Estimation of Spatiotemporal Isotropic and Anisotropic Myocardial Stiffness Using

Total Page:16

File Type:pdf, Size:1020Kb

Estimation of Spatiotemporal Isotropic and Anisotropic Myocardial Stiffness Using Estimation of Spatiotemporal Isotropic and Anisotropic Myocardial Stiffness using Magnetic Resonance Elastography: A Study in Heart Failure DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Ria Mazumder, M.S. Graduate Program in Electrical and Computer Engineering The Ohio State University 2016 Dissertation Committee: Dr. Bradley Dean Clymer, Advisor Dr. Arunark Kolipaka, Co-Advisor Dr. Patrick Roblin Dr. Richard D. White © Copyright by Ria Mazumder 2016 Abstract Heart failure (HF), a complex clinical syndrome that is characterized by abnormal cardiac structure and function; and has been identified as the new epidemic of the 21st century [1]. Based on the left ventricular (LV) ejection fraction (EF), HF can be classified into two broad categories: HF with reduced EF (HFrEF) and HF with preserved EF (HFpEF). Both HFrEF and HFpEF are associated with alteration in myocardial stiffness (MS), and there is an extensively rich literature to support this relation. However, t0 date, MS is not widely used in the clinics for the diagnosis of HF precisely because of the absence of a clinically efficient tool to estimate MS. Current clinical techniques used to measure MS are invasive in nature, provide global stiffness measurements and cannot assess the true intrinsic properties of the myocardium. Therefore, there is a need to non-invasively quantify MS for accurate diagnosis and prognosis of HF. In recent years, a non-invasive technique known as cardiac magnetic resonance elastography (cMRE) has been developed to estimate MS. However, most of the reported studies using cMRE have been performed on phantoms, animals and healthy volunteers and minimal literature recognizing the importance of cMRE in diagnosing disease conditions, especially with respect to HF is available. Additionally the existing cMRE techniques assume that the waves are propagating in a ii uniform, infinite, homogenous, isotropic medium. However, such assumptions are violated in the heart since it bears a complex anisotropic (orthotropic) geometry; current cMRE techniques may not provide the true mechanical properties of the myocardium and instead provide only an effective estimate of MS. The overall goal of this dissertation is to: i) implement the currently established cMRE technique in HF (both HFrEF and HFpEF) porcine models to validate MS as a diagnostic biomarker; ii) explore the scope of ex-vivo cardiac diffusion tensor imaging (DTI) in investigating myocardial architecture (required for anisotropic stiffness measurements) in a HF causing diseased model; iii) develop waveguide cMRE inversion (a tool to estimate anisotropic stiffness) and validate the algorithm using finite element (FE) simulations; and iv) implement waveguide cMRE inversion in a hypertensive heart model (that has the potential to trigger HFpEF) to demonstrate the feasibility of measuring anisotropic MS in HF causing disease conditions. From the results obtained it was observed that MS in a hypertensive heart (HFpEF causing condition) increased progressively with disease progression when compared to a normal heart; and this increase exhibited significant correlation with left ventricular pressure (increases due to hypertension) and thickness (increases secondary to hypertension). Additionally, MS demonstrated progressive focal increase in an infarcted myocardium (HFrEF causing condition) compared to non-infarcted remote myocardium with disease progression and the increase in MS exhibited significant correlation with i) iii mechanical testing-derived MS, ii) circumferential end-diastolic strain, iii) T1 values and iv) extra-cellular volume fraction. The next part of the dissertation investigates the change in cardiac geometry (essential for investigating anisotropic elastic properties) as a result of myocardial infarction (HFrEF causing condition) in formalin-fixed ex-vivo specimens using DTI. Since in-vivo DTI is very complex (due to cardiac and respiratory motion) and is still in its inception, formalin-fixed ex-vivo specimens were used for the preliminary investigation. Hence