Reconnaissance Geology of the Amaro Horst, Southern Ethiopian Rift

Total Page:16

File Type:pdf, Size:1020Kb

Reconnaissance Geology of the Amaro Horst, Southern Ethiopian Rift DUBI LEVITTE Geological Survey of Israel, Jerusalem, Israel JOHN COLUMBA Geological Survey of Ethiopia, Addis Ababa, Ethiopia PAUL MÖHR Smithsonian Astrophysical Observatory, Cambridge, Massachusetts 02138 Reconnaissance Geology of the Amaro Horst, Southern Ethiopian Rift ABSTRACT roughly equal to the 75-km width of the rift farther north (Baker and others, 1972, Fig. 14). The Amaro horst is a 90-km by 25-km b iock of sialic crust uplifted 1.5 km above the axis of the main Ethiopian rift, near its southern STRATIGRAPHY termination. The Amaro horst resembles the famous Ruwenzori horst of the Western rift, but additionally the former has had a Precambrian Rocks Neogene-Quaternary volcanic history ths.t reveals episodic uplift of Precambrian rocks are exposed along a narrow, upfaulted crustal the horst from the axis of a bilaterally downwarping-downtilting rift sliver forming the summit ridge of the northern part of the Amaro floor. Vertical forces that produced normal faults uplifted the horst horst (Fig. 2). In the central and southern part, Precambrian rocks to stratigraphic elevations higher than the plateaus outside the rift. are exposed across the width of the horst, although the summit ridge and other high ground are capped by Tertiary volcanic rocks. INTRODUCTION Shallow-dipping mica schists form most of the Precambrian rocks (De Angelis d'Ossat and Millosevich, 1899; Kazmin, 1971). In the The main Ethiopian rift valley divides south of Lake Abaya (or western part of the Amaro horst, muscovite schist overlies biotite Margherita), near lat 6.5° N. (Fig. 1). The north-trending Amaro schist, with foliation having southwest to northwest dips between Mountains (Amaro horst) separate the Ganjuli graben to the west 10° and 30°. This thick, monotonous sequence is cut by abundant from the Galana graben to the east. The lorst and both grabens die intrusions of quartz-feldspar pegmatite. In the northern part of the out near lat 5° N. on the southern fringe of the Ethiopian swell; the horst, biotite schist with aplitic gneiss and quartzite bands is injected rift is transposed en echelon west into the southward-continuing by coarse feldspathic pegmatite and quartz veins. Less common Stefanie graben (Baker and others, 1972). rock types within the schist sequence include serpentinite (possibly The only previous work on the geology of the Amaro region is that from altered sills) and chlorite schist. A prominent inselberg in the of Maurizio Sacchi, a member of the ill-fa ted second Bottego expedi- west-central part is formed of gneissose granodiorite, again injected tion. Sacchi's traverse observations, published by De Angelis with pegmatite (Fig. 2). d'Ossat and Millosevich (1899), showed Precambrian rocks at high The regional foliation of the Precambrian rocks was thus imposed elevations on the Amaro Mountains, higher indeed than on the after a localized intrusive episode. No unmetamorphosed granite of neighboring plateaus east and west of the rift valley. the type occurring southeast of Yavello (Rogers and others, 1965; Dainelli (1943) considered the Amaro Mountains a plateau see Fig. 1) has yet been discovered in Amaro. remnant, left standing within a collapsed rift valley, and drew his The Precambrian sequence of the Amaro horst can be correlated provocative map of basement isohypsals accordingly. Reconnais- with the "Lower Group" of Chater and Gilboy (1970), who mapped sance surveys in the late 1950s (Mohr, 1960) showed, however, that in detail the Precambrian rocks of the Shakisso-Arero area —100 km the