (2009) A genetic network of flowering-time genes in wheat leaves, in which an APETALA1/FRUITFULL-like gene, VRN1, is upstream of FLOWERING LOCUS T. Plant J 58 (4):668-681. doi:TPJ3806 [pii] 10.1111/j.1365- 313X.2009.03806.x

Clarke JH, Tack D, Findlay K, Van Montagu M, Van Lijsebettens M (1999) The SERRATE locus controls the formation of the early juvenile leaves and phase length in Arabidopsis. Plant J 20 (4):493-501. doi:10.1046/j.1365-313x.1999.00623.x

Heyer AG, Raap M, Schroeer B, Marty B, Willmitzer L (2004) Cell wall invertase expression at the apical meristem alters floral, architectural, and reproductive traits in Arabidopsis thaliana. Plant J 39 (2):161-169. doi:10.1111/j.1365-313X.2004.02124.x

Sheehan MJ, Kennedy LM, Costich DE, Brutnell TP (2007) Subfunctionalization of PhyB1 and PhyB2 in the control of seedling and mature plant traits in maize. Plant J 49 (2):338-353. doi:10.1111/j.1365-313X.2006.02962.x

Kane NA, Agharbaoui Z, Diallo AO, Adam H, Tominaga Y, Ouellet F, Sarhan F (2007) TaVRT2 represses transcription of the wheat vernalization gene TaVRN1. Plant J 51 (4):670-680. doi:10.1111/j.1365-313X.2007.03172.x

Jin JB, Jin YH, Lee J, Miura K, Yoo CY, Kim W-Y, Van Oosten M, Hyun Y, Somers DE, Lee I, Yun D-J, Bressan RA, Hasegawa PM (2008) The SUMO E3 ligase, AtS1Z1, regulates flowering by controlling a salicylic acid-mediated floral promotion pathway and through affects on FLC chromatin structure. Plant J 53 (3):530-540. doi:10.1111/j.1365- 313X.2007.03359.x

Streitner C, Danisman S, Wehrle F, Schoening JC, Alfano JR, Staiger D (2008) The small glycine-rich RNA binding protein AtGRP7 promotes floral transition in Arabidopsis thaliana. Plant J 56 (2):239-250. doi:10.1111/j.1365-313X.2008.03591.x

Lolas IB, Himanen K, Gronlund JT, Lynggaard C, Houben A, Melzer M, Van Lijsebettens M, Grasser KD (2010) The transcript elongation factor FACT affects Arabidopsis vegetative and reproductive development and genetically interacts with HUB1/2. Plant J 61 (4):686-697. doi:10.1111/j.1365-313X.2009.04096.x

Lee Y-S, Jeong D-H, Lee D-Y, Yi J, Ryu C-H, Kim SL, Jeong HJ, Choi SC, Jin P, Yang J, Cho L-H, Choi H, An G (2010) OsCOL4 is a constitutive flowering repressor upstream of Ehd1 and downstream of OsphyB. Plant J 63 (1):18-30. doi:10.1111/j.1365- 313X.2010.04226.x

Zhang YC, Gong SF, Li QH, Sang Y, Yang HQ (2006) Functional and signaling mechanism analysis of rice CRYPTOCHROME 1. Plant J 46 (6):971-983. doi:10.1111/j.1365-313X.2006.02753.x

Portoles S, Mas P (2007) Altered oscillator function affects clock resonance and is responsible for the reduced day-length sensitivity of CKB4 overexpressing plants. Plant J 51 (6):966-977. doi:10.1111/j.1365-313X.2007.03186.x

Helliwell CA, Wood CC, Robertson M, Peacock WJ, Dennis ES (2006) The Arabidopsis FLC protein interacts directly in vivo with SOC1 and FT chromatin and is part of a high- molecular-weight protein complex. Plant J 46 (2):183-192. doi:10.1111/j.1365- 313X.2006.02686.x

Hill K, Wang H, Perry SE (2008) A transcriptional repression motif in the MADS factor AGL15 is involved in recruitment of histone deacetylase complex components. Plant J 53 (1):172-185. doi:10.1111/j.1365-313X.2007.03336.x

Seo PJ, Ryu J, Kang SK, Park C-M (2011) Modulation of sugar metabolism by an INDETERMINATE DOMAIN transcription factor contributes to photoperiodic flowering in Arabidopsis. Plant J 65 (3):418-429. doi:10.1111/j.1365-313X.2010.04432.x

Martinezzapater JM, Jarillo JA, Cruzalvarez M, Roldan M, Salinas J (1995) Arabidopsis late flowering FVE mutants are affected in both vegetative and reproductive development. Plant J 7 (4):543-551. doi:10.1046/j.1365-313X.1995.7040543.x

Evans MMS, Poethig RS (1997) The viviparous8 mutation delays vegetative phase change and accelerates the rate of seedling growth in maize. Plant J 12 (4):769-779. doi:10.1046/j.1365-313X.1997.12040769.x

Strasser B, Alvarez MJ, Califano A, Cerdan PD (2009) A complementary role for ELF3 and TFL1 in the regulation of flowering time by ambient temperature. Plant J 58 (4):629- 640. doi:10.1111/j.1365-313X.2009.03811.x

Urbanus SL, Martinelli AP, Dinh QD, Aizza LC, Dornelas MC, Angenent GC, Immink RG (2010) Intercellular transport of epidermis-expressed MADS domain transcription factors and their effect on plant morphology and floral transition. Plant J 63 (1):60-72. doi:10.1111/j.1365-313X.2010.04221.x

Kumimoto RW, Zhang Y, Siefers N, Holt BF, 3rd (2010) NF-YC3, NF-YC4 and NF-YC9 are required for CONSTANS-mediated, photoperiod-dependent flowering in Arabidopsis thaliana. Plant J. doi:10.1111/j.1365-313X.2010.04247.x

Yoo SK, Wu X, Lee JS, Ahn JH (2011) AGAMOUS-LIKE 6 is a floral promoter that negatively regulates the FLC/MAF clade genes and positively regulates FT in Arabidopsis. Plant J 65 (1):62-76. doi:10.1111/j.1365-313X.2010.04402.x

Farinas B, Mas P (2011) Functional implication of the MYB transcription factor RVE8/LCL5 in the circadian control of histone acetylation. Plant J 66 (2):318-329. doi:10.1111/j.1365-313X.2011.04484.x Wenden B, Kozma-Bognar L, Edwards KD, Hall AJ, Locke JC, Millar AJ (2011) Light inputs shape the Arabidopsis circadian system. Plant J 66 (3):480-491. doi:10.1111/j.1365-313X.2011.04505.x

Jean Finnegan E, Kovac KA, Jaligot E, Sheldon CC, James Peacock W, Dennis ES (2005) The downregulation of FLOWERING LOCUS C (FLC) expression in plants with low levels of DNA methylation and by vernalization occurs by distinct mechanisms. Plant J 44 (3):420-432. doi:10.1111/j.1365-313X.2005.02541.x

Lee DY, Lee J, Moon S, Park SY, An G (2007) The rice heterochronic gene SUPERNUMERARY BRACT regulates the transition from spikelet meristem to floral meristem. Plant J 49 (1):64-78. doi:10.1111/j.1365-313X.2006.02941.x

Han SK, Song JD, Noh YS, Noh B (2007) Role of plant CBP/p300-like genes in the regulation of flowering time. Plant J 49 (1):103-114. doi:10.1111/j.1365- 313X.2006.02939.x

Rieu I, Ruiz-Rivero O, Fernandez-Garcia N, Griffiths J, Powers SJ, Gong F, Linhartova T, Eriksson S, Nilsson O, Thomas SG, Phillips AL, Hedden P (2008) The gibberellin biosynthetic genes AtGA20ox1 and AtGA20ox2 act, partially redundantly, to promote growth and development throughout the Arabidopsis life cycle. Plant J 53 (3):488-504. doi:10.1111/j.1365-313X.2007.03356.x

Kanrar S, Bhattacharya M, Arthur B, Courtier J, Smith HM (2008) Regulatory networks that function to specify flower meristems require the function of homeobox genes PENNYWISE and POUND-FOOLISH in Arabidopsis. Plant J 54 (5):924-937. doi:10.1111/j.1365-313X.2008.03458.x

Wong CE, Singh MB, Bhalla PL (2009) Molecular processes underlying the floral transition in the soybean shoot apical meristem. Plant J 57 (5):832-845. doi:10.1111/j.1365-313X.2008.03730.x

Gu X, Jiang D, Wang Y, Bachmair A, He Y (2009) Repression of the floral transition via histone H2B monoubiquitination. Plant J 57 (3):522-533. doi:10.1111/j.1365- 313X.2008.03709.x

Wang D, Xu Y, Li Q, Hao X, Cui K, Sun F, Zhu Y (2003) Transgenic expression of a putative calcium transporter affects the time of Arabidopsis flowering. Plant J 33 (2):285- 292

Michaels SD, Ditta G, Gustafson-Brown C, Pelaz S, Yanofsky M, Amasino RM (2003) AGL24 acts as a promoter of flowering in Arabidopsis and is positively regulated by vernalization. Plant J 33 (5):867-874

Halliday KJ, Salter MG, Thingnaes E, Whitelam GC (2003) Phytochrome control of flowering is temperature sensitive and correlates with expression of the floral integrator FT. Plant J 33 (5):875-885

Martinez C, Pons E, Prats G, Leon J (2004) Salicylic acid regulates flowering time and links defence responses and reproductive development. Plant J 37 (2):209-217 Breuil-Broyer S, Morel P, de Almeida-Engler J, Coustham V, Negrutiu I, Trehin C (2004) High-resolution boundary analysis during Arabidopsis thaliana flower development. Plant J 38 (1):182-192. doi:10.1111/j.1365-313X.2004.02026.x

Kandasamy MK, Deal RB, McKinney EC, Meagher RB (2005) Silencing the nuclear actin-related protein AtARP4 in Arabidopsis has multiple effects on plant development, including early flowering and delayed floral senescence. Plant J 41 (6):845-858. doi:10.1111/j.1365-313X.2005.02345.x

Kiyosue T, Wada M (2000) LKP1 (LOV kelch protein 1): a factor involved in the regulation of flowering time in Arabidopsis. Plant J 23 (6):807-815

Ledger S, Strayer C, Ashton F, Kay SA, Putterill J (2001) Analysis of the function of two circadian-regulated CONSTANS-LIKE genes. Plant J 26 (1):15-22

Rouse DT, Sheldon CC, Bagnall DJ, Peacock WJ, Dennis ES (2002) FLC, a repressor of flowering, is regulated by genes in different inductive pathways. Plant J 29 (2):183-191

Robson F, Costa MM, Hepworth SR, Vizir I, Pineiro M, Reeves PH, Putterill J, Coupland G (2001) Functional importance of conserved domains in the flowering-time gene CONSTANS demonstrated by analysis of mutant alleles and transgenic plants. Plant J 28 (6):619-631

Zuo J, Niu QW, Frugis G, Chua NH (2002) The WUSCHEL gene promotes vegetative-to- embryonic transition in Arabidopsis. Plant J 30 (3):349-359

Winter KU, Saedler H, Theissen G (2002) On the origin of class B floral homeotic genes: functional substitution and dominant inhibition in Arabidopsis by expression of an orthologue from the gymnosperm Gnetum. Plant J 31 (4):457-475

Adams S, Allen T, Whitelam GC (2009) Interaction between the light quality and flowering time pathways in Arabidopsis. Plant J 60 (2):257-267. doi:10.1111/j.1365- 313X.2009.03962.x

Adamczyk BJ, Lehti-Shiu MD, Fernandez DE (2007) The MADS domain factors AGL15 and AGL18 act redundantly as repressors of the floral transition in Arabidopsis. Plant J 50 (6):1007-1019. doi:10.1111/j.1365-313X.2007.03105.x

Lagercrantz U, Putterill J, Coupland G, Lydiate D (1996) Comparative mapping in Arabidopsis and Brassica, fine scale genome collinearity and congruence of genes controlling flowering time. Plant J 9 (1):13-20

Zagotta MT, Hicks KA, Jacobs CI, Young JC, Hangarter RP, Meeks-Wagner DR (1996) The Arabidopsis ELF3 gene regulates vegetative photomorphogenesis and the photoperiodic induction of flowering. Plant J 10 (4):691-702

Devlin PF, Halliday KJ, Harberd NP, Whitelam GC (1996) The rosette habit of Arabidopsis thaliana is dependent upon phytochrome action: novel phytochromes control internode elongation and flowering time. Plant J 10 (6):1127-1134

Cardon GH, Hohmann S, Nettesheim K, Saedler H, Huijser P (1997) Functional analysis of the Arabidopsis thaliana SBP-box gene SPL3: a novel gene involved in the floral transition. Plant J 12 (2):367-377 Halliday KJ, Thomas B, Whitelam GC (1997) Expression of heterologous phytochromes A, B or C in transgenic tobacco plants alters vegetative development and flowering time. Plant J 12 (5):1079-1090

Ninu L, Ahmad M, Miarelli C, Cashmore AR, Giuliano G (1999) Cryptochrome 1 controls tomato development in response to blue light. Plant J 18 (5):551-556

Roldan M, Gomez-Mena C, Ruiz-Garcia L, Salinas J, Martinez-Zapater JM (1999) Sucrose availability on the aerial part of the plant promotes morphogenesis and flowering of Arabidopsis in the dark. Plant J 20 (5):581-590

Feher B, Kozma-Bognar L, Kevei E, Hajdu A, Binkert M, Davis SJ, Schafer E, Ulm R, Nagy F (2011)

Functional interaction of the circadian clock and UV RESISTANCE LOCUS 8-controlled UV-B signaling pathways in Arabidopsis thaliana. Plant J 67 (1):37-48. doi:10.1111/j.1365-313X.2011.04573.x

D'Aloia M, Tamseddak K, Bonhomme D, Bonhomme F, Bernier G, Perilleux C (2009) Gene activation cascade triggered by a single photoperiodic cycle inducing flowering in Sinapis alba. Plant J 59 (6):962-973. doi:10.1111/j.1365-313X.2009.03927.x

Corbesier L, Gadisseur I, Silvestre G, Jacqmard A, Bernier G (1996) Design in Arabidopsis thaliana of a synchronous system of floral induction by one long day. Plant J 9 (6):947-952. doi:10.1046/j.1365-313X.1996.9060947.x

Chou ML, Yang CH (1998) FLD interacts with genes that affect different developmental phase transitions to regulate Arabidopsis shoot development. Plant J 15 (2):231-242. doi:10.1046/j.1365-313X.1998.00204.x

Cheng XF, Wang ZY (2005) Overexpression of COL9, a CONSTANS-LIKE gene, delays flowering by reducing expression of CO and FT in Arabidopsis thaliana. Plant J 43 (5):758-768. doi:10.1111/j.1365-313X.2005.02491.x

Bonhomme F, Kurz B, Melzer S, Bernier G, Jacqmard A (2000) Cytokinin and gibberellin activate SaMADS A, a gene apparently involved in regulation of the floral transition in Sinapis alba. Plant J 24 (1):103-111. doi:10.1046/j.1365-313x.2000.00859.x

Lee S, Choi SC, An G (2008) Rice SVP-group MADS-box proteins, OsMADS22 and OsMADS55, are negative regulators of brassinosteroid responses. Plant J 54 (1):93-105. doi:10.1111/j.1365-313X.2008.03406.x

Izawa T, Oikawa T, Tokutomi S, Okuno K, Shimamoto K (2000) Phytochromes confer the photoperiodic control of flowering in rice (a short-day plant). Plant J 22 (5):391-399. doi:10.1046/j.1365-313X.2000.00753.x

Preston JC, Kellogg EA (2007) Conservation and divergence of APETALA1/FRUITFULL-like gene function in grasses: evidence from gene expression analyses. Plant J 52 (1):69-81. doi:10.1111/j.1365-313X.2007.03209.x

El Mannai Y, Shezad T, Okuno K (2011) Variation in flowering time in sorghum core collection and mapping of QTLs controlling flowering time by association analysis. Genet Resour Crop Evol 58 (7):983-989. doi:10.1007/s10722-011-9737-y Jung C, Mueller AE (2009) Flowering time control and applications in plant breeding. Trends Plant Sci 14 (10):563-573. doi:10.1016/j.tplants.2009.07.005

El-Mezawy A, Dreyer F, Jacobs G, Jung C (2002) High-resolution mapping of the bolting gene B of sugar beet. Theor Appl Genet 105 (1):100-105. doi:10.1007/s00122-001-0859-z

Hohmann U, Jacobs G, Telgmann A, Gaafar RM, Alam S, Jung C (2003) A bacterial artificial chromosome (BAC) library of sugar beet and a physical map of the region encompassing the bolting gene B. Molecular Genet Genom 269 (1):126-136. doi:10.1007/s00438-003-0821-7

Petersen K, Didion T, Andersen CH, Nielsen KK (2004) MADS-box genes from perennial ryegrass differentially expressed during transition from vegetative to reproductive growth. J Plant Physiol 161 (4):439-447

Wigge PA (2011) FT, A Mobile Developmental Signal in Plants. Curr Biol 21 (9):R374- R378. doi:DOI 10.1016/j.cub.2011.03.038

Meijon M, Jesus Canal M, Valledor L, Rodriguez R, Feito I (2011) Epigenetic and physiological effects of gibberellin inhibitors and chemical pruners on the floral transition of azalea. Physiol Plant 141 (3):276-288. doi:10.1111/j.1399-3054.2010.01430.x

Dubcovsky J, Loukoianov A, Fu DL, Valarik M, Sanchez A, Yan LL (2006) Effect of photoperiod on the regulation of wheat vernalization genes VRN1 and VRN2. Plant Mol Biol 60 (4):469-480. doi:10.1007/s11103-005-4814-2

Dubcovsky J, Pidal B, Yan LL, Fu DL, Zhang FQ, Tranquilli G (2009) The CArG-Box Located Upstream from the Transcriptional Start of Wheat Vernalization Gene VRN1 Is Not Necessary for the Vernalization Response. J Hered 100 (3):355-364. doi:10.1093/jhered/esp002

Meijon M, Feito I, Valledor L, Rodriguez R, Jesus Canala M (2011) Promotion of flowering in azaleas by manipulating photoperiod and temperature induces epigenetic alterations during floral transition. Physiol Plant 143 (1):82-92. doi:10.1111/j.1399- 3054.2011.01485.x

Alexandre C, Hennig L (2007) FLC-independent vernalization reponses. International Journal of Plant Developmental Biology 1 (2):202-211

Kyozuka J, Kobayashi K, Maekawa M, Miyao A, Hirochika H (2010) PANICLE PHYTOMER2 (PAP2), encoding a SEPALLATA subfamily MADS-box protein, positively controls spikelet meristem identity in rice. Plant Cell Physiol 51 (1):47-57. doi:10.1093/pcp/pcp166

Elo A, Lemmetyinen J, Turunen ML, Tikka L, Sopanen T (2001) Three MADS-box genes similar to APETALA1 and FRUITFULL from silver birch (Betula pendula). Physiol Plant 112 (1):95-103

Matsubara K, Yamanouchi U, Nonoue Y, Sugimoto K, Wang Z-X, Minobe Y, Yano M (2011) Ehd3, encoding a plant homeodomain finger-containing protein, is a critical promoter of rice flowering. Plant J 66 (4):603-612. doi:10.1111/j.1365- 313X.2011.04517.x An X, Ye M, Wang D, Wang Z, Cao G, Zheng H, Zhang Z (2011) Ectopic expression of a poplar APETALA3-like gene in tobacco causes early flowering and fast growth. Biotechnol Lett 33 (6):1239-1247. doi:10.1007/s10529-011-0545-4

Staggemeier VG, Morellato LPC (2011) Reproductive phenology of coastal plain Atlantic forest vegetation: comparisons from seashore to foothills. Int J Biometeorol. doi:10.1007/s00484-011-0482-x

Heo JB, Sung S (2011) Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA. Science 331 (6013):76-79. doi:science.1197349 [pii] 10.1126/science.1197349

Heo JB, Sung S (2011) Encoding memory of winter by noncoding RNAs. Epigenetics 6 (5):544-547. doi:10.4161/epi.6.5.15235

Ishikawa R, Aoki M, Kurotani K-i, Yokoi S, Shinomura T, Takano M, Shimamoto K (2011) Phytochrome B regulates Heading date 1 (Hd1)-mediated expression of rice florigen Hd3a and critical day length in rice. Molecular Genet Genom 285 (6):461-470. doi:10.1007/s00438-011-0621-4

Zhang Q, Li H, Li R, Hu R, Fan C, Chen F, Wang Z, Liu X, Fu Y, Lin C (2008) Association of the circadian rhythmic expression of GmCRY1a with a latitudinal cline in photoperiodic flowering of soybean. Proc Natl Acad Sci U S A 105 (52):21028-21033. doi:10.1073/pnas.0810585105

Zawaski C, Kadmiel M, Pickens J, Ma C, Strauss S, Busov V (2011) Repression of gibberellin biosynthesis or signaling produces striking alterations in poplar growth, morphology, and flowering. Planta. doi:10.1007/s00425-011-1485-x

Yoshida T, Nishida H, Zhu J, Nitcher R, Distelfeld A, Akashi Y, Kato K, Dubcovsky J (2010) Vrn-D4 is a vernalization gene located on the centromeric region of chromosome 5D in hexaploid wheat. Theor Appl Genet 120 (3):543-552. doi:10.1007/s00122-009- 1174-3

Yoo SY, Kardailsky I, Lee JS, Weigel D, Ahn JH (2004) Acceleration of flowering by overexpression of MFT (MOTHER OF FT AND TFL1). Mol Cells 17 (1):95-101

Yeoh CC, Balcerowicz M, Laurie R, Macknight R, Putterill J (2011) Developing a method for customized induction of flowering. BMC Biotechnol 11:36. doi:10.1186/1472-6750- 11-36

Yamanaka N, Watanabe S, Toda K, Hayashi M, Fuchigami H, Takahashi R, Harada K (2005) Fine mapping of the FT1 locus for soybean flowering time using a residual heterozygous line derived from a recombinant inbred line. Theor Appl Genet 110 (4):634- 639. doi:10.1007/s00122-004-1886-3

Yamaguchi A, Kobayashi Y, Goto K, Abe M, Araki T (2005) TWIN SISTER OF FT (TSF) acts as a floral pathway integrator redundantly with FT. Plant Cell Physiol 46 (8):1175-1189. doi:10.1093/pcp/pci151

Yamaguchi A, Abe M, Araki T (2006) [Genetic network of regulatory pathways to control floral transition: temporal and spatial aspects]. Tanpakushitsu Kakusan Koso 51 (5):430- 440 Xue ZG, Zhang XM, Lei CF, Chen XJ, Fu YF (2011) Molecular cloning and functional analysis of one ZEITLUPE homolog GmZTL3 in soybean. Mol Biol Rep. doi:10.1007/s11033-011-0875-2

Wu C, You C, Li C, Long T, Chen G, Byrne ME, Zhang Q (2008) RID1, encoding a Cys2/His2-type zinc finger transcription factor, acts as a master switch from vegetative to floral development in rice. Proc Natl Acad Sci U S A 105 (35):12915-12920. doi:10.1073/pnas.0806019105

Wenden B, Rameau C (2009) Systems biology for plant breeding: the example of flowering time in pea. C R Biol 332 (11):998-1006. doi:10.1016/j.crvi.2009.09.011

Wang X, Wu L, Zhang S, Ku L, Wei X, Xie L, Chen Y (2011) Robust expression and association of ZmCCA1 with circadian rhythms in maize. Plant Cell Rep 30 (7):1261- 1272. doi:10.1007/s00299-011-1036-8

Wang H, Liu Y, Chong K, Liu BY, Ye HC, Li ZQ, Yan F, Li GF (2007) Earlier flowering induced by over-expression of CO gene does not accompany increase of artemisinin biosynthesis in Artemisia annua. Plant Biol 9 (3):442-446. doi:10.1055/s-2006-924634

Veley KM, Michaels SD (2008) Functional redundancy and new roles for genes of the autonomous floral-promotion pathway. Plant Physiol 147 (2):682-695. doi:10.1104/pp.108.118927

Varkonyi-Gasic E, Moss SM, Voogd C, Wu R, Lough RH, Wang YY, Hellens RP (2011) Identification and characterization of flowering genes in kiwifruit: sequence conservation and role in kiwifruit flower development. BMC Plant Biol 11:72. doi:10.1186/1471-2229- 11-72

Turnbull C (2011) Long-Distance regulation of flowering time. J Exp Bot Advance Access published July 21, 2011:15. doi:10.1093/jxb/err191

Trevaskis B, Tadege M, Hemming MN, Peacock WJ, Dennis ES, Sheldon C (2007) Short Vegetative Phase-like MADS-box genes inhibit floral meristem identity in barley. Plant Physiol 143 (1):225-235. doi:10.1104/pp.106.090860

Trevaskis B, Hemming MN, Peacock WJ, Dennis ES (2006) HvVRN2 responds to daylength, whereas HvVRN1 is regulated by vernalization and developmental status. Plant Physiol 140 (4):1397-1405. doi:10.1104/pp.105.073486

Trevaskis B, Hemming MN, Dennis ES, Peacock WJ (2007) The molecular basis of vernalization-induced flowering in cereals. Trends Plant Sci 12 (8):352-357. doi:10.1016/j.tplants.2007.06.010

Toth B, Galiba G, Feher E, Sutka J, Snape JW (2003) Mapping genes affecting flowering time and frost resistance on chromosome 5B of wheat. Theor Appl Genet 107 (3):509- 514. doi:10.1007/s00122-003-1275-3

Tian B, Chen Y, Li D, Yan Y (2006) Cloning and characterization of a bamboo LEAFY HULL STERILE1 homologous gene. DNA Seq 17 (2):143-151. doi:10.1080/10425170600699877 Thomson MJ, Edwards JD, Septiningsih EM, Harrington SE, McCouch SR (2006) Substitution mapping of dth1.1, a flowering-time quantitative trait locus (QTL) associated with transgressive variation in rice, reveals multiple sub-QTL. Genetics 172 (4):2501- 2514. doi:10.1534/genetics.105.050500

Thakare D, Kumudini S, Dinkins RD (2010) Expression of flowering-time genes in soybean E1 near-isogenic lines under short and long day conditions. Planta 231 (4):951- 963. doi:10.1007/s00425-010-1100-6

Tamaki S, Matsuo S, Wong HL, Yokoi S, Shimamoto K (2007) Hd3a protein is a mobile flowering signal in rice. Science 316 (5827):1033-1036. doi:10.1126/science.1141753

Szalma SJ, Hostert BM, LeDeaux JR, Stuber CW, Holland JB (2007) QTL mapping with near-isogenic lines in maize. Theor Appl Genet 114 (7):1211-1228. doi:10.1007/s00122- 007-0512-6

Suarez-Lopez P (2005) Long-range signalling in plant reproductive development. Int J Dev Biol 49 (5-6):761-771. doi:10.1387/ijdb.052002ps

Springer CJ, Ward JK (2007) Flowering time and elevated atmospheric CO2. New Phytol 176 (2):243-255. doi:10.1111/j.1469-8137.2007.02196.x

Song YH, Ito S, Imaizumi T (2010) Similarities in the circadian clock and photoperiodism in plants. Curr Opin Plant Biol 13 (5):594-603. doi:10.1016/j.pbi.2010.05.004

Smykal P, Gennen J, De Bodt S, Ranganath V, Melzer S (2007) Flowering of strict photoperiodic Nicotiana varieties in non-inductive conditions by transgenic approaches. Plant Mol Biol 65 (3):233-242. doi:10.1007/s11103-007-9211-6

Slotte T, Huang HR, Holm K, Ceplitis A, Onge KS, Chen J, Lagercrantz U, Lascoux M (2009) Splicing variation at a FLOWERING LOCUS C homeolog is associated with flowering time variation in the tetraploid Capsella bursa-pastoris. Genetics 183 (1):337- 345. doi:genetics.109.103705 [pii] 10.1534/genetics.109.103705

Singh KP, Kushwaha CP (2006) Diversity of flowering and fruiting phenology of trees in a tropical deciduous forest in India. Ann Bot 97 (2):265-276. doi:10.1093/aob/mcj028

Simpson GG, Gendall AR, Dean C (1999) When to switch to flowering. Annu Rev Cell Dev Biol 15:519-+. doi:10.1146/annurev.cellbio.15.1.519

Seppanen MM, Pakarinen K, Jokela V, Andersen JR, Fiil A, Santanen A, Virkajarvi P (2010) Vernalization response of Phleum pratense and its relationships to stem lignification and floral transition. Ann Bot 106 (5):697-707. doi:10.1093/aob/mcq174

Seleznyova AN, Tustin DS, Thorp TG (2008) Apple dwarfing rootstocks and interstocks affect the type of growth units produced during the annual growth cycle: Precocious transition to flowering affects the composition and vigour of annual shoots. Ann Bot 101 (5):679-687. doi:10.1093/aob/mcn007

Schlappi MR (2006) FRIGIDA LIKE 2 is a functional allele in Landsberg erecta and compensates for a nonsense allele of FRIGIDA LIKE 1. Plant Physiol 142 (4):1728-1738. doi:10.1104/pp.106.085571 Satake A (2010) Diversity of plant life cycles is generated by dynamic epigenetic regulation in response to vernalization. J Theor Biol 266 (4):595-605. doi:10.1016/j.jtbi.2010.07.019

Sanchez SE, Cagnola JI, Crepy M, Yanovsky MJ, Casal JJ (2011) Balancing forces in the photoperiodic control of flowering. Photochem Photobiol Sci 10 (4):451-460. doi:10.1039/c0pp00252f

Samach A, Gover A (2001) Photoperiodism: The consistent use of CONSTANS. Curr Biol 11 (16):R651-R654. doi:10.1016/s0960-9822(01)00384-0

Risk JM, Macknight RC, Day CL (2008) FCA does not bind abscisic acid. Nature 456 (7223). doi:10.1038/nature07646

Rideout JW, Raper CD, Miner GS (1992) CHANGES IN RATIO OF SOLUBLE SUGARS AND FREE AMINO NITROGEN IN THE APICAL MERISTEM DURING FLORAL TRANSITION OF TOBACCO. Int J Plant Sci 153 (1):78-88. doi:10.1086/297008

Remay A, Lalanne D, Thouroude T, Le Couviour F, Hibrand-Saint Oyant L, Foucher F (2009) A survey of flowering genes reveals the role of gibberellins in floral control in rose. Theor Appl Genet 119 (5):767-781. doi:10.1007/s00122-009-1087-1

Reeves PH, Coupland G (2000) Response of plant development to environment: control of flowering by daylength and temperature. Curr Opin Plant Biol 3 (1):37-42. doi:10.1016/s1369-5266(99)00041-2

Razem FA, El-Kereamy A, Abrams SR, Hill RD (2006) The RNA-binding protein FCA is an abscisic acid receptor. Nature 439 (7074):290-294. doi:10.1038/nature04373

Putterill J, Laurie R, Macknight R (2004) It's time to flower: the genetic control of flowering time. BioEssays 26 (4):363-373. doi:10.1002/bies.20021

Preston JC, Kellogg EA (2008) Discrete developmental roles for temperate cereal grass VERNALIZATION1/FRUITFULL-like genes in flowering competency and the transition to flowering. Plant Physiol 146 (1):265-276. doi:10.1104/pp.107.109561

Perez FJ, Kuhn N, Vergara R (2011) Expression analysis of phytochromes A, B and floral integrator genes during the entry and exit of grapevine-buds from endodormancy. J Plant Physiol 168 (14):1659-1666. doi:10.1016/j.jplph.2011.03.001

Ogiso E, Takahashi Y, Sasaki T, Yano M, Izawa T (2010) The Role of Casein Kinase II in Flowering Time Regulation Has Diversified during Evolution. Plant Physiol 152 (2):808- 820. doi:10.1104/pp.109.148908

Nave N, Katz E, Chayut N, Gazit S, Samach A (2010) Flower development in the passion fruit Passiflora edulis requires a photoperiod-induced systemic graft-transmissible signal. Plant Cell Environ 33 (12):2065-2083. doi:10.1111/j.1365-3040.2010.02206.x

Nakagawa H, Yamagishi J, Miyamoto N, Motoyama M, Yano M, Nemoto K (2005) Flowering response of rice to photoperiod and temperature: a QTL analysis using a phenological model. Theor Appl Genet 110 (4):778-786. doi:10.1007/s00122-004-1905-4 Murakami M, Ashikari M, Miura K, Yamashino T, Mizuno T (2003) The evolutionarily conserved OsPRR quintet: Rice pseudo-response regulators implicated in circadian rhythm. Plant Cell Physiol 44 (11):1229-1236. doi:10.1093/pcp/pcg135

Molinero-Rosales N, Latorre A, Jamilena M, Lozano R (2004) SINGLE FLOWER TRUSS regulates the transition and maintenance of flowering in tomato. Planta 218 (3):427-434. doi:10.1007/s00425-003-1109-1

Miwa K, Serikawa M, Suzuki S, Kondo T, Oyama T (2006) Conserved expression profiles of circadian clock-related genes in two Lemna species showing long-day and short-day photoperiodic flowering responses. Plant Cell Physiol 47 (5):601-612. doi:10.1093/pcp/pcj027

Miller-Rushing AJ, Primack RB (2008) Global warming and flowering times in Thoreau's concord: A community perspective. Ecology 89 (2):332-341. doi:10.1890/07-0068.1

McWatters HG, Kolmos E, Hall A, Doyle MR, Amasino RM, Gyula P, Nagy F, Millar AJ, Davis SJ (2007) ELF4 is required for oscillatory properties of the circadian clock. Plant Physiol 144 (1):391-401. doi:10.1104/pp.107.096206

McWatters HG, Bastow RM, Hall A, Millar AJ (2000) The ELF3 zeitnehmer regulates light signalling to the circadian clock. Nature 408 (6813):716-720

Matsubara K, Kono I, Hori K, Nonoue Y, Ono N, Shomura A, Mizubayashi T, Yamamoto S, Yamanouchi U, Shirasawa K, Nishio T, Yano M (2008) Novel QTLs for photoperiodic flowering revealed by using reciprocal backcross inbred lines from crosses between japonica rice cultivars. Theor Appl Genet 117 (6):935-945. doi:10.1007/s00122-008- 0833-0

Masiero S, Colombo L, Grini PE, Schnittger A, Kater MM (2011) The emerging importance of type I MADS box transcription factors for plant reproduction. Plant Cell 23 (3):865-872. doi:10.1105/tpc.110.081737