it was essential to ensure whether the alterations observed in cardiac geometry were related to pathology or if it was an effect of the fixation process. The results demonstrated that formalin-fixation did not alter the structural orientation of the fibers and that fibers in the infarcted myocardium were shorter and disarrayed. Additionally, a post processing filter was developed to reduce acquisition time in cardiac DTI, thereby assisting in faster imaging. The filter was implemented on formalin-fixed ex-vivo myocardial infarction (HFrEF causing condition) induced porcine hearts to demonstrate that the technique preserved subtle pathological alterations in myocardial structure. The last section of this dissertation validates the waveguide MRE inversion algorithm and demonstrates its feasibility in a hypertensive heart model. From the results it was observed that the inversion successfully resolved the anisotropic elastic properties of the materials in majority of the directions. The inversion failed in one shear direction because with the current actuation and geometric setting that particular mode was not being excited. Additionally, the anisotropic elastic coefficients estimated in the hypertensive iv heart model that is prone to triggering HFpEF demonstrated significant increase in one compressional direction and all three shear directions. In conclusion, this dissertation uses cMRE to demonstrate the potential of spatiotemporal isotropic and anisotropic myocardial stiffness as a diagnostic metric in heart failure porcine models. v Dedication This dissertation is dedicated to Maa. vi Acknowledgments This dissertation was nothing short of an exciting and amazing roller-coaster ride, and would be incomplete if I don’t express my gratitude to all those people who made it possible. First and foremost I want to thank my advisors Dr. Kolipaka and Dr. Clymer for, the continuous guidance, time, knowledge and experience that shaped me to become an independent researcher. Their endless discussion, scribbles on the white board, their enthusiasm despite the multiple dead ends, their motivation and their belief that “there is light at the end of the tunnel” is what kept me going till the end. I am grateful to the Department of Electrical and Computer Engineering, especially Dr. Anderson for the three years of TA support, the Department of Radiology, especially Dr. White for their funds (GRA), Hazel, Jennifer and Diane for offering me the GAA position, all of which kept me financially secured through the course of this PhD. I would like to thank Dr. White for being on my dissertation committee and for his invaluable feedback during our meetings and through manuscript preparations; Dr. Roblin for being on my candidacy and dissertation committee; Dr. Krishnamurthy for being on my qualifier and candidacy committee; Dr. Simonetti for his continuous feedback throughout the 3 years, Dr. Litsky for his help with mechanical testing and Dr. vii Potter and Dr. Raman for their insights during the weekly journal clubs. Thanks are due for Dr. Young and his student Renee, our collaborators in Auckland, for their help in generating the finite element simulations. I am grateful to Ding, Rizwan, Seongjin and Peter for their valuable perspectives whenever I was absorbed by an unsolvable mathematical/engineering abyss, Ning for her assistance with all scanner/pulse sequence related issues, Juliana for her insights as a radiologist and Molly for her help with statistics. Next, I would like to thank all the members of the lab who have contributed in some way to this dissertation, Brian for his help with imaging, Matt for his help with preparing the animals, Anirudh for his help with the initial set-up, Sam for his help with the processing and Prateek for his hands-on help. That apart, all the other past and present members of the lab, Faisal, Priyanka, Shantanu, Ben, Huiming, Kovid, Will, Chethan and Sangmin for their insights during lab meetings. Thanks are due to Debbie for being the motherly figure she is, Juliet for being an amazing friend and listener, for her help in everything, starting from course work to MATLAB errors to simple formatting, David and Sam for their occasional valuable advices. Beyond the boundaries of the lab, I