Amaro Mountains are formed by a horst uplifted from the rift east of the Amaro horst on the Bali plateau. At the southern end of floor. the Ganjuli graben floor is a similar sequence of Precambrian rocks (Mohr and Gouin, 1968) that consist of regionally extensive biotite PHYSIOGRAPHY schist and subordinate biotite gneiss and marble with foliation The Amaro horst trends N. 5° E. for a length of 90 km. The typical dipping south to southeast between 0° and 20° and with profuse width is —25 km but increases to the south. A continuous, intrusions of feldspathic pegmatite. Rogers and others (1965) have knife-edged summit ridge runs close to the eastern, steeper margin of dated two tectonothermal events affecting the Precambrian rocks of the horst at elevations of —2,600 m. The northernmost segment of southern Ethiopia: an event at least 600 m.y. ago presumably the horst is stepped down from the central sector and has the form of associated with the regional foliation and an event 500 m.y. ago a narrow, linear, bladed ridge, similar to the northern "nose" of the associated with the intrusion of posttectonic granite. The original Ruwenzori horst (Holmes, 1965). age of the sediment now occurring as schist remains unknown (see West of the Amaro horst, the Ganjuli graben contains the Kazmin, 1972). southern end of Lake Abaya (1,175-m elev), which overflows a narrow land bridge, the Tosa Sucha ( 'Bridge of God"), into Lake Mesozoic(P) Rocks Chamo (1,130-m elev). The Ganjuli graben is 25 to 30 km wide and Thin beds of gritstone and conglomerate occur in patches between continues the south-southwest trend of the main Ethiopian rift. West the Precambrian schist and the Amaro flood basalt (see below). The of the graben is an abrupt rise to the extensive plateau whose summit outcrops are too narrow to be indicated on Figure 2; however, they is the Gughe Mountains (—3,500-m elev). are well exposed on the upfaulted Golole ridge, bordering the East of the Amaro horst, the Galana graLen trends nearly due eastern shores of Lake Chamo south of the Sagan effluence, and also north. Its eastern side rises regularly to the edge of the Bali south of Kelyi. Variegated, subhorizontal fine gritstone, 2 to 5 m (Somalian) plateau, a major watershed whose elevation ranges thick, rests unconformably on muscovite schist in the Golole region between 2,000 and 2,500 m. and was more or less transformed into pisolitic lateritite before The divergence from the main Ethiopian rift is slight. The total extrusion of the Amaro flood basalt. Farther east, in the upper Sagan width of the two grabens plus that of the intervening horst remains valley, equivalent gritstone and angular conglomerate are <1 m Geological Society of America Bulletin, v. 85, p. 417-422, 2 figs., March 1974 417 Downloaded from http://pubs.geoscienceworld.org/gsa/gsabulletin/article-pdf/85/3/417/3433393/i0016-7606-85-3-417.pdf by guest on 26 September 2021 418 LEVITTE AND OTHERS thick; still farther east, on the summit ridge of the horst, the An:aro flood basalt rests on nonlateritized schist without any intervening sedimentary rocks. The age of the gritstone and conglomerate is uncertain, but the lateritization suggests a late Mesozoic age by analogy with the well-dated lateritites of central Ethiopia (Dainelli, 1943; Mchr, 1962). Mohr and Gouin (1968) concluded that the 20-m-thick sequence of the Gatto Grits, at the southern end of the Gan uli graben, was probably of Mesozoic rather than Tertiary age. The age of the lithologically similar Turkana gritstone of the Lake Rudolf region has recently been revised from Miocene to Cretaceous by Arambourg and Wolff (1969). Upper Tertiary to Quaternary Rocks Amaro Flood Basalt. A thick sequence of flood