Mas P, Devlin PF, Panda S, Kay SA (2000) Functional interaction of phytochrome B and cryptochrome 2. Nature 408 (6809):207-211

Martin-Tryon EL, Kreps JA, Harmer SL (2007) GIGANTEA acts in blue light signaling and has biochemically separable roles in circadian clock and flowering time regulation. Plant Physiol 143 (1):473-486. doi:10.1104/pp.106.088757

Martin-Trillo M, Martinez-Zapater JM (2002) Growing up fast: manipulating the generation time of trees. Curr Opin Biotechnol 13 (2):151-155. doi:10.1016/s0958- 1669(02)00305-1

Maas LF, McClung A, McCouch S (2010) Dissection of a QTL reveals an adaptive, interacting gene complex associated with transgressive variation for flowering time in rice. Theor Appl Genet 120 (5):895-908. doi:10.1007/s00122-009-1219-7

Lozano R, Gimenez E, Cara B, Capel J, Angosto T (2009) Genetic analysis of reproductive development in tomato. Int J Dev Biol 53 (8-10):1635-1648. doi:10.1387/ijdb.072440rl Locascio A, Lucchin M, Varotto S (2009) Characterization of a MADS FLOWERING LOCUS C-LIKE (MFL) sequence in Cichorium intybus: a comparative study of CiMFL and AtFLC reveals homologies and divergences in gene function. New Phytol 182 (3):630-643. doi:10.1111/j.1469-8137.2009.02791.x

Linkosalo T, Lappalainen HK, Hari P (2008) A comparison of phenological models of leaf bud burst and flowering of boreal trees using independent observations. Tree Physiol 28 (12):1873-1882

Lin XC, Chow TY, Chen HH, Liu CC, Chou SJ, Huang BL, Kuo CI, Wen CK, Huang LC, Fang W (2010) Understanding bamboo flowering based on large-scale analysis of expressed sequence tags. Genet Mol Res 9 (2):1085-1093. doi:10.4238/vol9-2gmr804

Lifschitz E, Eshed Y (2006) Universal florigenic signals triggered by FT homologues regulate growth and flowering cycles in perennial day-neutral tomato. J Exp Bot 57 (13):3405-3414. doi:10.1093/jxb/erl106

Levy YY, Dean C (1998) Control of flowering time. Curr Opin Plant Biol 1 (1):49-54. doi:10.1016/s1369-5266(98)80127-1

Lai Z, Livingstone K, Zou Y, Church SA, Knapp SJ, Andrews J, Rieseberg LH (2005) Identification and mapping of SNPs from ESTs in sunflower. Theor Appl Genet 111 (8):1532-1544. doi:10.1007/s00122-005-0082-4

Kyozuka J, Konishi S, Nemoto K, Izawa T, Shimamoto K (1998) Down-regulation of RFL, the FLO/LFY homolog of rice, accompanied with panicle branch initiation. Proc Natl Acad Sci U S A 95 (5):1979-1982. doi:10.1073/pnas.95.5.1979

Kondo H, Miura T, Wada KC, Takeno K (2007) Induction of flowering by 5-azacytidine in some plant species: relationship between the stability of photoperiodically induced flowering and flower-inducing effect of DNA demethylation. Physiol Plant 131 (3):462- 469. doi:10.1111/j.1399-3054.2007.00965.x

Komiya R, Yokoi S, Shimamoto K (2009) A gene network for long-day flowering activates RFT1 encoding a mobile flowering signal in rice. Development 136 (20):3443- 3450. doi:10.1242/dev.040170

Komiya R, Ikegami A, Tamaki S, Yokoi S, Shimamoto K (2008) Hd3a and RFT1 are essential for flowering in rice. Development 135 (4):767-774. doi:10.1242/dev.008631

Kinoshita T, Ono N, Hayashi Y, Morimoto S, Nakamura S, Soda M, Kato Y, Ohnishi M, Nakano T, Inoue S, Shimazaki K (2011) FLOWERING LOCUS T Regulates Stomatal Opening. Curr Biol 21 (14):1232-1238. doi:10.1016/j.cub.2011.06.025

Kinoshita T, Harada JJ, Goldberg RB, Fischer RL (2001) Polycomb repression of flowering during early plant development. Proc Natl Acad Sci U S A 98 (24):14156- 14161. doi:10.1073/pnas.241507798

Kim SY, Yu X, Michaels SD (2008) Regulation of CONSTANS and FLOWERING LOCUS T expression in response to changing light quality. Plant Physiol 148 (1):269- 279. doi:10.1104/pp.108.122606 Kim DH, Doyle MR, Sung S, Amasino RM (2009) Vernalization: Winter and the Timing of Flowering in Plants. Annu Rev Cell Dev Biol 25:277-299. doi:10.1146/annurev.cellbio.042308.113411

Kikuchi R, Kawahigashi H, Ando T, Tonooka T, Handa H (2009) Molecular and Functional Characterization of PEBP Genes in Barley Reveal the Diversification of Their Roles in Flowering. Plant Physiol 149 (3):1341-1353. doi:10.1104/pp.108.132134

Karsai I, Szucs P, Koszegi B, Hayes PM, Casas A, Bedo Z, Veisz O (2008) Effects of photo and thermo cycles on flowering time in barley: a genetical phenomics approach. J Exp Bot 59 (10):2707-2715. doi:10.1093/jxb/ern131

Kantolic AG, Slafer GA (2007) Development and seed number in indeterminate soybean as affected by timing and duration of exposure to long photoperiods after flowering. Ann Bot 99 (5):925-933. doi:10.1093/aob/mcm033

Kane NA, Danyluk J, Tardif G, Ouellet F, Laliberte JF, Limin AE, Fowler DB, Sarhan F (2005) TaVRT-2, a member of the StMADS-11 clade of flowering repressors, is regulated by vernalization and photoperiod in wheat. Plant Physiol 138 (4):2354-2363. doi:10.1104/pp.105.061762

Kai K, Takeuchi J, Kataoka T, Yokoyama M, Watanabe N (2008) Structure and biological activity of novel FN analogs as flowering inducers. Bioorg Med Chem 16 (23):10043- 10048. doi:10.1016/j.bmc.2008.10.014

Jimenez-Gomez JM, Alonso-Blanco C, Borja A, Anastasio G, Angosto T, Lozano R, Martinez-Zapater JM (2007) Quantitative genetic analysis of flowering time in tomato. Genome 50 (3):303-315. doi:10.1139/g07-009

Jaeger KE, Graf A, Wigge PA (2006) The control of flowering in time and space. J Exp Bot 57 (13):3415-3418. doi:10.1093/jxb/erl159

Jacob Y, Mongkolsiriwatana C, Veley KM, Kim SY, Michaels SD (2007) The nuclear pore protein AtTPR is required for RNA homeostasis, flowering time, and auxin signaling. Plant Physiol 144 (3):1383-1390. doi:10.1104/pp.107.100735

Izawa T, Oikawa T, Sugiyama N, Tanisaka T, Yano M, Shimamoto K (2002) Phytochrome mediates the external light signal to repress FT orthologs in photoperiodic flowering of rice. Genes Dev 16 (15):2006-2020. doi:10.1101/gad.999202

Izawa T, Mihara M, Suzuki Y, Gupta M, Itoh H, Nagano AJ, Motoyama R, Sawada Y, Yano M, Hirai MY, Makino A, Nagamura Y (2011) Os-GIGANTEA Confers Robust Diurnal Rhythms on the Global Transcriptome of Rice in the Field. Plant Cell 23 (5):1741-1755. doi:10.1105/tpc.111.083238

Imamura T, Nakatsuka T, Higuchi A, Nishihara M, Takahashi H (2011) The Gentian Orthologs of the FT/TFL1 Gene Family Control Floral Initiation in Gentiana. Plant Cell Physiol 52 (6):1031-1041. doi:10.1093/pcp/pcr055

Imaizumi T, Kay SA (2006) Photoperiodic control of flowering: not only by coincidence. Trends Plant Sci 11 (11):550-558. doi:10.1016/j.tplants.2006.09.004 Hornyik C, Duc C, Rataj K, Terzi LC, Simpson GG (2010) Alternative polyadenylation of antisense RNAs and flowering time control. Biochem Soc Trans 38:1077-1081. doi:10.1042/bst0381077

Hori Y, Nishidate K, Nishiyama M, Kanahama K, Kanayama Y (2011) Flowering and expression of flowering-related genes under long-day conditions with light-emitting diodes. Planta 234 (2):321-330. doi:10.1007/s00425-011-1397-9

Hoenicka H, Nowitzki O, Hanelt D, Fladung M (2008) Heterologous overexpression of the birch FRUITFULL-like MADS-box gene BpMADS4 prevents normal senescence and winter dormancy in Populus tremula L. Planta 227 (5):1001-1011. doi:10.1007/s00425- 007-0674-0

Hirose F, Shinomura T, Tanabata T, Shimada H, Takano M (2006) Involvement of rice cryptochromes in de-etiolation responses and flowering. Plant Cell Physiol 47 (7):915- 925. doi:10.1093/pcp/pcj064

Hirao AS, Kudo G (2008) The effect of segregation of flowering time on fine-scale spatial genetic structure in an alpine-snowbed herb Primula cuneifolia. Heredity 100 (4):424-430. doi:10.1038/hdy.2008.1

Henderson IR, Shindo C, Dean C (2003) The need for winter in the switch to flowering. Annu Rev Genet 37:371-392. doi:10.1146/annurev.genet.37.110801.142640

Hemming MN, Peacock WJ, Dennis ES, Trevaskis B (2008) Low-temperature and daylength cues are integrated to regulate FLOWERING LOCUS T in barley. Plant Physiol 147 (1):355-366. doi:10.1104/pp.108.116418

Hecht V, Laurie RE, Vander Schoor JK, Ridge S, Knowles CL, Liew LC, Sussmilch FC, Murfet IC, Macknight RC, Weller JL (2011) The pea GIGAS gene is a FLOWERING LOCUS T homolog necessary for graft-transmissible specification of flowering but not for responsiveness to photoperiod. Plant Cell 23 (1):147-161. doi:10.1105/tpc.110.081042

He Y (2009) Control of the Transition to Flowering by Chromatin Modifications. Mol Plant 2 (4):554-564. doi:10.1093/mp/ssp005

He C, Tian Y, Saedler R, Efremova N, Riss S, Khan MR, Yephremov A, Saedler H (2010) The MADS-domain protein MPF1 of Physalis floridana controls plant architecture, seed development and flowering time. Planta 231 (3):767-777. doi:10.1007/s00425-009-1087-z

Hayama R, Izawa T, Shimamoto K (2002) Isolation of rice genes possibly involved in the photoperiodic control of flowering by a fluorescent differential display method. Plant Cell Physiol 43 (5):494-504. doi:10.1093/pcp/pcf059

Hasegawa M, Yahara T, Yasumoto A, Hotta M (2006) Bimodal distribution of flowering time in a natural hybrid population of daylily (Hemerocallis fulva) and nightlily (Hemerocallis citrina). J Plant Res 119 (1):63-68. doi:10.1007/s10265-005-0241-3

Hall MC, Willis JH (2006) Divergent selection on flowering time contributes to local adaptation in Mimulus guttatus populations. Evolution 60 (12):2466-2477. doi:10.1111/j.0014-3820.2006.tb01882.x Gyllenstrand N, Clapham D, Kallman T, Lagercrantz U (2007) A Norway spruce FLOWERING LOCUS T homolog is implicated in control of growth rhythm in conifers. Plant Physiol 144 (1):248-257. doi:10.1104/pp.107.095802

Greenup AG, Sasani S, Oliver SN, Talbot MJ, Dennis ES, Hemming MN, Trevaskis B (2010) ODDSOC2 Is a MADS Box Floral Repressor That Is Down-Regulated by Vernalization in Temperate Cereals. Plant Physiol 153 (3):1062-1073. doi:10.1104/pp.109.152488

Gondo T, Sato S, Okumura K, Tabata S, Akashi R, Isobe S (2007) Quantitative trait locus analysis of multiple agronomic traits in the model legume Lotus japonicus. Genome 50 (7):627-637. doi:10.1139/g07-040

Goldringer I, Prouin C, Rousset M, Galic N, Bonnin I (2006) Rapid differentiation of experimental populations of wheat for heading time in response to local climatic conditions. Ann Bot 98 (4):805-817. doi:10.1093/aob/mcl160

Gimenez-Benavides L, Escudero A, Iriondo JM (2007) Reproductive limits of a late- flowering high-mountain Mediterranean plant along an elevational climate gradient. New Phytol 173 (2):367-382. doi:10.1111/j.1469-8137.2006.01932.x

Galloway LF, Burgess KS (2009) Manipulation of flowering time: phenological integration and maternal effects. Ecology 90 (8):2139-2148

Fu D, Dunbar M, Dubcovsky J (2007) Wheat VIN3-like PHD finger genes are up- regulated by vernalization. Molecular Genet Genom 277 (3):301-313. doi:10.1007/s00438-006-0189-6

Foucher F, Morin J, Courtiade J, Cadioux S, Ellis N, Banfield MJ, Rameau C (2003) DETERMINATE and LATE FLOWERING are two TERMINAL FLOWER1/CENTRORADIALIS homologs that control two distinct phases of flowering initiation and development in pea. Plant Cell 15 (11):2742-2754. doi:10.1105/tpc.015701

Fang Q, Liu J, Xu Z, Song R (2008) Cloning and characterization of a flowering time gene from Thellungiella halophila. Acta Biochim Biophys Sin 40 (8):747-753. doi:10.1111/j.1745-7270.2008.00446.x

Exner V, Hennig L (2008) Chromatin rearrangements in development. Curr Opin Plant Biol 11 (1):64-69. doi:10.1016/j.pbi.2007.10.004

Estiarte M, Puig G, Penuelas J (2011) Large delay in flowering in continental versus coastal populations of a Mediterranean shrub, Globularia alypum. Int J Biometeorol. doi:10.1007/s00484-011-0422-9

Ergon A, Fang C, Jorgensen O, Aamlid TS, Rognli OA (2006) Quantitative trait loci controlling vernalisation requirement, heading time and number of panicles in meadow fescue (Festuca pratensis Huds.). Theor Appl Genet 112 (2):232-242. doi:10.1007/s00122- 005-0115-z

Endo-Higashi N, Izawa T (2011) Flowering Time Genes Heading date 1 and Early heading date 1 Together Control Panicle Development in Rice. Plant Cell Physiol 52 (6):1083-1094. doi:10.1093/pcp/pcr059 Elzinga JA, Atlan A, Biere A, Gigord L, Weis AE, Bernasconi G (2007) Time after time: flowering phenology and biotic interactions. Trends Ecol Evol 22 (8):432-439. doi:10.1016/j.tree.2007.05.006

Dwivedi S, Perotti E, Ortiz R (2008) Towards molecular breeding of reproductive traits in cereal crops. Plant Biotechnol J 6 (6):529-559. doi:10.1111/j.1467-7652.2008.00343.x

Dugo ML, Satovic Z, Millan T, Cubero JI, Rubiales D, Cabrera A, Torres AM (2005) Genetic mapping of QTLs controlling horticultural traits in diploid roses. Theor Appl Genet 111 (3):511-520. doi:10.1007/s00122-005-2042-4

Ducrocq S, Giauffret C, Madur D, Combes V, Dumas F, Jouanne S, Coubriche D, Jamin P, Moreau L, Charcosset A (2009) Fine mapping and haplotype structure analysis of a major flowering time quantitative trait locus on maize chromosome 10. Genetics 183 (4):1555-1563. doi:genetics.109.106922 [pii] 10.1534/genetics.109.106922

Drobyazina PE, Khavkin EE (2011) The structure of two CONSTANS-LIKE1 genes in potato and its wild relatives. Gene 471 (1-2):37-44. doi:10.1016/j.gene.2010.10.005

Domagalska MA, Schomburg FM, Amasino RM, Vierstra RD, Nagy F, Davis SJ (2007) Attenuation of brassinosteroid signaling enhances FLC expression and delays flowering. Development 134 (15):2841-2850. doi:10.1242/dev.02866

Dielen V, Lecouvet V, Dupont S, Kinet JM (2001) In vitro control of floral transition in tomato (Lycopersicon esculentum Mill.), the model for autonomously flowering plants, using the late flowering uniflora mutant. J Exp Bot 52 (357):715-723

Dewitte W, Chiappetta A, Azmi A, Witters E, Strnad M, Rembur J, Noin M, Chriqui D, Van Onckelen H (1999) Dynamics of cytokinins in apical shoot meristems of a day- neutral tobacco during floral transition and flower formation. Plant Physiol 119 (1):111- 121

Devaux C, Lande R (2010) Selection on variance in flowering time within and among individuals. Evolution 64 (5):1311-1320. doi:EVO895 [pii] 10.1111/j.1558- 5646.2009.00895.x

Dauelsberg P, Matus JT, Poupin MJ, Leiva-Ampuero A, Godoy F, Vega A, Arce-Johnson P (2011) Effect of pollination and fertilization on the expression of genes related to floral transition, hormone synthesis and berry development in grapevine. J Plant Physiol 168 (14):1667-1674. doi:10.1016/j.jplph.2011.03.006

Danyluk J, Kane NA, Breton G, Limin AE, Fowler DB, Sarhan F (2003) TaVRT-1, a putative transcription factor associated with vegetative to reproductive transition in cereals. Plant Physiol 132 (4):1849-1860. doi:10.1104/pp.103.023523

Danilevskaya ON, Meng X, Selinger DA, Deschamps S, Hermon P, Vansant G, Gupta R, Ananiev EV, Muszynski MG (2008) Involvement of the MADS-Box gene ZMM4 in floral induction and inflorescence development in maize. Plant Physiol 147 (4):2054- 2069. doi:10.1104/pp.107.115261

Dai S, Wei X, Pei L, Thompson RL, Liu Y, Heard JE, Ruff TG, Beachy RN (2011) BROTHER OF LUX ARRHYTHMO Is a Component of the Arabidopsis Circadian Clock. Plant Cell 23 (3):961-972. doi:10.1105/tpc.111.084293 Coneva V, Zhu T, Colasanti J (2007) Expression differences between normal and indeterminate1 maize suggest downstream targets of ID1, a floral transition regulator in maize. J Exp Bot 58 (13):3679-3693. doi:10.1093/jxb/erm217

Colasanti J, Sundaresan V (2000) 'Florigen' enters the molecular age: long-distance signals that cause plants to flower. Trends Biochem Sci 25 (5):236-240. doi:10.1016/s0968-0004(00)01542-5

Cockram J, Jones H, Leigh FJ, O'Sullivan D, Powell W, Laurie DA, Greenland AJ (2007) Control of flowering time in temperate cereals: genes, domestication, and sustainable productivity. J Exp Bot 58 (6):1231-1244. doi:10.1093/jxb/erm042

Chen M, Ni M (2006) RFI2, a RING-domain zinc finger protein, negatively regulates CONSTANS expression and photoperiodic flowering. Plant J 46:823-833. doi:10.1111/j.1365-313X.2006.02740.x

Chen A, Baumann U, Fincher GB, Collins NC (2009) Flt-2L, a locus in barley controlling flowering time, spike density, and plant height. Funct Integr Genomics 9 (2):243-254. doi:10.1007/s10142-009-0114-2

Chardon F, Virlon B, Moreau L, Falque M, Joets J, Decousset L, Murigneux A, Charcosset A (2004) Genetic architecture of flowering time in maize as inferred from quantitative trait loci meta-analysis and synteny conservation with the rice genome. Genetics 168 (4):2169-2185. doi:10.1534/genetics.104.032375

Chardon F, Hourcade D, Combes V, Charcosset A (2005) Mapping of a spontaneous mutation for early flowering time in maize highlights contrasting allelic series at two- linked QTL on chromosome 8. Theor Appl Genet 112 (1):1-11. doi:10.1007/s00122-005- 0050-z

Chab D, Kolar J, Olson MS, Storchova H (2008) Two FLOWERING LOCUS T (FT) homologs in Chenopodium rubrum differ in expression patterns. Planta 228 (6):929-940. doi:10.1007/s00425-008-0792-3

Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ, Browne C, Ersoz E, Flint- Garcia S, Garcia A, Glaubitz JC, Goodman MM, Harjes C, Guill K, Kroon DE, Larsson S, Lepak NK, Li H, Mitchell SE, Pressoir G, Peiffer JA, Rosas MO, Rocheford TR, Cinta Romay M, Romero S, Salvo S, Sanchez Villeda H, da Silva HS, Sun Q, Tian F, Upadyayula N, Ware D, Yates H, Yu J, Zhang Z, Kresovich S, McMullen MD (2009) The Genetic Architecture of Maize Flowering Time. Science 325 (5941):714-718. doi:10.1126/science.1174276

Boss PK, Thomas MR (2002) Association of dwarfism and floral induction with a grape 'green revolution' mutation. Nature 416 (6883):847-850. doi:10.1038/416847a

Bond DM, Dennis ES, Finnegan EJ (2011) The low temperature response pathways for cold acclimation and vernalization are independent. Plant, Cell & Environment:no-no. doi:10.1111/j.1365-3040.2011.02370.x

Bogard M, Jourdan M, Allard V, Martre P, Perretant MR, Ravel C, Heumez E, Orford S, Snape J, Griffiths S, Gaju O, Foulkes J, Le Gouis J (2011) Anthesis date mainly explained correlations between post-anthesis leaf senescence, grain yield, and grain protein concentration in a winter wheat population segregating for flowering time QTLs. J Exp Bot 62 (10):3621-3636. doi:10.1093/jxb/err061

Blazquez MA (1997) Illuminating flowers: CONSTANS induces LEAFY expression. BioEssays 19 (4):277-279. doi:10.1002/bies.950190403

Blackman BK, Rasmussen DA, Strasburg JL, Raduski AR, Burke JM, Knapp SJ, Michaels SD, Rieseberg LH (2011) Contributions of flowering time genes to sunflower domestication and improvement. Genetics 187 (1):271-287. doi:genetics.110.121327 [pii] 10.1534/genetics.110.121327

Blackman BK, Michaels SD, Rieseberg LH (2011) Connecting the sun to flowering in sunflower adaptation. Mol Ecol:no-no. doi:10.1111/j.1365-294X.2011.05166.x

Bernier G, Perilleux C (2005) A physiological overview of the genetics of flowering time control. Plant Biotechnol J 3 (1):3-16. doi:10.1111/j.1467-7652.2004.00114.x

Bernier G (1986) The flowering process as an example of plastic development. Symp Soc Exp Biol 40:257-286

Baurle I, Dean C (2006) The timing of developmental transitions in plants. Cell 125 (4):655-664. doi:10.1016/j.cell.2006.05.005

Barth C, De Tullio M, Conklin PL (2006) The role of ascorbic acid in the control of flowering time and the onset of senescence. J Exp Bot 57 (8):1657-1665. doi:10.1093/jxb/erj198

Argiriou A, Michailidis G, Tsaftaris AS (2008) Characterization and expression analysis of TERMINAL FLOWER1 homologs from cultivated alloteraploid cotton (Gossypium hirsutum) and its diploid progenitors. J Plant Physiol 165 (15):1636-1646. doi:10.1016/j.jplph.2007.10.013

Araki T (2001) Transition from vegetative to reproductive phase. Curr Opin Plant Biol 4 (1):63-68. doi:10.1016/s1369-5266(00)00137-0

Andres F, Galbraith DW, Talon M, Domingo C (2009) Analysis of PHOTOPERIOD SENSITIVITY5 Sheds Light on the Role of Phytochromes in Photoperiodic Flowering in Rice. Plant Physiol 151 (2):681-690. doi:10.1104/pp.109.139097

Anderson JT, Willis JH, Mitchell-Olds T (2011) Evolutionary genetics of plant adaptation. Trends Genet 27 (7):258-266. doi:10.1016/j.tig.2011.04.001

Achard P, Herr A, Baulcombe DC, Harberd NP (2004) Modulation of floral development by a gibberellin-regulated microRNA. Development 131 (14):3357-3365. doi:10.1242/dev.01206

Holland RW, Vince D (1968) Photoperiodic control of flowering and anthocyanin formation in Fuchsia. Nature 219 (5153):511-513

Goodwin RH (1944) The Inheritance of Flowering Time in a Short-Day Species, Solidago Sempervirens L. Genetics 29 (6):503-519 Pierard D, Bernier G, Jacqmard A (1977) [Antigenic proteins of the apical bud of Sinapsis alba in its transition from the vegetative to the floral state (proceedings)]. Arch Int Physiol Biochim 85 (2):428-429

Kirshin IK, Stefanovich GS, Zhuk MI (1974) Length of day as an ecological factor in the flowering of awnless bromegrass. Sov J Ecol 4 (5):410-415

Hillman WS (1976) A metabolic indicator of photoperiodic timing. Proc Natl Acad Sci U S A 73 (2):501-504

Havelange A, Bernier G (1974) Descriptive and quantitative study of ultrastructural changes in the apical meristem of mustard in transition to flowering. I. The cell and nucleus. J Cell Sci 15 (3):633-644

Chailakhian M, Aksenova NP, Bavrina TV, Konstantinova TN (1977) [Regulation of flowering plants of different biotypes]. Ontogenez 8 (6):599-617

Bunning E, Moser I (1969) Interference of moonlight with the photoperiodic measurement of time by plants, and their adaptive reaction. Proc Natl Acad Sci U S A 62 (4):1018-1022

Antonova LA (1972) Seasonal and daily flowering rhythms in plants of broad-leaved forests. Sov J Ecol 3 (4):346-351

Schwemmle B (1980) [Control of flower formation (author's transl)]. Arzneimittelforschung 30 (11a):1970-1974

Meeks-Wagner DR, Dennis ES, Tran Thanh Van K, Peacock WJ (1989) Tobacco genes expressed during in vitro floral initiation and their expression during normal plant development. Plant Cell 1 (1):25-35

Khvoika L, Sulimova GE, Bulgakov R, Bashkite EA, Vaniushin BF (1978) [Changes in 5- methylcytosine content of plant DNA in proportion to the amount of flowering]. Biokhimiia 43 (6):996-1000

Kelly AJ, Zagotta MT, White RA, Chang C, Meeks-Wagner DR (1990) Identification of genes expressed in the tobacco shoot apex during the floral transition. Plant Cell 2 (10):963-972. doi:10.1105/tpc.2.10.963

Bodson M (1986) Effect of GA(4 + 7) on the initiation and development of the inflorescence bud of evergreen azalea. Tree Physiol 1 (1):95-99

Pri-Hadash A, Hareven D, Lifschitz E (1992) A meristem-related gene from tomato encodes a dUTPase: analysis of expression in vegetative and floral meristems. Plant Cell 4 (2):149-159. doi:10.1105/tpc.4.2.149

Cremer F, Van de Walle C, Bernier G (1991) Changes in mRNA level rhythmicity in the leaves of Sinapis alba during a lengthening of the photoperiod which induces flowering. Plant Mol Biol 17 (3):465-473

Clarke AE, Newbigin E (1993) Molecular aspects of self-incompatibility in flowering plants. Annu Rev Genet 27:257-279. doi:10.1146/annurev.ge.27.120193.001353 Cecich RA, Kang H, Chalupka W (1994) Regulation of early flowering in Pinus banksiana. Tree Physiol 14 (3):275-284

Burn JE, Bagnall DJ, Metzger JD, Dennis ES, Peacock WJ (1993) DNA methylation, vernalization, and the initiation of flowering. Proc Natl Acad Sci U S A 90 (1):287-291

Brandstadter J, Rossbach C, Theres K (1994) The pattern of histone H4 expression in the tomato shoot apex changes during development. Planta 192 (1):69-74

An G (1994) Regulatory genes controlling flowering time or floral organ development. Plant Mol Biol 25 (3):335-337

Weigel D (1995) The genetics of flower development: from floral induction to ovule morphogenesis. Annu Rev Genet 29:19-39. doi:10.1146/annurev.ge.29.120195.000315

Amasino RM (1996) Control of flowering time in plants. Curr Opin Genet Dev 6 (4):480- 487

Nilsson O, Weigel D (1997) Modulating the timing of flowering. Curr Opin Biotechnol 8 (2):195-199

Pouteau S, Nicholls D, Tooke F, Coen E, Battey N (1997) The induction and maintenance of flowering in Impatiens. Development 124 (17):3343-3351

Laurie DA (1997) Comparative genetics of flowering time. Plant Mol Biol 35 (1-2):167- 177

Kang HG, Jang S, Chung JE, Cho YG, An G (1997) Characterization of two rice MADS box genes that control flowering time. Mol Cells 7 (4):559-566

Bernacchi D, Tanksley SD (1997) An interspecific backcross of Lycopersicon esculentum x L. hirsutum: linkage analysis and a QTL study of sexual compatibility factors and floral traits. Genetics 147 (2):861-877

Sablowski RW, Meyerowitz EM (1998) A homolog of NO APICAL MERISTEM is an immediate target of the floral homeotic genes APETALA3/PISTILLATA. Cell 92 (1):93- 103

Ma H (1998) To be, or not to be, a flower--control of floral meristem identity. Trends Genet 14 (1):26-32. doi:10.1016/s0168-9525(97)01309-7

Mouradov A, Glassick T, Hamdorf B, Murphy L, Fowler B, Marla S, Teasdale RD (1998) NEEDLY, a Pinus radiata ortholog of FLORICAULA/LEAFY genes, expressed in both reproductive and vegetative meristems. Proc Natl Acad Sci U S A 95 (11):6537-6542

Finnegan EJ, Genger RK, Kovac K, Peacock WJ, Dennis ES (1998) DNA methylation and the promotion of flowering by vernalization. Proc Natl Acad Sci U S A 95 (10):5824- 5829

Pnueli L, Carmel-Goren L, Hareven D, Gutfinger T, Alvarez J, Ganal M, Zamir D, Lifschitz E (1998) The SELF-PRUNING gene of tomato regulates vegetative to reproductive switching of sympodial meristems and is the ortholog of CEN and TFL1. Development 125 (11):1979-1989 Shaw RG, Byers DL, Shaw FH (1998) Genetic components of variation in Nemophila menziesii undergoing inbreeding: morphology and flowering time. Genetics 150 (4):1649- 1661

Nilsson O, Lee I, Blazquez MA, Weigel D (1998) Flowering-time genes modulate the response to LEAFY activity. Genetics 150 (1):403-410

Moon YH, Chae S, Jung JY, An G (1998) Expressed sequence tags of radish flower buds and characterization of a CONSTANS LIKE 1 gene. Mol Cells 8 (4):452-458

Ma H (1998) Flowering time: from photoperiodism to florigen. Curr Biol 8 (19):R690- 692

Yin X, Kropff MJ, Stam P (1999) The role of ecophysiological models in QTL analysis: the example of specific leaf area in barley. Heredity 82 Pt 4:415-421

Vermerris W, McIntyre LM (1999) Time to flowering in brown midrib mutants of maize: an alternative approach to the analysis of developmental traits. Heredity 83 ( Pt 2):171- 178

Liljegren SJ, Gustafson-Brown C, Pinyopich A, Ditta GS, Yanofsky MF (1999) Interactions among APETALA1, LEAFY, and TERMINAL FLOWER1 specify meristem fate. Plant Cell 11 (6):1007-1018

Theissen G, Saedler H (1999) The golden decade of molecular floral development (1990- 1999): A cheerful obituary. Dev Genet 25 (3):181-193. doi:10.1002/(sici)1520- 6408(1999)25:3<181::aid-dvg1>3.0.co;2-f

Immink RG, Hannapel DJ, Ferrario S, Busscher M, Franken J, Lookeren Campagne MM, Angenent GC (1999) A petunia MADS box gene involved in the transition from vegetative to reproductive development. Development 126 (22):5117-5126

Samach A, Coupland G (2000) Time measurement and the control of flowering in plants. BioEssays 22 (1):38-47. doi:10.1002/(sici)1521-1878(200001)22:1<38::aid- bies8>3.0.co;2-l

McSteen P, Laudencia-Chingcuanco D, Colasanti J (2000) A floret by any other name: control of meristem identity in maize. Trends Plant Sci 5 (2):61-66

Kumar J, van Rheenen HA (2000) A major gene for time of flowering in chickpea. J Hered 91 (1):67-68

Jang S, Hong MY, Chung YY, An G (1999) Ectopic expression of tobacco MADS genes modulates flowering time and plant architecture. Mol Cells 9 (6):576-586

Garcia-Maroto F, Ortega N, Lozano R, Carmona MJ (2000) Characterization of the potato MADS-box gene STMADS16 and expression analysis in tobacco transgenic plants. Plant Mol Biol 42 (3):499-513

Yalovsky S, Rodriguez-Concepcion M, Bracha K, Toledo-Ortiz G, Gruissem W (2000) Prenylation of the floral transcription factor APETALA1 modulates its function. Plant Cell 12 (8):1257-1266 Thomas H, Howarth CJ (2000) Five ways to stay green. J Exp Bot 51 Spec No:329-337

Sourdille P, Snape JW, Cadalen T, Charmet G, Nakata N, Bernard S, Bernard M (2000) Detection of QTLs for heading time and photoperiod response in wheat using a doubled- haploid population. Genome 43 (3):487-494

Li SG, Ma YQ, Wang WM, Liu GQ, Zhou KD, Zhu LH (2000) [Molecular tagging of a new recessive gene for late heading in a rice cultivar 8987]. Yi Chuan Xue Bao 27 (2):133-138

Ormenese S, Havelange A, Deltour R, Bernier G (2000) The frequency of plasmodesmata increases early in the whole shoot apical meristem of Sinapis alba L. during floral transition. Planta 211 (3):370-375

Mizoguchi T, Coupland G (2000) ZEITLUPE and FKF1: novel connections between flowering time and circadian clock control. Trends Plant Sci 5 (10):409-411

Lagercrantz U, Axelsson T (2000) Rapid evolution of the family of CONSTANS LIKE genes in plants. Mol Biol Evol 17 (10):1499-1507

Bassett CL, Nickerson ML, Cohen RA, Rajeevan MS (2000) Alternative transcript initiation and novel post-transcriptional processing of a leucine-rich repeat receptor-like protein kinase gene that responds to short-day photoperiodic floral induction in morning glory (Ipomoea nil). Plant Mol Biol 43 (1):43-58

Yu H, Yang SH, Goh CJ (2000) DOH1, a class 1 knox gene, is required for maintenance of the basic plant architecture and floral transition in orchid. Plant Cell 12 (11):2143-2160

Rivera G, Borchert R (2001) Induction of flowering in tropical trees by a 30-min reduction in photoperiod: evidence from field observations and herbarium specimens. Tree Physiol 21 (4):201-212

