IFITM3 Functions As a PIP3 Scaffold to Amplify PI3K Signalling in B Cells
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Deregulated Gene Expression Pathways in Myelodysplastic Syndrome Hematopoietic Stem Cells
Leukemia (2010) 24, 756–764 & 2010 Macmillan Publishers Limited All rights reserved 0887-6924/10 $32.00 www.nature.com/leu ORIGINAL ARTICLE Deregulated gene expression pathways in myelodysplastic syndrome hematopoietic stem cells A Pellagatti1, M Cazzola2, A Giagounidis3, J Perry1, L Malcovati2, MG Della Porta2,MJa¨dersten4, S Killick5, A Verma6, CJ Norbury7, E Hellstro¨m-Lindberg4, JS Wainscoat1 and J Boultwood1 1LRF Molecular Haematology Unit, NDCLS, John Radcliffe Hospital, Oxford, UK; 2Department of Hematology Oncology, University of Pavia Medical School, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; 3Medizinische Klinik II, St Johannes Hospital, Duisburg, Germany; 4Division of Hematology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden; 5Department of Haematology, Royal Bournemouth Hospital, Bournemouth, UK; 6Albert Einstein College of Medicine, Bronx, NY, USA and 7Sir William Dunn School of Pathology, University of Oxford, Oxford, UK To gain insight into the molecular pathogenesis of the the World Health Organization.6,7 Patients with refractory myelodysplastic syndromes (MDS), we performed global gene anemia (RA) with or without ringed sideroblasts, according to expression profiling and pathway analysis on the hemato- poietic stem cells (HSC) of 183 MDS patients as compared with the the French–American–British classification, were subdivided HSC of 17 healthy controls. The most significantly deregulated based on the presence or absence of multilineage dysplasia. In pathways in MDS include interferon signaling, thrombopoietin addition, patients with RA with excess blasts (RAEB) were signaling and the Wnt pathways. Among the most signifi- subdivided into two categories, RAEB1 and RAEB2, based on the cantly deregulated gene pathways in early MDS are immuno- percentage of bone marrow blasts. -
Low Basal Expression and Slow Induction of IFITM3 Puts Immune
bioRxiv preprint doi: https://doi.org/10.1101/2019.12.20.885590; this version posted December 23, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 TITLE: Low basal expression and slow induction of IFITM3 puts immune 2 cells at risk of influenza A infection 3 4 Running head (40 characters): 5 Cells at risk of Influenza A infection 6 7 Authors: 8 Dannielle Wellington1,2,*, , Zixi Yin1,2, Liwei Zhang1, Jessica Forbester1,3, Kerry 9 Kite1, Henry Laurenson-Schafer1, Shokouh Makvandi-Nejad1 , Boquan Jin4, 10 Emma Bowes5, Krishnageetha Manoharan5, David Maldonado-Perez5, Clare 11 Verill5, Ian Humphreys3 & Tao Dong1,2,* 12 1. MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe 13 Department of Medicine, Oxford University, Oxford OX3 9DS, UK 14 2. Chinese Academy of Medical Sciences (CAMS) Oxford Institute, Nuffield Department of 15 Medicine, Oxford University, OX3 7BN, UK 16 3. Division of Infection and Immunity/Systems Immunity University Research Institute, Cardiff 17 University, Cardiff, CF14 4XN, UK 18 4. Fourth Military Medical University, Xian, China 19 5. Oxford Radcliffe BioBank, Nuffield Department of Surgical Sciences, Oxford University, 20 Oxford OX3 9DU, UK 21 *Corresponding to Dannielle Wellington [email protected] or Tao Dong, 22 [email protected] 23 24 Acknowledgements: 25 The authors would like to thank the following facilities and individuals within 26 the MRC Weatherall Institute (Oxford) for their invaluaBle help in the following 27 experiments: Mass Cytometry Facility and Alain Townsend for kindly providing 28 virus stocks. -
A Molecular and Genetic Analysis of Otosclerosis