would like to thank my network of friends both in US and India whose contributions may not have technical relevance but their support in the viii last couple of years was very essential to this dissertation. My neighbors for helping me sprint through the last lap of this dissertation without any injury. And last but not the least I am ever grateful to my family who forms an integral part of this dissertation. I sincerely thank my grandmother, aunts, uncles, cousins, nieces, nephews and in-laws and every other family member who believed in me. Without their constant support, encouragement and motivation that helped me stay sane; this dissertation would not have been possible. Special mention is needed for my sister Neha, for pampering me, bearing with my tantrums and keeping me company every single day. My parents (maa and baba), for believing in me and supporting me through thick and thin. It is their innumerous sacrifices and unconditional love that has given me the strength to pursue this research. Had it not been for maa’s trust in me, her passion for going beyond the ordinary and her willingness to put everything
Recommended publications
  • Geology and Structural Evolution of the Foss River-Deception Creek Area, Cascade Mountains, Washington
    AN ABSTRACT OF THE THESIS OF James William McDougall for the degree of Master of Science in Geology presented on Lune, icnct Title: GEOLOGY AND STRUCTURALEVOLUTION OF THE FOSS RIVER-DECEPTION CREEK AREA,CASCADE MOUNTAINS, WASHINGTOV, Redacted for Privacy Abstract approved: Robert S. Yekis Southwest of Stevens Pass, Washington,immediately west of the crest of the Cascade Range, pre-Tertiaryrocks include the Chiwaukum Schist, dominantly biotite-quartzschist characterized by a polyphase metamorphic history,that correlates with schistose basement east of the area of study.Pre-Tertiary Easton Schist, dominated by graphitic phyllite, is principallyexposed in a horst on Tonga Ridge, however, it also occurs eastof the horst.Altered peridotite correlated to Late Jurassic IngallsComplex crops out on the western margin of the Mount Stuart uplift nearDeception Pass. The Mount Stuart batholith of Late Cretaceous age,dominantly granodiorite to tonalite, and its satellite, the Beck lerPeak stock, intrude Chiwaukum Schist, Easton Schist, andIngalls Complex. Tertiary rocks include early Eocene Swauk Formation, a thick sequence of fluviatile polymictic conglomerateand arkosic sandstone that contains clasts resembling metamorphic and plutonic basement rocks in the northwestern part of the thesis area.The Swauk Formation lacks clasts of Chiwaukum Schist that would be ex- pected from source areas to the east and northeast.The Oligocene (?) Mount Daniel volcanics, dominated by altered pyroclastic rocks, in- trude and unconformably overlie the Swauk Formation.The
    [Show full text]
  • Seismic Investigation Ofthe Buried Horst Between the Jornada Del Muerto and Mesilla Ground-Water Basins Near Lascruces, Dona Ana County, New Mexico
    SEISMIC INVESTIGATION OFTHE BURIED HORST BETWEEN THE JORNADA DEL MUERTO AND MESILLA GROUND-WATER BASINS NEAR LASCRUCES, DONA ANA COUNTY, NEW MEXICO SANAUGUST1N PASS/ FEET -5,500 FLUVIAL FACIES FLOOD-PLAIN DEPOSITS 3,000 U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 97-4147 Prepared in cooperation with the CITY OF LAS CRUCES and the NEW MEXICO STATE ENGINEER OFFICE Albuquerque, New Mexico 1997 SEISMIC INVESTIGATION OF THE BURIED HORST BETWEEN THE JORNADA DEL MUERTO AND MESILLA GROUND-WATER BASINS NEAR LAS CRUCES, DONA ANA COUNTY, NEW MEXICO By Dennis G. Woodward and Robert G. Myers U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 97 4147 Prepared in cooperation with the CITY OF LAS CRUCES and the NEW MEXICO STATE ENGINEER OFFICE Albuquerque, New Mexico 1997 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Gordon P. Eaton, Director The use of firm, trade, and brand names in this report is for identification purposes only and does not constitute endorsement by the U.S. Geological Survey. For additional information write to: Copies of this report can be purchased from: District Chief U.S. Geological Survey U.S. Geological Survey Branch of Information Services Water Resources Division Box 25286 4501 Indian School Road NE, Suite 200 Denver, CO 80225-0286 Albuquerque, NM 87110-3929 CONTENTS Page Abstract.................................................................................................................................................................................. 1 Introduction