basalt is developed over much of the Amaro horst. On the eastern and western fringes of the south-central part, the Amaro flood basalt does not exceed 100 m in thickness (10 to 15 flows), although in places this may represent a minimum owing to denudation. In the Baraka valley, thicker flood-basalt flows total 200 to 250 m; a similar thickness, veneered with silicic tuff, caps the summit ridge of the Amaro horst southwest of Kelyi (Amaro basalt on Fig. 2). South of Kelyi, ~200 m of flood basalt occurs on the tilted blocks of the faulted eastern escarpment of the horst; this sequence is absent from the summit ridge immediately to the west. The Amaro flood basalt thickens northward and exceeds 1,000 :n on the northern part of the horst, where the full sequence is last exposed. This northward thickening matches the general pattern on the plateaus west and east of the rift (Mohr and Gouin, 1968). Tbe Amaro flood basalt is commonly olivine-phyric, particularly the lower flows. Light-colored, amygdaloidal (agate and calcite) basalt, interspersed with feldspar-phyric flows, characterizes the upper part of the sequence. Numerous feeder dikes for the Amaro flood basalt are exposed on the western flank of the horst. In the Sagan valley (~10 km south of the southern limit of Fig. 2), a swarm of dikes cuts the Precambrian rocks of the graben axis. The swarm is 2 to 3 km wide, and the dikes trend between north and north-northeast and dip steeply west. Figure 1. Location map of the Amaro horst near the southern termination of the Typical dike lengths are 600 to 1,200 m, and right en echelon main Ethiopian rift (elevations higher than 2,000 m indicated by stippling). transpositions occur. On the southeastern part of the horst, north-trending dikes dip steeply east and are slightly but definitely part. The tuff shows a tendency to be draped on the existing oblique to the N. 10° E. strike of the dipping lava flows. In the topography of the horst, indicating an unconformity with the Baraka valley, thin (<1 m) vertical dikes trend north to underlying basalt. north-northeast. One of these dikes, sampled from the upper part ol The age of the tuff is uncertain but must be later than early the flood-basalt sequence, has yielded a radiometric age of 21 m.y.
Recommended publications
  • Geology and Structural Evolution of the Foss River-Deception Creek Area, Cascade Mountains, Washington
    AN ABSTRACT OF THE THESIS OF James William McDougall for the degree of Master of Science in Geology presented on Lune, icnct Title: GEOLOGY AND STRUCTURALEVOLUTION OF THE FOSS RIVER-DECEPTION CREEK AREA,CASCADE MOUNTAINS, WASHINGTOV, Redacted for Privacy Abstract approved: Robert S. Yekis Southwest of Stevens Pass, Washington,immediately west of the crest of the Cascade Range, pre-Tertiaryrocks include the Chiwaukum Schist, dominantly biotite-quartzschist characterized by a polyphase metamorphic history,that correlates with schistose basement east of the area of study.Pre-Tertiary Easton Schist, dominated by graphitic phyllite, is principallyexposed in a horst on Tonga Ridge, however, it also occurs eastof the horst.Altered peridotite correlated to Late Jurassic IngallsComplex crops out on the western margin of the Mount Stuart uplift nearDeception Pass. The Mount Stuart batholith of Late Cretaceous age,dominantly granodiorite to tonalite, and its satellite, the Beck lerPeak stock, intrude Chiwaukum Schist, Easton Schist, andIngalls Complex. Tertiary rocks include early Eocene Swauk Formation, a thick sequence of fluviatile polymictic conglomerateand arkosic sandstone that contains clasts resembling metamorphic and plutonic basement rocks in the northwestern part of the thesis area.The Swauk Formation lacks clasts of Chiwaukum Schist that would be ex- pected from source areas to the east and northeast.The Oligocene (?) Mount Daniel volcanics, dominated by altered pyroclastic rocks, in- trude and unconformably overlie the Swauk Formation.The