A molecular and genetic analysis of otosclerosis Joanna Lauren Ziff Submitted for the degree of PhD University College London January 2014 1 Declaration I, Joanna Ziff, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. Where work has been conducted by other members of our laboratory, this has been indicated by an appropriate reference. 2 Abstract Otosclerosis is a common form of conductive hearing loss. It is characterised by abnormal bone remodelling within the otic capsule, leading to formation of sclerotic lesions of the temporal bone. Encroachment of these lesions on to the footplate of the stapes in the middle ear leads to stapes fixation and subsequent conductive hearing loss. The hereditary nature of otosclerosis has long been recognised due to its recurrence within families, but its genetic aetiology is yet to be characterised. Although many familial linkage studies and candidate gene association studies to investigate the genetic nature of otosclerosis have been performed in recent years, progress in identifying disease causing genes has been slow. This is largely due to the highly heterogeneous nature of this condition. The research presented in this thesis examines the molecular and genetic basis of otosclerosis using two next generation sequencing technologies; RNA-sequencing and Whole Exome Sequencing. RNA–sequencing has provided human stapes transcriptomes for healthy and diseased stapes, and in combination with pathway analysis has helped identify genes and molecular processes dysregulated in otosclerotic tissue. Whole Exome Sequencing has been employed to investigate rare variants that segregate with otosclerosis in affected families, and has been followed by a variant filtering strategy, which has prioritised genes found to be dysregulated during RNA-sequencing. -
Functional Characterization of the New 8Q21 Asthma Risk Locus
Functional characterization of the new 8q21 Asthma risk locus Cristina M T Vicente B.Sc, M.Sc A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2017 Faculty of Medicine Abstract Genome wide association studies (GWAS) provide a powerful tool to identify genetic variants associated with asthma risk. However, the target genes for many allergy risk variants discovered to date are unknown. In a recent GWAS, Ferreira et al. identified a new association between asthma risk and common variants located on chromosome 8q21. The overarching aim of this thesis was to elucidate the biological mechanisms underlying this association. Specifically, the goals of this study were to identify the gene(s) underlying the observed association and to study their contribution to asthma pathophysiology. Using genetic data from the 1000 Genomes Project, we first identified 118 variants in linkage disequilibrium (LD; r2>0.6) with the sentinel allergy risk SNP (rs7009110) on chromosome 8q21. Of these, 35 were found to overlap one of four Putative Regulatory Elements (PREs) identified in this region in a lymphoblastoid cell line (LCL), based on epigenetic marks measured by the ENCODE project. Results from analysis of gene expression data generated for LCLs (n=373) by the Geuvadis consortium indicated that rs7009110 is associated with the expression of only one nearby gene: PAG1 - located 732 kb away. PAG1 encodes a transmembrane adaptor protein localized to lipid rafts, which is highly expressed in immune cells. Results from chromosome conformation capture (3C) experiments showed that PREs in the region of association physically interacted with the promoter of PAG1. -
S41467-020-18249-3.Pdf
ARTICLE https://doi.org/10.1038/s41467-020-18249-3 OPEN Pharmacologically reversible zonation-dependent endothelial cell transcriptomic changes with neurodegenerative disease associations in the aged brain Lei Zhao1,2,17, Zhongqi Li 1,2,17, Joaquim S. L. Vong2,3,17, Xinyi Chen1,2, Hei-Ming Lai1,2,4,5,6, Leo Y. C. Yan1,2, Junzhe Huang1,2, Samuel K. H. Sy1,2,7, Xiaoyu Tian 8, Yu Huang 8, Ho Yin Edwin Chan5,9, Hon-Cheong So6,8, ✉ ✉ Wai-Lung Ng 10, Yamei Tang11, Wei-Jye Lin12,13, Vincent C. T. Mok1,5,6,14,15 &HoKo 1,2,4,5,6,8,14,16 1234567890():,; The molecular signatures of cells in the brain have been revealed in unprecedented detail, yet the ageing-associated genome-wide expression changes that may contribute to neurovas- cular dysfunction in neurodegenerative diseases remain elusive. Here, we report zonation- dependent transcriptomic changes in aged mouse brain endothelial cells (ECs), which pro- minently implicate altered immune/cytokine signaling in ECs of all vascular segments, and functional changes impacting the blood–brain barrier (BBB) and glucose/energy metabolism especially in capillary ECs (capECs). An overrepresentation of Alzheimer disease (AD) GWAS genes is evident among the human orthologs of the differentially expressed genes of aged capECs, while comparative analysis revealed a subset of concordantly downregulated, functionally important genes in human AD brains. Treatment with exenatide, a glucagon-like peptide-1 receptor agonist, strongly reverses aged mouse brain EC transcriptomic changes and BBB leakage, with associated attenuation of microglial priming. We thus revealed tran- scriptomic alterations underlying brain EC ageing that are complex yet pharmacologically reversible. -