    [Show full text]
  • Increased Power by Harmonizing Structural MRI Site Differences with the Combat Batch Adjustment Method in ENIGMA
    UC Irvine UC Irvine Previously Published Works Title Increased power by harmonizing structural MRI site differences with the ComBat batch adjustment method in ENIGMA. Permalink https://escholarship.org/uc/item/2bc1b6zp Authors Radua, Joaquim Vieta, Eduard Shinohara, Russell et al. Publication Date 2020-09-01 DOI 10.1016/j.neuroimage.2020.116956 Peer reviewed eScholarship.org Powered by the California Digital Library University of California HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Neuroimage Manuscript Author . Author manuscript; Manuscript Author available in PMC 2020 September 29. Published in final edited form as: Neuroimage. 2020 September ; 218: 116956. doi:10.1016/j.neuroimage.2020.116956. Increased power by harmonizing structural MRI site differences with the ComBat batch adjustment method in ENIGMA A full list of authors and affiliations appears at the end of the article. Abstract A common limitation of neuroimaging studies is their small sample sizes. To overcome this hurdle, the Enhancing Neuro Imaging Genetics through Meta-Analysis (ENIGMA) Consortium combines neuroimaging data from many institutions worldwide. However, this introduces heterogeneity due to different scanning devices and sequences. ENIGMA projects commonly address this heterogeneity with random-effects meta-analysis or mixed-effects mega-analysis. Here we tested whether the batch adjustment method, ComBat, can further reduce site-related heterogeneity and thus increase statistical power. We conducted random-effects meta-analyses, mixed-effects mega-analyses and ComBat mega-analyses to compare cortical thickness, surface area and subcortical volumes between 2897 individuals with a diagnosis of schizophrenia and 3141 healthy controls from 33 sites. Specifically, we compared the imaging data between individuals with schizophrenia and healthy controls, covarying for age and sex.
    [Show full text]
  • Mechanical Stratigraphic Controls on Natural Fracture Spacing and Penetration
    Journal of Structural Geology 95 (2017) 160e170 Contents lists available at ScienceDirect Journal of Structural Geology journal homepage: www.elsevier.com/locate/jsg Mechanical stratigraphic controls on natural fracture spacing and penetration * Ronald N. McGinnis a, , David A. Ferrill a, Alan P. Morris a, Kevin J. Smart a, Daniel Lehrmann b a Department of Earth, Material, and Planetary Sciences, Southwest Research Institute, 6220 Culebra Road, San Antonio, TX 78238-5166, USA b Geoscience Department, Trinity University, One Trinity Place, San Antonio, TX 78212, USA article info abstract Article history: Fine-grained low permeability sedimentary rocks, such as shale and mudrock, have drawn attention as Received 20 July 2016 unconventional hydrocarbon reservoirs. Fracturing e both natural and induced e is extremely important Received in revised form for increasing permeability in otherwise low-permeability rock. We analyze natural extension fracture 21 December 2016 networks within a complete measured outcrop section of the Ernst Member of the Boquillas Formation Accepted 7 January 2017 in Big Bend National Park, west Texas. Results of bed-center, dip-parallel scanline surveys demonstrate Available online 8 January 2017 nearly identical fracture strikes and slight variation in dip between mudrock, chalk, and limestone beds. Fracture spacing tends to increase proportional to bed thickness in limestone and chalk beds; however, Keywords: Mechanical stratigraphy dramatic differences in fracture spacing are observed in mudrock. A direct relationship is observed be- Natural fractures tween fracture spacing/thickness ratio and rock competence. Vertical fracture penetrations measured Fracture spacing from the middle of chalk and limestone beds generally extend to and often beyond bed boundaries into Fracture penetration the vertically adjacent mudrock beds.