    [Show full text]
  • Seismic Investigation Ofthe Buried Horst Between the Jornada Del Muerto and Mesilla Ground-Water Basins Near Lascruces, Dona Ana County, New Mexico
    SEISMIC INVESTIGATION OFTHE BURIED HORST BETWEEN THE JORNADA DEL MUERTO AND MESILLA GROUND-WATER BASINS NEAR LASCRUCES, DONA ANA COUNTY, NEW MEXICO SANAUGUST1N PASS/ FEET -5,500 FLUVIAL FACIES FLOOD-PLAIN DEPOSITS 3,000 U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 97-4147 Prepared in cooperation with the CITY OF LAS CRUCES and the NEW MEXICO STATE ENGINEER OFFICE Albuquerque, New Mexico 1997 SEISMIC INVESTIGATION OF THE BURIED HORST BETWEEN THE JORNADA DEL MUERTO AND MESILLA GROUND-WATER BASINS NEAR LAS CRUCES, DONA ANA COUNTY, NEW MEXICO By Dennis G. Woodward and Robert G. Myers U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 97 4147 Prepared in cooperation with the CITY OF LAS CRUCES and the NEW MEXICO STATE ENGINEER OFFICE Albuquerque, New Mexico 1997 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Gordon P. Eaton, Director The use of firm, trade, and brand names in this report is for identification purposes only and does not constitute endorsement by the U.S. Geological Survey. For additional information write to: Copies of this report can be purchased from: District Chief U.S. Geological Survey U.S. Geological Survey Branch of Information Services Water Resources Division Box 25286 4501 Indian School Road NE, Suite 200 Denver, CO 80225-0286 Albuquerque, NM 87110-3929 CONTENTS Page Abstract.................................................................................................................................................................................. 1 Introduction
    [Show full text]
  • Geology, Geochronology, and Rift Basin Development in the Central Sector of the Main Ethiopia Rift
    Geology, geochronology, and rift basin development in the central sector of the Main Ethiopia Rift GIDAY WOLDEGABRIEL* ) n „ „, JAMES L ARONSON J DePartment °J Geological Sciences, Case Western Reserve University, Cleveland, Ohio 44106 ROBERT C. WALTER Institute of Human Origins, 2453 Ridge Road, Berkeley, California 94709 ABSTRACT 37°30'-40°. A satellite thematic mapper image of this classic rift region (Fig. 1) shows all but the southwestern part of the study area. The MER is Based on stratigraphic relationships and K/Ar dating of volcanic divided geographically into three sectors: northern, central, and southern rocks from both of the escarpments, flanking plateaus, and from the (inset map, Fig. 2), and most of the central sector of the rift proper is in this rift floor of the central sector of the Main Ethiopian Rift, six major image. The MER divides the 1,000-km-wide uplifted Ethiopian volcanic volcanic episodes are recognized in the rift's development over a time province asymmetrically into the northwest and southeast plateaus (inset span from the late Oligocene to the Quaternary. Using the K/Ar data, map, Fig. 2). Volcanic sequences that cover an area several hundred correlation of volcanic units from the six periods of activity through- kilometers across are more voluminous and widespread on the northwest out the study area forms the basis for establishing six time- plateau than on the opposite side. Contrary to previous suggestions that stratigraphic chronozones for the central sector that are related to volcanism migrated from the northwest plateau toward the Ethiopian Rifts volcanism in the Ethiopian Cenozoic volcanic province.
