Estudis Sobre Cinc Herbaris Històrics De L'institut

Total Page:16

File Type:pdf, Size:1020Kb

Estudis Sobre Cinc Herbaris Històrics De L'institut Universitat de Barcelona Facultat de Biologia Departament de Biologia Vegetal Programa de Doctorat: Biologia Vegetal (2001-2003) ESTUDIS SOBRE CINC HERBARIS HISTÒRICS DE L’INSTITUT BOTÀNIC DE BARCELONA Memòria presentada per Neus Ibáñez i Cortina, per a optar al grau de Doctor per la Universitat de Barcelona Dirigida per: Dr. Josep Maria Montserrat i Martí Dr. Ignasi Soriano i Tomàs Investigador Professor Associat Institut Botànic de Barcelona Dept. de Biologia Vegetal (CSIC-Ajuntament de Barcelona) Universitat de Barcelona Barcelona, juliol de 2006 Estudis sobre cinc herbaris històrics de l’IBB 33 3 L’HERBARI DE LA FAMÍLIA SALVADOR 3.1 Introducció històrica L’herbari Salvador, el més antic i ben documentat d’Espanya, fou format entre els segles XVII i XVIII. La família Salvador fou una nissaga d’apotecaris barcelonins, originaris de Calella, de principis del segle XVII fins el XIX (vegeu la figura 3), els quals van crear el primer gabinet d’història natural de la ciutat de Barcelona, amb diverses col·leccions (de plantes, fòssils, petxines, marbres...) i una excel·lent biblioteca. El primer en establir-se a Barcelona, el 1616, fou el farmacèutic Joan Salvador i Boscà (1598- 1681), que començà les col·leccions gràcies a un viatge per la Península Ibèrica, i també la biblioteca familiar, com testimonien diversos ex-libris conservats al museu Salvador. Així mateix va mantenir contactes amb alguns botànics del seu temps, com Jacques Barrelier (1606-1673). El 1626 ell i tres farmacèutics barcelonins més (Bernat Flequer, Joan Albanell i Cristòbal Parra) acompanyaren el botànic holandès Guillem Boel en les seves excursions durant una estada a Barcelona, en el decurs de les quals van explorar el Prat de Llobregat i les muntanyes pròximes a la ciutat. El coneixement de les espècies que demostrà Boel admirà Salvador i potser va contribuir a decidir la seva vocació (Bolòs & Bolòs, 1950). Fruit d’aquestes exploracions i d’altres de posteriors, a l’herbari Salvador es conserven unes quantes plantes dels voltants de Barcelona, de les que tractem en l’apartat 3.4. El seu fill, Jaume Salvador i Pedrol (1649-1740), també apotecari, estudià a Montpeller amb Pèire Magnol (1638-1715), un dels botànics prelinneans més notables, i fou amic i company de Joseph Pitton de Tournefort (1656-1708), també deixeble de Magnol i autor del sistema de classificació de més àmplia difusió fins a l’adveniment del sistema linneà. L’any 1687, Jaume Salvador, en companyia de Tournefort, féu un viatge d’exploració botànica pel litoral de Catalunya i el País Valencià fins a Dènia i Alacant, del qual se’n conserven nombrosos testimonis a l’herbari; d’altra banda, amplià notablement les col·leccions i la biblioteca adquirida pel seu pare i creà, a Sant Joan Despí, el primer jardí botànic modern de Catalunya. Jaume tingué relació amb força botànics més del seu temps, com ho confirmen molts dels llibres de la biblioteca Salvador que en porten autògrafs. Entre ells, cal fer esment sobretot del sicilià Silvio Boccone (1633-1704), de qui es conserven també algunes cartes, i de l’anglès John Ray (1627-1705). Joan Salvador i Riera (1683-1725), fill de Jaume, i probablement la figura més rellevant de la història de les ciències naturals a Espanya d’aquella època, entrà en contacte amb una àmplia varietat d’ambients científics. També marxà a Montpeller, on fou deixeble de Magnol (1704-1705) i del provençal Peire-Joseph Garidel (1659-1737). A París també fou