    [Show full text]
  • Weighted MRI As an Unenhanced Breast Cancer Screening Tool
    BREAST IMAGING The potential of Diffusion- Weighted MRI as an unenhanced breast cancer screening tool by Dr. N Amornsiripanitch and Dr. SC Partridge This article provides an overview of the potential publication [8]. Summary of evidence role of diffusion-weighted magnetic resonance to date of DW-MRI in cancer detection, imaging (DW-MRI) as a breast scancer screening optimal approaches, and future consid- tool independent of dynamic contrast-enhance- erations are presented. ment. The article aims to summarize evidence to CURRENT EVIDENCE FOR DW-MRI IN date of DW-MRI in cancer detection and present BREAST CANCER The following equation describes optimal approaches and future considerations. DW-MRI signal intensity in rela- tion to water mobility within a voxel: Due to well-documented limita- Considering the constraints of SD=S0e-b*ADC, where SD is defined tions of mammography in the settings contrast-enhanced breast MRI, there as diffusion weighted signal intensity, of women with dense breasts and high- is great clinical value in identifying an S0 the signal intensity without diffusion risk women [1], there has been great unenhanced MRI modality. Diffusion- weighting, b or ‘b-value’ the diffusion interest in identifying imaging tech- weighted (DW) MRI is a technique sensitization factor, which is dependent niques to supplement mammography that does not require external contrast on applied gradient’s strength and tim- in breast cancer screening. Dynamic administration—instead, image con- ing (s/mm2), and the apparent diffusion contrast-enhanced (DCE) MRI is trast is generated from endogenous coefficient (ADC) the rate of diffusion endorsed by multinational organiza- water movement, reflecting multiple or average area occupied by a water tions as a supplemental screening tool tissue factors such as cellular mem- molecule per unit time (mm2/s) [9].
    [Show full text]
  • Tectonic Features of the Precambrian Belt Basin and Their Influence on Post-Belt Structures
    ... Tectonic Features of the .., Precambrian Belt Basin and Their Influence on Post-Belt Structures GEOLOGICAL SURVEY PROFESSIONAL PAPER 866 · Tectonic Features of the · Precambrian Belt Basin and Their Influence on Post-Belt Structures By JACK E. HARRISON, ALLAN B. GRIGGS, and JOHN D. WELLS GEOLOGICAL SURVEY PROFESSIONAL PAPER X66 U N IT ED STATES G 0 V ERN M EN T P R I NT I N G 0 F F I C E, \VAS H I N G T 0 N 19 7 4 UNITED STATES DEPARTMENT OF THE INTERIOR ROGERS C. B. MORTON, Secretary GEOLOGICAL SURVEY V. E. McKelvey, Director Library of Congress catalog-card No. 74-600111 ) For sale by the Superintendent of Documents, U.S. GO\·ernment Printing Office 'Vashington, D.C. 20402 - Price 65 cents (paper cO\·er) Stock Number 2401-02554 CONTENTS Page Page Abstract................................................. 1 Phanerozoic events-Continued Introduction . 1 Late Mesozoic through early Tertiary-Continued Genesis and filling of the Belt basin . 1 Idaho batholith ................................. 7 Is the Belt basin an aulacogen? . 5 Boulder batholith ............................... 8 Precambrian Z events . 5 Northern Montana disturbed belt ................. 8 Phanerozoic events . 5 Tectonics along the Lewis and Clark line .............. 9 Paleozoic through early Mesozoic . 6 Late Cenozoic block faults ........................... 13 Late Mesozoic through early Tertiary . 6 Conclusions ............................................. 13 Kootenay arc and mobile belt . 6 References cited ......................................... 14 ILLUSTRATIONS Page FIGURES 1-4. Maps: 1. Principal basins of sedimentation along the U.S.-Canadian Cordillera during Precambrian Y time (1,600-800 m.y. ago) ............................................................................................... 2 2. Principal tectonic elements of the Belt basin reentrant as inferred from the sedimentation record ............
    [Show full text]
  • Post-Collisional Formation of the Alpine Foreland Rifts
    Annales Societatis Geologorum Poloniae (1991) vol. 61:37 - 59 PL ISSN 0208-9068 POST-COLLISIONAL FORMATION OF THE ALPINE FORELAND RIFTS E. Craig Jowett Department of Earth Sciences, University of Waterloo, Waterloo, Ontario Canada N2L 3G1 Jowett, E. C., 1991. Post-collisional formation of the Alpine foreland rifts. Ann. Soc. Geol. Polon., 6 1 :37-59. Abstract: A series of Cenozoic rift zones with bimodal volcanic rocks form a discontinuous arc parallel to the Alpine mountain chain in the foreland region of Europe from France to Czechos­ lovakia. The characteristics of these continental rifts include: crustal thinning to 70-90% of the regional thickness, in cases with corresponding lithospheric thinning; alkali basalt or bimodal igneous suites; normal block faulting; high heat flow and hydrothermal activity; regional uplift; and immature continental to marine sedimentary rocks in hydrologically closed basins. Preceding the rifting was the complex Alpine continental collision orogeny which is characterized by: crustal shortening; thrusting and folding; limited calc-alkaline igneous activity; high pressure metamorphism; and marine flysch and continental molasse deposits in the foreland region. Evidence for the direction of subduction in the central area is inconclusive, although northerly subduction likely occurred in the eastern and western Tethys. The rift events distinctly post-date the thrusthing and shortening periods of the orogeny, making “impactogen” models of formation untenable. However, the succession of tectonic and igneous events, the geophysical characteristics, and the timing and location of these rifts are very similar to those of the Late Cenozoic Basin and Range province in the western USA and the Early Permian Rotliegendes troughs in Central Europe.