    [Show full text]
  • Tectonic Features of the Precambrian Belt Basin and Their Influence on Post-Belt Structures
    ... Tectonic Features of the .., Precambrian Belt Basin and Their Influence on Post-Belt Structures GEOLOGICAL SURVEY PROFESSIONAL PAPER 866 · Tectonic Features of the · Precambrian Belt Basin and Their Influence on Post-Belt Structures By JACK E. HARRISON, ALLAN B. GRIGGS, and JOHN D. WELLS GEOLOGICAL SURVEY PROFESSIONAL PAPER X66 U N IT ED STATES G 0 V ERN M EN T P R I NT I N G 0 F F I C E, \VAS H I N G T 0 N 19 7 4 UNITED STATES DEPARTMENT OF THE INTERIOR ROGERS C. B. MORTON, Secretary GEOLOGICAL SURVEY V. E. McKelvey, Director Library of Congress catalog-card No. 74-600111 ) For sale by the Superintendent of Documents, U.S. GO\·ernment Printing Office 'Vashington, D.C. 20402 - Price 65 cents (paper cO\·er) Stock Number 2401-02554 CONTENTS Page Page Abstract................................................. 1 Phanerozoic events-Continued Introduction . 1 Late Mesozoic through early Tertiary-Continued Genesis and filling of the Belt basin . 1 Idaho batholith ................................. 7 Is the Belt basin an aulacogen? . 5 Boulder batholith ............................... 8 Precambrian Z events . 5 Northern Montana disturbed belt ................. 8 Phanerozoic events . 5 Tectonics along the Lewis and Clark line .............. 9 Paleozoic through early Mesozoic . 6 Late Cenozoic block faults ........................... 13 Late Mesozoic through early Tertiary . 6 Conclusions ............................................. 13 Kootenay arc and mobile belt . 6 References cited ......................................... 14 ILLUSTRATIONS Page FIGURES 1-4. Maps: 1. Principal basins of sedimentation along the U.S.-Canadian Cordillera during Precambrian Y time (1,600-800 m.y. ago) ............................................................................................... 2 2. Principal tectonic elements of the Belt basin reentrant as inferred from the sedimentation record ............
    [Show full text]
  • Post-Collisional Formation of the Alpine Foreland Rifts
    Annales Societatis Geologorum Poloniae (1991) vol. 61:37 - 59 PL ISSN 0208-9068 POST-COLLISIONAL FORMATION OF THE ALPINE FORELAND RIFTS E. Craig Jowett Department of Earth Sciences, University of Waterloo, Waterloo, Ontario Canada N2L 3G1 Jowett, E. C., 1991. Post-collisional formation of the Alpine foreland rifts. Ann. Soc. Geol. Polon., 6 1 :37-59. Abstract: A series of Cenozoic rift zones with bimodal volcanic rocks form a discontinuous arc parallel to the Alpine mountain chain in the foreland region of Europe from France to Czechos­ lovakia. The characteristics of these continental rifts include: crustal thinning to 70-90% of the regional thickness, in cases with corresponding lithospheric thinning; alkali basalt or bimodal igneous suites; normal block faulting; high heat flow and hydrothermal activity; regional uplift; and immature continental to marine sedimentary rocks in hydrologically closed basins. Preceding the rifting was the complex Alpine continental collision orogeny which is characterized by: crustal shortening; thrusting and folding; limited calc-alkaline igneous activity; high pressure metamorphism; and marine flysch and continental molasse deposits in the foreland region. Evidence for the direction of subduction in the central area is inconclusive, although northerly subduction likely occurred in the eastern and western Tethys. The rift events distinctly post-date the thrusthing and shortening periods of the orogeny, making “impactogen” models of formation untenable. However, the succession of tectonic and igneous events, the geophysical characteristics, and the timing and location of these rifts are very similar to those of the Late Cenozoic Basin and Range province in the western USA and the Early Permian Rotliegendes troughs in Central Europe.