deixeble directe de Tournefort 34 L’herbari de la família Salvador (1705-1706), que l’allotjà a casa seva i li regalà duplicats de plantes que havia recollit en un viatge per les illes del mar Egeu, Anatòlia i Armènia de 1700 a 1703. Fou condeixeble també d’un altre botànic que havia de destacar en el futur i influir en la botànica catalana i mundial, Antoine de Jussieu (1686-1758), amb el qual mantingué una prolífica correspondència (Camarasa, 1993). Malauradament, durant la seva estada a París, esclatà la guerra de Successió, de manera que es trobà en país enemic i va haver de passar a Itàlia. Sembla que s’embarcà a Marsella cap a Gènova i que visità San Remo, Florència, Pisa, Bolonya i Roma. En aquest país conegué a Michel-Angelo Tilli (1655-1740), professor a Pisa, i a Giovanni Battista Triumfetti (m. 1707), que ho era a Roma, i amplià d’aquesta manera la seva xarxa de corresponsals. Quan el 1706 tornà a Barcelona, es trobà la botiga del seu pare convertida en una acadèmia improvisada on es reunien apotecaris, metges i cirurgians, tant catalans com dels exèrcits aliats del rei arxiduc d’Àustria, en la qual s’integrà ràpidament. A partir d’aquell moment el seu prestigi científic començà a difondre’s i establí fructíferes correspondències amb personalitats científiques de la talla del britànic Hans Sloane (1660-1753, el futur fundador del British Museum) o de James Petiver (c.1663-1718). A l’Institut Botànic de Barcelona i a la British Library de Londres es conserva la correspondència entre aquests i Joan Salvador, iniciada el 24 de desembre de 1706 (Camarasa & Ibáñez, en premsa). Aquesta correspondència ens permet considerar consolidades les relacions amb Triumfetti, Tilli i Guillaume Nissolle (1647-1735), un dels deixebles més destacats de Magnol, com també ens permet datar amb precisió el seu viatge a Mallorca i Menorca. Joan Salvador, encara en plena guerra de Successió, el 1711, fou el primer en explorar detingudament les dues illes esmentades des del punt de vista botànic, i envià duplicats de les seves recol·leccions de plantes i llavors a molts dels seus corresponsals. La tramesa que avui en dia ens sembla veritablement important, de la qual Petiver en publicà una llista a Petiveriana seu Naturae Collectanea III (Petiver, 1717) fou feta els primers mesos de 1712; cal afegir que l’any 1716 Petiver ja havia publicat una Petiveriana II (Petiver, 1716) sobre unes plantes de Montserrat enviades per Joan Salvador, encara que no sabem quan va fer la tramesa. D’aquestes trameses de plantes montserratines i balears i de les publicacions corresponents - conservades al Natural History Museum de Londres - en parlem extensament en l’apartat 3.5.2. i 3.5.3. L’exploració de les Balears desvetllà un considerable interès a alguns dels seus contemporanis, com Sloane, que li feu saber del seu interès per aquestes illes i la necessitat d’obtenir exemplars de plantes d’aquesta regió mitjançant Petiver i li oferí a canvi el seu llibre sobre la història natural de Jamaica i la influència que pogués exercir per fer-lo acceptar com a membre de la Royal Society de Londres (Camarasa, 1989b). Finalment no obtingué aquest nomenament, com ens permet afirmar una carta datada el 4 de gener de 1716 conservada a la British Library de Londres (British Library, Slo. Ms. 4065, fols. 236-237), però si el de corresponsal de la Académie Royal des Sciences de Estudis sobre cinc herbaris històrics de l’IBB 35 Paris, que li aconseguí, el 1715, Antoine de Jussieu (1686-1758). La carta esmentada és molt interessant perquè confirma que en aquelles dates Joan Salvador estava treballant en un