Opposing Activities of IFITM Proteins in SARS-Cov-2 Infection
bioRxiv preprint doi: https://doi.org/10.1101/2020.08.11.246678; this version posted August 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Opposing activities of IFITM proteins in SARS-CoV-2 infection Guoli Shi1*, Adam D. Kenney2,3*, Elena Kudryashova3,4, Lizhi Zhang2,3, Luanne Hall-Stoodley2, Richard T. Robinson2, Dmitri S. Kudryashov3,4, Alex A. Compton1,#, and Jacob S. Yount2,3,# 1HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD, USA. 2Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, OH, USA 3Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA 4Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA *These authors contributed equally to this work #Address correspondence to Alex A. Compton, [email protected], and Jacob S. Yount, [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.08.11.246678; this version posted August 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Interferon-induced transmembrane proteins (IFITMs) restrict infections by many viruses, but a subset of IFITMs enhance infections by specific coronaviruses through currently unknown mechanisms. Here we show that SARS-CoV-2 Spike-pseudotyped virus and genuine SARS- CoV-2 infections are generally restricted by expression of human IFITM1, IFITM2, and IFITM3, using both gain- and loss-of-function approaches. -
Type I Interferon Remodels Lysosome Function and Modifies Intestinal Epithelial Defense
Type I interferon remodels lysosome function and modifies intestinal epithelial defense Hailong Zhanga,b,c, Abdelrahim Zoueda,b,c, Xu Liua,b,c, Brandon Sitb,c, and Matthew K. Waldora,b,c,1 aHoward Hughes Medical Insitute, Boston, MA 02115; bDivision of Infectious Diseases, Brigham and Women’s Hospital, Boston, MA 02115; and cDepartment of Microbiology, Harvard Medical School, Boston, MA 02115 Edited by Jorge E. Galán, Yale University, New Haven, CT, and approved October 14, 2020 (received for review May 29, 2020) Organelle remodeling is critical for cellular homeostasis, but host the full spectrum of IFN-I-mediated changes in cellular function factors that control organelle function during microbial infection is incomplete. Although IFN-Is are known to play critical roles in remain largely uncharacterized. Here, a genome-scale CRISPR/Cas9 antiviral responses, their functions in bacterial infection are less screen in intestinal epithelial cells with the prototypical intracellu- clear, and IFN-I signaling has been reported to be either pro- lar bacterial pathogen Salmonella led us to discover that type I IFN tective or detrimental to the host depending on the specific (IFN-I) remodels lysosomes. Even in the absence of infection, IFN-I bacterial pathogen (19). signaling modified the localization, acidification, protease activity, Here, we carried out a genome-scale CRISPR/Cas9 screen to and proteomic profile of lysosomes. Proteomic and genetic analyses identify the host factors that contribute to Stm’s cytotoxicity to revealed that multiple IFN-I–stimulated genes including IFITM3, SLC15A3, IECs. This screen revealed IFN-I signaling as a key susceptibility and CNP contribute to lysosome acidification. -
FARE2021WINNERS Sorted by Institute
FARE2021WINNERS Sorted By Institute Swati Shah Postdoctoral Fellow CC Radiology/Imaging/PET and Neuroimaging Characterization of CNS involvement in Ebola-Infected Macaques using Magnetic Resonance Imaging, 18F-FDG PET and Immunohistology The Ebola (EBOV) virus outbreak in Western Africa resulted in residual neurologic abnormalities in survivors. Many case studies detected EBOV in the CSF, suggesting that the neurologic sequelae in survivors is related to viral presence. In the periphery, EBOV infects endothelial cells and triggers a “cytokine stormâ€. However, it is unclear whether a similar process occurs in the brain, with secondary neuroinflammation, neuronal loss and blood-brain barrier (BBB) compromise, eventually leading to lasting neurological damage. We have used in vivo imaging and post-necropsy