    [Show full text]
  • Collision Orogeny
    Downloaded from http://sp.lyellcollection.org/ by guest on October 6, 2021 PROCESSES OF COLLISION OROGENY Downloaded from http://sp.lyellcollection.org/ by guest on October 6, 2021 Downloaded from http://sp.lyellcollection.org/ by guest on October 6, 2021 Shortening of continental lithosphere: the neotectonics of Eastern Anatolia a young collision zone J.F. Dewey, M.R. Hempton, W.S.F. Kidd, F. Saroglu & A.M.C. ~eng6r SUMMARY: We use the tectonics of Eastern Anatolia to exemplify many of the different aspects of collision tectonics, namely the formation of plateaux, thrust belts, foreland flexures, widespread foreland/hinterland deformation zones and orogenic collapse/distension zones. Eastern Anatolia is a 2 km high plateau bounded to the S by the southward-verging Bitlis Thrust Zone and to the N by the Pontide/Minor Caucasus Zone. It has developed as the surface expression of a zone of progressively thickening crust beginning about 12 Ma in the medial Miocene and has resulted from the squeezing and shortening of Eastern Anatolia between the Arabian and European Plates following the Serravallian demise of the last oceanic or quasi- oceanic tract between Arabia and Eurasia. Thickening of the crust to about 52 km has been accompanied by major strike-slip faulting on the rightqateral N Anatolian Transform Fault (NATF) and the left-lateral E Anatolian Transform Fault (EATF) which approximately bound an Anatolian Wedge that is being driven westwards to override the oceanic lithosphere of the Mediterranean along subduction zones from Cephalonia to Crete, and Rhodes to Cyprus. This neotectonic regime began about 12 Ma in Late Serravallian times with uplift from wide- spread littoral/neritic marine conditions to open seasonal wooded savanna with coiluvial, fluvial and limnic environments, and the deposition of the thick Tortonian Kythrean Flysch in the Eastern Mediterranean.
    [Show full text]
  • Estimation of Spatiotemporal Isotropic and Anisotropic Myocardial Stiffness Using
    Estimation of Spatiotemporal Isotropic and Anisotropic Myocardial Stiffness using Magnetic Resonance Elastography: A Study in Heart Failure DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Ria Mazumder, M.S. Graduate Program in Electrical and Computer Engineering The Ohio State University 2016 Dissertation Committee: Dr. Bradley Dean Clymer, Advisor Dr. Arunark Kolipaka, Co-Advisor Dr. Patrick Roblin Dr. Richard D. White © Copyright by Ria Mazumder 2016 Abstract Heart failure (HF), a complex clinical syndrome that is characterized by abnormal cardiac structure and function; and has been identified as the new epidemic of the 21st century [1]. Based on the left ventricular (LV) ejection fraction (EF), HF can be classified into two broad categories: HF with reduced EF (HFrEF) and HF with preserved EF (HFpEF). Both HFrEF and HFpEF are associated with alteration in myocardial stiffness (MS), and there is an extensively rich literature to support this relation. However, t0 date, MS is not widely used in the clinics for the diagnosis of HF precisely because of the absence of a clinically efficient tool to estimate MS. Current clinical techniques used to measure MS are invasive in nature, provide global stiffness measurements and cannot assess the true intrinsic properties of the myocardium. Therefore, there is a need to non-invasively quantify MS for accurate diagnosis and prognosis of HF. In recent years, a non-invasive technique known as cardiac magnetic resonance elastography (cMRE) has been developed to estimate MS. However, most of the reported studies using cMRE have been performed on phantoms, animals and healthy volunteers and minimal literature recognizing the importance of cMRE in diagnosing disease conditions, especially with respect to HF is available.
    [Show full text]
  • 4. Deep-Tow Observations at the East Pacific Rise, 8°45N, and Some Interpretations
    4. DEEP-TOW OBSERVATIONS AT THE EAST PACIFIC RISE, 8°45N, AND SOME INTERPRETATIONS Peter Lonsdale and F. N. Spiess, University of California, San Diego, Marine Physical Laboratory, Scripps Institution of Oceanography, La Jolla, California ABSTRACT A near-bottom survey of a 24-km length of the East Pacific Rise (EPR) crest near the Leg 54 drill sites has established that the axial ridge is a 12- to 15-km-wide lava plateau, bounded by steep 300-meter-high slopes that in places are large outward-facing fault scarps. The plateau is bisected asymmetrically by a 1- to 2-km-wide crestal rift zone, with summit grabens, pillow walls, and axial peaks, which is the locus of dike injection and fissure eruption. About 900 sets of bottom photos of this rift zone and adjacent parts of the plateau show that the upper oceanic crust is composed of several dif- ferent types of pillow and sheet lava. Sheet lava is more abundant at this rise crest than on slow-spreading ridges or on some other fast- spreading rises. Beyond 2 km from the axis, most of the plateau has a patchy veneer of sediment, and its surface is increasingly broken by extensional faults and fissures. At the plateau's margins, secondary volcanism builds subcircular peaks and partly buries the fault scarps formed on the plateau and at its boundaries. Another deep-tow survey of a patch of young abyssal hills 20 to 30 km east of the spreading axis mapped a highly lineated terrain of inactive horsts and grabens. They were created by extension on inward- and outward- facing normal faults, in a zone 12 to 20 km from the axis.