    [Show full text]
  • Brain Imaging Technologies
    Updated July 2019 By Carolyn H. Asbury, Ph.D., Dana Foundation Senior Consultant, and John A. Detre, M.D., Professor of Neurology and Radiology, University of Pennsylvania With appreciation to Ulrich von Andrian, M.D., Ph.D., and Michael L. Dustin, Ph.D., for their expert guidance on cellular and molecular imaging in the initial version; to Dana Grantee Investigators for their contributions to this update, and to Celina Sooksatan for monograph preparation. Cover image by Tamily Weissman; Livet et al., Nature 2017 . Table of Contents Section I: Introduction to Clinical and Research Uses..............................................................................................1 • Imaging’s Evolution Using Early Structural Imaging Techniques: X-ray, Angiography, Computer Assisted Tomography and Ultrasound..............................................2 • Magnetic Resonance Imaging.............................................................................................................4 • Physiological and Molecular Imaging: Positron Emission Tomography and Single Photon Emission Computed Tomography...................6 • Functional MRI.....................................................................................................................................7 • Resting-State Functional Connectivity MRI.........................................................................................8 • Arterial Spin Labeled Perfusion MRI...................................................................................................8
    [Show full text]
  • The Central Zagros Fold-Thrust Bemt (Iran) : New Insights from Seismic Data Field Observation and Sandbox Modelling S
    The Central Zagros fold-thrust bemt (Iran) : New insights from seismic data field observation and sandbox modelling S. Sherkati, J. Letouzey, Dominique Frizon de Lamotte To cite this version: S. Sherkati, J. Letouzey, Dominique Frizon de Lamotte. The Central Zagros fold-thrust bemt (Iran) : New insights from seismic data field observation and sandbox modelling. Tectonics, American Geo- physical Union (AGU), 2006, 25 (4), pp.TC4007. 10.1029/2004TC001766. hal-00069591 HAL Id: hal-00069591 https://hal.archives-ouvertes.fr/hal-00069591 Submitted on 29 May 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Copyright TECTONICS, VOL. 25, TC4007, doi:10.1029/2004TC001766, 2006 Central Zagros fold-thrust belt (Iran): New insights from seismic data, field observation, and sandbox modeling S. Sherkati,1 J. Letouzey,2 and D. Frizon de Lamotte3 Received 10 November 2004; revised 27 January 2006; accepted 29 March 2006; published 20 July 2006. [1] We present five generalized cross sections across levels are activated sequentially from deeper horizons the central Zagros fold-and-thrust belt (Iran). These to shallower ones. However, in one case (Gachsaran sections show that the fold geometry varies de´collement) a shallow de´collement is activated during significantly both horizontally and vertically.