immunostaining to elucidate the CNS pathophysiology in Rhesus macaques infected with EBOV (Makona). Whole brain MRI with T1 relaxometry (pre- and post-contrast) and FDG-PET were performed to monitor the progression of disease in two cohorts of EBOV infected macaques from baseline to terminal endpoint (day 5-6). Post-necropsy, multiplex fluorescence immunohistochemical (MF-IHC) staining for various cellular markers in the thalamus and brainstem was performed. Serial blood and CSF samples were collected to assess disease progression. The linear mixed effect model was used for statistical analysis. Post-infection, we first detected EBOV in the serum (day 3) and CSF (day 4) with dramatic increases until euthanasia. The standard uptake values of FDG-PET relative to whole brain uptake (SUVr) in the midbrain, pons, and thalamus increased significantly over time (p<0.01) and positively correlated with blood viremia (p≤0.01). -
IFITM3 Inhibits Virus-Triggered Induction of Type I Interferon by Mediating Autophagosome-Dependent Degradation of IRF3
Cellular & Molecular Immunology (2018) 15, 858–867 & 2017 CSI and USTC All rights reserved 2042-0226/17 www.nature.com/cmi RESEARCH ARTICLE IFITM3 inhibits virus-triggered induction of type I interferon by mediating autophagosome-dependent degradation of IRF3 Li-Qun Jiang1, Tian Xia1, Yun-Hong Hu1, Ming-Shun Sun1, Shuang Yan1, Cao-Qi Lei1, Hong-Bing Shu1, Ji-Hua Guo2 and Yu Liu1 Interferon-induced transmembrane protein 3 (IFITM3) is a restriction factor that can be induced by viral infection and interferons (IFNs). It inhibits the entry and replication of many viruses, which are independent of receptor usage but dependent on processes that occur in endosomes. In this study, we demonstrate that IFITM3 plays important roles in regulating the RNA-virus-triggered production of IFN-β in a negative-feedback manner. Overexpression of IFITM3 inhibited Sendai virus-triggered induction of IFN-β, whereas knockdown of IFITM3 had the opposite effect. We also showed that IFITM3 was constitutively associated with IRF3 and regulated the homeostasis of IRF3 by mediating the autophagic degradation of IRF3. These findings suggest a novel inhibitory function of IFITM3 on the RNA-virus-triggered production of type I IFNs and cellular antiviral responses. Cellular & Molecular Immunology advance online publication, 24 April 2017; doi:10.1038/cmi.2017.15 Keywords: autophagy; IFITM3; IFNs; IRF3 INTRODUCTION TLRs and RIG-I-like receptors (RLRs) detect RNA virus As the first line of host defense, the innate immune system infection. For example, TLR3 recognizes viral double-stranded counters viral infection by expressing a number of intrinsic RNA (dsRNA) released by infected cells and triggers TIR- antiviral proteins, triggering the production of interferons domain- containing adapter-inducing interferon-β-mediated (IFNs) and facilitating the activation of adaptive immunity. -
Defining the Range of Pathogens Susceptible to Ifitm3 Restriction Using a Knockout Mouse Model
Defining the Range of Pathogens Susceptible to Ifitm3 Restriction Using a Knockout Mouse Model Aaron R. Everitt1*, Simon Clare1, Jacqueline U. McDonald2, Leanne Kane1, Katherine Harcourt1, Malika Ahras1, Amar Lall3, Christine Hale1, Angela Rodgers4, Douglas B. Young4, Ashraful Haque5, Oliver Billker1, John S. Tregoning2, Gordon Dougan1, Paul Kellam1,6 1 Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom, 2 Mucosal Infection and Immunity Group, Section of Infectious Diseases, Department of Medicine, Imperial College London, London, United Kingdom, 3 The Jenner Institute, University of Oxford, Oxford, United Kingdom, 4 Medical Research Council National Institute for Medical Research, London, United Kingdom, 5 Malaria Immunology Laboratory, Queensland Institute of Medical Research and The Australian Centre for Vaccine Development, Herston, Brisbane, Queensland, Australia, 6 Department of Infection, University College London, London, United Kingdom Abstract The interferon-inducible transmembrane (IFITM) family of proteins has been shown to restrict a broad range of viruses in vitro and in vivo by halting progress through the late endosomal pathway. Further, single nucleotide polymorphisms (SNPs) in its sequence have been linked with risk of developing severe influenza virus infections in humans. The number of viruses restricted by this host protein has continued to grow since it was first demonstrated as playing an antiviral role; all of which enter cells via the endosomal pathway. We therefore sought to test the limits of antimicrobial restriction by Ifitm3 using a knockout mouse model. We showed that Ifitm3 does not impact on the restriction or pathogenesis of bacterial (Salmonella typhimurium, Citrobacter rodentium, Mycobacterium tuberculosis) or protozoan (Plasmodium berghei) pathogens, despite in vitro evidence. -