    [Show full text]
  • Grand Canyon
    U.S. Department of the Interior Geologic Investigations Series I–2688 14 Version 1.0 4 U.S. Geological Survey 167.5 1 BIG SPRINGS CORRELATION OF MAP UNITS LIST OF MAP UNITS 4 Pt Ph Pamphlet accompanies map .5 Ph SURFICIAL DEPOSITS Pk SURFICIAL DEPOSITS SUPAI MONOCLINE Pk Qr Holocene Qr Colorado River gravel deposits (Holocene) Qsb FAULT CRAZY JUG Pt Qtg Qa Qt Ql Pk Pt Ph MONOCLINE MONOCLINE 18 QUATERNARY Geologic Map of the Pleistocene Qtg Terrace gravel deposits (Holocene and Pleistocene) Pc Pk Pe 103.5 14 Qa Alluvial deposits (Holocene and Pleistocene) Pt Pc VOLCANIC ROCKS 45.5 SINYALA Qti Qi TAPEATS FAULT 7 Qhp Qsp Qt Travertine deposits (Holocene and Pleistocene) Grand Canyon ၧ DE MOTTE FAULT Pc Qtp M u Pt Pleistocene QUATERNARY Pc Qp Pe Qtb Qhb Qsb Ql Landslide deposits (Holocene and Pleistocene) Qsb 1 Qhp Ph 7 BIG SPRINGS FAULT ′ × ′ 2 VOLCANIC DEPOSITS Dtb Pk PALEOZOIC SEDIMENTARY ROCKS 30 60 Quadrangle, Mr Pc 61 Quaternary basalts (Pleistocene) Unconformity Qsp 49 Pk 6 MUAV FAULT Qhb Pt Lower Tuckup Canyon Basalt (Pleistocene) ၣm TRIASSIC 12 Triassic Qsb Ph Pk Mr Qti Intrusive dikes Coconino and Mohave Counties, Pe 4.5 7 Unconformity 2 3 Pc Qtp Pyroclastic deposits Mr 0.5 1.5 Mၧu EAST KAIBAB MONOCLINE Pk 24.5 Ph 1 222 Qtb Basalt flow Northwestern Arizona FISHTAIL FAULT 1.5 Pt Unconformity Dtb Pc Basalt of Hancock Knolls (Pleistocene) Pe Pe Mၧu Mr Pc Pk Pk Pk NOBLE Pt Qhp Qhb 1 Mၧu Pyroclastic deposits Qhp 5 Pe Pt FAULT Pc Ms 12 Pc 12 10.5 Lower Qhb Basalt flows 1 9 1 0.5 PERMIAN By George H.