Michaels SD, Amasino RM (2001) Loss of FLOWERING LOCUS C activity eliminates the late-flowering phenotype of FRIGIDA and autonomous pathway mutations but not responsiveness to vernalization. Plant Cell 13 (4):935-941

Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D, Buckler ESt (2001) Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet 28 (3):286- 289. doi:10.1038/90135

Adams SR, Pearson S, Hadley P (2001) Improving quantitative flowering models through a better understanding of the phases of photoperiod sensitivity. J Exp Bot 52 (357):655- 662

Yu Q, Ma H (2001) The flowering transition and florigen. Curr Biol 11 (20):R815

Guedon Y, Barthelemy D, Caraglio Y, Costes E (2001) Pattern analysis in branching and axillary flowering sequences. J Theor Biol 212 (4):481-520. doi:10.1006/jtbi.2001.2392

Saedler H, Becker A, Winter KU, Kirchner C, Theissen G (2001) MADS-box genes are involved in floral development and evolution. Acta Biochim Pol 48 (2):351-358 Carre IA (2002) ELF3: a circadian safeguard to buffer effects of light. Trends Plant Sci 7 (1):4-6

Battey NH, Tooke F (2002) Molecular control and variation in the floral transition. Curr Opin Plant Biol 5 (1):62-68

Vermerris W, Thompson KJ, McIntyre LM, Axtell JD (2002) Evidence for an evolutionarily conserved interaction between cell wall biosynthesis and flowering in maize and sorghum. BMC Evol Biol 2:2

Vega SH, Sauer M, Orkwiszewski JA, Poethig RS (2002) The early phase change gene in maize. Plant Cell 14 (1):133-147

Hart JK, Hannapel DJ (2002) In situ hybridization of the MADS-box gene POTM1 during potato floral development. J Exp Bot 53 (368):465-471 van der Linden CG, Vosman B, Smulders MJ (2002) Cloning and characterization of four apple MADS box genes isolated from vegetative tissue. J Exp Bot 53 (371):1025-1036

Sherman JD, Talbert LE (2002) Vernalization-induced changes of the DNA methylation pattern in winter wheat. Genome 45 (2):253-260

Jacqmard A, Detry N, Dewitte W, Van Onckelen H, Bernier G (2002) In situ localisation of cytokinins in the shoot apical meristem of Sinapis alba at floral transition. Planta 214 (6):970-973. doi:10.1007/s00425-002-0742-4

Eckardt NA (2002) Alternative splicing and the control of flowering time. Plant Cell 14 (4):743-747

Yu H, Yang SH, Goh CJ (2002) Spatial and temporal expression of the orchid floral homeotic gene DOMADS1 is mediated by its upstream regulatory regions. Plant Mol Biol 49 (2):225-237

Salvi S, Tuberosa R, Chiapparino E, Maccaferri M, Veillet S, van Beuningen L, Isaac P, Edwards K, Phillips RL (2002) Toward positional cloning of Vgt1, a QTL controlling the transition from the vegetative to the reproductive phase in maize. Plant Mol Biol 48 (5- 6):601-613

Ormenese S, Havelange A, Bernier G, van der Schoot C (2002) The shoot apical meristem of Sinapis alba L. expands its central symplasmic field during the floral transition. Planta 215 (1):67-78. doi:10.1007/s00425-002-0746-0

Ivandic V, Hackett CA, Nevo E, Keith R, Thomas WT, Forster BP (2002) Analysis of simple sequence repeats (SSRs) in wild barley from the Fertile Crescent: associations with ecology, geography and flowering time. Plant Mol Biol 48 (5-6):511-527

Fitter AH, Fitter RS (2002) Rapid changes in flowering time in British plants. Science 296 (5573):1689-1691. doi:10.1126/science.1071617

Wada M, Cao QF, Kotoda N, Soejima J, Masuda T (2002) Apple has two orthologues of FLORICAULA/LEAFY involved in flowering. Plant Mol Biol 49 (6):567-577 Mizuno T (2002) [Molecular bases for plant circadian clock and flowering: how does the quintet tell the time?]. Tanpakushitsu Kakusan Koso 47 (11):1421-1428

Yu H, Xu Y, Tan EL, Kumar PP (2002) AGAMOUS-LIKE 24, a dosage-dependent mediator of the flowering signals. Proc Natl Acad Sci U S A 99 (25):16336-16341. doi:10.1073/pnas.212624599

Hayama R, Shimamoto K (2002) [Molecular mechanism controlling daylength regulation of flowering in short-day plants]. Tanpakushitsu Kakusan Koso 47 (12 Suppl):1541-1546

Borner A (2002) Gene and genome mapping in cereals. Cell Mol Biol Lett 7 (2A):423- 429

Bastow R, Dean C (2002) The molecular basis of photoperiodism. Dev Cell 3 (4):461-462

Araki T (2002) [Regulation of flowering in long-day plants]. Tanpakushitsu Kakusan Koso 47 (12 Suppl):1535-1540

Davis SJ (2002) Photoperiodism: the coincidental perception of the season. Curr Biol 12 (24):R841-843

Holland B, Portyanko A, Hoffman L, Lee M (2002) Genomic regions controlling vernalization and photoperiod responses in oat. Theor Appl Genet 105 (1):113-126. doi:10.1007/s00122-001-0845-5

Almqvist C (2003) Timing of GA4/7 application and the flowering of Pinus sylvestris grafts in the greenhouse. Tree Physiol 23 (6):413-418

Yong WD, Xu YY, Xu WZ, Wang X, Li N, Wu JS, Liang TB, Chong K, Xu ZH, Tan KH, Zhu ZQ (2003) Vernalization-induced flowering in wheat is mediated by a lectin-like gene VER2. Planta 217 (2):261-270. doi:10.1007/s00425-003-0994-7

Bomblies K, Wang RL, Ambrose BA, Schmidt RJ, Meeley RB, Doebley J (2003) Duplicate FLORICAULA/LEAFY homologs zfl1 and zfl2 control inflorescence architecture and flower patterning in maize. Development 130 (11):2385-2395

Gustafsson S, Lonn M (2003) Genetic differentiation and habitat preference of flowering- time variants within Gymnadenia conopsea. Heredity 91 (3):284-292. doi:10.1038/sj.hdy.6800334

King RW, Evans LT (2003) Gibberellins and flowering of grasses and cereals: prizing open the lid of the "florigen" black box. Annu Rev Plant Biol 54:307-328. doi:10.1146/annurev.arplant.54.031902.135029

Kim KW, Shin JH, Moon J, Kim M, Lee J, Park MC, Lee I (2003) The function of the flowering time gene AGL20 is conserved in Crucifers. Mol Cells 16 (1):136-141

Amasino RM (2003) Flowering time: a pathway that begins at the 3' end. Curr Biol 13 (17):R670-672

Trevaskis B, Bagnall DJ, Ellis MH, Peacock WJ, Dennis ES (2003) MADS box genes control vernalization-induced flowering in cereals. Proc Natl Acad Sci U S A 100 (22):13099-13104. doi:10.1073/pnas.1635053100 Schmid M, Uhlenhaut NH, Godard F, Demar M, Bressan R, Weigel D, Lohmann JU (2003) Dissection of floral induction pathways using global expression analysis. Development 130 (24):6001-6012. doi:10.1242/dev.00842

Somers DE, Kim WY, Geng R (2004) The F-box protein ZEITLUPE confers dosage- dependent control on the circadian clock, photomorphogenesis, and flowering time. Plant Cell 16 (3):769-782. doi:10.1105/tpc.016808

Kozaki A, Hake S, Colasanti J (2004) The maize ID1 flowering time regulator is a zinc finger protein with novel DNA binding properties. Nucleic Acids Res 32 (5):1710-1720. doi:10.1093/nar/gkh337

Wang H, Ge L, Ye HC, Chong K, Liu BY, Li GF (2004) Studies on the effects of fpf1 gene on Artemisia annua flowering time and on the linkage between flowering and artemisinin biosynthesis. Planta Med 70 (4):347-352. doi:10.1055/s-2004-818947

Isagi Y, Shimada K, Kushima H, Tanaka N, Nagao A, Ishikawa T, OnoDera H, Watanabe S (2004) Clonal structure and flowering traits of a bamboo [Phyllostachys pubescens (Mazel) Ohwi] stand grown from a simultaneous flowering as revealed by AFLP analysis. Mol Ecol 13 (7):2017-2021. doi:10.1111/j.1365-294X.2004.02197.x

Hua W, Zhang L, Liang S, Jones RL, Lu YT (2004) A tobacco calcium/calmodulin- binding protein kinase functions as a negative regulator of flowering. J Biol Chem 279 (30):31483-31494. doi:10.1074/jbc.M402861200

Dech JP, Nosko P (2004) Rapid growth and early flowering in an invasive plant, purple loosestrife ( Lythrum salicaria L.) during an El Nino spring. Int J Biometeorol 49 (1):26- 31. doi:10.1007/s00484-004-0210-x

Aoki S, Uehara K, Imafuku M, Hasebe M, Ito M (2004) Phylogeny and divergence of basal angiosperms inferred from APETALA3- and PISTILLATA-like MADS-box genes. J Plant Res 117 (3):229-244. doi:10.1007/s10265-004-0153-7

Quinet M, Cawoy V, Lefevre I, Van Miegroet F, Jacquemart AL, Kinet JM (2004) Inflorescence structure and control of flowering time and duration by light in buckwheat (Fagopyrum esculentum Moench). J Exp Bot 55 (402):1509-1517. doi:10.1093/jxb/erh164

Yan L, Helguera M, Kato K, Fukuyama S, Sherman J, Dubcovsky J (2004) Allelic variation at the VRN-1 promoter region in polyploid wheat. Theor Appl Genet 109 (8):1677-1686. doi:10.1007/s00122-004-1796-4

Uimari A, Kotilainen M, Elomaa P, Yu D, Albert VA, Teeri TH (2004) Integration of reproductive meristem fates by a SEPALLATA-like MADS-box gene. Proc Natl Acad Sci U S A 101 (44):15817-15822. doi:10.1073/pnas.0406844101

Smykal P, Gleissner R, Corbesier L, Apel K, Melzer S (2004) Modulation of flowering responses in different Nicotiana varieties. Plant Mol Biol 55 (2):253-262. doi:10.1007/s11103-004-0557-8

Hosokawa M, Ueda E, Ohishi K, Otake A, Yazawa S (2004) Chrysanthemum stunt viroid disturbs the photoperiodic response for flowering of chrysanthemum plants. Planta 220 (1):64-70. doi:10.1007/s00425-004-1318-2 Xu ML, Jiang JF, Ge L, Xu YY, Chen H, Zhao Y, Bi YR, Wen JQ, Chong K (2005) FPF1 transgene leads to altered flowering time and root development in rice. Plant Cell Rep 24 (2):79-85. doi:10.1007/s00299-004-0906-8

He Y, Amasino RM (2005) Role of chromatin modification in flowering-time control. Trends Plant Sci 10 (1):30-35. doi:10.1016/j.tplants.2004.11.003

Yin X, Struik PC, Tang J, Qi C, Liu T (2005) Model analysis of flowering phenology in recombinant inbred lines of barley. J Exp Bot 56 (413):959-965. doi:10.1093/jxb/eri089

Xu WZ, Yong WD, Xu YY, Liang TB, Bai W, Chong K, Tan KH, Xu ZH, Zhu ZQ (2005) [Functional analysis of vernalization-related gene VER17 in flower development using antisense RNA strategy in winter wheat]. Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao 31 (1):71-77

Willrich MM, Leonard BR, Gable RH, Lamotte LR (2004) Boll injury and yield losses in cotton associated with brown stink bug (Heteroptera: Pentatomidae) during flowering. J Econ Entomol 97 (6):1928-1934

Werner JD, Borevitz JO, Warthmann N, Trainer GT, Ecker JR, Chory J, Weigel D (2005) Quantitative trait locus mapping and DNA array hybridization identify an FLM deletion as a cause for natural flowering-time variation. Proc Natl Acad Sci U S A 102 (7):2460- 2465. doi:10.1073/pnas.0409474102

Fu D, Szucs P, Yan L, Helguera M, Skinner JS, von Zitzewitz J, Hayes PM, Dubcovsky J (2005) Large deletions within the first intron in VRN-1 are associated with spring growth habit in barley and wheat. Mol Genet Genomics 273 (1):54-65. doi:10.1007/s00438-004- 1095-4

Yin X, Struik PC, van Eeuwijk FA, Stam P, Tang J (2005) QTL analysis and QTL-based prediction of flowering phenology in recombinant inbred lines of barley. J Exp Bot 56 (413):967-976. doi:10.1093/jxb/eri090

Simpson GG (2005) NO flowering. BioEssays 27 (3):239-241. doi:10.1002/bies.20201

Silva C, Garcia-Mas J, Sanchez AM, Arus P, Oliveira MM (2005) Looking into flowering time in almond (Prunus dulcis (Mill) D. A. Webb): the candidate gene approach. Theor Appl Genet 110 (5):959-968. doi:10.1007/s00122-004-1918-z

Albert VA, Soltis DE, Carlson JE, Farmerie WG, Wall PK, Ilut DC, Solow TM, Mueller LA, Landherr LL, Hu Y, Buzgo M, Kim S, Yoo MJ, Frohlich MW, Perl-Treves R, Schlarbaum SE, Bliss BJ, Zhang X, Tanksley SD, Oppenheimer DG, Soltis PS, Ma H, DePamphilis CW, Leebens-Mack JH (2005) Floral gene resources from basal angiosperms for comparative genomics research. BMC Plant Biol 5:5. doi:10.1186/1471- 2229-5-5

Sung S, Amasino RM (2005) Remembering winter: toward a molecular understanding of vernalization. Annu Rev Plant Biol 56:491-508. doi:10.1146/annurev.arplant.56.032604.144307

Henderson IR, Liu F, Drea S, Simpson GG, Dean C (2005) An allelic series reveals essential roles for FY in plant development in addition to flowering-time control. Development 132 (16):3597-3607. doi:10.1242/dev.01924 Parcy F (2005) Flowering: a time for integration. Int J Dev Biol 49 (5-6):585-593. doi:10.1387/ijdb.041930fp

Ollerton J (2005) Speciation: flowering time and the Wallace effect. Heredity 95 (3):181- 182. doi:10.1038/sj.hdy.6800718

Ausin I, Alonso-Blanco C, Martinez-Zapater JM (2005) Environmental regulation of flowering. Int J Dev Biol 49 (5-6):689-705. doi:10.1387/ijdb.052022ia

Yang CP, Liu GP, Wei ZG (2002) [Studies of flowering genes of plants]. Yi Chuan 24 (3):379-384

Ni M (2005) Integration of light signaling with photoperiodic flowering and circadian rhythm. Cell Res 15 (8):559-566. doi:10.1038/sj.cr.7290325

Chardon F, Damerval C (2005) Phylogenomic analysis of the PEBP gene family in cereals. J Mol Evol 61 (5):579-590. doi:10.1007/s00239-004-0179-4

Bomblies K, Doebley JF (2006) Pleiotropic effects of the duplicate maize FLORICAULA/LEAFY genes zfl1 and zfl2 on traits under selection during maize domestication. Genetics 172 (1):519-531. doi:10.1534/genetics.105.048595

Takano M, Inagaki N, Xie X, Yuzurihara N, Hihara F, Ishizuka T, Yano M, Nishimura M, Miyao A, Hirochika H, Shinomura T (2005) Distinct and cooperative functions of phytochromes A, B, and C in the control of deetiolation and flowering in rice. Plant Cell 17 (12):3311-3325. doi:10.1105/tpc.105.035899

Ji XM, Raveendran M, Oane R, Ismail A, Lafitte R, Bruskiewich R, Cheng SH, Bennett J (2005) Tissue-specific expression and drought responsiveness of cell-wall invertase genes of rice at flowering. Plant Mol Biol 59 (6):945-964. doi:10.1007/s11103-005-2415-8

Anbessa Y, Warkentin T, Vandenberg A, Ball R (2006) Inheritance of time to flowering in chickpea in a short-season temperate environment. J Hered 97 (1):55-61. doi:10.1093/jhered/esj009

Rodriguez-Falcon M, Bou J, Prat S (2006) Seasonal control of tuberization in potato: conserved elements with the flowering response. Annu Rev Plant Biol 57:151-180. doi:10.1146/annurev.arplant.57.032905.105224

Blazquez MA, Ferrandiz C, Madueno F, Parcy F (2006) How floral meristems are built. Plant Mol Biol 60 (6):855-870. doi:10.1007/s11103-006-0013-z

Zeng Q, Zhao ZH, Zhao SQ (2006) [Signal pathways of flowering time regulation in plant]. Yi Chuan 28 (8):1031-1036

Roux F, Touzet P, Cuguen J, Le Corre V (2006) How to be early flowering: an evolutionary perspective. Trends Plant Sci 11 (8):375-381. doi:10.1016/j.tplants.2006.06.006

Ishikawa R, Yokoi S, Shimamoto K (2006) [Molecular basis of night break effect on the photoperiodic control of flowering in rice]. Tanpakushitsu Kakusan Koso 51 (8):933-942 Zheng ZL, Yang Z, Jang JC, Metzger JD (2006) Phytochromes A1 and B1 have distinct functions in the photoperiodic control of flowering in the obligate long-day plant Nicotiana sylvestris. Plant Cell Environ 29 (9):1673-1685. doi:10.1111/j.1365- 3040.2006.01538.x

Yoo SK, Lee JS, Ahn JH (2006) Overexpression of AGAMOUS-LIKE 28 (AGL28) promotes flowering by upregulating expression of floral promoters within the autonomous pathway. Biochem Biophys Res Commun 348 (3):929-936. doi:10.1016/j.bbrc.2006.07.121

Takase T, Ogura Y, Fukamatsu Y, Kiyosue T (2006) [Control of circadian clock and flowering time by ubiquitination in plants]. Tanpakushitsu Kakusan Koso 51 (10 Suppl):1321-1324

Gu XY, Foley ME (2007) Epistatic interactions of three loci regulate flowering time under short and long daylengths in a backcross population of rice. Theor Appl Genet 114 (4):745-754. doi:10.1007/s00122-006-0475-z

Veyrieras JB, Goffinet B, Charcosset A (2007) MetaQTL: a package of new computational methods for the meta-analysis of QTL mapping experiments. BMC Bioinformatics 8:49. doi:10.1186/1471-2105-8-49

Bennetzen JL (2007) Patterns in grass genome evolution. Curr Opin Plant Biol 10 (2):176- 181. doi:10.1016/j.pbi.2007.01.010

Gallego-Giraldo L, Garcia-Martinez JL, Moritz T, Lopez-Diaz I (2007) Flowering in tobacco needs gibberellins but is not promoted by the levels of active GA1 and GA4 in the apical shoot. Plant Cell Physiol 48 (4):615-625. doi:10.1093/pcp/pcm034

Iqbal M, Navabi A, Yang RC, Salmon DF, Spaner D (2007) Molecular characterization of vernalization response genes in Canadian spring wheat. Genome 50 (5):511-516. doi:10.1139/g07-028

Szmidt-Jaworska A, Jaworski K, Kopcewicz J (2008) Involvement of cyclic GMP in phytochrome-controlled flowering of Pharbitis nil. J Plant Physiol 165 (8):858-867. doi:10.1016/j.jplph.2007.02.010

Sun CH, Deng XJ, Fang J, Chu CC (2007) [An overview of flowering transition in higher plants]. Yi Chuan 29 (10):1182-1190

Baurle I, Smith L, Baulcombe DC, Dean C (2007) Widespread role for the flowering-time regulators FCA and FPA in RNA-mediated chromatin silencing. Science 318 (5847):109- 112. doi:10.1126/science.1146565

Tamaki S, Shimamoto K (2007) [Florigen in rice]. Tanpakushitsu Kakusan Koso 52 (14):1884-1889

Niu L, Lu F, Pei Y, Liu C, Cao X (2007) Regulation of flowering time by the protein arginine methyltransferase AtPRMT10. EMBO Rep 8 (12):1190-1195. doi:10.1038/sj.embor.7401111 Izawa T, Konishi S, Ebana K, Yano M (2007) [Floral transition around summer solstice of rice, a short-day plant: What occurred in rice domestication?]. Tanpakushitsu Kakusan Koso 52 (15):1925-1930

Tan FC, Swain SM (2007) Functional characterization of AP3, SOC1 and WUS homologues from citrus (Citrus sinensis). Physiol Plant 131 (3):481-495. doi:10.1111/j.1399-3054.2007.00971.x

Strasburg JL, Gross BL (2008) Adapting to winter in wheat: a long-term study follows parallel phenotypic and genetic changes in three experimental wheat populations. Mol Ecol 17 (3):716-718. doi:10.1111/j.1365-294X.2007.03639.x

Rhone B, Remoue C, Galic N, Goldringer I, Bonnin I (2008) Insight into the genetic bases of climatic adaptation in experimentally evolving wheat populations. Mol Ecol 17 (3):930-943. doi:10.1111/j.1365-294X.2007.03619.x

Lee JC, Heimpel GE (2008) Floral resources impact longevity and oviposition rate of a parasitoid in the field. J Anim Ecol 77 (3):565-572. doi:10.1111/j.1365- 2656.2008.01355.x

Davis CC, Endress PK, Baum DA (2008) The evolution of floral gigantism. Curr Opin Plant Biol 11 (1):49-57. doi:10.1016/j.pbi.2007.11.003

Nordli O, Wielgolaski FE, Bakken AK, Hjeltnes SH, Mage F, Sivle A, Skre O (2008) Regional trends for bud burst and flowering of woody plants in Norway as related to climate change. Int J Biometeorol 52 (7):625-639. doi:10.1007/s00484-008-0156-5

Ducrocq S, Madur D, Veyrieras JB, Camus-Kulandaivelu L, Kloiber-Maitz M, Presterl T, Ouzunova M, Manicacci D, Charcosset A (2008) Key impact of Vgt1 on flowering time adaptation in maize: evidence from association mapping and ecogeographical information. Genetics 178 (4):2433-2437. doi:10.1534/genetics.107.084830

Sawa M, Kay SA (2008) [Molecular mechanism by which plant determines flowering timing with circadian clock]. Tanpakushitsu Kakusan Koso 53 (6):739-746

Nuismer SL, Ridenhour BJ (2008) The contribution of parasitism to selection on floral traits in Heuchera grossulariifolia. J Evol Biol 21 (4):958-965. doi:10.1111/j.1420- 9101.2008.01551.x

Lebon G, Wojnarowiez G, Holzapfel B, Fontaine F, Vaillant-Gaveau N, Clement C (2008) Sugars and flowering in the grapevine (Vitis vinifera L.). J Exp Bot 59 (10):2565- 2578. doi:10.1093/jxb/ern135

Frankowski K, Kesy J, Wojciechowski W, Kopcewicz J (2009) Light- and IAA-regulated ACC synthase gene (PnACS) from Pharbitis nil and its possible role in IAA-mediated flower inhibition. J Plant Physiol 166 (2):192-202. doi:10.1016/j.jplph.2008.02.013

Wilmowicz E, Kesy J, Kopcewicz J (2008) Ethylene and ABA interactions in the regulation of flower induction in Pharbitis nil. J Plant Physiol 165 (18):1917-1928. doi:10.1016/j.jplph.2008.04.009 Verhoeven KJ, Poorter H, Nevo E, Biere A (2008) Habitat-specific natural selection at a flowering-time QTL is a main driver of local adaptation in two wild barley populations. Mol Ecol 17 (14):3416-3424. doi:10.1111/j.1365-294X.2008.03847.x

Vega-Sanchez ME, Zeng L, Chen S, Leung H, Wang GL (2008) SPIN1, a K homology domain protein negatively regulated and ubiquitinated by the E3 ubiquitin ligase SPL11, is involved in flowering time control in rice. Plant Cell 20 (6):1456-1469. doi:10.1105/tpc.108.058610

Zhang JZ, Li ZM, Liu L, Mei L, Yao JL, Hu CG (2008) Identification of early-flower- related ESTs in an early-flowering mutant of trifoliate orange (Poncirus trifoliata) by suppression subtractive hybridization and macroarray analysis. Tree Physiol 28 (10):1449- 1457

Rebocho AB, Bliek M, Kusters E, Castel R, Procissi A, Roobeek I, Souer E, Koes R (2008) Role of EVERGREEN in the development of the cymose petunia inflorescence. Dev Cell 15 (3):437-447. doi:10.1016/j.devcel.2008.08.007

Zhang JZ, Li ZM, Yao JL, Hu CG (2009) Identification of flowering-related genes between early flowering trifoliate orange mutant and wild-type trifoliate orange (Poncirus trifoliata L. Raf.) by suppression subtraction hybridization (SSH) and macroarray. Gene 430 (1-2):95-104. doi:10.1016/j.gene.2008.09.023

Yoshida M, Kawada N, Nakajima T (2007) Effect of infection timing on fusarium head blight and mycotoxin accumulation in open- and closed-flowering barley. Phytopathology 97 (9):1054-1062. doi:10.1094/phyto-97-9-1054

Foucher F, Chevalier M, Corre C, Soufflet-Freslon V, Legeai F, Hibrand-Saint Oyant L (2008) New resources for studying the rose flowering process. Genome 51 (10):827-837. doi:10.1139/g08-067

Yu JW, Rubio V, Lee NY, Bai S, Lee SY, Kim SS, Liu L, Zhang Y, Irigoyen ML, Sullivan JA, Lee I, Xie Q, Paek NC, Deng XW (2008) COP1 and ELF3 control circadian function and photoperiodic flowering by regulating GI stability. Mol Cell 32 (5):617-630. doi:10.1016/j.molcel.2008.09.026

Rubio V, Deng XW (2009) The dark side of clock-controlled flowering. F1000 Biol Rep 1:57. doi:10.3410/b1-57

Hake S (2008) Inflorescence architecture: the transition from branches to flowers. Curr Biol 18 (23):R1106-1108. doi:10.1016/j.cub.2008.10.024

Distelfeld A, Li C, Dubcovsky J (2009) Regulation of flowering in temperate cereals. Curr Opin Plant Biol 12 (2):178-184. doi:10.1016/j.pbi.2008.12.010

Hedman H, Kallman T, Lagercrantz U (2009) Early evolution of the MFT-like gene family in plants. Plant Mol Biol 70 (4):359-369. doi:10.1007/s11103-009-9478-x

Zhou Y, Ni M (2009) SHB1 plays dual roles in photoperiodic and autonomous flowering. Dev Biol 331 (1):50-57. doi:10.1016/j.ydbio.2009.04.023

Wang L, Yin H, Qian Q, Yang J, Huang C, Hu X, Luo D (2009) NECK LEAF 1, a GATA type transcription factor, modulates organogenesis by regulating the expression of multiple regulatory genes during reproductive development in rice. Cell Res 19 (5):598- 611. doi:10.1038/cr.2009.36

Nishikawa F, Endo T, Shimada T, Fujii H, Shimizu T, Omura M (2009) Differences in seasonal expression of flowering genes between deciduous trifoliate orange and evergreen Satsuma mandarin. Tree Physiol 29 (7):921-926. doi:10.1093/treephys/tpp021

Wuriyanghan H, Zhang B, Cao WH, Ma B, Lei G, Liu YF, Wei W, Wu HJ, Chen LJ, Chen HW, Cao YR, He SJ, Zhang WK, Wang XJ, Chen SY, Zhang JS (2009) The ethylene receptor ETR2 delays floral transition and affects starch accumulation in rice. Plant Cell 21 (5):1473-1494. doi:10.1105/tpc.108.065391

Lagercrantz U (2009) At the end of the day: a common molecular mechanism for photoperiod responses in plants? J Exp Bot 60 (9):2501-2515. doi:10.1093/jxb/erp139

Miyazaki Y, Ohnishi N, Takafumi H, Hiura T (2009) Genets of dwarf bamboo do not die after one flowering event: evidence from genetic structure and flowering pattern. J Plant Res 122 (5):523-528. doi:10.1007/s10265-009-0241-9

Latta RG, Gardner KM (2009) Natural selection on pleiotropic quantitative trait Loci affecting a life-history trade-off in Avena barbata. Evolution 63 (8):2153-2163. doi:10.1111/j.1558-5646.2009.00701.x

Zhmylev P, Karpukhina EA, Zhmyleva AP (2009) [Secondary flowering: the induction and development abnormalities]. Zh Obshch Biol 70 (3):262-272

Resco V, Hartwell J, Hall A (2009) Ecological implications of plants ability to tell the time. Ecol Lett 12 (6):583-592

Ishikawa R, Shinomura T, Takano M, Shimamoto K (2009) Phytochrome dependent quantitative control of Hd3a transcription is the basis of the night break effect in rice flowering. Genes Genet Syst 84 (2):179-184

Ryu CH, Lee S, Cho LH, Kim SL, Lee YS, Choi SC, Jeong HJ, Yi J, Park SJ, Han CD, An G (2009) OsMADS50 and OsMADS56 function antagonistically in regulating long day (LD)-dependent flowering in rice. Plant Cell Environ 32 (10):1412-1427. doi:10.1111/j.1365-3040.2009.02008.x

Glazinska P, Zienkiewicz A, Wojciechowski W, Kopcewicz J (2009) The putative miR172 target gene InAPETALA2-like is involved in the photoperiodic flower induction of Ipomoea nil. J Plant Physiol 166 (16):1801-1813. doi:10.1016/j.jplph.2009.05.011

Mouhu K, Hytonen T, Folta K, Rantanen M, Paulin L, Auvinen P, Elomaa P (2009) Identification of flowering genes in strawberry, a perennial SD plant. BMC Plant Biol 9:122. doi:10.1186/1471-2229-9-122

Mas P, Yanovsky MJ (2009) Time for circadian rhythms: plants get synchronized. Curr Opin Plant Biol 12 (5):574-579. doi:10.1016/j.pbi.2009.07.010

Crone EE, Miller E, Sala A (2009) How do plants know when other plants are flowering? Resource depletion, pollen limitation and mast-seeding in a perennial wildflower. Ecol Lett 12 (11):1119-1126. doi:10.1111/j.1461-0248.2009.01365.x Yeang HY (2009) Circadian and solar clocks interact in seasonal flowering. BioEssays 31 (11):1211-1218. doi:10.1002/bies.200900078

Adrian J, Torti S, Turck F (2009) From decision to commitment: the molecular memory of flowering. Mol Plant 2 (4):628-642. doi:10.1093/mp/ssp031

Lin EP, Peng HZ, Jin QY, Deng MJ, Li T, Xiao XC, Hua XQ, Wang KH, Bian HW, Han N, Zhu MY (2009) Identification and characterization of two bamboo (Phyllostachys praecox) AP1/SQUA-like MADS-box genes during floral transition. Planta 231 (1):109- 120. doi:10.1007/s00425-009-1033-0

Liu B, Abe J (2010) QTL mapping for photoperiod insensitivity of a Japanese soybean landrace Sakamotowase. J Hered 101 (2):251-256. doi:10.1093/jhered/esp113

Iwase Y, Shiraya T, Takeno K (2010) Flowering and dwarfism induced by DNA demethylation in Pharbitis nil. Physiol Plant 139 (1):118-127. doi:10.1111/j.1399- 3054.2010.01345.x

Coles ND, McMullen MD, Balint-Kurti PJ, Pratt RC, Holland JB (2010) Genetic control of photoperiod sensitivity in maize revealed by joint multiple population analysis. Genetics 184 (3):799-812. doi:10.1534/genetics.109.110304

Barrett SC (2010) Understanding plant reproductive diversity. Philos Trans R Soc Lond B Biol Sci 365 (1537):99-109. doi:10.1098/rstb.2009.0199

Meijon M, Feito I, Valledor L, Rodriguez R, Canal MJ (2010) Dynamics of DNA methylation and Histone H4 acetylation during floral bud differentiation in azalea. BMC Plant Biol 10:10. doi:10.1186/1471-2229-10-10

Distelfeld A, Dubcovsky J (2010) Characterization of the maintained vegetative phase deletions from diploid wheat and their effect on VRN2 and FT transcript levels. Mol Genet Genomics 283 (3):223-232. doi:10.1007/s00438-009-0510-2

Jaya E, Kubien DS, Jameson PE, Clemens J (2010) Vegetative phase change and photosynthesis in Eucalyptus occidentalis: architectural simplification prolongs juvenile traits. Tree Physiol 30 (3):393-403. doi:10.1093/treephys/tpp128

Sreekantan L, Mathiason K, Grimplet J, Schlauch K, Dickerson JA, Fennell AY (2010) Differential floral development and gene expression in grapevines during long and short photoperiods suggests a role for floral genes in dormancy transitioning. Plant Mol Biol 73 (1-2):191-205. doi:10.1007/s11103-010-9611-x

Dogramaci M, Horvath DP, Chao WS, Foley ME, Christoffers MJ, Anderson JV (2010) Low temperatures impact dormancy status, flowering competence, and transcript profiles in crown buds of leafy spurge. Plant Mol Biol 73 (1-2):207-226. doi:10.1007/s11103-010- 9621-8

Blackman BK, Strasburg JL, Raduski AR, Michaels SD, Rieseberg LH (2010) The role of recently derived FT paralogs in sunflower domestication. Curr Biol 20 (7):629-635. doi:10.1016/j.cub.2010.01.059

Lee J, Lee I (2010) Regulation and function of SOC1, a flowering pathway integrator. J Exp Bot 61 (9):2247-2254. doi:10.1093/jxb/erq098 Tooke F, Battey NH (2010) Temperate flowering phenology. J Exp Bot 61 (11):2853- 2862. doi:10.1093/jxb/erq165

Ruokolainen S, Ng YP, Broholm SK, Albert VA, Elomaa P, Teeri TH (2010) Characterization of SQUAMOSA-like genes in Gerbera hybrida, including one involved in reproductive transition. BMC Plant Biol 10:128. doi:10.1186/1471-2229-10-128

Khan S, Rowe SC, Harmon FG (2010) Coordination of the maize transcriptome by a conserved circadian clock. BMC Plant Biol 10:126. doi:10.1186/1471-2229-10-126

Nag A, Jack T (2010) Sculpting the flower; the role of microRNAs in flower development. Curr Top Dev Biol 91:349-378. doi:10.1016/s0070-2153(10)91012-0

Golovnina KA, Kondratenko EY, Blinov AG, Goncharov NP (2010) Molecular characterization of vernalization loci VRN1 in wild and cultivated wheats. BMC Plant Biol 10:168. doi:10.1186/1471-2229-10-168

De-la-Pena C, Badri DV, Lei Z, Watson BS, Brandao MM, Silva-Filho MC, Sumner LW, Vivanco JM (2010) Root secretion of defense-related proteins is development-dependent and correlated with flowering time. J Biol Chem 285 (40):30654-30665. doi:10.1074/jbc.M110.119040