Destruction of a Distal Hypoxia Response Element Abolishes Trans-Activation of the PAG1 Gene Mediated by HIF-Independent Chromatin Looping
5810–5823 Nucleic Acids Research, 2015, Vol. 43, No. 12 Published online 24 May 2015 doi: 10.1093/nar/gkv506 Destruction of a distal hypoxia response element abolishes trans-activation of the PAG1 gene mediated by HIF-independent chromatin looping 1,† 1,† 2 3 Alexandra Schorg¨ , Sara Santambrogio , James L. Platt , Johannes Schodel¨ ,Maja Downloaded from T. Lindenmeyer1, Clemens D. Cohen1,4,KatrinSchrodter¨ 5, David R. Mole2, Roland H. Wenger1,4,* and David Hoogewijs1,4,5,* 1Institute of Physiology and Zurich¨ Center for Integrative Human Physiology ZIHP, University of Zurich,¨ CH-8057 Zurich,¨ Switzerland, 2Henry Wellcome Building for Molecular Physiology, University of Oxford, Ox3 7BN, UK, http://nar.oxfordjournals.org/ 3Department of Nephrology and Hypertension, Friedrich-Alexander-University Erlangen-Nuremberg, D-91054 Erlangen, Germany, 4National Center of Competence in Research "Kidney.CH", Switzerland and 5Institute of Physiology, University of Duisburg-Essen, D-45122 Essen, Germany Received December 18, 2014; Revised April 18, 2015; Accepted May 02, 2015 at Universitaet Erlangen-Nuernberg, Wirtschafts- und Sozialwissenschaftliche Z on August 15, 2016 ABSTRACT INTRODUCTION A crucial step in the cellular adaptation to oxygen Hypoxia, defined as mismatch between oxygen supply and deficiency is the binding of hypoxia-inducible fac- consumption, plays a crucial role in many physiological tors (HIFs) to hypoxia response elements (HREs) and pathophysiological conditions, such as embryonic de- of oxygen-regulated genes. Genome-wide HIF- velopment, adaptation to high-altitude, wound healing, in- 1␣/2␣/ DNA-binding studies revealed that the ma- flammation, cardiovascular diseases and cancer. Hypoxia- inducible factors (HIFs) are the master regulators of cel- jority of HREs reside distant to the promoter re- lular adaptation to hypoxia (1). -
SUPPLEMENTARY MATERIAL Supplementary Fig. S1. LD Mice Used in This Study Accumulate Polyglucosan Inclusions (Lafora Bodies) in the Brain
1 SUPPLEMENTARY MATERIAL Supplementary Fig. S1. LD mice used in this study accumulate polyglucosan inclusions (Lafora bodies) in the brain. Samples from the hippocampus of five months old control, Epm2a-/- (lacking laforin) and Epm2b-/- mice (lacking malin) were stained with periodic acid Schiff reagent (PAS staining), which colors polysaccharide granules in red. Bar: 50 m. Supplementary Fig. S2. Principal component analysis (PCA) representing the first two components with the biggest level of phenotypic variability. Samples 1_S1 to 4_S4 corresponded to control, 5_S5, 6_S6 and 8_S8 to Epm2a-/- and 9_S9 to 12_S12 to Epm2b- /- samples, of animals of 16 months of age respectively. Supplementary Table S1. Primers used in this work to validate the expression of the corresponding genes by RT-qPCR. Supplementary Table S2: Genes downregulated more than 0.5 fold in Epm2a-/- and Epm2b-/- mice of 16 months of age. The gene name, false discovery rate (FDR), fold change (FC), description and MGI Id (mouse genome informatics) are indicated. Genes are arranged according to FC. Supplementary Table S3: Genes upregulated more than 1.5 fold in Epm2a-/- mice of 16 months of age. The gene name, false discovery rate (FDR), fold change (FC), description and MGI Id (mouse genome informatics) are indicated. Genes are arranged according to FC. Supplementary Table S4: Genes upregulated more than 1.5 fold in Epm2b-/- mice of 16 months of age. The gene name, false discovery rate (FDR), fold change (FC), description and MGI Id (mouse genome informatics) are indicated. Genes are arranged according to FC. 2 Supplementary Table S5: Genes upregulated in both Epm2a-/- and Epm2b-/- mice of 16 months of age.