    [Show full text]
  • Joints, Folds, and Faults
    Structural Geology Rocks in the Crust Are Bent, Stretched, and Broken … …by directed stresses that cause Deformation. Types of Differential Stress Tensional, Compressive, and Shear Strain is the change in shape and or volume of a rock caused by Stress. Joints, Folds, and Faults Strain occurs in 3 stages: elastic deformation, ductile deformation, brittle deformation 1 Type of Strain Dependent on … • Temperature • Confining Pressure • Rate of Strain • Presence of Water • Composition of the Rock Dip-Slip and Strike-Slip Faults Are the Most Common Types of Faults. Major Fault Types 2 Fault Block Horst and Graben BASIN AND Crustal Extension Formed the RANGE PROVINCE Basin and Range Province. • Decompression melting and high heat developed above a subducted rift zone. • Former margin of Farallon and Pacific plates. • Thickening, uplift ,and tensional stress caused normal faults. • Horst and Graben structures developed. Fold Terminology 3 Open Anticline – convex upward arch with older rocks in the center of the fold (symmetrical) Isoclinal Asymmetrical Overturned Recumbent Evolution Simple Folds of a fold into a reverse fault An eroded anticline will have older beds in the middle An eroded syncline will have younger beds in middle Outcrop patterns 4 • The Strike of a body of rock is a line representing the intersection of A layer of tilted that feature with the plane of the horizon (always measured perpendicular to the Dip). rock can be • Dip is the angle below the horizontal of a geologic feature. represented with a plane. o 30 The orientation of that plane in space is defined with Strike-and- Dip notation. Maps are two- Geologic Map Showing Topography, Lithology, and dimensional Age of Rock Units in “Map View”.
    [Show full text]
  • Campus Field Trip on the Geology of Cache Valley
    Campus Field Trip on the Geology of Cache Valley Stop in the historic Family Life building to check out the main entrance walls. They are made of limestone and have fossil gastropods and bivalves in them! STOP 1 STOP 1 underpass beneath Hwy 89 to parking lot south of Huntsman School of Business Bedrock: The layered rocks of the Bear River Range, visible in the canyons from this vantage point, are Paleozoic sedimentary rocks deposited from 600 to 250 million years ago, depending upon which rocks and where you are in the overall range. They are largely carbonates – limestone and dolostone – with fossil corals, shelled creatures, trilobites, and other critters living in or near the shoreline of an ancient sea. This was the seacoast and beaches of our continent at that time! How have things changed from the Paleozoic time to the present here in Cache Valley? Basin and Range, East Cache Fault: The Bear River Range is separated from the low-lying basin of Cache Valley by a linear fault, which runs along the base of the mountains, from north-to-south. This is the East Cache fault. The similar West Cache fault lies along the base of the Wellsville Mountains at the west side of the basin. Cache Valley is at the east edge of the Basin and Range, and our faults create “horst and graben” terrain. Cache Valley continues to drop relative to the bounding mountain ranges because of movement along these faults during earthquakes! The most notable historic earthquake in Cache Valley occurred in 1962 with an epicenter east of Richmond (13 miles north).
    [Show full text]
  • U.S. Geological Survey Open-File Report 82-788 This Report Is Preliminary and Has Not Been Reviewed for Conformity with U.S
    SO-2 HUT1D STATES OF THE HCTOLIO* GEOLOGICAL SURVEY PROJECT REPORT Somalia Investigation (IR)SO-2 A PRELIMINARY EVALUATION OF THE NON-FUEL MINERAL POTENTIAL OF SOMALIA By William Rucker Greenwood U.S. Geological Survey U.S. Geological Survey Open-File Report 82-788 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards and stratlgraphic nomenclature. (Any use of trade names is for descriptive purposes only and does not imply endorsement by the USGS.) TOR? CONTENTS Page Abstract................................................................. 1 Introduction............................................................. 2 Summary of Geology....................................................... 3 PreCambrian......................................................... 3 Bur Region..................................................... 3 Northern Mountains............................................. 4 Gneissic complex.......................................... 4 Inda Ad Series............................................ 5 Mafic igneous rocks....................................... 5 Granite................................................... 5 Structure................................................. 5 Metamorphism.............................................. 6 Phanerozoic......................................................... 6 Jurassic rocks................................................. 6 Borama-Zeila area......................................... 6 Bihendula area...........................................
    [Show full text]