Crevillen P, Dean C (2011) Regulation of the floral repressor gene FLC: the complexity of transcription in a chromatin context. Curr Opin Plant Biol 14 (1):38-44. doi:10.1016/j.pbi.2010.08.015

Shulaev V, Sargent DJ, Crowhurst RN, Mockler TC, Folkerts O, Delcher AL, Jaiswal P, Mockaitis K, Liston A, Mane SP, Burns P, Davis TM, Slovin JP, Bassil N, Hellens RP, Evans C, Harkins T, Kodira C, Desany B, Crasta OR, Jensen RV, Allan AC, Michael TP, Setubal JC, Celton JM, Rees DJ, Williams KP, Holt SH, Ruiz Rojas JJ, Chatterjee M, Liu B, Silva H, Meisel L, Adato A, Filichkin SA, Troggio M, Viola R, Ashman TL, Wang H, Dharmawardhana P, Elser J, Raja R, Priest HD, Bryant DW, Jr., Fox SE, Givan SA, Wilhelm LJ, Naithani S, Christoffels A, Salama DY, Carter J, Lopez Girona E, Zdepski A, Wang W, Kerstetter RA, Schwab W, Korban SS, Davik J, Monfort A, Denoyes-Rothan B, Arus P, Mittler R, Flinn B, Aharoni A, Bennetzen JL, Salzberg SL, Dickerman AW, Velasco R, Borodovsky M, Veilleux RE, Folta KM (2011) The genome of woodland strawberry (Fragaria vesca). Nat Genet 43 (2):109-116. doi:10.1038/ng.740

Gross BL (2011) MADS-box out of the black box. Mol Ecol 20 (1):25-26. doi:10.1111/j.1365-294X.2010.04894.x

Davis SJ, McWatters HG, Kolmos E, Hall A, Doyle MR, Amasino RM, Gyula P, Nagy F, Millar AJ (2007) ELF4 is required for oscillatory properties of the circadian clock. Plant Physiol 144 (1):391-401. doi:10.1104/pp.107.096206

Shinozuka H, Hisano H, Ponting RC, Cogan NOI, Jones ES, Forster JW, Yamada T (2005) Molecular cloning and genetic mapping of perennial ryegrass casein protein kinase 2 alpha-subunit genes. Theor Appl Genet 112 (1):167-177. doi:10.1007/s00122-005-0119- 8

Schultz TF, Kay SA (2003) Circadian clocks in daily and seasonal control of development. Science 301 (5631):326-328. doi:10.1126/science.1085935 Miller TA, Muslin EH, Dorweiler JE (2008) A maize CONSTANS-like gene, conz1, exhibits distinct diurnal expression patterns in varied photoperiods. Planta 227 (6):1377- 1388. doi:10.1007/s00425-008-0709-1

Liu L, Ma J, Han Y, Chen X, Fu YF (2011) The Isolation and Analysis of a Soybean CO Homologue GmCOL10. Russ J Plant Physiol 58 (2):330-336. doi:10.1134/s1021443711020105

Kim S-K, Yun C-H, Lee JH, Jang YH, Park H-Y, Kim J-K (2008) OsCO3, a CONSTANS-LIKE gene, controls flowering by negatively regulating the expression of FT-like genes under SD conditions in rice. Planta 228 (2):355-365. doi:10.1007/s00425- 008-0742-0

Jarillo JA, Pineiro MA (2006) The molecular basis of photoperiodism. Biol Rhythm Res 37 (4):353-380. doi:10.1080/09291010600804619

Jarillo JA, del Olmo I, Gomez-Zambrano A, Lazaro A, Lopez-Gonzalez L, Miguel E, Narro-Diego L, Saez D, Pineiro M (2008) Photoperiodic control of flowering time. Span J Agric Res 6:221-244

Hou C-J, Yang C-H (2009) Functional Analysis of FT and TFL1 Orthologs from Orchid (Oncidium Gower Ramsey) that Regulate the Vegetative to Reproductive Transition. Plant Cell Physiol 50 (8):1544-1557. doi:10.1093/pcp/pcp099

Abe M, Fujiwara M, Kurotani K-i, Yokoi S, Shimamoto K (2008) Identification of dynamin as an interactor of rice GIGANTEA by tandem affinity purification (TAP). Plant Cell Physiol 49 (3):420-432. doi:10.1093/pcp/pcn019

Quecini V, Zucchi MI, Baldin J, Vello NA (2007) Identification of soybean genes involved in circadian clock mechanism and photoperiodic control of flowering time by In silico analyses. J Integr Plant Biol 49 (11):1640-1653. doi:10.1111/j.1774- 7909.2007.00567.x

Lee S, An G (2007) Diversified mechanisms for regulating flowering time in a short-day plant rice. J Plant Biol 50 (3):241-248

Dingkuhn M, Kouressy M, Vaksmann M, Clerget B, Chantereau J (2008) A model of sorghum photoperiodism using the concept of threshold-lowering during prolonged appetence. Eur J Agron 28 (2):74-89. doi:10.1016/j.eja.2007.05.005

Koduru P, Dong Z, Das S, Welch SM, Roe JL, Charbit E (2008) A Multiobjective Evolutionary-Simplex Hybrid Approach for the Optimization of Differential Equation Models of Gene Networks. IEEE Trans Evol Comput 12 (5):572-590. doi:10.1109/tevc.2008.917202

Iwamoto M, Higo K, Takano M (2009) Circadian clock- and phytochrome-regulated Dof- like gene, Rdd1, is associated with grain size in rice. Plant Cell Environ 32 (5):592-603. doi:10.1111/j.1365-3040.2009.01954.x

Yang J, Yang M-F, Wang D, Chen F, Shen S-H (2010) JcDof1, a Dof transcription factor gene, is associated with the light-mediated circadian clock in Jatropha curcas. Physiol Plant 139 (3):324-334. doi:10.1111/j.1399-3054.2010.01363.x Kikuchi R, Handa H (2009) Photoperiodic control of flowering in barley. Breed Sci 59 (5):546-552

Sato Y, Antonio B, Namiki N, Motoyama R, Sugimoto K, Takehisa H, Minami H, Kamatsuki K, Kusaba M, Hirochika H, Nagamura Y (2011) Field transcriptome revealed critical developmental and physiological transitions involved in the expression of growth potential in japonica rice. BMC Plant Biol 11. doi:10

10.1186/1471-2229-11-10

Huang G, Ma J, Han Y, Chen X, Fu Y-F (2011) Cloning and Expression Analysis of the Soybean CO-Like Gene GmCOL9. Plant Mol Biol Report 29 (2):352-359. doi:10.1007/s11105-010-0240-y

Simpson GG (2003) Evolution of flowering in response to day length: flipping the CONSTANS switch. BioEssays 25 (9):829-832. doi:10.1002/bies.10330

Welch SM, Dong ZS, Roe JL, Das S (2005) Flowering time control: gene network modelling and the link to quantitative genetics. Aust J Agric Res 56 (9):919-936. doi:10.1071/ar05155

Shimizu M, Ichikawa K, Aoki S (2004) Photoperiod-regulated expression of the PpCOL1 gene encoding a homolog of CO/COL proteins in the moss Physcomitrella patens. Biochem Biophys Res Commun 324 (4):1296-1301. doi:10.1016/j.bbrc.2004.09.194

Grefen C, Harter K (2004) Plant two-component systems: principles, functions, complexity and cross talk. Planta 219 (5):733-742. doi:10.1007/s00425-004-1316-4

Doi K, Izawa T, Fuse T, Yamanouchi U, Kubo T, Shimatani Z, Yano M, Yoshimura A (2004) Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-Iike gene expression independently of Hd1l. Genes Dev 18 (8):926-936. doi:10.1101/gad.1189604

Mathews S (2006) Phytochrome-mediated development in land plants: red light sensing evolves to meet the challenges of changing light environments. Mol Ecol 15 (12):3483- 3503. doi:10.1111/j.1365-294X.2006.03051.x

Ishikawa R, Tamaki S, Yokoi S, Inagaki N, Shinomura T, Takano M, Shimamoto K (2005) Suppression of the floral activator Hd3a is the principal cause of the night break effect in rice. Plant Cell 17 (12):3326-3336. doi:10.1105/tpc.105.037028

Vogel JP, Garvin DF, Mockler TC, Schmutz J, Rokhsar D, Bevan MW, Barry K, Lucas S, Harmon-Smoth M, Lail K, Tice H, Grimwood J, McKenzie N, Huo N, Gu YQ, Lazo GR, Anderson OD, You FM, Luo M-C, Dvorak J, Wright J, Febrer M, Idziak D, Hasterok R, Lindquist E, Wang M, Fox SE, Priest HD, Filichkin SA, Givan SA, Bryant DW, Chang JH, Wu H, Wu W, Hsia A-P, Schnable PS, Kalyanaraman A, Baarbazuk B, Michael TP, Hazen SP, Bragg JN, Laudencia-Chingcuanco D, Weng Y, Haberer G, Spannagl M, Mayer K, Rattei T, Mitros T, Lee S-J, Rose JKC, Mueller LA, York TL, Wicker T, Buchmann JP, Tanskanen J, Schulman AH, Gundlach H, de Oliveira AC, Maia LdC, Belknap W, Jiang N, Lai J, Zhu L, Ma J, Sun C, Pritham E, Salse J, Murat F, Abrouk M, Bruggmann R, Messing J, Fahlgren N, Sullivan CM, Carrington JC, Chapman EJ, May GD, Zhai J, Ganssmann M, Gurazada SGR, German M, Meyers BC, Green PJ, Tyler L, Wu J, Thomson J, Chen S, Scheller HV, Harholt J, Ulvskov P, Kimbrel JA, Bartley LE, Cao P, Jung K-H, Sharma MK, Vega-Sanchez M, Ronald P, Dardick CD, De Bodt S, Verelst W, Inze D, Heese M, Schnittger A, Yang X, Kalluri UC, Tuskan GA, Hua Z, Vierstra RD, Cui Y, Ouyang S, Sun Q, Liu Z, Yilmaz A, Grotewold E, Sibout R, Hematy K, Mouille G, Hoefte H, Pelloux J, O'Connor D, Schbnable J, Rowe S, Harmon F, Cass CL, Sedbrook JC, Byrne ME, Walsh S, Higgins J, Li P, Brutnell T, Unver T, Budak H, Belcram H, Charles M, Chalhoub B, Baxter I, Int Brachypodium I (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463 (7282):763-768. doi:10.1038/nature08747

Li M, Li H, Hu X, Pan X, Wu G (2011) Genetic transformation and overexpression of a rice Hd3a induces early flowering in Saussurea involucrata Kar. et Kir. ex Maxim. Plant Cell Tissue Organ Cult 106:363-371. doi:10.1007/s11240-011-9927-5

Monna L, Lin HX, Kojima S, Sasaki T, Yano M (2002) Genetic dissection of a genomic region for a quantitative trait locus, Hd3, into two loci, Hd3a and Hd3b, controlling heading date in rice. Theor Appl Genet 104 (5):772-778. doi:10.1007/s00122-001-0813-0

Takahashi Y, Shomura A, Sasaki T, Yano M (2001) Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the alpha subunit of protein kinase CK2. Proc Natl Acad Sci U S A 98 (14):7922-7927. doi:10.1073/pnas.111136798

Yano M, Harushima Y, Nagamura Y, Kurata N, Minobe Y, Sasaki T (1997) Identification of quantitative trait loci controlling heading date in rice using a high-density linkage map. Theor Appl Genet 95 (7):1025-1032. doi:10.1007/s001220050658

Yamanaka N, Nagamura Y, Tsubokura Y, Yamamoto K, Takahashi R, Kouchi H, Yano M, Sasaki T, Harada K (2000) Quantitative trait locus analysis of flowering time in soybean using a RFLP linkage map. Breed Sci 50 (2):109-115

Yamamoto T, Lin HX, Sasaki T, Yano M (2000) Identification of heading date quantitative trait locus Hd6 and characterization of its epistatic interactions with Hd2 in rice using advanced backcross progeny. Genetics 154 (2):885-891

Lin HX, Yamamoto T, Sasaki T, Yano M (2000) Characterization and detection of epistatic interactions of 3 QTLs, Hd1, Hd2, and Hd3,controlling heading date in rice using nearly isogenic lines. Theor Appl Genet 101 (7):1021-1028. doi:10.1007/s001220051576

Yamamoto T, Kuboki Y, Lin SY, Sasaki T, Yano M (1998) Fine mapping of quantitative trait loci Hd-1, Hd-2 and Hd-3, controlling heading date of rice, as single Mendelian factors. Theor Appl Genet 97 (1-2):37-44. doi:10.1007/s001220050864

Taoka K, Ohki I, Tsuji H, Furuita K, Hayashi K, Yanase T, Yamaguchi M, Nakashima C, Purwestri YA, Tamaki S, Ogaki Y, Shimada C, Nakagawa A, Kojima C, Shimamoto K (2011) 14-3-3 proteins act as intracellular receptors for rice Hd3a florigen. Nature 476:332-335. doi:www.nature.com/doifinder/10.1038/nature10272

Rothberg JM, Hinz W, Rearick TM, Schultz J, Mileski W, Davey M, Leamon JH, Johnson K, Milgrew MJ, Edwards M, Hoon J, Simons JF, Marran D, Myers JW, Davidson JF, Branting A, Nobile JR, Puc BP, Light D, Clark TA, Huber M, Branciforte JT, Stoner IB, Cawley SE, Lyons M, Fu Y, Homer N, Sedova M, Miao X, Reed B, Sabina J, Feierstein E, Schorn M, Alanjary M, Dimalanta E, Dressman D, Kasinskas R, Sokolsky T, Fidanza JA, Namsaraev E, McKernan KJ, Williams A, Roth GT, Bustillo J (2011) An integrated semiconductor device enabling non-optical genome sequencing. Nature 475 (7356):348-352. doi:10.1038/nature10242

Wood SA, Frasier TR, McLeod BA, Gilbert JR, White BN, Bowen WD, Hammill MO, Waring GT, Brault S (2011) The genetics of recolonization: an analysis of the stock structure of grey seals (Halichoerus grypus) in the northwest Atlantic. Canadian Journal of Zoology-Revue Canadienne De Zoologie 89 (6):490-497. doi:10.1139/Z11-012

Winsten JR, Richardson A, Kerchner CD, Lichau A, Hyman JM (2011) Barriers to the adoption of management-intensive grazing among dairy farmers in the Northeastern United States. Renewable Agriculture and Food Systems 26 (2):104-113. doi:10.1017/S1742170510000426

Whiteford JR, Xian X, Couchman JR (2011) Syndecan-2 core protein directly interacts with the protein tyrosine phosphatase CD148/PTPRJ to promote integrin-mediated adhesion. Int J Exp Pathol 92 (3):A13-A14

Waubant E, Mowry EM, Krupp L, Chitnis T, Yeh EA, Kuntz N, Ness J, Chabas D, Strober J, McDonald J, Belman A, Milazzo M, Gorman M, Weinstock-Guttman B, Rodriguez M, Oksenberg JR, James JA, Network UPM (2011) Common viruses associated with lower pediatric multiple sclerosis risk. Neurology 76 (23):1989-1995. doi:10.1212/WNL.0b013e31821e552a

Watson JR, Hays CG, Raimondi PT, Mitarai S, Dong C, McWilliams JC, Blanchette CA, Caselle JE, Siegel DA (2011) Currents connecting communities: nearshore community similarity and ocean circulation. Ecology 92 (6):1193-1200

Varela C, Acin F, De Haro J, March JR, Florez A, Lopez-Quintana A (2011) Influence of surgical or endovascular distal revascularization of the lower limbs on ischemic ulcer healing. Journal of Cardiovascular Surgery 52 (3):381-389 van Zijderveld SM, Dijkstra J, Perdok HB, Newbold JR, Gerrits WJJ (2011) Dietary inclusion of diallyl disulfide, yucca powder, calcium fumarate, an extruded linseed product, or medium-chain fatty acids does not affect methane production in lactating dairy cows. J Dairy Sci 94 (6):3094-3104. doi:10.3168/jds.2010-4042

Granada JR, Villanueva AJ (2011) Experimental evidence sustaining a compact-extended model for doppler broadening of neutron absorption resonances. Annals of Nuclear Energy 38 (6):1389-1398. doi:10.1016/j.anucene.2011.01.034

Baekelandt V, Vande Velde G, Rangarajan JR, Toelen J, Dresselaers T, Ibrahimi A, Krylychkina O, Vreys R, Van der Linden A, Maes F, Debyser Z, Himmelreich U (2011) Evaluation of the specificity and sensitivity of ferritin as an MRI reporter gene in the mouse brain using lentiviral and adeno-associated viral vectors. Gene Ther 18 (6):594- 605. doi:10.1038/gt.2011.2

Bocianowski J, Kozak M, Liersch A, Bartkowiak-Broda I (2011) A heuristic method of searching for interesting markers in terms of quantitative traits. Euphytica 181:89-100. doi:10.1007/s10681-011-0424-z

Pastore JJ, Limpuangthip A, Yamaguchi N, Wu M-F, Sang Y, Han S-K, Malaspina L, Chavdaroff N, Yamaguchi A, Wagner D (2011) LATE MERISTEM IDENTITY2 acts together with LEAFY to activate APETALA1. Development 138 (15):3189-3198. doi:10.1242/dev.063073

Yooyongwech S, Horigane AK, Yoshida M, Yamaguchi M, Sekozawa Y, Sugaya S, Gemma H (2008) Changes in aquaporin gene expression and magnetic resonance imaging of water status in peach tree flower buds during dormancy. Physiol Plant 134 (3):522-533. doi:10.1111/j.1399-3054.2008.01143.x

Hastings MH, Maywood ES, O'Neill JS (2008) Cellular circadian pacemaking and the role of cytosolic rhythms. Curr Biol 18 (17):R805-R815. doi:10.1016/j.cub.2008.07.021

Ruttink T, Arend M, Morreel K, Storme V, Rombauts S, Fromm J, Bhalerao RP, Boerjan W, Rohde A (2007) A molecular timetable for apical bud formation and dormancy induction in poplar. Plant Cell 19 (8):2370-2390. doi:10.1105/tpc.107.052811

Missiaggia AA, Piacezzi AL, Grattapaglia D (2005) Genetic mapping of Eef1, a major effect QTL for early flowering in Eucalyptus grandis. Tree Genet Genomes 1 (2):79-84. doi:10.1007/s11295-005-0011-3

Izawa T (2008) Photoperiodic flowering in rice. In: Hirano HY, Hirai A, Sano Y, Sasaki T (eds) Rice Biology in the Genomics Era, vol 62. Biotechnology in Agriculture and Forestry. Springer-Verlag, Berlin Heidelberg, pp 163-173

Phan HTT, Ellwood SR, Adhikari K, Nelson MN, Oliver RP (2007) The First Genetic and Comparative Map of White Lupin (Lupinus albus L.): Identification of QTLs for Anthracnose Resistance and Flowering Time, and a Locus for Alkaloid Content. DNA Res 14:59-70. doi:10.1093/dnares/dsm009

Schonrock N, Bouveret R, Leroy O, Borghi L, Kohler C, Gruissem W, Hennig L (2006) Polycomb-group proteins repress the floral activator AGL19 in the FLC-independent vernalization pathway. Genes Dev 20 (12):1667-1678. doi:10.1101/gad.377206

Uga Y, Nonoue Y, Liang ZW, Lin HX, Yamamoto S, Yamanouchi U, Yano M (2007) Accumulation of additive effects generates a strong photoperiod sensitivity in the extremely late-heading rice cultivar 'Nona Bokra'. Theor Appl Genet 114 (8):1457-1466. doi:10.1007/s00122-007-0534-0

Kotoda N, Mimida N, Kidou S-i, Igasaki T, Nishiguchi M, Iwanami H, Takahashi S, Moriya S, Abe K (2007) Molecular analyses of genes regulating flowering in apple. Hortscience 42 (4):975-975

Iqbal M, Navabi A, Yang R-C, Salmon DF, Spaner D (2007) The effect of vernalization genes on earliness and related agronomic traits of spring wheat in northern growing regions. Crop Sci 47 (3):1031-1039. doi:10.2135/cropsci2006.09.0618

Iqbal M, Navabi A, Salmon DF, Yang R-C, Murdoch BM, Moore SS, Spaner D (2007) Genetic analysis of flowering and maturity time in high latitude spring wheat - Genetic analysis of earliness in spring wheat. Euphytica 154 (1-2):207-218. doi:10.1007/s10681- 006-9289-y

Corbesier L, Vincent C, Searle I, Fomara F, Coupland G (2006) Analysis of the expression pattern of FT protein during flowering. Comparative Biochemistry and Physiology a-Molecular & Integrative Physiology 143 (4):S166-S166 Wijnen H, Young MW (2006) Interplay of circadian clocks and metabolic rhythms. Annu Rev Genet 40:409-448. doi:10.1146/annurev.genet.40.110405.090603

Olsen P, Lenk I, Jensen CS, Petersen K, Andersen CH, Didion T, Nielsen KK (2006) Analysis of two heterologous flowering genes in Brachypodium distachyon demonstrates its potential as a grass model plant. Plant Sci 170 (5):1020-1025. doi:10.1016/j.plantsci.2006.01.012

Sakai S, Harrison RD, Momose K, Kuraji K, Nagamasu H, Yasunari T, Chong L, Nakashizuka T (2006) Irregular droughts trigger mass flowering in aseasonal tropical forests in Asia. Am J Bot 93 (8):1134-1139. doi:10.3732/ajb.93.8.1134

Lifschitz E, Eviatar T, Rozman A, Shalit A, Goldshmidt A, Amsellem Z, Alvarez J, Eshed Y (2006) The tomato FT gene triggers conserved systemic flowering signals that regulate termination and substitute for light and photoperiodic stimuli. Comparative Biochemistry and Physiology a-Molecular & Integrative Physiology 143 (4):S166-S167

Cleland EE, Chiariello NR, Loarie SR, Mooney HA, Field CB (2006) Diverse responses of phenology to global changes in a grassland ecosystem. Proc Natl Acad Sci U S A 103 (37):13740-13744. doi:10.1073/pnas.0600815103

Kozaki A, Colasanti J (2006) Analysis of transcriptional activity of the maize ID1 flowering time regulator. Plant Cell Physiol 47:S173-S173

Torres-Galea P, Huang LF, Chua NH, Bolle C (2006) The GRAS protein SCL13 is a positive regulator of phytochrome-dependent red light signaling, but can also modulate phytochrome A responses. Molecular Genet Genom 276 (1):13-30. doi:10.1007/s00438- 006-0123-y

Kevei E, Gyula P, Hall A, Kozma-Bognar L, Kim WY, Eriksson ME, Toth R, Hanano S, Feher B, Southern MM, Bastow RM, Viczian A, Hibberd V, Davis SJ, Somers DE, Nagy F, Millar AJ (2006) Forward genetic analysis of the circadian clock separates the multiple functions of ZEITLUPE. Plant Physiol 140 (3):933-945. doi:10.1104/pp.105.074864

Kim S, Soltis PS, Wall K, Soltis DE (2006) Phylogeny and domain evolution in the APETALA2-like gene family. Mol Biol Evol 23 (1):107-120. doi:10.1093/molbev/msj014

Soltis PS, Soltis DE, Kim S, Chanderbali A, Buzgo M (2006) Expression of floral regulators in basal angiosperms and the origin and evolution of ABC-function. Advances in Botanical Research: Incorporating Advances in Plant Pathology, Vol 44 44:483-506. doi:10.1016/s0065-2296(06)44012-x

Sung S, Amasino RM (2006) Molecular genetic studies of the memory of winter. J Exp Bot 57 (13):3369-3377. doi:10.1093/jxb/erl105

Farrell TC, Fukai S, Williams RL (2006) Minimising cold damage during reproductive development among temperate rice genotypes. I. Avoiding low temperature with the use of appropriate sowing time and photoperiod-sensitive varieties. Aust J Agric Res 57 (1):75-88. doi:10.1071/ar05185

Farrell TC, Fox KM, Williams RL, Fukai S, Lewin LG (2006) Minimising cold damage during reproductive development among temperate rice genotypes. II. Genotypic variation and flowering traits related to cold tolerance screening. Aust J Agric Res 57 (1):89-100. doi:10.1071/ar05186

Thomas B, Massiah A, Jackson S, Morris K, Adams S (2006) Light signals in flowering. Comparative Biochemistry and Physiology a-Molecular & Integrative Physiology 143 (4):S164-S164

Yeang H-Y (2007) The sunshine-mediated trigger of synchronous flowering in the tropics: the rubber tree as a study model. New Phytol 176 (4):730-735. doi:10.1111/j.1469- 8137.2007.02258.x

Welty N, Radovich C, Meulia T, van der Knaap E (2007) Inflorescence development in two tomato species. Canadian Journal of Botany-Revue Canadienne De Botanique 85 (1):111-118. doi:10.1139/b06-154

Zinser C, Seidlitz HK, Welzl G, Sandermann H, Heller W, Ernst D, Rau W (2007) Transcriptional profiling of summer wheat, grown under different realistic UV-B irradiation regimes. J Plant Physiol 164 (7):913-922. doi:10.1016/j.jplph.2006.06.006

Yamamura N, Fujita N, Hayashi M, Nakamura Y, Yamauchi A (2007) Optimal phenology of annual plants under grazing pressure. J Theor Biol 246 (3):530-537. doi:10.1016/j.jtbi.2007.01.010

Sherry RA, Zhou X, Gu S, Arnone JA, III, Schimel DS, Verburg PS, Wallace LL, Luo Y (2007) Divergence of reproductive phenology under climate warming. Proc Natl Acad Sci U S A 104 (1):198-202. doi:10.1073/pnas.0605642104

Scarcelli N, Cheverud JM, Schaal BA, Kover PX (2007) Antagonistic pleiotropic effects reduce the potential adaptive value of the FRIGIDA locus. Proc Natl Acad Sci U S A 104 (43):16986-16991. doi:10.1073/pnas.0708209104

Salvi S, Sponza G, Morgante M, Tomes D, Niu X, Fengler KA, Meeley R, Ananiev EV, Svitashev S, Bruggemann E, Li B, Hainey CF, Radovic S, Zaina G, Rafalski JA, Tingey SV, Miao G-H, Phillips RL, Tuberosa R (2007) Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus m maize. Proc Natl Acad Sci U S A 104 (27):11376-11381. doi:10.1073/pnas.0704145104

Mimida N, Kotoda N (2006) Apple TFL1/CEN-like genes intensely repress flowering in succulent shoot and regulate the growth phase transition in fruit bearing shoot. Genes Genet Syst 81 (6):453-453

Oliverio KA, Crepy M, Martin-Tryon EL, Milich R, Harmer SL, Putterill J, Yanovsky MJ, Casal JJ (2007) GIGANTEA regulates phytochrome A-mediated photomorphogenesis independently of its role in the circadian clock. Plant Physiol 144 (1):495-502. doi:10.1104/pp.107.097048

Martin NH, Bouck AC, Arnold ML (2007) The genetic architecture of reproductive isolation in Louisiana irises: Flowering phenology. Genetics 175 (4):1803-1812. doi:10.1534/genetics.106.068338

Lin M-K, Belanger H, Lee Y-J, Varkonyi-Gasic E, Taoka K-I, Miura E, Xoconostle- Cazares B, Gendler K, Jorgensene RA, Phinney B, Lough TJ, Lucas WJ (2007) FLOWERING LOCUS T protein may act as the long-distance florigenic signal in the cucurbits. Plant Cell 19 (5):1488-1506. doi:10.1105/tpc.107.051920

Limin A, Corey A, Hayes P, Fowler DB (2007) Low-temperature acclimation of barley cultivars used as parents in mapping populations: response to photoperiod, vernalization and phenological development. Planta 226 (1):139-146. doi:10.1007/s00425-006-0475-x

Kondo H, Okazaki K, Takeno K (2007) Regulation of the expression of flowering-related genes by DNA demethylation/remethylation. Plant Cell Physiol 48:S146-S146

Kantolic AG, Mercau JL, Slafer GA, Sadras VO (2007) Simulated yield advantages of extending post-flowering development at the expense of a shorter pre-flowering development in soybean. Field Crops Res 101 (3):321-330. doi:10.1016/j.fcr.2006.12.008

Iqbal M, Navabi A, Salmon DF, Yang R-C, Spaner D (2006) A genetic examination of early flowering and maturity in Canadian spring wheat. Can J Plant Sci 86 (4):995-1004

Iqbal M, Navabi A, Yang R-C, Salmon DF, Spaner D (2007) Molecular characterization of vernalization response genes in Canadian spring wheat. Genome 50 (5):511-516. doi:10.1139/g07-028

Sonsteby A, Heide OM (2006) Dormancy relations and flowering of the strawberry cultivars Korona and Elsanta as influenced by photoperiod and temperature. Sci Hortic- Amsterdam 110 (1):57-67. doi:10.1016/j.scienta.2006.06.012

Hanley ME, May OC (2006) Cotyledon damage at the seedling stage affects growth and flowering potential in mature plants. New Phytol 169 (2):243-250. doi:10.1111/j.1469- 8137.2005.01578.x

Sonsteby A, Heide OM (2007) Quantitative long-day flowering response in the perpetual- flowering F-1 strawberry cultivar Elan. J Hortic Sci Biotechnol 82 (2):266-274

Heuertz M, De Paoli E, Kallman T, Larsson H, Jurman I, Morgante M, Lascoux M, Gyllenstrand N (2006) Multilocus patterns of nucleotide diversity, linkage disequilibrium and demographic history of Norway spruce Picea abies (L.) Karst. Genetics 174 (4):2095- 2105. doi:10.1534/genetics.106.065102

Heide OM, Sonsteby A (2007) Interactions of temperature and photoperiod in the control of flowering of latitudinal and altitudinal populations of wild strawberry (Fragaria vesca). Physiol Plant 130 (2):280-289. doi:10.1111/j.1399-3054.2007.00906.x

Hanley ME, Fegan EL (2007) Timing of cotyledon damage affects growth and flowering in mature plants. Plant Cell Environ 30 (7):812-819. doi:10.1111/j.1365- 3040.2007.01671.x

Sonsteby A, Heide OM (2007) Long-day control of flowering in everbearing strawberries. J Hortic Sci Biotechnol 82 (6):875-884

Endo M, Mochizuki N, Suzuki T, Nagatani A (2006) Cryptochrome 2 in the vascular bundle accelerates flowering. Plant Cell Physiol 47:S63-S63 Costes E, Garcia-Villanueva E (2007) Clarifying the effects of dwarfing rootstock on vegetative and reproductive growth during tree development: A study on apple trees. Ann Bot 100 (2):347-357. doi:10.1093/aob/mcm114

Tardif G, Kane NA, Adam H, Labrie L, Major G, Gulick P, Sarhan F, Laliberte J-F (2007) Interaction network of proteins associated with abiotic stress response and development in wheat. Plant Mol Biol 63 (5):703-718. doi:10.1007/s11103-006-9119-6

Adam H, Jouannic S, Orieux Y, Morcillo F, Richaud F, Duval Y, Tregear JW (2007) Functional characterization of MADS box genes involved in the determination of oil palm flower structure. J Exp Bot 58 (6):1245-1259. doi:10.1093/jxb/erl263

Achard P, Baghour M, Chapple A, Hedden P, Van der Straeten D, Genschik P, Moritz T, Harberd NP (2007) The plant stress hormone ethylene controls floral transition via DELLA-dependent regulation ot floral meristem-identity genes. Proc Natl Acad Sci U S A 104 (15):6484-6489. doi:10.1073/pnas.0610717104

Abdurakhmonov IY, Kushanov FN, Djaniqulov F, Buriev ZT, Pepper AE, Fayzieva N, Mavlonov GT, Saha S, Jenkins JN, Abdukarimov A (2007) The role of induced mutation in conversion of photoperiod dependence in cotton. J Hered 98 (3):258-266. doi:10.1093/jhered/esm007

Burgess KS, Etterson JR, Galloway LF (2007) Artificial selection shifts flowering phenology and other correlated traits in an autotetraploid herb. Heredity 99 (6):641-648. doi:10.1038/sj.hdy.6801043

Rohde A, Bhalerao RP (2007) Plant dormancy in the perennial context. Trends Plant Sci 12 (5):217-223. doi:10.1016/j.tplants.2007.03.012

Miura K, Jin JB, Hasegawa PM (2007) Sumoylation, a post-translational regulatory- process in plants. Curr Opin Plant Biol 10 (5):495-502. doi:10.1016/j.pbi.2007.07.002

Jose Carmona M, Chaib J, Miguel Martinez-Zapater J, Thomas MR (2008) A molecular genetic perspective of reproductive development in grapevine. J Exp Bot 59 (10):2579- 2596. doi:10.1093/jxb/ern160

Estrella N, Sparks TH, Menzel A (2007) Trends and temperature response in the phenology of crops in Germany. Global Change Biol 13 (8):1737-1747. doi:10.1111/j.1365-2486.2007.01374.x

Yin X, Struik PC (2008) Applying modelling experiences from the past to shape crop systems biology: the need to converge crop physiology and functional genomics. New Phytol 179 (3):629-642. doi:10.1111/j.1469-8137.2008.02424.x

Yin X (2008) Analysis of reciprocal-transfer experiments to estimate the length of phases having different responses to temperature. Ann Bot 101 (4):603-611. doi:10.1093/aob/mcm319

Yen CY-T, Starman TW, Wang Y-T, Holzenburg A, Niu G (2008) Timing of nutrient termination and reapplication for growth, flower initiation, and flowering of the nobile dendrobium orchid. J Am Soc Hortic Sci 133 (4):501-507 Yen CY-T, Starman TW, Wang Y-T (2008) Timing of nutrient termination and reapplication affects growth, flower differentiation, and flowering of a hybrid nobile dendrobium. Hortscience 43 (4):1095-1096

Yang Y, Klejnot J, Yu X, Liu X, Lin C (2007) Florigen (II): It is a mobile protein. J Integr Plant Biol 49 (12):1665-1669. doi:10.1111/j.1744-7909.2007.00614.x

Fu Y, Wen T-J, Ronin YI, Chen HD, Guo L, Mester DI, Yang Y, Lee M, Korol AB, Ashlock DA, Schnable PS (2006) Genetic dissection of intermated recombinant inbred lines using a new genetic map of maize. Genetics 174 (3):1671-1683. doi:10.1534/genetics.106.060376