    [Show full text]
  • Diffusion and Perfusion-Weighted Imaging in the Structural and Functional Characterization of Diffuse Gliomas for Differential Diagnosis and Treatment Planning
    Diffusion and perfusion-weighted imaging in the structural and functional characterization of diffuse gliomas for differential diagnosis and treatment planning Anna Latysheva Doctoral Thesis Faculty of Medicine, University of Oslo 2020 Department of Radiology and Nuclear Medicine, Oslo University Hospital - Rikshospitalet Oslo, Norway © Anna Latysheva, 2020 Series of dissertations submitted to the Faculty of Medicine, University of Oslo ISBN 978-82-8377-727-7 All rights reserved. No part of this publication may be reproduced or transmitted, in any form or by any means, without permission. Cover: Hanne Baadsgaard Utigard. Print production: Reprosentralen, University of Oslo. Fields of knowledge exist and advance because we find beauty and joy within them. Thomas P. Naidich The idea must be very high, much higher than the ways to realize it. Fyodor M. Dostoevsky 1 TABLE OF CONTENTS ACKNOWLEDGEMENTS .................................................................................................................4 ABBREVIATIONS .............................................................................................................................6 SUMMARY IN ENGLISH...................................................................................................................8 SAMMENDRAG PÅ NORSK...........................................................................................................10 LIST OF PUBLICATIONS ...............................................................................................................12
    [Show full text]
  • Shear Zone-Related Folds
    Journal of Structural Geology 27 (2005) 1229–1251 www.elsevier.com/locate/jsg Shear zone-related folds Jordi Carreras, Elena Druguet*, Albert Griera Departament de Geologia, Universitat Auto`noma de Barcelona, 08193 Bellaterra, Spain Received 18 April 2003; received in revised form 27 February 2004; accepted 14 June 2004 Available online 30 November 2004 Abstract Folds in ductile shear zones are common structures that have a variety of origins. These can be pre-existing folds that become modified or folds developed during the shearing event. Among the syn-shearing folds, a second subdivision is based on the relative age of the folded surface, which can be pre-existing or newly formed during the shearing event. In each of the three categories final fold geometry and orientation show complex relationships with the kinematic frame. The final fold geometry depends on the vorticity within the shear zone, the rheology and the initial orientation of the folded surface relative to the kinematic framework. It follows that folds are complex structures, difficult to use as kinematic indicators. However, in shear zones where undeformed wall rocks with pre-shear structures are accessible and where kinematics can be well established, folds can provide a valuable natural means to understand the initiation and evolution of structures under non-coaxial regimes. We point to the need of discriminating among different plausible categories, based on the nature of the folded surface and on the inherent structural features of each category. q 2004 Elsevier Ltd. All rights reserved. Keywords: Fold; Shear zone; Geometry; Kinematics; Cap de Creus 1. Introduction final geometry, symmetry and orientation of a shear-related fold are influenced by many variables other than the shear Folds are common structures in many ductile shear sense.
    [Show full text]
  • Stress and Fluid Control on De Collement Within Competent Limestone
    Journal of Structural Geology 22 (2000) 349±371 www.elsevier.nl/locate/jstrugeo Stress and ¯uid control on de collement within competent limestone Antonio Teixell a,*, David W. Durney b, Maria-Luisa Arboleya a aDepartament de Geologia, Universitat AutoÁnoma de Barcelona, 08193 Bellaterra, Spain bDepartment of Earth and Planetary Sciences, Macquarie University, Sydney, NSW 2109, Australia Received 5 October 1998; accepted 23 September 1999 Abstract The Larra thrust of the Pyrenees is a bedding-parallel de collement located within a competent limestone unit. It forms the ¯oor of a thrust system of hectometric-scale imbrications developed beneath a synorogenic basin. The fault rock at the de collement is a dense stack of mainly bedding-parallel calcite veins with variable internal deformation by twinning and recrystallization. Veins developed as extension fractures parallel to a horizontal maximum compressive stress, cemented by cavity-type crystals. Conditions during vein formation are interpreted in terms of a compressional model where crack-arrays develop at applied stresses approaching the shear strength of the rock and at ¯uid pressures equal to or less than the overburden pressure. The cracks developed in response to high dierential stress, which was channelled in the strong limestone, and high ¯uid pressure in or below the thrust plane. Ductile deformation, although conspicuous, cannot account for the kilometric displacement of the thrust, which was mostly accommodated by slip on water sills constituted by open cracks. A model of cyclic dierential brittle contraction, stress reorientation, slip and ductile relaxation at a rheological step in the limestone is proposed as a mechanism for episodic de collement movement.
    [Show full text]