Yen CY-T, Starman TW, Wang Y-T, Niu G (2008) Effects of cooling temperature and duration on flowering of the nobile dendrobium orchid. Hortscience 43 (6):1765-1769

Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, Zhou H, Yu S, Xu C, Li X, Zhang Q (2008) Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet 40 (6):761-767. doi:10.1038/ng.143

Takeda F, Newell M (2006) A method for increasing fall flowering in short-day 'Carmine' strawberry. Hortscience 41 (2):480-481

Takeda F, Glenn DM (2007) Development of short-day-type strawberry transplants that flower in fall. Hortscience 42 (4):865-865

Song YH, Song NY, Shin SY, Kim HJ, Yun D-J, Lim CO, Lee SY, Kang KY, Hong JC (2008) Isolation of CONSTANS as a TGA4/OBF4 interacting protein. Mol Cells 25 (4):559-565

Black BL, Frisby JW, Lewers KS, Takeda F (2007) A heat-unit model for predicting blackberry flowering time. Hortscience 42 (4):1022-1022

Takeda F, Glenn DM, Stutte G (2008) Light quality affects flowering in short-day 'Strawberry Festival' strawberry. Hortscience 43 (4):1146-1146

Rallo P, Jimenez R, Ordovas J, Suarez MP (2008) Possible early selection of short juvenile period olive plants based on seedling traits. Aust J Agric Res 59 (10):933-940. doi:10.1071/ar08013

Post ES, Pedersen C, Wilmers CC, Forchhammer MC (2008) Phenological sequences reveal aggregate life history response to climatic warming. Ecology 89 (2):363-370. doi:10.1890/06-2138.1

Miller-Rushing AJ, Primack RB, Primack D, Mukunda S (2006) Photographs and herbarium specimens as tools to document phenological changes in response to global warming. Am J Bot 93 (11):1667-1674. doi:10.3732/ajb.93.11.1667

Mathews S (2006) Seeing the light. Nat Genet 38 (6):606-608. doi:10.1038/ng0606-606

Oh W, Rhie YH, Park JH, Runkle ES, Kim KS (2008) Flowering of cyclamen is accelerated by an increase in temperature, photoperiod, and daily light integral. J Hortic Sci Biotechnol 83 (5):559-562 McMaster GS, White JW, Hunt LA, Jamieson PD, Dhillon SS, Ortiz-Monasterio JI (2008) Simulating the influence of vernalization, photoperiod and optimum temperature on wheat developmental rates. Ann Bot 102 (4):561-569. doi:10.1093/aob/mcn115

Li L, McMaster GS, Yu Q, Du J (2008) Simulating winter wheat development response to temperature: Modifying Malo's exponential sine equation. Comput Electron Agric 63 (2):274-281. doi:10.1016/j.compag.2008.03.006

Szucs P, Karsai I, von Zitzewitz J, Meszaros K, Cooper LLD, Gu YQ, Chen THH, Hayes PM, Skinner JS (2006) Positional relationships between photoperiod response QTL and photoreceptor and vernalization genes in barley. Theor Appl Genet 112 (7):1277-1285. doi:10.1007/s00122-006-0229-y

Kudo G, Hirao AS (2006) Habitat-specific responses in the flowering phenology and seed set of alpine plants to climate variation: implications for global-change impacts. Popul Ecol 48 (1):49-58. doi:10.1007/s10144-005-0242-z

Koti K, Karsai I, Szucs P, Horvath C, Meszaros K, Kiss GB, Bedo Z, Hayes PM (2006) Validation of the two-gene epistatic model for vernalization response in a winter x spring barley cross. Euphytica 152 (1):17-24. doi:10.1007/s10681-006-9170-z

Locatelli AB, Federizzi LC, Milach SCK, Wight CP, Molnar SJ, Chapados JT, Tinker NA (2006) Loci affecting flowering time in oat under shortday conditions. Genome 49 (12):1528-1538. doi:10.1139/g06-108

Linkosalo T, Hakkinen R, Hanninen H (2006) Models of the spring phenology of boreal and temperate trees: is there something missing? Tree Physiol 26 (9):1165-1172

Ranta H, Hokkanen T, Linkosalo T, Laukkanen L, Bondestam K, Oksanen A (2008) Male flowering of birch: Spatial synchronization, year-to-year variation and relation of catkin numbers and airborne pollen counts. For Ecol Manag 255 (3-4):643-650. doi:10.1016/j.foreco.2007.09.040

Locatelli AB, Federizzi LC, Milach SCK, McElroy AR (2008) Flowering time in oat: Genotype characterization for photoperiod and vernalization response. Field Crops Res 106 (3):242-247. doi:10.1016/j.fcr.2007.12.006

Lewis S, Faricelli ME, Appendino ML, Valarik M, Dubcovsky J (2008) The chromosome region including the earliness per se locus Eps-A(m)1 affects the duration of early developmental phases and spikelet number in diploid wheat. J Exp Bot 59 (13):3595- 3607. doi:10.1093/jxb/ern209

Legave JM, Farrera I, Almeras T, Calleja M (2008) Selecting models of apple flowering time and understanding how global warming has had an impact on this trait. J Hortic Sci Biotechnol 83 (1):76-84

Khokhar KM, Hadley P, Pearson S (2007) Effect of photoperiod and temperature on inflorescence appearance and subsequent development towards flowering in onion raised from sets. Sci Hortic-Amsterdam 112 (1):9-15. doi:10.1016/j.scienta.2006.12.009

Khokhar KM (2008) Effect of set-size and planting time on the incidence of bolting, bulbing, and seed yield in two onion cultivars. J Hortic Sci Biotechnol 83 (4):481-487 Khan FU, Jhon AQ, Khan FA, Mir MM (2008) Effect of planting time on flowering and bulb production of under polyhouse conditions in Kashmir. Indian Journal of Horticulture 65 (1):79-82

Lambrecht SC, Loik ME, Inouye DW, Harte J (2007) Reproductive and physiological responses to simulated climate warming for four subalpine species. New Phytol 173 (1):121-134. doi:10.1111/j.1469-8137.2006.01892.x

Igasaki T, Nishiguchi M, Futamura N, Kotoda N (2007) Down-regulation of a poplar TFL1 ortholog confers acceleration of flowering in Lombardy poplar. Plant Cell Physiol 48:S185-S185

Hovenden MJ, Wills KE, Schoor JKV, Chaplin RE, Williams AL, Nolan MJ, Newton PCD (2007) Flowering, seed production and seed mass in a species-rich temperate grassland exposed to FACE and warming. Aust J Bot 55 (8):780-794. doi:10.1071/bt07107

Post ES, Inouye DW (2008) Phenology: response, driver, and integrator. Ecology 89 (2):319-320. doi:10.1890/07-1022.1

Inouye DW (2008) Effects of climate change on phenology, frost damage, and floral abundance of montane wildflowers. Ecology 89 (2):353-362. doi:10.1890/06-2128.1

Iannucci A, Terribile MR, Martiniello P (2008) Effects of temperature and photoperiod on flowering time of forage legumes in a Mediterranean environment. Field Crops Res 106 (2):156-162. doi:10.1016/j.fcr.2007.11.005

Hovenden MJ, Wills KE, Schoor JKV, Williams AL, Newton PCD (2008) Flowering phenology in a species-rich temperate grassland is sensitive to warming but not elevated CO2. New Phytol 178 (4):815-822. doi:10.1111/j.1469-8137.2008.02419.x

Hovenden MJ, Williams AL, Pedersen JK, Vander Schoor JK, Wills KE (2008) Elevated CO(2) and warming impacts on flowering phenology in a southern Australian grassland are related to flowering time but not growth form, origin or longevity. Aust J Bot 56 (8):630-643. doi:10.1071/bt08142

Miller-Rushing AJ, Inouye DW, Primack RB (2008) How well do first flowering dates measure plant responses to climate change? The effects of population size and sampling frequency. J Ecol 96 (6):1289-1296. doi:10.1111/j.1365-2745.2008.01436.x

Jones H, Leigh FJ, Mackay I, Bower MA, Smith LMJ, Charles MP, Jones G, Jones MK, Brown TA, Powell W (2008) Population-based resequencing reveals that the flowering time adaptation of cultivated barley originated east of the fertile crescent. Mol Biol Evol 25 (10):2211-2219. doi:10.1093/molbev/msn167

Hoenicka H, Nowitzki O, Debener T, Fladung M (2006) Faster evaluation of induced floral sterility in transgenic early flowering poplar. Silvae Genet 55 (6):285-291

Hisamoto Y, Kashiwagi H, Kobayashi M (2008) Use of flowering gene FLOWERING LOCUS T (FT) homologs in the phylogenetic analysis of bambusoid and early diverging grasses. J Plant Res 121 (5):451-461. doi:10.1007/s10265-008-0181-9 Guedon Y, Legave JM (2008) Analyzing the time-course variation of apple and pear tree dates of flowering stages in the global warming context. Ecol Model 219 (1-2):189-199. doi:10.1016/j.ecolmodel.2008.08.010

Gonzalez-Schain ND, Suarez-Lopez P (2008) CONSTANS delays flowering and affects tuber yield in potato. Biol Plant 52 (2):251-258. doi:10.1007/s10535-008-0054-z

Guo J-l, Yang Q (2008) Molecular Cloning and Expression Analysis of a LFY Homologous Gene from Potato. Plant Mol Biol Report 26 (4):324-334. doi:10.1007/s11105-008-0045-4

Szucs P, Skinner JS, Karsai I, Cuesta-Marcos A, Haggard KG, Corey AE, Chen THH, Hayes PM (2007) Validation of the VRN-H2/VRN-H1 epistatic model in barley reveals that intron length variation in VRN-H1 may account for a continuum of vernalization sensitivity. Molecular Genet Genom 277 (3):249-261. doi:10.1007/s00438-006-0195-8

De Lucia F, Crevillen P, Jones AME, Greb T, Dean C (2008) A PHD-Polycomb Repressive Complex 2 triggers the epigenetic silencing of FLC during vernalization. Proc Natl Acad Sci U S A 105 (44):16831-16836. doi:10.1073/pnas.0808687105

Cuesta-Marcos A, Igartua E, Ciudad FJ, Codesal P, Russell JR, Molina-Cano JL, Moralejo M, Szucs P, Gracia MP, Lasa JM, Casas AM (2008) Heading date QTL in a spring x winter barley cross evaluated in Mediterranean environments. Mol Breed 21 (4):455-471. doi:10.1007/s11032-007-9145-3

Cuesta-Marcos A, Casas AM, Yahiaoui S, Gracia MP, Lasa JM, Igartua E (2008) Joint analysis for heading date QTL in small interconnected barley populations. Mol Breed 21 (3):383-399. doi:10.1007/s11032-007-9139-1

Kuhn C, Chincinska IA, Liesche J, Krugel U, Michalska J, Geigenberger P, Grimm B (2008) Sucrose transporter StSUT4 from potato affects flowering, tuberization, and shade avoidance response. Plant Physiol 146 (2):515-528. doi:10.1104/pp.107.112334

Brewer JS (2008) Geographic variation in flowering responses to fire and season of clipping in a fire-adapted plant. Am Midl Nat 160 (1):235-249. doi:10.1674/0003- 0031(2008)160[235:gvifrt]2.0.co;2

Brown JCL, De Decker MM, Fieldes MA (2008) A comparative analysis of developmental profiles for DNA methylation in 5-azacytidine-induced early-flowering flax lines and their control. Plant Sci 175 (3):217-225. doi:10.1016/j.plantsci.2008.03.023

Boersma JG, Li C, Lesniewska K, Sivasithamparam K, Yang H (2008) Identification of quantitative trait loci (QTLs) influencing early vigour, height,flowering date, and seed size and their implications for breeding of narrow-leafed lupin (Lupinus angustifolius L.). Aust J Agric Res 59 (6):527-535. doi:10.1071/ar07205

Boersma JG, Buirchell BJ, Sivasithamparam K, Yang H (2007) Development of a sequence-specific PCR marker linked to the Ku gene which removes the vernalization requirement in narrow-leafed lupin. Plant Breed 126 (3):306-309. doi:10.1111/j.1439- 0523.2007.01347.x

Particka C, Black B (2008) Use of gibberellic acid to inhibit flower bud formation in newly established blueberries. Hortscience 43 (4):1147-1147 Black B, Ehlenfeldt M, Martin R (2006) Suppression of flowering in 'Bluecrop' highbush blueberry. Hortscience 41 (4):1012-1012

Aono Y, Kazui K (2008) Phenological data series of cherry tree flowering in Kyoto, Japan, and its application to reconstruction of springtime temperatures since the 9th century. International Journal of Climatology 28 (7):905-914. doi:10.1002/joc.1594

Aki T, Shigyo M, Nakano R, Yoneyama T, Yanagisawa S (2008) Nano scale proteomics revealed the presence of regulatory proteins including three FT-Like proteins in phloem and xylem saps from rice. Plant Cell Physiol 49 (5):767-790. doi:10.1093/pcp/pcn049

Ikeda Y, Yamaguchi A, Abe M, Araki T (2007) GL2-class HD-ZIP protein FWA delays flowering through specific interaction with FT protein. Plant Cell Physiol 48:S113-S113

Ikeda Y, Abe M, Araki T (2006) Dissection of flowering pathways using GL2-class HD- ZIP protein FWA. Plant Cell Physiol 47:S65-S65

Zeevaart JAD (2008) Leaf-produced floral signals. Curr Opin Plant Biol 11 (5):541-547. doi:10.1016/j.pbi.2008.06.009

Zeevaart JAD (2006) Florigen coming of age after 70 years. Plant Cell 18 (8):1783-1789. doi:10.1105/tpc.106.043513

Lee DJ, Zeevaart JAD (2007) Regulation of gibberellin 20-oxidase1 expression in spinach by photoperiod. Planta 226 (1):35-44. doi:10.1007/s00425-006-0463-1

Matsubara K, Yamanouchi U, Wang Z-X, Minobe Y, Izawa T, Yano M (2008) Ehd2, a Rice Ortholog of the Maize INDETERMINATE1 Gene, Promotes Flowering by Up- Regulating Ehd1. Plant Physiol 148 (3):1425-1435. doi:10.1104/pp.108.125542

Lee S, Woo Y-M, Ryu S-I, Shin Y-D, Kim WT, Park KY, Lee I-J, An G (2008) Further characterization of a rice AGL12 group MADS-box gene, OsMADS26. Plant Physiol 147 (1):156-168. doi:10.1104/pp.107.114256

Lee JH, Lee JS, Ahn JH (2008) Ambient Temperature Signaling in Plants: An Emerging Field in the Regulation of Flowering Time. J Plant Biol 51 (5):321-326

McClung CR (2008) Comes a time. Curr Opin Plant Biol 11 (5):514-520. doi:10.1016/j.pbi.2008.06.010

Gutierez RA, Stokes TL, Thum K, Xu X, Obertello M, Katari MS, Tanurdzic M, Dean A, Nero DC, McClung CR, Coruzzi GM (2008) Systems approach identifies an organic nitrogen-responsive gene network that is regulated by the master clock control gene CCA1. Proc Natl Acad Sci U S A 105 (12):4939-4944. doi:10.1073/pnas.0800211105

Exner V, Hirsch-Hoffmann M, Gruissem W, Hennig L (2008) PlantDB - a versatile database for managing plant research. Plant Methods 4. doi:1 10.1186/1746-4811-4-1

Alexandre CM, Hennig L (2008) FLC or not FLC: the other side of vernalization. J Exp Bot 59 (6):1127-1135. doi:10.1093/jxb/ern070 Terzi LC, Simpson GG (2008) Regulation of Flowering Time by RNA Processing. In: Reddy AS, Golovkin MV (eds) Nuclear Pre-Mrna Processing in Plants, vol 326. Current Topics in Microbiology and Immunology. Springer, Berlin Heidelberg, pp 201-218

Wang DK, Sun ZX, Tao YZ (2006) Application of TILLING in plant improvement. Yi Chuan Xue Bao 33 (11):957-964. doi:S0379-4172(06)60130-3 [pii] 10.1016/S0379- 4172(06)60130-3

Hofer J, Turner L, Moreau C, Ambrose M, Isaac P, Butcher S, Weller J, Dupin A, Dalmais M, Le Signor C, Bendahmane A, Ellis N (2009) Tendril-less regulates tendril formation in pea leaves. Plant Cell 21 (2):420-428. doi:tpc.108.064071 [pii] 10.1105/tpc.108.064071

Till B, Schmitz-Linneweber C, Williams-Carrier R, Barkan A (2001) CRS1 is a novel group II intron splicing factor that was derived from a domain of ancient origin. RNA 7 (9):1227-1238

Xu Y (2010) Molecular Plant Breeding. CABI, Oxfordshire, UK

Winkler H (1908) Parthenogenesis und Apogamie im Pflanzenreiche. Velag von Gustav Fischer Jena,

Westhoff P, Jeske H, Jürgens G, Kloppstech K, Link G (1996) Molekulare Entwicklungsbiologie - Vom Gen zur Pflanze -.

Wätzig G (2000) Untersuchungen zur BAC-Klonierung bei Zuckerrüben (Beta vulgaris L.). Lehrstuhl Pflanzenzüchtung, Universität Kiel,

Varshney RK, Tuberosa R (2007) Genomics-Assisted Crop Improvement: Genomics Applications in Crops. vol 2. Springer, Dordrecht, The Netherlands

Telgmann A (2002) Analyse von BAC-Klonen zur physikalischen Kartierung des Schossgens der Zuckerrübe (Beta vulgaris L.). Lehrstuhl Pflanzenzüchtung, Universität Kiel,

Teebken T (1998) N-Dynamik unter der Fruchtfolge Winterraps - Winterweizen - Wintergerste bei mehrjähriger Rotationsdauer und unterschiedlichen Produktionsintensitäten sowie einfache Ansätze zur N-Bilanzierung. Schriftenreihe des Instituts für Pflanzenbau und Pflanzenzüchtung, Lehrstuhl Allgemeiner Pflanzenbau,

Smart J, Simmonds NW (1995) Evolution of Crop Plants. Longman Scientific & Technical, Essex, England

Sleper DA, Poehlmann JM (2006) Breeding Field Crops, vol 5. Edition. Blackwell Publishing, Ames, Iowa

Schulze-Buxloh G (2006) Genetische Kartierung von Bacterial Artificial Chromosome (BAC)-Klonen in der Nähe des Schossgens B auf Chromosom 2 der Zuckerrübe. Lehrstuhl Pflanzenzüchtung, Universität Kiel, Kiel

Schröder H (1997) Untersuchungen zur Ertragsbildung und Stickstoffverwertung von Wintergerstenbeständen in verschiedenen Produktionssystemen. Schriftenreihe des Instituts für Pflanzenbau und Pflanzenzüchtung, Lehrstuhl Allgemeiner Pflanzenbau, Schmidt K (1998) Genetische und ökologische Untersuchungen an Pedicularis palustris in Schleswig-Holstein. Diplomarbeit, Botanisches Institut der Mathematisch- Naturwissenschaftlichen Fakultät, Christian-Albrechts-Universität zu Kiel,

Schlegel RHJ (2003) Encyclopedic Dictionary of Plant Breeding and Related Subjects. Food Products Press and The Haworth Reference Press, Binghamton

Scharrenberg C (1998) Differentielle RNA-Analyse an nematodenresistenten Zuckerrüben. Lehrstuhl Pflanzenzüchtung, Universität Kiel,

Schacht J (1998) Beiträge zur Nutzung von Wildformen zur Verbesserung quantitativ vererbter Merkmale am Beispiel Gerste. Schriftenreihe des Instituts für Pflanzenbau und Pflanzenzüchung, Lehrstuhl Pflanzenzüchtung,

Sankewitsch, E. (1950) Die Arbeitsmethoden der Mitschurinschen Pflanzenzüchtung. Eugen Ulmer Verlag Stuttgasrt,

Richter G (1996) Biochemie der Pflanzen.

Reimers A (1998) Marker-gestützte Selektion in Nachkommenschaften transgener Rapspflanzen. Lehrstuhl Pflanzenzüchtung, Universität Kiel,

Raven PH, Evert RF, Eichhorn SE (1998) Biology of Plants, vol 6. W.H.Freeman and Company/Worth Publishers, New York

Puzio S (1998) Untersuchungen zur Überwinterung und zum jahreszeitlichen Verlauf der Ertragsbildung von Weißklee in Abhängigkeit von der Witterung und der Sorteneigenschaft. Schriftenreihe des Instituts für Pflanzenbau und Pflanzenzüchtung, Lehrstuhl Grünland und Futterbau,

Poehlmann JM, Sleper DA (1995) Breeding field crops. Iowa State University Press, Iowa, USA

Pistorius R (1997) Scientists, plants and politics - A history of the plant genetic resources movement. IPGRI, Rome, Italy

Ordon F, Friedt W (1998) Von Mendel zum Gentransfer. vol 3452. Newbury HJ (2003) Plant Molecular Breeding. Blackwell Publishing, Birmingham, UK

Nagaata T, Lörz H, Widholm JM (2003) Biotechnology in Agriculture and Forestry - Brassicas and Legumes-. vol 52. Springer Verlag,

Meksem K, Kahl G (2010) The Handbook of Plant Mutation Screening. Wiley VCH, Weinheim

Meksem K, Kahl G (2005) The Handbook of Plant Genome Mapping - Genetic and Physical Mapping. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Mailer R, Wratten N, Salisbury P, Potter T, Lamont J, Bell B, Brill S (1999) 10 th International Rapeseed Congress "New Horizons for an Old Crop". International Rapeseed Congress, Canberra - Australia Lynch M, Walsh B (1998) Genetics and Analysis of Quantitative Traits. Sinauer Associates, Inc., Sunderland, MA 01375 USA

J.-F. M-G, P L, J.-F. B (2007) Functional Plant Genomics. Science Publishers, Enfield, New Hampshire

P. L, Erbar C (2008) Blüte und Frucht, vol 2. E. Schweizerbart'sche Verlagsbuchhandlung (Nägele u. Obermiller), Stuttgart

Lörz H, Widholm JM (2004) Molecular Marker Systems in Plant Breeding and Crop Improvement. vol 55. Springer-Verlag, Berlin Heidelberg New York

Lieberei R, Reisdorff C (2007) Nutzpflanzenkunde, vol 7. Georg Thieme Verlag, Stuttgart

Lelley T (1997) Current Topics in Plant Cytogenetics Related to Plant Improvement.

Leister D (2005) Plant Functional Genomics. Food Products Press, Binghamton

Lein JC (2002) Single nucleotide polymorphisms (SNPs) in Wild- und Kulturarten der Gattung Beta. Lehrstuhl Pflanzenzüchtung, Universität Kiel,

Lawrence WJC (1949) Praktische Pflanzenzüchtung. Siebeneicher Verlag Berlin Frankfurt,

Kück U, Wricke G (1995) Genetic Mechanisms for Hybrid Breeding. Blackwell Wissenschaftsverlag Berlin,

Kornher A, Wulfes R, Wachendorf M, Taube F (1997) Untersuchungen zur Dynamik der Ertragsbildung und der Qualitätsentwicklung von Extensivgrünland. vol 03.

Körber-Grohne U (1995) Nutzpflanzen in Deutschland - von der Vorgeschichte bis heute - das kompetente Nachschlagewerk. Theiss Verlag GmbH, Stuttgart

Keller ER, Hanus H, Heyland KU (1997) Handbuch des Pflanzenbaus 1 - Grundlagen der landwirtschaftlichen Pflanzenproduktion-. vol 1. Ulmer, Stuttgart

Kappert H, Rudorf W (1962) Handbuch der Pflanzenzüchtung Band VI.

Kappert H (1948) Die vererbungswissenschaftlichen Grundlagen der Pflanzenzüchtung. Paul Parey Berlin Hamburg,

Kang MS (2002) Quantitative Genetics, Genomics and Plant Breeding. CABI Publishing, Wallingford, Oxon, UK

Jung C (2007) Ausgewählte Themen der Pflanzenzüchtung. vol 50. Kiel

Jacobs G (2001) Physikalische Kartierung der Region des Schossgens der Zuckerrübe (Beta vulgaris L.). Schriftenreihe des Instituts für Pflanzenbau und Pflanzenzüchtung der CAU zu Kiel, Lehrstuhl Pflanzenzüchtung,

Hill J, Becker HC, Tigerstedt PMA (1998) Quantitative and ecological aspects of plant breeding. Chapman & Hall, London, Heise A (1998) Analyse Wildrüben-spezifischer cDNAs aus einer Beta procumbens- Translokation in Zuckerrüben. Lehrstuhl Pflanzenzüchtung, Universität Kiel,

Hay RKM, Russel G, Edwards TW (2000) Crop Production in the East of Scotland.

Hancock JF (2004) Plant Evolution and the Origin of Crop Species, vol 2. CABI Publishing, Wallingford, Oxon, UK

Gusta LV, Wisniewski ME, Tanino KK (2009) Plant Cold Hardiness. MPG Books Group, Oxfordshire Glazer AN (1998) The Cell. Unit of Life. A Visual Primer. Cogito Learning Media, Inc., New York, San Francisco

Gao D (2000) Molecular and cytological characterization of a full set of monosomic addition lines from Beta corolliflora in Beta vulgaris and chromosomal localization of resistance genes to leaf spot (Cercospora beticola) and rhizomania disease from wild beets. Schriftenreihe des Instituts für Pflanzenbau und Pflanzenzüchtung, Lehrstuhl Pflanzenzüchtung,

Frese L, Panella L, Srivastava HM, Lange W (1998) International Beta Genetic Resources Network. vol 12.

Fauchère J, Steinrücken G, Wauters A, Wevers JDA, Yndgaard F, Beckers R (2002) Variety Trials in Sugar Beet - Methodology and Design. vol 4. International Institute for Beet Research, Belgien

El-Mezawy A (2001) Fine mapping of the bolting gene from sugar beet (Beta vulgaris L.) with molecular markers. Schriftenreihe des Instituts für Pflanzenbau und Pflanzenzüchtung, Lehrstuhl Pflanzenzüchtung,

Dierßen H-J (1998) Der Einsatz von RFLP-Markern zur Feinkartierung des Schoßgens B bei der Zuckerrübe (Beta vulgaris ssp. vulgaris L.). Lehrstuhl Pflanzenzüchtung, Universität Kiel,

Detjen S (2006) Der Einsatz von molekularen Markern in der Pflanzenzüchtung. Lehrstuhl Pflanzenzüchtung, Universität Kiel, den Nijs HCM, Bartsch D, Sweet J (2005) Introgression from Genetically Modified Plants into Wild Relatives. CABI Publishing, Wallingford, Oxfordshire, UK

Darlington CD, Janaki Ammal EK (1945) Chromosome Atlas. George Allen&Unwin Ltd., London

Coors JG, Pandey S (1999) The Genetics and Exploitation of Heterosis in Crops. American Society of Agronomy, Madison, Wisconsin USA

Christou P, Klee H (2004) Handbook of Plant Biotechnology. vol 2. Wiley & Sons Ldt., Chichester

Christen O (1997) Untersuchungen zur Anbautechnik von Winterweizen nach unterschiedlichen Vorfruchtkombinationen -Schriftenreihe- (Habilitationsschrift). Schriftenreihe des Instituts für Pflanzenbau und Pflanzenzüchtung, Lehrstuhl Allgemeiner Pflanzenbau, Carena MJ (2009) Handbook of Plant Breeding: Cereals. vol 3. Springer Science,

Büttner B (2011) Genetic mapping of flowering time genes and functional characterisation of an FVE homologue from sugar beet. Schriftenreihe des Instituts für Pflanzenbau und Pflanzenzüchtung CAU zu Kiel - Lehrstuhl Pflanzenzüchtung, Kiel

Büchse A (1999) Bedeutung und Ursachen von Nachbarschaftseffekten in Sortenversuchen bei Zuckerrüben. Institut für Zuckerrübenforschung, Göttingen,

Brown J, Caligari P (2008) An Introduction to Plant Breeding. Blackwell Publishing,

Brandt P (2000) Transgene Pflanzen. Birkhäuser Verlag, Berlin

Brandes A (2000) Ertrag und Qualität von Zuckerrüben in Abhängigkeit von Restverunkrautung und Standort. Institut für Zuckerrübenforschung Göttingen,

Borchardt DC (1995) Optimierung von Methoden zur Züchtung von Zuckerrüben. Universität Hohenheim, Fakultät III, Agrarwissenschaften I, Aachen

Bloch D (2006) Physiological effects of drought stress in sugar beet - Yield development, technical quality, genotypic variation. Institut für Zuckerrübenforschung, Göttingen,

Biancardi E, Campbell LG, Skaracis GN, De Biaggi M (2005) Genetics and Breeding of Sugar Beet. Science Publishers Inc., Enfieldt, NH, USA

Bernardo R (2010) Breeding for Quantitative Traits in Plants. Second edn. Stemma Press, Woodbury, Minnesota

Andersen JR (2005) Control of flowering time and vernalization requirement in grasses. Danish Institute of Agricultural Sciences, Royal Veterinary and Agricultural University,

Acquaah G (2007) Principles of Plant Genetics and Breeding. Blackwell Publishing,

Wang C, Chen Y, Ku L, Wang T, Sun Z, Cheng F, Wu L (2010) Mapping QTL associated with photoperiod sensitivity and assessing the importance of QTL×environment interaction for flowering time in maize. PLoS ONE 5 (11):e14068. doi:10.1371/journal.pone.0014068

Vacher C, Kossler TM, Hochberg ME, Weis AE (2011) Impact of interspecific hybridization between crops and weedy relatives on the evolution of flowering time in weedy phenotypes. PLoS ONE 6 (2):e14649. doi:10.1371/journal.pone.0014649

Sheldon CC, Conn AB, Dennis ES, Peacock WJ (2002) Different regulatory regions are required for the vernalization-induced repression of FLOWERING LOCUS C and for the epigenetic maintenance of repression. Plant Cell 14 (10):2527-2537

Saïdou AA, Mariac C, Luong V, Pham JL, Bezançon G, Vigouroux Y (2009) Association studies identify natural variation at PHYC linked to flowering time and morphological variation in pearl millet. Genetics 182 (3):899-910. doi:genetics.109.102756 [pii] 10.1534/genetics.109.102756

Rhoné B, Vitalis R, Goldringer I, Bonnin I (2010) Evolution of flowering time in experimental wheat populations: a comprehensive approach to detect genetic signatures of natural selection. Evolution 64 (7):2110-2125. doi:EVO970 [pii] 10.1111/j.1558- 5646.2010.00970.x

Wall PK, Leebens-Mack J, Chanderbali AS, Barakat A, Wolcott E, Liang H, Landherr L, Tomsho LP, Hu Y, Carlson JE, Ma H, Schuster SC, Soltis DE, Soltis PS, Altman N, dePamphilis CW (2009) Comparison of next generation sequencing technologies for transcriptome characterization. BMC Genomics 10:347. doi:1471-2164-10-347 [pii] 10.1186/1471-2164-10-347

Amasino R (2004) Vernalization, competence, and the epigenetic memory of winter. Plant Cell 16 (10):2553-2559. doi:16/10/2553 [pii] 10.1105/tpc.104.161070

Parchman TL, Geist KS, Grahnen JA, Benkman CW, Buerkle CA (2010) Transcriptome sequencing in an ecologically important tree species: assembly, annotation, and marker discovery. BMC Genomics 11:180. doi:1471-2164-11-180 [pii] 10.1186/1471-2164-11- 180

Li B, Ruotti V, Stewart RM, Thomson JA, Dewey CN (2010) RNA-Seq gene expression estimation with read mapping uncertainty. Bioinformatics 26 (4):493-500. doi:btp692 [pii] 10.1093/bioinformatics/btp692

Howard BE, Heber S (2010) Towards reliable isoform quantification using RNA-SEQ data. BMC Bioinformatics 11 Suppl 3:S6. doi:1471-2105-11-S3-S6 [pii] 10.1186/1471- 2105-11-S3-S6

González-Ballester D, Casero D, Cokus S, Pellegrini M, Merchant SS, Grossman AR (2010) RNA-seq analysis of sulfur-deprived Chlamydomonas cells reveals aspects of acclimation critical for cell survival. Plant Cell 22 (6):2058-2084. doi:tpc.109.071167 [pii] 10.1105/tpc.109.071167

Bryant DW, Shen R, Priest HD, Wong WK, Mockler TC (2010) Supersplat--spliced RNA-seq alignment. Bioinformatics 26 (12):1500-1505. doi:btq206 [pii] 10.1093/bioinformatics/btq206

Weigel D, Kobayashi Y (2007) Move on up, it's time for change - mobile signals controlling photoperiod-dependent flowering. Genes Dev 21 (19):2371-2384. doi:10.1101/gad.1589007

Sung SB, Kim DH, Zografos BR (2010) Vernalization-Mediated VIN3 Induction Overcomes the LIKE-HETEROCHROMATIN PROTEIN1/POLYCOMB REPRESSION COMPLEX2-Mediated Epigenetic Repression. Plant Physiol 154 (2):949-957. doi:10.1104/pp.110.161083

Chen K-Y, Cong B, Wing R, Vrebalov J, Tanksley SD (2007) Changes in regulation of a transcription factor lead to autogamy in cultivated tomatoes. Science 318 (5850):643-645. doi:10.1126/science.1148428

Kardailsky I, Shukla VK, Ahn JH, Dagenais N, Christensen SK, Nguyen JT, Chory J, Harrison MJ, Weigel D (1999) Activation tagging of the floral inducer FT. Science 286 (5446):1962-1965. doi:10.1126/science.286.5446.1962

Gale MD, Devos KM (1998) Plant comparative genetics after 10 years. Science 282 (5389):656-659. doi:10.1126/science.282.5389.656 Poethig RS (2003) Phase change and the regulation of developmental timing in plants. Science 301 (5631):334-336. doi:10.1126/science.1085328

Pennisi E (2000) Evolutionary biology - Chewed leaves reveal ancient relationship. Science 289 (5477):229-+. doi:10.1126/science.289.5477.229

Bouvier F, Dogbo O, Camara B (2003) Biosynthesis of the food and cosmetic plant pigment bixin (annatto). Science 300 (5628):2089-2091. doi:10.1126/science.1085162

Betancourt JL, Latorre C, Rech JA, Quade J, Rylander KA (2000) A 22,000-year record of monsoonal precipitation from Northern Chile's Atacama Desert. Science 289 (5484):1542-1546. doi:10.1126/science.289.5484.1542

Yan LL, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen JL, Echenique V, Dubcovsky J (2004) The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 303 (5664):1640-1644. doi:10.1126/science.1094305

Shimizu KK, Cork JM, Caicedo AL, Mays CA, Moore RC, Olsen KM, Ruzsa S, Coop G, Bustamante CD, Awadalla P, Purugganan MD (2004) Darwinian selection on a selfing locus. Science 306 (5704):2081-2084. doi:10.1126/science.1103776

Klejnot J, Lin CT (2004) A CONSTANS experience brought to light. Science 303 (5660):965-966. doi:10.1126/science.1094734

Johnson CM, Beard BL (2005) The right time and place for making flowers. Science 309 (5737):1024-1025. doi:10.1126/science.1117203

Bastow R, Dean C (2003) Plant sciences - Deciding when to flower. Science 302 (5651):1695-1697. doi:10.1126/science.1092862

Ashikari M, Sakakibara H, Lin SY, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q, Kitano H, Matsuoka M (2005) Cytokinin oxidase regulates rice grain production. Science 309 (5735):741-745. doi:10.1126/science.1113373

Smith SA, Donoghue MJ (2008) Rates of molecular evolution are linked to life history in flowering plants. Science 322 (5898):86-89. doi:10.1126/science.1163197

Pichersky E, Noel JP, Dudareva N (2006) Biosynthesis of plant volatiles: Nature's diversity and ingenuity. Science 311 (5762):808-811. doi:10.1126/science.1118510

Pennisi E (2008) Plant genetics: The blue revolution, drop by drop, gene by gene. Science 320 (5873):171-173. doi:10.1126/science.320.5873.171

Pennisi E (2008) Evolution - Where have all Thoreau's flowers gone? Science 321 (5885):24-25

Baeurle I, Smith L, Baulcombe DC, Dean C (2007) Widespread role for the flowering- time regulators FCA and FPA in RNA-mediated chromatin silencing. Science 318 (5847):109-112. doi:10.1126/science.1146565 Wake DB, Wake MH, Specht CD (2011) Homoplasy: From Detecting Pattern to Determining Process and Mechanism of Evolution. Science 331 (6020):1032-1035. doi:10.1126/science.1188545

Stern DL, Orgogozo V (2009) Is Genetic Evolution Predictable? Science 323 (5915):746- 751. doi:10.1126/science.1158997

Pennisi E (2009) ORIGINS On the Origin of Flowering Plants. Science 324 (5923):28-31

Kaufmann K, Wellmer F, Muino JM, Ferrier T, Wuest SE, Kumar V, Serrano-Mislata A, Madueno F, Krajewski P, Meyerowitz EM, Angenent GC, Riechmann JL (2010) Orchestration of Floral Initiation by APETALA1. Science 328 (5974):85-89. doi:10.1126/science.1185244

Salazar JD, Saithong T, Brown PE, Foreman J, Locke JCW, Halliday KJ, Carre IA, Rand DA, Millar AJ (2009) Prediction of Photoperiodic Regulators from Quantitative Gene Circuit Models. Cell 139 (6):1170-1179. doi:10.1016/j.cell.2009.11.029

Zufall RA, Rausher MD (2004) Genetic changes associated with floral adaptation restrict future evolutionary potential. Nature 428 (6985):847-850. doi:10.1038/nature02489

Herlihy CR, Eckert CG (2002) Genetic cost of reproductive assurance in a self-fertilizing plant. Nature 416 (6878):320-323. doi:10.1038/416320a

Martin A, Troadec C, Boualem A, Rajab M, Fernandez R, Morin H, Pitrat M, Dogimont C, Bendahmane A (2009) A transposon-induced epigenetic change leads to sex determination in melon. Nature 461 (7267):1135-U1237. doi:10.1038/nature08498

Vielle-Calzada JP, Baskar R, Grossniklaus U (2000) Delayed activation of the paternal genome during seed development. Nature 404 (6773):91-94

Capaldi EA, Smith AD, Osborne JL, Fahrbach SE, Farris SM, Reynolds DR, Edwards AS, Martin A, Robinson GE, Poppy GM, Riley JR (2000) Ontogeny of orientation flight in the honeybee revealed by harmonic radar. Nature 403 (6769):537-540. doi:10.1038/35000564

Adams KL, Daley DO, Qiu YL, Whelan J, Palmer JD (2000) Repeated, recent and diverse transfers of a mitochondrial gene to the nucleus in flowering plants. Nature 408 (6810):354-357

Voznesenskaya EV, Franceschi VR, Kiirats O, Freitag H, Edwards GE (2001) Kranz anatomy is not essential for terrestrial C-4 plant photosynthesis. Nature 414 (6863):543- 546. doi:10.1038/35107073

Stensmyr MC, Urru I, Collu I, Celander M, Hansson BS, Angioy AM (2002) Rotting smell of dead-horse arum florets - These blooms chemically fool flies into pollinating them. Nature 420 (6916):625-626. doi:10.1038/420625a

Sherman G, Visscher PK (2002) Honeybee colonies achieve fitness through dancing. Nature 419 (6910):920-922. doi:10.1038/nature01127

Rolland-Lagan AG, Bangham JA, Coen E (2003) Growth dynamics underlying petal shape and asymmetry. Nature 422 (6928):161-163. doi:10.1038/nature01443 Hibberd JM, Quick WP (2002) Characteristics of C-4 photosynthesis in stems and petioles of C-3 flowering plants. Nature 415 (6870):451-454. doi:10.1038/415451a

Chittka L, Dyer AG, Bock F, Dornhaus A (2003) Psychophysics - Bees trade off foraging speed for accuracy. Nature 424 (6947):388-388. doi:10.1038/424388a

Cerdan PD, Chory J (2003) Regulation of flowering time by light quality. Nature 423 (6942):881-885. doi:10.1038/nature01636

Seymour RS, White CR, Gibernan M (2003) Environmental biology: Heat reward for insect pollinators. Nature 426 (6964):243-244. doi:10.1038/426243a

Schroeder JI, Kuhn JM (2006) Plant biology - Abscisic acid in bloom. Nature 439 (7074):277-278. doi:10.1038/439277a

Savolainen V, Anstett MC, Lexer C, Hutton I, Clarkson JJ, Norup MV, Powell MP, Springate D, Salamin N, Baker WJ (2006) Sympatric speciation in palms on an oceanic island. Nature 441 (7090):210-213. doi:10.1038/nature04566

Gee H (2006) Evolution - Experiments in botany. Nature 441 (7091):298-298. doi:10.1038/441298a

Friedman WE (2006) Embryological evidence for developmental lability during early angiosperm evolution. Nature 441 (7091):337-340. doi:10.1038/nature04690

Edwards M, Richardson AJ (2004) Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430 (7002):881-884. doi:10.1038/nature02808

Edwards J, Whitaker D, Klionsky S, Laskowski MJ (2005) Botany - A record-breaking pollen catapult. Nature 435 (7039):164-164. doi:10.1038/435164a

Dalton R (2005) Saving the agave. Nature 438 (7071):1070-1071. doi:10.1038/4381070a

Borchert R, Renner SS, Calle Z, Navarrete D, Tye A, Gautier L, Spichiger R, von Hildebrand P (2005) Photoperiodic induction of synchronous flowering near the Equator. Nature 433 (7026):627-629. doi:10.1038/nature03259

Scheuermann JC, Alonso AGdA, Oktaba K, Ly-Hartig N, McGinty RK, Fraterman S, Wilm M, Muir TW, Mueller J (2010) Histone H2A deubiquitinase activity of the Polycomb repressive complex PR-DUB. Nature 465 (7295):243-U138. doi:10.1038/nature08966

Peers G, Truong TB, Ostendorf E, Busch A, Elrad D, Grossman AR, Hippler M, Niyogi KK (2009) An ancient light-harvesting protein is critical for the regulation of algal photosynthesis. Nature 462 (7272):518-U215. doi:10.1038/nature08587

Nozue K, Covington MF, Duek PD, Lorrain S, Fankhauser C, Harmer SL, Maloof JN (2007) Rhythmic growth explained by coincidence between internal and external cues. Nature 448 (7151):358-U311. doi:10.1038/nature05946

Nordborg M, Weigel D (2008) Next-generation genetics in plants. Nature 456 (7223):720- 723. doi:10.1038/nature07629 Ni Z, Kim E-D, Ha M, Lackey E, Liu J, Zhang Y, Sun Q, Chen ZJ (2009) Altered circadian rhythms regulate growth vigour in hybrids and allopolyploids. Nature 457 (7227):327-U327. doi:10.1038/nature07523

Marris E (2008) Plant hormone study pulled. Nature 456 (7223):683-683. doi:10.1038/456683a

Kim W-Y, Fujiwara S, Suh S-S, Kim J, Kim Y, Han L, David K, Putterill J, Nam HG, Somers DE (2007) ZEITLUPE is a circadian photoreceptor stabilized by GIGANTEA in blue light. Nature 449 (7160):356-+. doi:10.1038/nature06132 de Aguiar MAM, Baranger M, Baptestini EM, Kaufman L, Bar-Yam Y (2009) Global patterns of speciation and diversity. Nature 460 (7253):384-387. doi:10.1038/nature08168 vanOosterom EJ, Bidinger FR, Mahalakshmi V, Rao KP (1996) Effect of water availability pattern on yield of pearl millet in semi-arid tropical environments. Euphytica 89 (2):165-173

Spaner D, Brathwaite RAI, Mather DE (1996) Diallel study of open-pollinated maize varieties in Trinidad. Euphytica 90 (1):65-72

Worland AJ (1996) The influence of flowering time genes on environmental adaptability in European wheats. Euphytica 89 (1):49-57. doi:10.1007/bf00015718

Summerfield RJ, Ellis RH, Craufurd PQ, Aiming Q, Roberts EH, Wheeler TR (1997) Environmental and genetic regulation of flowering of tropical annual crops. Euphytica 96 (1):83-91. doi:10.1023/a:1002944802079

Summerfield RJ, Ellis RH, Craufurd PQ (1996) Phenological adaptation to cropping environment. From evaluation descriptors of times to flowering to the genetic characterisation of flowering responses to photoperiod and temperature. Euphytica 92 (1- 2):281-286. doi:10.1007/bf00022856

Sparnaaij LD, Bos I (1996) Genetic variation in dry weight of carnation cuttings: Its causes and consequences. Euphytica 90 (2):175-181. doi:10.1007/bf00023856

Snape JW, Quarrie SA, Laurie DA (1996) Comparative mapping and its use for the genetic analysis of agronomic characters in wheat. Euphytica 89 (1):27-31. doi:10.1007/bf00015715

Piano E, Pecetti L, Carroni AM (1996) Climatic adaptation in subterranean clover populations. Euphytica 92 (1-2):39-44. doi:10.1007/bf00022826

Kristiansen K, Hansen CW, Brandt K (1997) Flower induction in seedlings of Aster novi- belgii and selection before and after vegetative propagation. Euphytica 93 (3):361-367. doi:10.1023/a:1002952701132

Karmakar PG, Bhatnagar PS (1996) Genetic improvement of soybean varieties released in India from 1969 to 1993. Euphytica 90 (1):95-103

Hamdi A, Erskine W (1996) Reaction of wild species of the genus Lens to drought. Euphytica 91 (2):173-179 Worland AJ, Borner A, Korzun V, Li WM, Petrovic S, Sayers EJ (1998) The influence of photoperiod genes on the adaptability of European winter wheats (Reprinted from Wheat: Prospects for global improvement, 1998). Euphytica 100 (1-3):385-394. doi:10.1023/a:1018327700985

Snape JW (1998) Golden calves or white elephants? Biotechnologies for wheat improvement. Euphytica 100 (1-3):207-217. doi:10.1023/a:1018343906495

Gu WK, Zhu JQ, Wallace DH, Singh SP, Weeden NF (1998) Analysis of genes controlling photoperiod sensitivity in common bean using DNA markers. Euphytica 102 (1):125-132. doi:10.1023/a:1018340514388

Ferrara GO, Mosaad MG, Mahalakshmi V, Rajaram S (1998) Photoperiod and vernalisation response of Mediterranean wheats, and implications for adaption (Reprinted from Wheat: Prospects for global improvement, 1998). Euphytica 100 (1-3):377-384. doi:10.1023/a:1018375616915

Chapman SC, Crossa J, Edmeades GO (1997) Genotype by environment effects and selection for drought tolerance in tropical maize .1. Two mode pattern analysis of yield. Euphytica 95 (1):1-9. doi:10.1023/a:1002918008679

Boskovic R, Tobutt KR (1999) Correlation of stylar ribonuclease isoenzymes with incompatibility alleles in apple. Euphytica 107 (1):29-43. doi:10.1023/a:1003516902123

Yadav OP, Weltzien-Rattunde E, Bidinger FR, Mahalakshmi V (2000) Heterosis in landrace-based topcross hybrids of pearl millet across arid environments. Euphytica 112 (3):285-295. doi:10.1023/a:1003965025727

Lyakh V, Soroka A, Mishchenko L (2001) Flowering time in oil flax can be influenced by microgametophytic selection. Euphytica 118 (3):237-242. doi:10.1023/a:1017516532724

Ahmed TA, Tsujimoto H, Sasakuma T (2000) Identification of RFLP markers linked with heading date and its heterosis in hexaploid wheat. Euphytica 116 (2):111-119. doi:10.1023/a:1004076826528

Adetimirin VO, Kim SK, Aken'Ova ME (2000) Expression of mature plant resistance to Striga hermonthica in maize. Euphytica 115 (2):149-158. doi:10.1023/a:1004006115082

Snape JW, Sarma R, Quarrie SA, Fish L, Galiba G, Sutka J (2001) Mapping genes for flowering time and frost tolerance in cereals using precise genetic stocks. Euphytica 120 (3):309-315. doi:10.1023/a:1017541505152

Snape JW, Butterworth K, Whitechurch E, Worland AJ (2001) Waiting for fine times: genetics of flowering time in wheat. Euphytica 119 (1-2):185-190. doi:10.1023/a:1017594422176

Ladyzynski M, Burza W, Malepszy S (2002) Relationship between somaclonal variation and type of culture in cucumber. Euphytica 125 (3):349-356. doi:10.1023/a:1016017825907

Danin-Poleg Y, Tadmor Y, Tzuri G, Reis N, Hirschberg J, Katzir N (2002) Construction of a genetic map of melon with molecular markers and horticultural traits, and localization of genes associated with ZYMV resistance. Euphytica 125 (3):373-384. doi:10.1023/a:1016021926815

Chantereau J, Trouche G, Rami JF, Deu M, Barro C, Grivet L (2001) RFLP mapping of QTLs for photoperiod response in tropical sorghum. Euphytica 120 (2):183-194. doi:10.1023/a:1017513608309

Bourion V, Fouilloux G, Le Signor C, Lejeune-Henaut I (2002) Genetic studies of selection criteria for productive and stable peas. Euphytica 127 (2):261-273. doi:10.1023/a:1020219117256

Adhikari KN, Galwey NW, Dracup M (2002) The genetic control of mildly restricted branching in narrow-leafed lupin (Lupinus angustifolius L.). Euphytica 123 (1):101-109. doi:10.1023/a:1014420902282

Xia ZJ, Sato H, Watanabe S, Kawasaki S, Harada K (2005) Construction and characterization of a BAC library of soybean. Euphytica 141 (1-2):129-137. doi:10.1007/s10681-005-6380-8

Sonoda T, Iwamura H, Uragami A, Ohwada M (2003) Development of a rapid method for identifying asparagus super-males using, N-(4-chloro-2-trifluoromethylphenyl)-N '- propoxyacetamidine to induce flowering. Euphytica 129 (2):169-174. doi:10.1023/a:1021919804767

Cho SH, Kumar J, Shultz JL, Anupama K, Tefera F, Muehlbauer FJ (2002) Mapping genes for double podding and other morphological traits in chickpea. Euphytica 128 (2):285-292. doi:10.1023/a:1020872009306

Chmelnitsky I, Sobolev I, Barg R, Shabtai S, Salts Y (2003) Isolation and preliminary characterization of tomato petal- and stamen-specific cDNAs from a subtracted and equilibrated cDNA library. Euphytica 129 (2):229-236. doi:10.1023/a:1021983806607

Cheng CH, Gordon IL (2003) Patterns of variation in flowering and seed set of meadowfoam. Euphytica 131 (1):105-111. doi:10.1023/a:1023069008479

Appendino ML, Bartoloni N, Slafer GA (2003) Vernalization response and earliness per se in cultivars representing different eras of wheat breeding in Argentina. Euphytica 130 (1):61-69. doi:10.1023/a:1022376711850

Xu XY, Bai GH, Carver BF, Shaner GE (2005) A QTL for early heading in wheat cultivar Suwon 92. Euphytica 146 (3):233-237. doi:10.1007/s10681-005-9017-z

Stoddard FL, Balko C, Erskine W, Khan HR, Link W, Sarker A (2006) Screening techniques and sources of resistance to abiotic stresses in cool-season food legumes. Euphytica 147 (1-2):167-186. doi:10.1007/s10681-006-4723-8

Millan T, Clarke HJ, Siddique KHM, Buhariwalla HK, Gaur PM, Kumar J, Gil J, Kahl G, Winter P (2006) Chickpea molecular breeding: New tools and concepts. Euphytica 147 (1- 2):81-103. doi:10.1007/s10681-006-4261-4

Lubberstedt T, Zein I, Andersen J, Wenzel G, Krutzfeldt B, Eder J, Ouzunova M, Chun S (2005) Development and application of functional markers in maize. Euphytica 146 (1- 2):101-108. doi:10.1007/s10681-005-0892-0 Gonzalez FG, Slafer GA, Miralles DJ (2005) Pre-anthesis development and number of fertile florets in wheat as affected by photoperiod sensitivity genes Ppd-D1 and Ppd-B1. Euphytica 146 (3):253-269. doi:10.1007/s10681-005-9021-3

Ganeva G, Korzun V, Landjeva S, Tsenov N, Atanasova M (2005) Identification, distribution and effects on agronomic traits of the semi-dwarfing Rht alleles in Bulgarian common wheat cultivars. Euphytica 145 (3):305-315. doi:10.1007/s10681-005-1742-9

Fufa H, Baenziger PS, Beecher BS, Graybosch RA, Eskridge KM, Nelson LA (2005) Genetic improvement trends in agronomic performances and end-use quality characteristics among hard red winter wheat cultivars in Nebraska. Euphytica 144 (1- 2):187-198. doi:10.1007/s10681-005-5811-x

Upadhyaya HD, Salimath PM, Gowda CLL, Singh S (2007) New early-maturing germplasm lines for utilization in chickpea improvement. Euphytica 157 (1-2):195-208. doi:10.1007/s10681-007-9411-9

Sorkheh K, Shiran B, Gradziel TM, Epperson BK, Martinez-Gomez P, Asadi E (2007) Amplified fragment length polymorphism as a tool for molecular characterization of almond germplasm: genetic diversity among cultivated genotypes and related wild species of almond, and its relationships with agronomic traits. Euphytica 156 (3):327-344. doi:10.1007/s10681-007-9382-x

Ledbetter CA, Sisterson MS (2008) Advanced generation peach-almond hybrids as seedling rootstocks for almond: first year growth and potential pollenizers for hybrid seed production. Euphytica 160 (2):259-266. doi:10.1007/s10681-007-9569-1

Fargue A, Colbach N, Pierre J, Picault H, Renard M, Meynard JM (2006) Predictive study of the advantages of cleistogamy in oilseed rape in limiting unwanted gene flow. Euphytica 151 (1):1-13. doi:10.1007/s10681-005-9005-3

Erazzu LE, Camadro EL (2007) Direct and indirect detection of 2n eggs in hybrid diploid families derived from haploid tbr x wild species crosses. Euphytica 155 (1-2):57-62. doi:10.1007/s10681-006-9300-7

Efremova TT, Maystrenko OI, Arbuzova VS, Laikova LI, Panina GM, Popova OM, Berezova OV (2006) Effect of alien 5R(5A) chromosome substitution on ear-emergence time and winter hardiness in wheat-rye substitution lines. Euphytica 151 (2):145-153. doi:10.1007/s10681-006-9135-2

Anbessa Y, Warkentin T, Vandenberg A, Bandara M (2006) Heritability and predicted gain from selection in components of crop duration in divergent chickpea cross populations. Euphytica 152 (1):1-8. doi:10.1007/s10681-006-9163-y

Ahman IM, Kazachkova NI, Kamnert IM, Hagberg PA, Dayteg CI, Eklund GM, Meijer LJO, Ekbom B (2006) Characterisation of transgenic oilseed rape expressing pea lectin in anthers for improved resistance to pollen beetle. Euphytica 151 (3):321-330. doi:10.1007/s10681-006-9152-1

Uwatoko N, Onishi A, Ikeda Y, Kontani M, Sasaki A, Matsubara K, Itoh Y, Sano Y (2008) Epistasis among the three major flowering time genes in rice: coordinate changes of photoperiod sensitivity, basic vegetative growth and optimum photoperiod. Euphytica 163 (2):167-175. doi:10.1007/s10681-007-9584-2 Pankova K, Milec Z, Simmonds J, Leverington-Waite M, Fish L, Snape JW (2008) Genetic mapping of a new flowering time gene on chromosome 3B of wheat. Euphytica 164 (3):779-787. doi:10.1007/s10681-008-9727-0

Lin F, Xue SL, Tian DG, Li CJ, Cao Y, Zhang ZZ, Zhang CQ, Ma ZQ (2008) Mapping chromosomal regions affecting flowering time in a spring wheat RIL population. Euphytica 164 (3):769-777. doi:10.1007/s10681-008-9724-3

Khlestkina EK, Giura A, Roeder MS, Boerner A (2009) A new gene controlling the flowering response to photoperiod in wheat. Euphytica 165 (3):579-585. doi:10.1007/s10681-008-9783-5

Heinemann AB, Dingkuhn M, Luquet D, Combres JC, Chapman S (2008) Characterization of drought stress environments for upland rice and maize in central Brazil. Euphytica 162 (3):395-410. doi:10.1007/s10681-007-9579-z

Blanc G, Charcosset A, Veyrieras J-B, Gallais A, Moreau L (2008) Marker-assisted selection efficiency in multiple connected populations: a simulation study based on the results of a QTL detection experiment in maize. Euphytica 161 (1-2):71-84. doi:10.1007/s10681-007-9607-z

Qin J, Yang R, Liu Z, Zhang Y, Jiang C, Li W, Li Y, Guan R, Chang R, Qiu L (2010) Location and transmission of QTL for multiple traits in the pedigree of soybean cultivars. Euphytica 173 (3):377-386. doi:10.1007/s10681-010-0122-2

Niemela T, Seppanen M, Jauhiainen L, Tulisalo U (2010) Transfer of the Kosena Rfk1 gene, required in hybrid seed production, from oilseed rape to turnip rape. Euphytica 175 (1):1-12. doi:10.1007/s10681-010-0171-6

Maqbool A, Shafiq S, Lake L (2010) Radiant frost tolerance in pulse crops-a review. Euphytica 172 (1):1-12. doi:10.1007/s10681-009-0031-4

Guo Y, McCarty JC, Jenkins JN, An C, Saha S (2009) Genetic detection of node of first fruiting branch in crosses of a cultivar with two exotic accessions of upland cotton. Euphytica 166 (3):317-329. doi:10.1007/s10681-008-9809-z

Shiraishi M, Chijiwa H, Fujishima H, Muramoto K (2010) Resveratrol production potential of grape flowers and green berries to screen genotypes for gray mold and powdery mildew resistance. Euphytica 176 (3):371-381. doi:10.1007/s10681-010-0221-0

Wang ZL, Xu QZ, Huang BR (2004) Endogenous cytokinin levels and growth responses to extended photoperiods for creeping bentgrass under heat stress. Crop Sci 44 (1):209- 213

Mahfoozi S, Limin AE, Fowler DB (2001) Influence of vernalization and photoperiod responses on cold hardiness in winter cereals. Crop Sci 41 (4):1006-1011 vanOosterom EJ, Jayachandran R, Bidinger FR (1996) Diallel analysis of the stay-green trait and its components in sorghum. Crop Sci 36 (3):549-555

Takahashi R, Asanuma S (1996) Association of T gene with chilling tolerance in soybean. Crop Sci 36 (3):559-562 Piper EL, Boote KJ, Jones JW, Grimm SS (1996) Comparison of two phenology models for predicting flowering and maturity date of soybean. Crop Sci 36 (6):1606-1614

Jones MA, Wells R, Guthrie DS (1996) Cotton response to seasonal patterns of flower removal .1. Yield and fiber quality. Crop Sci 36 (3):633-638

Cober ER, Tanner JW, Voldeng HD (1996) Soybean photoperiod-sensitivity loci respond differentially to light quality. Crop Sci 36 (3):606-610

Cober ER, Tanner JW, Voldeng HD (1996) Genetic control of photoperiod response in early-maturing, near-isogenic soybean lines. Crop Sci 36 (3):601-605

Yin YY, Kropff MJ, Ynalvez MA (1997) Photoperiodically sensitive and insensitive phases of preflowering development in rice. Crop Sci 37 (1):182-190

Yin XY, Kropff MJ, Goudriaan J (1997) Changes in temperature sensitivity of development from sowing to flowering in rice. Crop Sci 37 (6):1787-1794

Wheeler TR, Chatzialioglou A, Craufurd PQ, Ellis RH, Summerfield RJ (1997) Dry matter partitioning in groundnut exposed to high temperature stress. Crop Sci 37 (5):1507- 1513

VanEsbroeck GA, Hussey MA, Sanderson MA (1997) Leaf appearance rate and final leaf number of switchgrass cultivars. Crop Sci 37 (3):864-870

Takahashi R (1997) Association of soybean genes I and T with low-temperature induced seed coat deterioration. Crop Sci 37 (6):1755-1759

Steiner JJ, Piccioni E, Falcinelli M, Liston A (1998) Germplasm diversity among cultivars and the NPGS crimson clover collection. Crop Sci 38 (1):263-271

Ren Q, Pfeiffer TW, Ghabrial SA (1997) Soybean mosaic virus incidence level and infection time: Interaction effects on soybean. Crop Sci 37 (6):1706-1711

Lewers KS, StMartin SK, Hedges BR, Widrlechner MP, Palmer RG (1996) Hybrid soybean seed production: Comparison of three methods. Crop Sci 36 (6):1560-1567

Kandel HJ, Schneiter AA, Johnson BL (1997) Intercropping legumes into sunflower at different growth stages. Crop Sci 37 (5):1532-1537

Holland JB, Moser HS, Odonoughue LS, Lee M (1997) QTLs and epistasis associated with vernalization responses in oat. Crop Sci 37 (4):1306-1316

Clark RL, Shands HL, Bretting PK, Eberhart SA (1997) Managing large diverse germplasm collections. Crop Sci 37 (1):1-6

Van Esbroeck GA, Hussey MA, Sanderson MA (1998) Selection response and developmental basis for early and late panicle emergence in Alamo switchgrass. Crop Sci 38 (2):342-346

Talwar HS, Takeda H, Yashima S, Senboku T (1999) Growth and photosynthetic responses of groundnut genotypes to high temperature. Crop Sci 39 (2):460-466 Steiner JJ, Alderman SC (1999) Red clover seed production: V. Root health and crop productivity. Crop Sci 39 (5):1407-1415

Prasad PVV, Craufurd PQ, Summerfield RJ (1999) Sensitivity of peanut to timing of heat stress during reproductive development. Crop Sci 39 (5):1352-1357

Or E, Hovav R, Abbo S (1999) A major gene for flowering time in chickpea. Crop Sci 39 (2):315-322

Holman EM, Oosterhuis DM (1999) Cotton photosynthesis and carbon partitioning in response to floral bud loss due to insect damage. Crop Sci 39 (5):1347-1351

Conocono EA, Egdane JA, Setter TL (1998) Estimation of canopy photosynthesis in rice by means of daily increases in leaf carbohydrate concentrations. Crop Sci 38 (4):987-995

Butruille DV, Guries RP, Osborn TC (1999) Increasing yield of spring oilseed rape hybrids through introgression of winter germplasm. Crop Sci 39 (5):1491-1496

Brandsaeter LO, Netland J (1999) Winter annual legumes for use as cover crops in row crops in northern regions: I. Field experiments. Crop Sci 39 (5):1369-1379

Bidinger FR, Hash CT, Jayachandran R, Rao M (1999) Recessive, day length-insensitive earliness to synchronize flowering of pearl millet hybrid parents. Crop Sci 39 (4):1049- 1054

Abedon BG, Darrah LL, Tracy WF (1999) Developmental changes associated with divergent selection for rind penetrometer resistance in the MoSCSSS maize synthetic. Crop Sci 39 (1):108-114

Xu SJ, Singh RJ, Kollipara KP, Hymowitz T (2000) Hypertriploid in soybean: Origin, identification, cytology, and breeding behavior. Crop Sci 40 (1):72-77

Takahashi R, Abe J (1999) Soybean maturity genes associated with seed coat pigmentation and cracking in response to low temperatures. Crop Sci 39 (6):1657-1662

Shafer GS, Burson BL, Hussey MA (2000) Stigma receptivity and seed set in protogynous buffelgrass. Crop Sci 40 (2):391-397

Pederson GA, Brink GE (2000) Seed production of white clover cultivars and naturalized populations when grown in a pasture. Crop Sci 40 (4):1109-1114

Pecetti L, Tava A (2000) Effect of flower color and sampling time on volatile emanation in alfalfa flowers. Crop Sci 40 (1):126-130

Ismail AM, Hall AE (1999) Reproductive-stage heat tolerance, leaf membrane thermostability and plant morphology in cowpea. Crop Sci 39 (6):1762-1768

Garcia-Diaz CA, Steiner JJ (2000) Birdsfoot trefoil seed production: II. Plant-water status on reproductive development and seed yield. Crop Sci 40 (2):449-456

Desclaux D, Huynh TT, Roumet P (2000) Identification of soybean plant characteristics that indicate the timing of drought stress. Crop Sci 40 (3):716-722 Chapman SC, Edmeades GO (1999) Selection improves drought tolerance in tropical maize populations: II. Direct and correlated responses among secondary traits. Crop Sci 39 (5):1315-1324

Carcova J, Uribelarrea M, Borras L, Otegui ME, Westgate ME (2000) Synchronous pollination within and between ears improves kernel set in maize. Crop Sci 40 (4):1056- 1061

Brancourt-Hulmel M, Lecomte C, Meynard JM (1999) A diagnosis of yield-limiting factors on probe genotypes for characterizing environments in winter wheat trials. Crop Sci 39 (6):1798-1808

Adamsen FJ, Coffelt TA, Nelson JM, Barnes EM, Rice RC (2000) Method for using images from a color digital camera to estimate flower number. Crop Sci 40 (3):704-709

Nishida H, Inoue H, Okumoto Y, Tanisaka T (2002) A novel gene ef1-h conferring an extremely long basic vegetative growth period in rice. Crop Sci 42 (2):348-354

Grenier C, Bramel-Cox PJ, Hamon P (2001) Core collection of sorghum: I. Stratification based on eco-geographical data. Crop Sci 41 (1):234-240

Geleta B, Atak M, Baenziger PS, Nelson LA, Baltenesperger DD, Eskridge KM, Shipman MJ, Shelton DR (2002) Seeding rate and genotype effect on agronomic performance and end-use quality of winter wheat. Crop Sci 42 (3):827-832

Curtis DF, Tanner JW, Luzzi BM, Hume DJ (2000) Agronomic and phenological differences of soybean isolines differing in maturity and growth habit. Crop Sci 40 (6):1624-1629

Cober ER, Voldeng HD (2001) A new soybean maturity and photoperiod-sensitivity locus linked to E1 and T. Crop Sci 41 (3):698-701

Cober ER, Voldeng HD (2001) Low R : FR light quality delays flowering of E7E7 soybean lines. Crop Sci 41 (6):1823-1826

Cober ER, Stewart DW, Voldeng HD (2001) Photoperiod and temperature responses in early-maturing, near-isogenic soybean lines. Crop Sci 41 (3):721-727

Cattani DJ, Struik PC, Nowak JN (2002) Comparative morphological development of divergent flowering types of annual bluegrass and tillering types of creeping bentgrass. Crop Sci 42 (4):1251-1258

Carcova J, Otegui ME (2001) Ear temperature and pollination timing effects on maize kernel set. Crop Sci 41 (6):1809-1815

Biles SP, Cothren JT (2001) Flowering and yield response of cotton to application of mepiquat chloride and PGR-IV. Crop Sci 41 (6):1834-1837

Ali AM, Hash CT, Ibrahim AES, Raj AGB (2001) Population diallel of elite medium- and long-duration pearl millet composites: I. Populations and their F-1 crosses. Crop Sci 41 (3):705-711 Wilson LJ, Sadras VO, Heimoana SC, Gibb D (2003) How to succeed by doing nothing: Cotton compensation after simulated early season pest damage. Crop Sci 43 (6):2125- 2134

Timmerman-Vaughan GM, Frew TJ, Russell AC, Khan T, Butler R, Gilpin M, Murray S, Falloon K (2002) QTL mapping of partial resistance to field epidemics of ascochyta blight of pea. Crop Sci 42 (6):2100-2111

Tasma IM, Shoemaker RC (2003) Mapping flowering time gene homologs in soybean and their association with maturity (E) loci. Crop Sci 43 (1):319-328

Przepiorkowski T, St Martin SK (2003) The effect of grafting on the flowering of near- isogenic lines of soybean. Crop Sci 43 (5):1760-1763

Presterl T, Weltzien E (2003) Exploiting heterosis in pearl millet for population breeding in arid environments. Crop Sci 43 (3):767-776

Pfeiffer TW, Peyyala R, Ren QX, Ghabrial SA (2003) Increased soybean pubescence density: Yield and soybean mosaic virus resistance effects. Crop Sci 43 (6):2071-2076

Nunes MES, Smith GR (2003) Characterization of rose clover germplasm for flowering traits. Crop Sci 43 (4):1523-1527

Loecke TD, Liebman M, Cambardella CA, Richard TL (2004) Corn growth responses to composted and fresh solid swine manures. Crop Sci 44 (1):177-184

Egli DB, Bruening WP (2002) Synchronous flowering and fruit set at phloem-isolated nodes in soybean. Crop Sci 42 (5):1535-1540

Cober ER, Curtis DF (2003) Both promoters and inhibitors affected flowering time in grafted soybean flowering-time isolines. Crop Sci 43 (3):886-891

Carcova J, Andrieu B, Otegui ME (2003) Silk elongation in maize: Relationship with flower development and pollination. Crop Sci 43 (3):914-920

Aguirrezabal LAN, Lavaud Y, Dosio GAA, Izquierdo NG, Andrade FH, Gonzalez LM (2003) Intercepted solar radiation during seed filling determines sunflower weight per seed and oil concentration. Crop Sci 43 (1):152-161

Yamada T, Jones ES, Cogan NOI, Vecchies AC, Nomura T, Hisano H, Shimamoto Y, Smith KF, Hayward MD, Forster JW (2004) QTL analysis of morphological, developmental, and winter hardiness-associated traits in perennial ryegrass. Crop Sci 44 (3):925-935

Walker DR, Walker AK, Wood ED, Talevera MEB, Fernandez FE, Rowan GB, Moots CK, Leitz RA, Owen PA, Baxter WE, Head JL, Boerma HR (2006) Gametic selection by glyphosate in soybean plants hemizygous for the CP4 EPSPS transgene. Crop Sci 46 (1):30-35. doi:10.2135/cropsci2004.0750 van Beem J, Mohler V, Lukman R, van Ginkel M, William M, Crossa J, Worland AJ (2005) Analysis of genetic factors influencing the developmental rate of globally important CIMMYT wheat cultivars. Crop Sci 45 (5):2113-2119. doi:10.2135/cropsci2004.0665 Takahashi R, Benitez ER, Funatsuki H, Ohnishi S (2005) Soybean maturity and pubescence color genes improve chilling tolerance. Crop Sci 45 (4):1387-1393. doi:10.2135/cropsci2004.0386

Robertson LA, Kleinschmidt CE, White DG, Payne GA, Maragos CM, Holland JB (2006) Heritabilities and correlations of fusarium ear rot resistance and fumonisin contamination resistance in two maize populations. Crop Sci 46 (1):353-361. doi:10.2135/cropsci2005.0139

Nelson RJ, Naylor RL, Jahn MM (2004) The role of genomics research in improvement of "orphan" crops. Crop Sci 44 (6):1901-1904

Messina CD, Jones JW, Boote KJ, Vallejos CE (2006) A gene-based model to simulate soybean development and yield responses to environment. Crop Sci 46 (1):456-466. doi:10.2135/cropsci2005.04-0372

Halsey ME, Remund KM, Davis CA, Qualls M, Eppard PJ, Berberich SA (2005) Isolation of maize from pollen-mediated gene flow by time and distance. Crop Sci 45 (6):2172- 2185. doi:10.2135/cropsci2003.0664

Glover MA, Willmot DB, Darrah LL, Hibbard BE, Zhu XY (2005) Diallel analyses of agronomic traits using Chinese and US maize germplasm. Crop Sci 45 (3):1096-1102. doi:10.2135/cropsci2004.0493

Benitez ER, Funatsuki H, Kaneko Y, Matsuzawa Y, Bang SW, Takahashi R (2004) Soybean maturity gene effects on seed coat pigmentation and cracking in response to low temperatures. Crop Sci 44 (6):2038-2042

Wooten DR, Livingston DP, III, Jellen EN, Boren KJ, Marshall DS, Murphy JP (2007) An intergenomic reciprocal translocation associated with oat winter hardiness component traits. Crop Sci 47 (5):1832-1840. doi:10.2135/cropsci2006.12.0768

Wooten DR, Livingston DP, III, Holland JB, Marshall DS, Murphy JP (2008) Quantitative trait loci and epistasis for crown freezing tolerance in the 'Kanota' x 'Ogle' hexaploid oat mapping population. Crop Sci 48 (1):149-157. doi:10.2135/cropsci2006.12.0793

White JW, Herndl M, Hunt LA, Payne TS, Hoogenboom G (2008) Simulation-based analysis of effects of Vrn and Ppd loci on flowering in wheat. Crop Sci 48 (2):678-687. doi:10.2135/cropsci2007.06.0318

Wang Y, Mu C, Hou Y, Li X (2008) Optimum harvest time of Vicia cracca in relation to high seed quality during pod development. Crop Sci 48 (2):709-715. doi:10.2135/cropsci2007.04.0211sc

Veyrieras J-B, Camus-Kulandaivelu L, Gouesnard B, Manicacci D, Charcosset A (2007) Bridging genomics and genetic diversity: Linkage disequilibrium structure and association mapping in maize and other cereals. Crop Sci 47:S60-S71. doi:10.2135/cropsci2007.04.0009IPBS

Udall JA, Wendel JF (2006) Polyploidy and crop improvement. Crop Sci 46:S3-S14. doi:10.2135/cropsci2006.07.0489tpg Larson SR, Wu X, Jones TA, Jensen KB, Chatterton NJ, Waldron BL, Robins JG, Bushman BS, Palazzo AJ (2006) Comparative mapping of growth habit, plant height, and flowering QTLs in two interspecific families of Leymus. Crop Sci 46 (6):2526-2539. doi:10.2135/cropsci2005.12.0472

Kumudini SV, Pallikonda PK, Steele C (2007) Photoperiod and e-genes influence the duration of the reproductive phase in soybean. Crop Sci 47 (4):1510-1517. doi:10.2135/cropsci2006.10.0662

Jagadish SVK, Craufurd PQ, Wheeler TR (2008) Phenotyping parents of mapping populations of rice for heat tolerance during anthesis. Crop Sci 48 (3):1140-1146. doi:10.2135/cropsci2007.10.0559

Fonts C, Andrade FH, Grondona M, Hall A, Leon AJ (2008) Phenological characterisation of near-isogenic sunflower families bearing two QTLs for photoperiodic response. Crop Sci 48 (4):1579-1585. doi:10.2135/cropsci2007.11.0604

Wooten DR, Livingston DP, III, Lyerly HJ, Holland JB, Jellen EN, Marshall DS, Murphy JP (2009) Quantitative Trait Loci and Epistasis for Oat Winter-Hardiness Component Traits. Crop Sci 49 (6):1989-1998. doi:10.2135/cropsci2008.10.0612

Willenborg CJ, Luschei EC, Brule-Babel AL, Van Acker RC (2009) Flowering Phenology and Synchrony between Volunteer and Cropped Spring Wheat: Implications for Pollen- Mediated Gene Flow. Crop Sci 49 (3):1029-1039. doi:10.2135/cropsci2008.08.0502

Riedeman ES, Chandler MA, Tracy WF (2008) Divergent recurrent selection for vegetative phase change and effects on agronomic traits and corn borer resistance. Crop Sci 48 (5):1723-1731. doi:10.2135/cropsci2007.09.0511

Palaudelmas M, Mele E, Penas G, Pla M, Nadal A, Serra J, Salvia J, Messeguer J (2008) Sowing and Flowering Delays Can Be an Efficient Strategy to Improve Coexistence of Genetically Modified and Conventional Maize. Crop Sci 48 (6):2404-2413. doi:10.2135/cropsci2007.10.0585 de la Vega AJ, Chapman SC (2010) Mega-Environment Differences Affecting Genetic Progress for Yield and Relative Value of Component Traits. Crop Sci 50 (2):574-583. doi:10.2135/cropsci2009.04.0209

Cockram J, Norris C, O'Sullivan DM (2009) PCR-Based Markers Diagnostic for Spring and Winter Seasonal Growth Habit in Barley. Crop Sci 49 (2):403-410. doi:10.2135/cropsci2008.07.0398

Clark MD, Watkins E (2010) Seed Production Characteristics of Prairie Junegrass Germplasm Accessions. Crop Sci 50 (3):1057-1065. doi:10.2135/cropsci2009.05.0235

Borras L, Astini JP, Westgate ME, Severini AD (2009) Modeling Anthesis to Silking in Maize Using a Plant Biomass Framework. Crop Sci 49 (3):937-948. doi:10.2135/cropsci2008.05.0286

Singh M, Conner JA, Zeng YJ, Hanna WW, Johnson VE, Ozias-Akins P (2010) Characterization of Apomictic BC(7) and BC(8) Pearl Millet: Meiotic Chromosome Behavior and Construction of an ASGR-carrier Chromosome-specific Library. Crop Sci 50 (3):892-902. doi:10.2135/cropsci2009.05.0263 Rupitak Q, Stamp P, Jampatong S, Chowchong S, Messmer R (2010) The Temporal Dynamics of Kernel Set in Tropical Sweet Maize Determined by Visual Markers. Crop Sci 50 (6):2499-2505. doi:10.2135/cropsci2010.04.0196

Pinson SRM, Shahjahan AKM, Rush MC, Groth DE (2010) Bacterial Panicle Blight Resistance QTLs in Rice and Their Association with Other Disease Resistance Loci and Heading Date. Crop Sci 50 (4):1287-1297. doi:10.2135/cropsci2008.07.0447

Langhof M, Hommel B, Huesken A, Njontie C, Schiemann J, Wehling P, Wilhelm R, Ruehl G (2010) Coexistence in Maize: Isolation Distance in Dependence on Conventional Maize Field Depth and Separate Edge Harvest. Crop Sci 50 (4):1496-1508. doi:10.2135/cropsci2009.11.0641

Khanal R, Earl H, Lee EA, Lukens L (2011) The Genetic Architecture of Flowering Time and Related Traits in Two Early Flowering Maize Lines. Crop Sci 51 (1):146-156. doi:10.2135/cropsci2010.03.0177

Cober ER (2011) Long Juvenile Soybean Flowering Responses under Very Short Photoperiods. Crop Sci 51 (1):140-145. doi:10.2135/cropsci2010.05.0262

Cicchino M, Edreira JIR, Otegui ME (2010) Heat Stress during Late Vegetative Growth of Maize: Effects on Phenology and Assessment of Optimum Temperature. Crop Sci 50 (4):1431-1437. doi:10.2135/cropsci2009.07.0400

Blume CJ, Fei S-Z, Christians NE (2010) Field Evaluation of Reduced-Growth, Glyphosate-Resistant Kentucky Bluegrass in a Noncompetitive Setting. Crop Sci 50 (3):1048-1056. doi:10.2135/cropsci2009.05.0262

Barriere Y, Mechin V, Denoue D, Bauland C, Laborde J (2010) QTL for Yield, Earliness, and Cell Wall Quality Traits in Topcross Experiments of the F838 x F286 Early Maize RIL Progeny. Crop Sci 50 (5):1761-1772. doi:10.2135/cropsci2009.11.0671

Negeri AT, Coles ND, Holland JB, Balint-Kurti PJ (2011) Mapping QTL Controlling Southern Leaf Blight Resistance by Joint Analysis of Three Related Recombinant Inbred Line Populations. Crop Sci 51 (4):1571-1579. doi:10.2135/cropsci2010.12.0672

Morin C, Belanger G, Tremblay GF, Bertrand A, Castonguay Y, Drapeau R, Michaud R, Berthiaume R, Allard G (2011) Diurnal Variations of Nonstructural Carbohydrates and Nutritive Value in Alfalfa. Crop Sci 51 (3):1297-1306. doi:10.2135/cropsci2010.07.0406

Morgan PW (2011) Another Look at Interpreting Research to Manage the Effects of Ethylene in Ambient Air. Crop Sci 51 (3):903-913. doi:10.2135/cropsci2010.05.0280

Hansey CN, Johnson JM, Sekhon RS, Kaeppler SM, de Leon N (2011) Genetic Diversity of a Maize Association Population with Restricted Phenology. Crop Sci 51 (2):704-715. doi:10.2135/cropsci2010.03.0178

Coles ND, Zila CT, Holland JB (2011) Allelic Effect Variation at Key Photoperiod Response Quantitative Trait Loci in Maize. Crop Sci 51 (3):1036-1049. doi:10.2135/cropsci2010.08.0488

Bonnin I, Rousset M, Madur D, Sourdille P, Dupuits L, Brunel D, Goldringer I (2008) FT genome A and D polymorphisms are associated with the variation of earliness components in hexaploid wheat. Theor Appl Genet 116 (3):383-394. doi:10.1007/s00122- 007-0676-0

Brown PJ, Klein PE, Bortiri E, Acharya CB, Rooney WL, Kresovich S (2006) Inheritance of inflorescence architecture in sorghum. Theor Appl Genet 113 (5):931-942. doi:10.1007/s00122-006-0352-9

Roberts EH, Qi A, Ellis RH, Summerfield RJ, Lawn RJ, Shanmugasundaram S (1996) Use of field observations to characterise genotypic flowering responses to photoperiod and temperature: A soyabean exemplar. Theor Appl Genet 93 (4):519-533. doi:10.1007/bf00417943

Ribaut JM, Jiang C, GonzalezdeLeon D, Edmeades GO, Hoisington DA (1997) Identification of quantitative trait loci under drought conditions in tropical maize .2. Yield components and marker-assisted selection strategies. Theor Appl Genet 94 (6-7):887-896. doi:10.1007/s001220050492

Pooni HS, Virk PS, deToledo JFF, Omenukor R (1997) The nature of gene action in a Nicotiana rustica cross revealed by the recombinant inbred and second-cycle hybrid analysis. Theor Appl Genet 94 (5):664-673. doi:10.1007/s001220050464

Fang DQ, Roose ML, Krueger RR, Federici CT (1997) Fingerprinting trifoliate orange germ plasm accessions with isozymes, RFLPs, and inter-simple sequence repeat markers. Theor Appl Genet 95 (1-2):211-219. doi:10.1007/s001220050550

Stracke S, Borner A (1998) Molecular mapping of the photoperiod response gene ea(7) in barley. Theor Appl Genet 97 (5-6):797-800. doi:10.1007/s001220050958

Sarma RN, Gill BS, Sasaki T, Galiba G, Sutka J, Laurie DA, Snape JW (1998) Comparative mapping of the wheat chromosome 5A Vrn-A1 region with rice and its relationship to QTL for flowering time. Theor Appl Genet 97 (1-2):103-109. doi:10.1007/s001220050872

Kato K, Miura H, Sawada S (1999) QTL mapping of genes controlling ear emergence time and plant height on chromosome 5A of wheat. Theor Appl Genet 98 (3-4):472-477. doi:10.1007/s001220051094

Araki E, Miura H, Sawada S (1999) Identification of genetic loci affecting amylose content and agronomic traits on chromosome 4A of wheat. Theor Appl Genet 98 (6- 7):977-984. doi:10.1007/s001220051158

Yin X, Stam P, Dourleijn CJ, Kropff MJ (1999) AFLP mapping of quantitative trait loci for yield-determining physiological characters in spring barley. Theor Appl Genet 99 (1- 2):244-253. doi:10.1007/s001220051230

Welz HG, Xia XC, Bassetti P, Melchinger AE, Lubberstedt T (1999) QTLs for resistance to Setosphaeria turcica in an early maturing DentxFlint maize population. Theor Appl Genet 99 (3-4):649-655. doi:10.1007/s001220051280

Welz HG, Schechert AW, Geiger HH (1999) Dynamic gene action at QTLs for resistance to Setosphaeria turcica in maize. Theor Appl Genet 98 (6-7):1036-1045. doi:10.1007/s001220051165 Sutka J, Galiba G, Vagujfalvi A, Gill BS, Snape JW (1999) Physical mapping of the Vrn- A1 and Fr1 genes on chromosome 5A of wheat using deletion lines. Theor Appl Genet 99 (1-2):199-202. doi:10.1007/s001220051225

Sari-Gorla M, Krajewski P, Di Fonzo N, Villa M, Frova C (1999) Genetic analysis of drought tolerance in maize by molecular markers. II. Plant height and flowering. Theor Appl Genet 99 (1-2):289-295. doi:10.1007/s001220051234

Craufurd PQ, Mahalakshmi V, Bidinger FR, Mukuru SZ, Chantereau J, Omanga PA, Qi A, Roberts EH, Ellis RH, Summerfield RJ, Hammer GL (1999) Adaptation of sorghum: characterisation of genotypic flowering responses to temperature and photoperiod. Theor Appl Genet 99 (5):900-911. doi:10.1007/s001220051311

Boskovic R, Tobutt KR, Duval H, Batlle I, Dicenta F, Vargas FJ (1999) A stylar ribonuclease assay to detect self-compatible seedlings in almond progenies. Theor Appl Genet 99 (5):800-810. doi:10.1007/s001220051299

Wang D, Karle R, Iezzoni AF (2000) QTL analysis of flower and fruit traits in sour cherry. Theor Appl Genet 100 (3-4):535-544. doi:10.1007/s001220050070

Kato K, Miura H, Sawada S (2000) Mapping QTLs controlling grain yield and its components on chromosome 5A of wheat. Theor Appl Genet 101 (7):1114-1121. doi:10.1007/s001220051587

Brancourt-Hulmel M (1999) Crop diagnosis and probe genotypes for interpreting genotype environment interaction in winter wheat trials. Theor Appl Genet 99 (6):1018- 1030. doi:10.1007/s001220051410

Holland JB, Portyanko VA, Hoffman DL, Lee M (2002) Genomic regions controlling vernalization and photoperiod responses in oat. Theor Appl Genet 105 (1):113-126. doi:10.1007/s00122-001-0845-5

Brancourt-Hulmel M, Lecomte C, Denis JB (2001) Choosing probe genotypes for the analysis of genotype-environment interaction in winter wheat trials. Theor Appl Genet 103 (2-3):371-382. doi:10.1007/s001220100573

Yadav RS, Bidinger FR, Hash CT, Yadav YP, Yadav OP, Bhatnagar SK, Howarth CJ (2003) Mapping and characterisation of QTL x E interactions for traits determining grain and stover yield in pearl millet. Theor Appl Genet 106 (3):512-520. doi:10.1007/s00122- 002-1081-3

Frary A, Doganlar S, Daunay MC, Tanksley SD (2003) QTL analysis of morphological traits in eggplant and implications for conservation of gene function during evolution of solanaceous species. Theor Appl Genet 107 (2):359-370. doi:10.1007/s00122-003-1257-5

Takeuchi Y, Lin SY, Sasaki T, Yano M (2003) Fine linkage mapping enables dissection of closely linked quantitative trait loci for seed dormancy and heading in rice. Theor Appl Genet 107 (7):1174-1180. doi:10.1007/s00122-003-1364-3

Peters JL, Cnops G, Neyt P, Zethof J, Cornelis K, Van Lijsebettens M, Gerats T (2004) An AFLP-based genome-wide mapping strategy. Theor Appl Genet 108 (2):321-327. doi:10.1007/s00122-003-1427-5 Hanocq E, Niarquin M, Heumez E, Rousset M, Le Gouis J (2004) Detection and mapping of QTL for earliness components in a bread wheat recombinant inbred lines population. Theor Appl Genet 110 (1):106-115. doi:10.1007/s00122-004-1799-1

Guillet-Claude C, Birolleau-Touchard C, Manicacci D, Fourmann M, Barraud S, Carret V, Martinant JP, Barriere Y (2004) Genetic diversity associated with variation in silage corn digestibility for three O-methyltransferase genes involved in lignin biosynthesis. Theor Appl Genet 110 (1):126-135. doi:10.1007/s00122-004-1808-4

Barrett B, Griffiths A, Schreiber M, Ellison N, Mercer C, Bouton J, Ong B, Forster J, Sawbridge T, Spangenberg G, Bryan G, Woodfield D (2004) A microsatellite map of white clover. Theor Appl Genet 109 (3):596-608. doi:10.1007/s00122-004-1658-0

Yue B, Xiong LZ, Xue WY, Xing YZ, Luo LJ, Xu CG (2005) Genetic analysis for drought resistance of rice at reproductive stage in field with different types of soil. Theor Appl Genet 111 (6):1127-1136. doi:10.1007/s00122-005-0040-1

Terefe D, Tatlioglu T (2005) Isolation of a partial sequence of a putative nucleotide sugar epimerase, which may involve in stamen development in cucumber (Cucumis sativus L.). Theor Appl Genet 111 (7):1300-1307. doi:10.1007/s00122-005-0058-4

Lin F, Xue SL, Zhang ZZ, Zhang CQ, Kong ZX, Yao GQ, Tian DG, Zhu HL, Li CJ, Cao Y, Wei JB, Luo QY, Ma ZQ (2006) Mapping QTL associated with resistance to Fusarium head blight in the Nanda2419 x Wangshuibai population. II: Type I resistance. Theor Appl Genet 112 (3):528-535. doi:10.1007/s00122-005-0156-3

Funatsuki H, Kawaguchi K, Matsuba S, Sato Y, Ishimoto M (2005) Mapping of QTL associated with chilling tolerance during reproductive growth in soybean. Theor Appl Genet 111 (5):851-861. doi:10.1007/s00122-005-0007-2

Zhao JY, Becker HC, Zhang DQ, Zhang YF, Ecke W (2006) Conditional QTL mapping of oil content in rapeseed with respect to protein content and traits related to plant development and grain yield. Theor Appl Genet 113 (1):33-38. doi:10.1007/s00122-006- 0267-5

Vargas M, van Eeuwijk FA, Crossa J, Ribaut JM (2006) Mapping QTLs and QTL x environment interaction for CIMMYT maize drought stress program using factorial regression and partial least squares methods. Theor Appl Genet 112 (6):1009-1023. doi:10.1007/s00122-005-0204-z

Valarik M, Linkiewicz A, Dubcovsky J (2006) A microcolinearity study at the earliness per se gene Eps-A(m)1 region reveals an ancient duplication that preceded the wheat-rice divergence. Theor Appl Genet 112 (5):945-957. doi:10.1007/s00122-005-0198-6

Aubert G, Morin J, Jacquin F, Loridon K, Quillet MC, Petit A, Rameau C, Lejeune- Henaut I, Huguet T, Burstin J (2006) Functional mapping in pea, as an aid to the candidate gene selection and for investigating synteny with the model legume Medicago truncatula. Theor Appl Genet 112 (6):1024-1041. doi:10.1007/s00122-005-0205-y

Stich B, Melchinger AE, Piepho H-P, Heckenberger M, Maurer HP, Reif JC (2006) A new test for family-based association mapping with inbred lines from plant breeding programs. Theor Appl Genet 113 (6):1121-1130. doi:10.1007/s00122-006-0372-5 Kuchel H, Hollamby G, Langridge P, Williams K, Jefferies SP (2006) Identification of genetic loci associated with ear-emergence in bread wheat. Theor Appl Genet 113 (6):1103-1112. doi:10.1007/s00122-006-0370-7

Tommasini L, Schnurbusch T, Fossati D, Mascher F, Keller B (2007) Association mapping of Stagonospora nodorum blotch resistance in modern European winter wheat varieties. Theor Appl Genet 115 (5):697-708. doi:10.1007/s00122-007-0601-6

Jines MP, Balint-Kurti P, Robertson-Hoyt LA, Molnar T, Holland JB, Goodman MM (2007) Mapping resistance to Southern rust in a tropical by temperate maize recombinant inbred topcross population. Theor Appl Genet 114 (4):659-667. doi:10.1007/s00122-006- 0466-0

Hanocq E, Laperche A, Jaminon O, Laine AL, Le Gouis J (2007) Most significant genome regions involved in the control of earliness traits in bread wheat, as revealed by QTL meta-analysis. Theor Appl Genet 114 (3):569-584. doi:10.1007/s00122-006-0459-z

Yahiaoui S, Igartua E, Moralejo M, Ramsay L, Molina-Cano JL, Ciudad FJ, Lasa JM, Gracia MP, Casas AM (2008) Patterns of genetic and eco-geographical diversity in Spanish barleys. Theor Appl Genet 116 (2):271-282. doi:10.1007/s00122-007-0665-3

Wang D, Nettleton D (2008) Combining classical trait and microarray data to dissect transcriptional regulation: a case study. Theor Appl Genet 116 (5):683-690. doi:10.1007/s00122-007-0701-3

Riddle NC, Birchler JA (2008) Comparative analysis of inbred and hybrid maize at the diploid and tetraploid levels. Theor Appl Genet 116 (4):563-576. doi:10.1007/s00122- 007-0691-1

Leipner J, Jompuk C, Camp K-H, Stamp P, Fracheboud Y (2008) QTL studies reveal little relevance of chilling-related seedling traits for yield in maize. Theor Appl Genet 116 (4):555-562. doi:10.1007/s00122-007-0690-2

Kuchel H, Williams KJ, Langridge P, Eagles HA, Jefferies SP (2007) Genetic dissection of grain yield in bread wheat. I. QTL analysis. Theor Appl Genet 115 (8):1029-1041. doi:10.1007/s00122-007-0629-7

Cockram J, Chiapparino E, Taylor SA, Stamati K, Donini P, Laurie DA, O'Sullivan DM (2007) Haplotype analysis of vernalization loci in European barley germplasm reveals novel VRN-H1 alleles and a predominant winter VRN-H1/VRN-H2 multi-locus haplotype. Theor Appl Genet 115 (7):993-1001. doi:10.1007/s00122-007-0626-x

Auzanneau J, Huyghe C, Julier B, Barre P (2007) Linkage disequilibrium in synthetic varieties of perennial ryegrass. Theor Appl Genet 115 (6):837-847. doi:10.1007/s00122- 007-0612-3

Wang R, Yu Y, Zhao J, Shi Y, Song Y, Wang T, Li Y (2008) Population structure and linkage disequilibrium of a mini core set of maize inbred lines in China. Theor Appl Genet 117 (7):1141-1153. doi:10.1007/s00122-008-0852-x

Villalta I, Reina-Sanchez A, Bolarin MC, Cuartero J, Belver A, Venema K, Carbonell EA, Asins MJ (2008) Genetic analysis of Na+ and K+ concentrations in leaf and stem as physiological components of salt tolerance in Tomato. Theor Appl Genet 116 (6):869-880. doi:10.1007/s00122-008-0720-8

Nonoue Y, Fujino K, Hirayama Y, Yamanouchi U, Lin SY, Yano M (2008) Detection of quantitative trait loci controlling extremely early heading in rice. Theor Appl Genet 116 (5):715-722. doi:10.1007/s00122-007-0704-0

Wang RX, Hai L, Zhang XY, You GX, Yan CS, Xiao SH (2009) QTL mapping for grain filling rate and yield-related traits in RILs of the Chinese winter wheat population Heshangmai X Yu8679. Theor Appl Genet 118 (2):313-325. doi:10.1007/s00122-008- 0901-5

Wang CL, Cheng FF, Sun ZH, Tang JH, Wu LC, Ku LX, Chen YH (2008) Genetic analysis of photoperiod sensitivity in a tropical by temperate maize recombinant inbred population using molecular markers. Theor Appl Genet 117 (7):1129-1139. doi:10.1007/s00122-008-0851-y

Stracke S, Haseneyer G, Veyrieras J-B, Geiger HH, Sauer S, Graner A, Piepho H-P (2009) Association mapping reveals gene action and interactions in the determination of flowering time in barley. Theor Appl Genet 118 (2):259-273. doi:10.1007/s00122-008- 0896-y

Schmalenbach I, Leon J, Pillen K (2009) Identification and verification of QTLs for agronomic traits using wild barley introgression lines. Theor Appl Genet 118 (3):483-497. doi:10.1007/s00122-008-0915-z

Sameri M, Nakamura S, Nair SK, Takeda K, Komatsuda T (2009) A quantitative trait locus for reduced culm internode length in barley segregates as a Mendelian gene. Theor Appl Genet 118 (4):643-652. doi:10.1007/s00122-008-0926-9

Olimpieri I, Mazzucato A (2008) Phenotypic and genetic characterization of the pistillate mutation in tomato. Theor Appl Genet 118 (1):151-163. doi:10.1007/s00122-008-0884-2

Liu G, Zeng R, Zhu H, Zhang Z, Ding X, Zhao F, Li W, Zhang G (2009) Dynamic expression of nine QTLs for tiller number detected with single segment substitution lines in rice. Theor Appl Genet 118 (3):443-453. doi:10.1007/s00122-008-0911-3

Chen Y, Carver BF, Wang S, Zhang F, Yan L (2009) Genetic loci associated with stem elongation and winter dormancy release in wheat. Theor Appl Genet 118 (5):881-889. doi:10.1007/s00122-008-0946-5

Zeng L, Meredith WR, Jr., Gutierrez OA, Boykin DL (2009) Identification of associations between SSR markers and fiber traits in an exotic germplasm derived from multiple crosses among Gossypium tetraploid species. Theor Appl Genet 119 (1):93-103. doi:10.1007/s00122-009-1020-7

Wang S, Carver B, Yan L (2009) Genetic loci in the photoperiod pathway interactively modulate reproductive development of winter wheat. Theor Appl Genet 118 (7):1339- 1349. doi:10.1007/s00122-009-0984-7

Griffiths S, Simmonds J, Leverington M, Wang Y, Fish L, Sayers L, Alibert L, Orford S, Wingen L, Herry L, Faure S, Laurie D, Bilham L, Snape J (2009) Meta-QTL analysis of the genetic control of ear emergence in elite European winter wheat germplasm. Theor Appl Genet 119 (3):383-395. doi:10.1007/s00122-009-1046-x

Graham J, Hackett CA, Smith K, Woodhead M, Hein I, McCallum S (2009) Mapping QTLs for developmental traits in raspberry from bud break to ripe fruit. Theor Appl Genet 118 (6):1143-1155. doi:10.1007/s00122-009-0969-6

Chen A, Reinheimer J, Brule-Babel A, Baumann U, Pallotta M, Fincher GB, Collins NC (2009) Genes and traits associated with chromosome 2H and 5H regions controlling sensitivity of reproductive tissues to frost in barley. Theor Appl Genet 118 (8):1465-1476. doi:10.1007/s00122-009-0995-4

Wang ML, Zhu C, Barkley NA, Chen Z, Erpelding JE, Murray SC, Tuinstra MR, Tesso T, Pederson GA, Yu J (2009) Genetic diversity and population structure analysis of accessions in the US historic sweet sorghum collection. Theor Appl Genet 120 (1):13-23. doi:10.1007/s00122-009-1155-6

Venuprasad R, Dalid CO, Del Valle M, Zhao D, Espiritu M, Cruz MTS, Amante M, Kumar A, Atlin GN (2009) Identification and characterization of large-effect quantitative trait loci for grain yield under lowland drought stress in rice using bulk-segregant analysis. Theor Appl Genet 120 (1):177-190. doi:10.1007/s00122-009-1168-1

Messmer R, Fracheboud Y, Baenziger M, Vargas M, Stamp P, Ribaut J-M (2009) Drought stress and tropical maize: QTL-by-environment interactions and stability of QTLs across environments for yield components and secondary traits. Theor Appl Genet 119 (5):913-930. doi:10.1007/s00122-009-1099-x

Li Q, Yang X, Bai G, Warburton ML, Mahuku G, Gore M, Dai J, Li J, Yan J (2010) Cloning and characterization of a putative GS3 ortholog involved in maize kernel development. Theor Appl Genet 120 (4):753-763. doi:10.1007/s00122-009-1196-x

Butron A, Chen YC, Rottinghaus GE, McMullen MD (2010) Genetic variation at bx1 controls DIMBOA content in maize. Theor Appl Genet 120 (4):721-734. doi:10.1007/s00122-009-1192-1

Yang X, Yan J, Shah T, Warburton ML, Li Q, Li L, Gao Y, Chai Y, Fu Z, Zhou Y, Xu S, Bai G, Meng Y, Zheng Y, Li J (2010) Genetic analysis and characterization of a new maize association mapping panel for quantitative trait loci dissection. Theor Appl Genet 121 (3):417-431. doi:10.1007/s00122-010-1320-y

Knox AK, Dhillon T, Cheng H, Tondelli A, Pecchioni N, Stockinger EJ (2010) CBF gene copy number variation at Frost Resistance-2 is associated with levels of freezing tolerance in temperate-climate cereals. Theor Appl Genet 121 (1):21-35. doi:10.1007/s00122-010- 1288-7

Herrmann D, Barre P, Santoni S, Julier B (2010) Association of a CONSTANS-LIKE gene to flowering and height in autotetraploid alfalfa. Theor Appl Genet 121 (5):865-876. doi:10.1007/s00122-010-1356-z

Fernandez-Silva I, Moreno E, Essafi A, Fergany M, Garcia-Mas J, Montserrat Martin- Hernandez A, Maria Alvarez J, Monforte AJ (2010) Shaping melons: agronomic and genetic characterization of QTLs that modify melon fruit morphology. Theor Appl Genet 121 (5):931-940. doi:10.1007/s00122-010-1361-2 de Alencar Figueiredo LF, Sine B, Chantereau J, Mestres C, Fliedel G, Rami JF, Glaszmann JC, Deu M, Courtois B (2010) Variability of grain quality in sorghum: association with polymorphism in Sh2, Bt2, SssI, Ae1, Wx and O2. Theor Appl Genet 121 (6):1171-1185. doi:10.1007/s00122-010-1380-z

Wang L, Wang A, Huang X, Zhao Q, Dong G, Qian Q, Sang T, Han B (2011) Mapping 49 quantitative trait loci at high resolution through sequencing-based genotyping of rice recombinant inbred lines. Theor Appl Genet 122 (2):327-340. doi:10.1007/s00122-010- 1449-8

Saito H, Okumoto Y, Yoshitake Y, Inoue H, Yuan Q, Teraishi M, Tsukiyama T, Nishida H, Tanisaka T (2011) Complete loss of photoperiodic response in the rice mutant line X61 is caused by deficiency of phytochrome chromophore biosynthesis gene. Theor Appl Genet 122 (1):109-118. doi:10.1007/s00122-010-1426-2

Mezmouk S, Dubreuil P, Bosio M, Decousset L, Charcosset A, Praud S, Mangin B (2011) Effect of population structure corrections on the results of association mapping tests in complex maize diversity panels. Theor Appl Genet 122 (6):1149-1160. doi:10.1007/s00122-010-1519-y

Li L, Paulo M-J, van Eeuwijk F, Gebhardt C (2010) Statistical epistasis between candidate gene alleles for complex tuber traits in an association mapping population of tetraploid potato. Theor Appl Genet 121 (7):1303-1310. doi:10.1007/s00122-010-1389-3

Kawamura K, Oyant LH-S, Crespel L, Thouroude T, Lalanne D, Foucher F (2011) Quantitative trait loci for flowering time and inflorescence architecture in rose. Theor Appl Genet 122 (4):661-675. doi:10.1007/s00122-010-1476-5

Hayashi K, Yasuda N, Fujita Y, Koizumi S, Yoshida H (2010) Identification of the blast resistance gene Pit in rice cultivars using functional markers. Theor Appl Genet 121 (7):1357-1367. doi:10.1007/s00122-010-1393-7

Gur A, Osorio S, Fridman E, Fernie AR, Zamir D (2010) hi2-1, A QTL which improves harvest index, earliness and alters metabolite accumulation of processing tomatoes. Theor Appl Genet 121 (8):1587-1599. doi:10.1007/s00122-010-1412-8

Ebana K, Shibaya T, Wu J, Matsubara K, Kanamori H, Yamane H, Yamanouchi U, Mizubayashi T, Kono I, Shomura A, Ito S, Ando T, Hori K, Matsumoto T, Yano M (2011) Uncovering of major genetic factors generating naturally occurring variation in heading date among Asian rice cultivars. Theor Appl Genet 122 (6):1199-1210. doi:10.1007/s00122-010-1524-1

Casas AM, Djemel A, Ciudad FJ, Yahiaoui S, Ponce LJ, Contreras-Moreira B, Pilar Gracia M, Lasa JM, Igartua E (2011) HvFT1 (VrnH3) drives latitudinal adaptation in Spanish barleys. Theor Appl Genet 122 (7):1293-1304. doi:10.1007/s00122-011-1531-x

Reif JC, Maurer HP, Korzun V, Ebmeyer E, Miedaner T, Wuerschum T (2011) Mapping QTLs with main and epistatic effects underlying grain yield and heading time in soft winter wheat. Theor Appl Genet 123 (2):283-292. doi:10.1007/s00122-011-1583-y

Malosetti M, van Eeuwijk FA, Boer MP, Casas AM, Elia M, Moralejo M, Bhat PR, Ramsay L, Molina-Cano J-L (2011) Gene and QTL detection in a three-way barley cross under selection by a mixed model with kinship information using SNPs. Theor Appl Genet 122 (8):1605-1616. doi:10.1007/s00122-011-1558-z

Schulz B, Kreps R, Klein D, Gumber RK, Melchinger AE (1997) Genetic variation among European maize inbreds for resistance to the European corn borer and relation to agronomic traits. Plant Breed 116 (5):415-422. doi:10.1111/j.1439-0523.1997.tb01024.x

Rattunde HFW (1998) Early-maturing dual-purpose sorghums: Agronomic trait variation and covariation among landraces. Plant Breed 117 (1):33-36. doi:10.1111/j.1439- 0523.1998.tb01444.x

Miura H, Nakagawa M, Worland AJ (1999) Control of ear emergence time by chromosome 3A of wheat. Plant Breed 118 (1):85-87. doi:10.1046/j.1439- 0523.1999.118001085.x

Koebner RMD, Martin PK, Orford SM, Miller TE (1996) Responses to salt stress controlled by the homoeologous group 5 chromosomes of hexaploid wheat. Plant Breed 115 (2):81-84. doi:10.1111/j.1439-0523.1996.tb00878.x

Linke B, Nothnagel T, Borner T (1999) Morphological characterization of modified flower morphology of three novel alloplasmic male sterile carrot sources. Plant Breed 118 (6):543-548. doi:10.1046/j.1439-0523.1999.00402.x

Kulkarni RN (1999) Evidence for phenotypic assortative mating for flower colour in periwinkle. Plant Breed 118 (6):561-564. doi:10.1046/j.1439-0523.1999.00429.x

Kato K, Miura H, Sawada S (1999) Detection of an earliness per se quantitative trait locus in the proximal region of wheat chromosome 5AL. Plant Breed 118 (5):391-394. doi:10.1046/j.1439-0523.1999.00395.x

Karsai I, Meszaros K, Szucs P, Hayes PM, Lang L, Bedo Z (1999) Effects of loci determining photoperiod sensitivity (Ppd-H1) and vernalization response (Sh2) on agronomic traits in the 'Dicktoo' x 'Morex' barley mapping population. Plant Breed 118 (5):399-403. doi:10.1046/j.1439-0523.1999.00408.x

Karsai I, Meszaros K, Lang L, Hayes PM, Bedo Z (2001) Multivariate analysis of traits determining adaptation in cultivated barley. Plant Breed 120 (3):217-222

Gwanama C, Botha AM, Labuschagne MT (2001) Genetic effects and heterosis of flowering and fruit characteristics of tropical pumpkin. Plant Breed 120 (3):271-272. doi:10.1046/j.1439-0523.2001.00595.x

Company RSI, Felipe AJ, Aparisi JG (1999) A major gene for flowering time in almond. Plant Breed 118 (5):443-448. doi:10.1046/j.1439-0523.1999.00400.x

Buck-Sorlin GH, Borner A (2001) Pleiotropic effects of the ea(7) photoperiod response gene on the morphology and agronomic traits in barley. Plant Breed 120 (6):489-495. doi:10.1046/j.1439-0523.2001.00642.x

Ballester J, Company RSI, Arus P, de Vicente MC (2001) Genetic mapping of a major gene delaying blooming time in almond. Plant Breed 120 (3):268-270. doi:10.1046/j.1439-0523.2001.00604.x Whitechurch EM, Snape JW (2003) Developmental responses to vernalization in wheat deletion lines for chromosomes 5A and 5D. Plant Breed 122 (1):35-39. doi:10.1046/j.1439-0523.2003.00749.x

Murai M, Kc HB, Gima N (2003) Pleiotropic effect of the dwarfing gene d18-k on cool tolerance at booting stage under the genetic background of an extremely cool-tolerant line Norin-PL8 in rice. Plant Breed 122 (5):410-415. doi:10.1046/j.1439-0523.2003.00843.x

Laura M, Safaverdi G, Allavena A (2006) Androgenetic plants of Anemone coronaria derived through anther culture. Plant Breed 125 (6):629-634. doi:10.1111/j.1439- 0523.2006.01302.x

Kato K, Miura H, Sawada S (2002) Characterization of QEet.ocs-5A.1 a quantitative trait locus for ear emergence time on wheat chromosome 5AL. Plant Breed 121 (5):389-393. doi:10.1046/j.1439-0523.2002.00674.x

Hovav R, Upadhyaya KC, Beharav A, Abbo S (2003) Major flowering time gene and polygene effects on chickpea seed weight. Plant Breed 122 (6):539-541. doi:10.1111/j.1439-0523.2003.00895.x

Funatsuki H, Matsuba S, Kawaguchi K, Murakami T, Sato Y (2004) Methods for evaluation of soybean chilling tolerance at the reproductive stage under artificial climatic conditions. Plant Breed 123 (6):558-563. doi:10.1111/j.1439-0523.2004.01008.x

Dicenta F, Garcia-Gusano M, Ortega E, Martinez-Gomez P (2005) The possibilities of early selection of late-flowering almonds as a function of seed germination or leafing time of seedlings. Plant Breed 124 (3):305-309. doi:10.1111/j.1439-0523.2005.01090.x

Borner A, Buck-Sorlin GH, Hayes PM, Malyshev S, Korzun V (2002) Molecular mapping of major genes and quantitative trait loci determining flowering time in response to photoperiod in barley. Plant Breed 121 (2):129-132. doi:10.1046/j.1439- 0523.2002.00691.x

Anbessa Y, Warkentin T (2005) On improving crossing success in chickpea. Plant Breed 124 (6):608-609. doi:10.1111/j.1439-0523.2005.01157.x

Li W, Han Y, Zhang D, Yang M, Teng W, Jiang Z, Qiu L, Sun G (2008) Genetic diversity in soybean genotypes from north-eastern China and identification of candidate markers associated with maturity rating. Plant Breed 127 (5):494-500. doi:10.1111/j.1439- 0523.2008.01489.x

Kim YJ, Choi SH, Park BS, Song JT, Kim MC, Koh HJ, Seo HS (2009) Proteomic analysis of the rice seed for quality improvement. Plant Breed 128 (6):541-550. doi:10.1111/j.1439-0523.2009.01693.x

Hao JJ, Yu SX, Ma QX, Fan SL, Song MZ (2008) Inheritance of time of flowering in upland cotton under natural conditions. Plant Breed 127 (4):383-390. doi:10.1111/j.1439- 0523.2007.01474.x

Cuesta-Marcos A, Casas AM, Hayes PM, Gracia MP, Lasa JM, Ciudad F, Codesal P, Molina-Cano JL, Igartua E (2009) Yield QTL affected by heading date in Mediterranean grown barley. Plant Breed 128 (1):46-53. doi:10.1111/j.1439-0523.2008.01510.x Castro AJ, Hayes P, Viega L, Vales I (2008) Transgressive segregation for phenological traits in barley explained by two major QTL alleles with additivity. Plant Breed 127 (6):561-568. doi:10.1111/j.1439-0523.2008.01520.x

Bonfil DJ, Goren O, Mufradi I, Lichtenzveig J, Abbo S (2007) Development of early- flowering Kabuli chickpea with compound and simple leaves. Plant Breed 126 (2):125- 129. doi:10.1111/j.1439-0523.2007.01343.x

Mizuta D, Nakatsuka A, Miyajima I, Ban T, Kobayashi N (2010) Pigment composition patterns and expression analysis of flavonoid biosynthesis genes in the petals of evergreen azalea 'Oomurasaki' and its red flower sport. Plant Breed 129 (5):558-562. doi:10.1111/j.1439-0523.2009.01714.x

Hegde VS (2010) Genetics of flowering time in chickpea in a semi-arid environment. Plant Breed 129 (6):683-687. doi:10.1111/j.1439-0523.2009.01748.x

Haseneyer G, Stracke S, Paul C, Einfeldt C, Broda A, Piepho HP, Graner A, Geiger HH (2010) Population structure and phenotypic variation of a spring barley world collection set up for association studies. Plant Breed 129 (3):271-279. doi:10.1111/j.1439- 0523.2009.01725.x

Garcia-Gusano M, Martinez-Garcia PJ, Dicenta F (2010) Seed germination time as a criterion for the early selection of late-flowering almonds. Plant Breed 129 (5):578-580. doi:10.1111/j.1439-0523.2009.01726.x

Yvon-Durocher G, Reiss J, Blanchard J, Ebenman B, Perkins DM, Reuman DC, Thierry A, Woodward G, Petchey OL (2011) Across ecosystem comparisons of size structure: methods, approaches and prospects. Oikos 120 (4):550-563. doi:10.1111/j.1600- 0706.2010.18863.x

Ness JH, Rollinson EJ, Whitney KD (2011) Phylogenetic distance can predict susceptibility to attack by natural enemies. Oikos:no-no. doi:10.1111/j.1600- 0706.2011.19119.x

AraÚJo WL, Nunes-Nesi A, Nikoloski Z, Sweetlove LJ, Fernie AR (2011) Metabolic control and regulation of the tricarboxylic acid cycle in photosynthetic and heterotrophic plant tissues. Plant, Cell & Environment:no-no. doi:10.1111/j.1365-3040.2011.02332.x

Matyasek R, Fulnecek J, Leitch AR, Kovarik A (2011) Analysis of two abundant, highly related satellites in the allotetraploid Nicotiana arentsii using double-strand conformation polymorphism analysis and sequencing. New Phytol:no-no. doi:10.1111/j.1469- 8137.2011.03827.x

Malcos JL, Cyr RJ (2011) An ungrouped plant kinesin accumulates at the preprophase band in a cell cycle-dependent manner. Cytoskeleton 68 (4):247-258. doi:10.1002/cm.20508

Kőszegi D, Johnston AJ, Rutten T, Czihal A, Altschmied L, Kumlehn J, Wüst SEJ, Kirioukhova O, Gheyselinck J, Grossniklaus U, Bäumlein H (2011) Members of the RKD transcription factor family induce an egg cell-like gene expression program. Plant J 67 (2):280-291. doi:10.1111/j.1365-313X.2011.04592.x Queenborough SA, Burnet KM, Sutherland WJ, Watkinson AR, Freckleton RP (2011) From meso- to macroscale population dynamics: a new density-structured approach. Methods in Ecology and Evolution 2 (3):289-302. doi:10.1111/j.2041-210X.2010.00075.x

Korir PC, Qi B, Wang Y, Zhao T, Yu D, Chen S, Gai J (2011) A study on relative importance of additive, epistasis and unmapped QTL for Aluminium tolerance at seedling stage in soybean. Plant Breed:no-no. doi:10.1111/j.1439-0523.2011.01862.x

Herrera CM, Bazaga P (2011) Untangling individual variation in natural populations: ecological, genetic and epigenetic correlates of long-term inequality in herbivory. Mol Ecol 20 (8):1675-1688. doi:10.1111/j.1365-294X.2011.05026.x

Cipriotti PA, Aguiar MR (2011) Direct and indirect effects of grazing constrain shrub encroachment in semi-arid Patagonian steppes. Appl Veg Sci:no-no. doi:10.1111/j.1654- 109X.2011.01138.x

Bastías A, López-Climent M, Valcárcel M, Rosello S, Gómez-Cadenas A, Casaretto JA (2011) Modulation of organic acids and sugar content in tomato fruits by an abscisic acid- regulated transcription factor. Physiol Plant 141 (3):215-226. doi:10.1111/j.1399- 3054.2010.01435.x

Chan S, Choi E-A, Shi Y (2011) Pre-mRNA 3′-end processing complex assembly and function. Wiley Interdisciplinary Reviews: RNA 2 (3):321-335. doi:10.1002/wrna.54

Lankau RA, Strauss SY (2011) Newly rare or newly common: evolutionary feedbacks through changes in population density and relative species abundance, and their management implications. Evol Appl 4 (2):338-353. doi:10.1111/j.1752- 4571.2010.00173.x

Harris JC, Hrmova M, Lopato S, Langridge P (2011) Modulation of plant growth by HD- Zip class I and II transcription factors in response to environmental stimuli. New Phytol 190 (4):823-837. doi:10.1111/j.1469-8137.2011.03733.x

Fransz P, de Jong H (2011) From nucleosome to chromosome: a dynamic organization of genetic information. Plant J 66 (1):4-17. doi:10.1111/j.1365-313X.2011.04526.x

Csukasi F, Osorio S, Gutierrez JR, Kitamura J, Giavalisco P, Nakajima M, Fernie AR, Rathjen JP, Botella MA, Valpuesta V, Medina-Escobar N (2011) Gibberellin biosynthesis and signalling during development of the strawberry receptacle. New Phytol 191 (2):376- 390. doi:10.1111/j.1469-8137.2011.03700.x

Bennett EJ, Roberts JA, Wagstaff C (2011) The role of the pod in seed development: strategies for manipulating yield. New Phytol 190 (4):838-853. doi:10.1111/j.1469- 8137.2011.03714.x

Li M, Tang D, Wang K, Wu X, Lu L, Yu H, Gu M, Yan C, Cheng Z (2011) Mutations in the F-box gene LARGER PANICLE improve the panicle architecture and enhance the grain yield in rice. Plant Biotechnol J:no-no. doi:10.1111/j.1467-7652.2011.00610.x

Nelson D, Werck-Reichhart D (2011) A P450-centric view of plant evolution. Plant J 66 (1):194-211. doi:10.1111/j.1365-313X.2011.04529.x Prasad PVV, Pisipati SR, Momčilović I, Ristic Z (2011) Independent and Combined Effects of High Temperature and Drought Stress During Grain Filling on Plant Yield and Chloroplast EF-Tu Expression in Spring Wheat. J Agron Crop Sci:no-no. doi:10.1111/j.1439-037X.2011.00477.x

Peleg Z, Reguera M, Tumimbang E, Walia H, Blumwald E (2011) Cytokinin-mediated source/sink modifications improve drought tolerance and increase grain yield in rice under water-stress. Plant Biotechnol J:no-no. doi:10.1111/j.1467-7652.2010.00584.x

Foreman J, Johansson H, Hornitschek P, Josse E-M, Fankhauser C, Halliday KJ (2011) Light receptor action is critical for maintaining plant biomass at warm ambient temperatures. Plant J 65 (3):441-452. doi:10.1111/j.1365-313X.2010.04434.x

Acharya KP, Vetaas OR, Birks HJB (2011) Orchid species richness along Himalayan elevational gradients. J Biogeogr:no-no. doi:10.1111/j.1365-2699.2011.02511.x

Rizzardi K, Landberg K, Nilsson L, Ljung K, Sundås-Larsson A (2011) TFL2/LHP1 is involved in auxin biosynthesis through positive regulation of YUCCA genes. Plant J 65 (6):897-906. doi:10.1111/j.1365-313X.2010.04470.x

Johnson K, Lenhard M (2011) Genetic control of plant organ growth. New Phytol 191 (2):319-333. doi:10.1111/j.1469-8137.2011.03737.x

Hao Z, Li X, Xie C, Weng J, Li M, Zhang D, Liang X, Liu L, Liu S, Zhang S (2011) Identification of Functional Genetic Variations Underlying Drought Tolerance in Maize Using SNP Markers. J Integr Plant Biol:no-no. doi:10.1111/j.1744-7909.2011.01051.x

Parra-Tabla V, Vargas CF, Naval C, Calvo LM, Ollerton J (2011) Population Status and Reproductive Success of an Endangered Epiphytic Orchid in a Fragmented Landscape. Biotropica:no-no. doi:10.1111/j.1744-7429.2011.00752.x

Martinière A, Shvedunova M, Thomson AJW, Evans NH, Penfield S, Runions J, McWatters HG (2011) Homeostasis of plasma membrane viscosity in fluctuating temperatures. New Phytol:no-no. doi:10.1111/j.1469-8137.2011.03821.x

Clarke JT, Warnock RCM, Donoghue PCJ (2011) Establishing a time-scale for plant evolution. New Phytol:no-no. doi:10.1111/j.1469-8137.2011.03794.x

Walck JL, Hidayati SN, Dixon KW, Thompson KEN, Poschlod P (2011) Climate change and plant regeneration from seed. Global Change Biol 17 (6):2145-2161. doi:10.1111/j.1365-2486.2010.02368.x

Visser MD, Jongejans E, van Breugel M, Zuidema PA, Chen Y-Y, Rahman Kassim A, de Kroon H (2011) Strict mast fruiting for a tropical dipterocarp tree: a demographic cost– benefit analysis of delayed reproduction and seed predation. J Ecol 99 (4):1033-1044. doi:10.1111/j.1365-2745.2011.01825.x

Pélabon C, Armbruster WS, Hansen TF (2011) Experimental evidence for the Berg hypothesis: vegetative traits are more sensitive than pollination traits to environmental variation. Funct Ecol 25 (1):247-257. doi:10.1111/j.1365-2435.2010.01770.x

MondragÓN Chaparro D, Ticktin T (2011) Demographic Effects of Harvesting Epiphytic Bromeliads and an Alternative Approach to Collection Efectos Demográficos de la Cosecha de Bromelias Epífitas y un Método Alternativo de Colecta. Conserv Biol 25 (4):797-807. doi:10.1111/j.1523-1739.2011.01691.x

Feldman TS, Morris WF (2011) Higher survival at low density counteracts lower fecundity to obviate Allee effects in a perennial plant. J Ecol:no-no. doi:10.1111/j.1365- 2745.2011.01855.x

Mohorianu I, Schwach F, Jing R, Lopez-Gomollon S, Moxon S, Szittya G, Sorefan K, Moulton V, Dalmay T (2011) Profiling of short RNAs during fleshy fruit development reveals stage-specific sRNAome expression patterns. Plant J 67 (2):232-246. doi:10.1111/j.1365-313X.2011.04586.x

Feller A, Machemer K, Braun EL, Grotewold E (2011) Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. Plant J 66 (1):94-116. doi:10.1111/j.1365-313X.2010.04459.x

Celton JM, Martinez S, Jammes MJ, Bechti A, Salvi S, Legave JM, Costes E (2011) Deciphering the genetic determinism of bud phenology in apple progenies: a new insight into chilling and heat requirement effects on flowering dates and positional candidate genes. New Phytol:no-no. doi:10.1111/j.1469-8137.2011.03823.x

Li C, Distelfeld A, Comis A, Dubcovsky J (2011) Wheat flowering repressor VRN2 and promoter CO2 compete for interactions with NUCLEAR FACTOR-Y complexes. Plant J:no-no. doi:10.1111/j.1365-313X.2011.04630.x

Himeno M, Neriya Y, Minato N, Miura C, Sugawara K, Ishii Y, Yamaji Y, Kakizawa S, Oshima K, Namba S (2011) Unique morphological changes in plant pathogenic phytoplasma-infected petunia flowers are related to transcriptional regulation of floral homeotic genes in an organ-specific manner. Plant J:no-no. doi:10.1111/j.1365- 313X.2011.04650.x

Torices R, Méndez M, Gómez JM (2011) Where do monomorphic sexual systems fit in the evolution of dioecy? Insights from the largest family of angiosperms. New Phytol 190 (1):234-248. doi:10.1111/j.1469-8137.2010.03609.x

Alcantara S, Lohmann LG (2011) Contrasting phylogenetic signals and evolutionary rates in floral traits of Neotropical lianas. Biol J Linn Soc 102 (2):378-390. doi:10.1111/j.1095- 8312.2010.01567.x

Zhang H, Zhang D, Han S, Zhang X, Yu D (2011) Identification and gene mapping of a soybean chlorophyll-deficient mutant. Plant Breed 130 (2):133-138. doi:10.1111/j.1439- 0523.2010.01844.x

Wang KJ, Li XH (2011) Interspecific gene flow and the origin of semi-wild soybean revealed by capturing the natural occurrence of introgression between wild and cultivated soybean populations. Plant Breed 130 (2):117-127. doi:10.1111/j.1439- 0523.2010.01815.x

Miedaner T, Müller BU, Piepho HP, Falke KC (2011) Genetic architecture of plant height in winter rye introgression libraries. Plant Breed 130 (2):209-216. doi:10.1111/j.1439- 0523.2010.01823.x Zhao WG, Chung JW, Lee GA, Ma KH, Kim HH, Kim KT, Chung IM, Lee JK, Kim NS, Kim SM, Park YJ (2011) Molecular genetic diversity and population structure of a selected core set in garlic and its relatives using novel SSR markers. Plant Breed 130 (1):46-54. doi:10.1111/j.1439-0523.2010.01805.x

Mohler V, Bauer A, Bauer C, Flath K, Schweizer G, Hartl L (2011) Genetic analysis of powdery mildew resistance in German winter wheat cultivar Cortez. Plant Breed 130 (1):35-40. doi:10.1111/j.1439-0523.2010.01824.x

Shefferson RP, McCormick MK, Whigham DF, O'Neill JP (2011) Life history strategy in herbaceous perennials: inferring demographic patterns from the aboveground dynamics of a primarily subterranean, myco-heterotrophic orchid. Oikos:no-no. doi:10.1111/j.1600- 0706.2011.19130.x

Kumar S, Jiang S, Jami SK, Hill RD (2011) Cloning and characterization of barley caryopsis FCA. Physiol Plant:no-no. doi:10.1111/j.1399-3054.2011.01490.x

Robertson MJ, Brooking IR, Ritchie JT (1996) Temperature response of vernalization in wheat: Modelling the effect on the final number of mainstem leaves. Ann Bot 78 (3):371- 381. doi:10.1006/anbo.1996.0132

Caffaro SV, Mateos JL, Vicente C (1996) Changes in the activity of an enzymatic marker bound to plasmalemma during the photoperiodic flowering induction in soybean. Phyton- Annales Rei Botanicae 36 (1):9-28

Hay RKM, Ellis RP (1998) The control of flowering in wheat and barley: What recent advances in molecular genetics can reveal. Ann Bot 82 (5):541-554. doi:10.1006/anbo.1998.0733

Gomez-Macpherson H, Richards RA, Masle J (1998) Growth of near-isogenic wheat lines differing in development - Spaced plants. Ann Bot 82 (3):315-322. doi:10.1006/anbo.1998.0691

Williams RJ, Myers BA, Eamus D, Duff GA (1999) Reproductive phenology of woody species in a north Australian tropical savanna. Biotropica 31 (4):626-636. doi:10.1111/j.1744-7429.1999.tb00411.x

Weller SG, Sakai AK (1999) Using phylogenetic approaches for the analysis of plant breeding system evolution. Annu Rev Ecol Syst 30:167-199. doi:10.1146/annurev.ecolsys.30.1.167

Yong WD, Chong K, Xu ZH, Tan KH, Zhu ZQ (2000) Gene control of flowering time in higher plants. Chin Sci Bull 45 (18):1633-1642. doi:10.1007/bf02898977

Zluvova J, Janousek B, Vyskot B (2001) Immunohistochemical study of DNA methylation dynamics during plant development. J Exp Bot 52 (365):2265-2273. doi:10.1093/jexbot/52.365.2265

Garcia-Maroto F, Carmona MJ, Garrido JA, Vilches-Ferron M, Rodriguez-Ruiz J, Alonso DL (2003) New roles for MADS-box genes in higher plants. Biol Plant 46 (3):321-330. doi:10.1023/a:1024353514081 Kaneko M, Inukai Y, Ueguchi-Tanaka M, Itoh H, Izawa T, Kobayashi Y, Hattori T, Miyao A, Hirochika H, Ashikari M, Matsuoka M (2004) Loss-of-function mutations of the rice GAMYB gene impair alpha-amylase expression in aleurone and flower development. Plant Cell 16 (1):33-44. doi:10.1105/tpc.017327

Cheng YL, Chen XM (2004) Posttranscriptional control of plant development. Curr Opin Plant Biol 7 (1):20-25. doi:10.1016/j.pbi.2003.11.005

Andersen CH, Jensen CS, Petersen K (2004) Similar genetic switch systems might integrate the floral inductive pathways in dicots and monocots. Trends Plant Sci 9 (3):105- 107. doi:10.1016/j.tplants.2004.01.002

Smith HMS, Campbell BC, Hake S (2004) Competence to respond to floral inductive signals requires the homeobox genes PENNYWISE and POUND-FOOLISH. Curr Biol 14 (9):812-817. doi:10.1016/j.cub.2004.04.032

Joly D, Perrin M, Gertz C, Kronenberger J, Demangeat G, Masson JE (2004) Expression analysis of flowering genes from seedling-stage to vineyard life of grapevine cv. Riesling. Plant Sci 166 (6):1427-1436. doi:10.1016/j.plantsci.2003.12.041

Ferrario S, Busscher J, Franken J, Gerats T, Vandenbussche M, Angenent GC, Immink RGH (2004) Ectopic expression of the petunia MADS box gene UNSHAVEN accelerates flowering and confers leaf-like characteristics to floral organs in a dominant-negative manner. Plant Cell 16 (6):1490-1505. doi:10.1105/tpc.019679

Ayre BG, Turgeon R (2004) Graft transmission of a floral stimulant derived from CONSTANS. Plant Physiol 135 (4):2271-2278. doi:10.1104/pp.104.040592

Fieldes MA, Harvey CG (2004) Differences in developmental programming and node number at flowering in the 5-azacytidine-induced early flowering flax lines and their controls. Int J Plant Sci 165 (5):695-706. doi:10.1086/421856

Chandler J, Corbesier L, Spielmann P, Dettendorfer J, Stahl D, Apel K, Melzer S (2005) Modulating flowering time and prevention of pod shatter in oilseed rape. Mol Breed 15 (1):87-94. doi:10.1007/s11032-004-2735-4

Brunner AM, Nilsson O (2004) Revisiting tree maturation and floral initiation in the poplar functional genomics era. New Phytol 164 (1):43-51. doi:10.1111/j.1469- 8137.2004.01165.x

Tian B, Chen YY, Yan YX, Li DZ (2005) Isolation and ectopic expression of a bamboo MADS-box gene. Chin Sci Bull 50 (3):217-224. doi:10.1360/982004-304

Sood S, Nagar PK (2005) Xylem and phloem derived polyamines during flowering in two diverse rose species. J Plant Growth Regul 24 (1):36-40. doi:10.1007/s00344-004-0026-2

Chuck G, Hake S (2005) Regulation of developmental transitions. Curr Opin Plant Biol 8 (1):67-70. doi:10.1016/j.pbi.2004.11.002

Rodriguez-Falcon M, Bou J, Prat S (2006) Seasonal control of tuberization in potato: Conserved elements with the flowering response. In: Annual Review of Plant Biology, vol 57. Annual Review of Plant Biology. pp 151-180. doi:10.1146/annurev.arplant.57.032905.105224 Kof EM, Vinogradova IA, Oorzhak AS, Kalibernaya ZV (2006) The rates of shoot and root growth in intact plants of pea mutants in leaf morphology. Russ J Plant Physiol 53 (1):116-125. doi:10.1134/s1021443706010158

Reyes JC (2006) Chromatin modifiers that control plant development. Curr Opin Plant Biol 9 (1):21-27. doi:10.1016/j.pbi.2005.11.010

Petersen K, Kolmos E, Folling M, Salchert K, Storgaard M, Jensen CS, Didion T, Nielsen KK (2006) Two MADS-box genes from perennial ryegrass are regulated by vernalization and involved in the floral transition. Physiol Plant 126 (2):268-278. doi:10.1111/j.1399- 3054.2006.00600.x

Lee JH, Hong SM, Yoo SJ, Park OK, Lee JS, Ahn JH (2006) Integration of floral inductive signals by flowering locus T and suppressor of overexpression of Constans 1. Physiol Plant 126 (4):475-483. doi:10.1111/j.1399-3054.2005.00619.x

Tan F-C, Swain SM (2006) Genetics of flower initiation and development in annual and perennial plants. Physiol Plant 128 (1):8-17. doi:10.1111/j.1399-3054.2006.00724.x

Malik NSA, Bradford JM (2006) Changes in oleuropein levels during differentiation and development of floral buds in 'Arbequina' olives. Sci Hortic-Amsterdam 110 (3):274-278. doi:10.1016/j.scienta.2006.07.016

Guyomarc'h S, Benhamed M, Lemonnier G, Renou J-P, Zhou D-X, Delarue M (2006) MGOUN3: evidence for chromatin-mediated regulation of FLC expression. J Exp Bot 57 (9):2111-2119. doi:10.1093/jxb/erj169

Wong AYM, Colasanti J (2007) Maize floral regulator protein INDETERMINATE1 is localized to developing leaves and is not altered by light or the sink/source transition. J Exp Bot 58 (3):403-414. doi:10.1093/jxb/erl206

Rotem N, Shemesh E, Peretz Y, Akad F, Edelbaum O, Rabinowitch HD, Sela I, Kamenetsky R (2007) Reproductive development and phenotypic differences in garlic are associated with expression and splicing of LEAFY homologue gaLFY. J Exp Bot 58 (5):1133-1141. doi:10.1093/jxb/erl272

Muszynski MG, Dam T, li BL, Shirbroun DM, Hou Z, Bruggemann E, Archibald R, Ananiev EV, Danilevskaya ON (2006) Delayed flowering1 encodes a basic leucine zipper protein that mediates floral inductive signals at the shoot apex in maize. Plant Physiol 142 (4):1523-1536. doi:10.1104/pp.106.088815

Shitsukawa N, Ikari C, Mitsuya T, Sakiyama T, Ishikawa A, Takumi S, Murai K (2007) Wheat SOC1 functions independently of WAP1/VRN1, an integrator of vernalization and photoperiod flowering promotion pathways. Physiol Plant 130 (4):627-636. doi:10.1111/j.1399-3054.2007.00927.x

Komiya R, Shimamoto K (2008) Genetic and epigenetic regulation of flowering in rice. Plant Biotechnol 25 (3):279-284. doi:10.5511/plantbiotechnology.25.279

Muhtaseb J, Ghnaim H (2008) Budbreak, fruit quality and maturity of 'Superior' seedless grapes as affected by Dormex (R) under Jordan Valley conditions. Fruits 63 (3):171-178. doi:10.1051/fruits:2008007 Hollick JB (2008) Sensing the epigenome. Trends Plant Sci 13 (7):398-404. doi:10.1016/j.tplants.2008.05.002

Thouet J, Quinet M, Ormenese S, Kinet J-M, Perilleux C (2008) Revisiting the involvement of SELF-PRUNING in the sympodial growth of tomato. Plant Physiol 148 (1):61-64. doi:10.1104/pp.108.124164

Meijon M, Valledor L, Santamaria E, Testillano PS, Carmen Risueno M, Rodriguez R, Feito I, Jesus Canal M (2009) Epigenetic characterization of the vegetative and floral stages of azalea buds: Dynamics of DNA methylation and histone H4 acetylation. J Plant Physiol 166 (15):1624-1636. doi:10.1016/j.jplph.2009.04.014

Immink RGH, Tonaco IAN, de Folter S, Shchennikova A, van Dijk ADJ, Busscher-Lange J, Borst JW, Angenent GC (2009) SEPALLATA3: the 'glue' for MADS box transcription factor complex formation. Genome Biol 10 (2). doi:R24 10.1186/gb-2009-10-2-r24

Beltran J-P (2009) Plant Developmental Biology in Spain: from the origins to our days and prospects for the future. Int J Dev Biol 53 (8-10):1219-1234. doi:10.1387/ijdb.072456jb

Mutasa-Goettgens E, Hedden P (2009) Gibberellin as a factor in floral regulatory networks. J Exp Bot 60 (7):1979-1989. doi:10.1093/jxb/erp040

Lorkovic ZJ (2009) Role of plant RNA-binding proteins in development, stress response and genome organization. Trends Plant Sci 14 (4):229-236. doi:10.1016/j.tplants.2009.01.007

Khodakovskaya M, Vankova R, Malbeck J, Li A, Li Y, McAvoy R (2009) Enhancement of flowering and branching phenotype in chrysanthemum by expression of ipt under the control of a 0.821 kb fragment of the LEACO1 gene promoter. Plant Cell Rep 28 (9):1351-1362. doi:10.1007/s00299-009-0735-x

Hornyik C, Terzi LC, Simpson GG (2010) The Spen Family Protein FPA Controls Alternative Cleavage and Polyadenylation of RNA. Dev Cell 18 (2):203-213. doi:10.1016/j.devcel.2009.12.009

Zhu Q-H, Helliwell CA (2011) Regulation of flowering time and floral patterning by miR172. J Exp Bot 62 (2):487-495. doi:10.1093/jxb/erq295 van der Schoot C, Rinne PLH (2011) Dormancy cycling at the shoot apical meristem: Transitioning between self-organization and self-arrest. Plant Sci 180 (1):120-131. doi:10.1016/j.plantsci.2010.08.009

Depege-Fargeix N, Javelle M, Chambrier P, Frangne N, Gerentes D, Perez P, Rogowsky PM, Vernoud V (2011) Functional characterization of the HD-ZIP IV transcription factor OCL1 from maize. J Exp Bot 62 (1):293-305. doi:10.1093/jxb/erq267

Winter CM, Austin RS, Blanvillain-Baufume S, Reback MA, Monniaux M, Wu M-F, Sang Y, Yamaguchi A, Yamaguchi N, Parker JE, Parcy F, Jensen ST, Li H, Wagner D (2011) LEAFY Target Genes Reveal Floral Regulatory Logic, cis Motifs, and a Link to Biotic Stimulus Response. Dev Cell 20 (4):430-443. doi:10.1016/j.devcel.2011.03.019 Sicard A, Lenhard M (2011) The selfing syndrome: a model for studying the genetic and evolutionary basis of morphological adaptation in plants. Ann Bot 107 (9):1433-1443. doi:10.1093/aob/mcr023