Botanomasticon catalonicum, avui perdut, que, versemblantment, hauria estat la primera flora del Principat. Aquesta obra consta que fou vista per Peire Cusson a la biblioteca entre 1726 i 1761 (més versemblantment entre 1740 i 1761, quan ja havia mort també el patriarca de la família, Jaume Salvador) (Camarasa, 1989b). La correspondència amb Petiver ens permet datar també algunes excursions als Pirineus, acabades l’agost de 1716: “j’arriva avant hier du Monts Pyrenées chargé de belles plantes, je vous en ferai part de toutes” Carta de Joan Salvador a James Petiver, datada a Barcelona el 2 d’agost de 1716 (British Library, Slo. Ms. 4065, f. 256). Després de les exploracions pirinenques, l’octubre de 1716, Joan Salvador repetí l’aventura de l’expedició per la península ibèrica seguint els itineraris de Tournefort en companyia d’Antoine de Jussieu i de Bernard, el seu germà (1699-1777), que en aquell moment tenia 17 anys i que havia de ser anys a venir també un notable botànic i actiu corresponsal i partidari de Linné. De fet el viatge fou més ampli que la ruta de Tournefort i va suposar un recorregut de més de vuit mesos per tota la península, especialment per Portugal. La finalitat era de conèixer la vegetació peninsular i recollir mostres d’herbari. Antoine de Jussieu havia rebut aquest encàrrec de l’Académie Royale des Sciencies de Paris ja que a la mort de Tournefort (1708) el succeí en l’ensenyament de la botànica al Jardin du Roi, en aquella època el centre de la botànica europea. Les anotacions d’interès botànic foren a càrrec de Jussieu; Joan Salvador es limità a recollir exemplars per al seu herbari i a confeccionar un dietari particular escrit en català titulat “Relació del viatge d’Espanya i Portugal” amb observacions no botàniques de tema divers. En aquest dietari es relata el curs del viatge efectuat d’octubre de 1716 a maig de 1717 per terres de Catalunya, del País Valencià, Andalusia, Extremadura, Portugal, Galícia, Lleó, Castella i Aragó. Aquest document fou transcrit i editat l’any 1972 per Ramon Folch (Salvador, 1972). Malauradament les notes de Jussieu no han estat mai publicades més que de forma fragmentària: Joseph i Yves Laissus (1969) publicaren la transcripció d’una part d’aquests manuscrits conservats a la Biblioteca Central del Muséum National d’Histoire Naturelle de París. Com hem assenyalat més amunt, a l’herbari Salvador es conserven un bon nombre de plecs fruit d’aquestes exploracions. També en coneixem duplicats a l’herbari d’Antoine i Bernard de Jussieu, que actualment forma part de l’herbari d’Antoine Laurent de Jussieu (1748-1836), conservat també al Muséum de París; fins i tot alguns duen lletra de Joan i Jaume Salvador.
Recommended publications
  • Molecular Characterization and Genetic Diversity of the Macaw Palm Ex Situ Germplasm Collection Revealed by Microsatellite Markers
    diversity Article Molecular Characterization and Genetic Diversity of the Macaw Palm Ex Situ Germplasm Collection Revealed by Microsatellite Markers Fekadu G. Mengistu 1,*, Sérgio Y. Motoike 2 and Cosme D. Cruz 3 1 Kulumsa Agricultural Research Center (KARC), Ethiopian Institute of Agricultural Research (EIAR), P.O.Box 489, Asella, Ethiopia 2 Departamento de Fitotecnia, Universidade Federal de Viçosa, Av. P.H. Rolfs, Campus, Viçosa, MG 36570-000, Brazil; [email protected] 3 Departamento de Biologia Geral, Universidade Federal de Viçosa, Av. P.H. Rolfs, Campus, Viçosa, MG 36570-000, Brazil; [email protected] * Correspondence: [email protected]; Tel.: +251-0968-23-55-27; Fax: +251-022-331-1508 Academic Editor: Mario A. Pagnotta Received: 29 June 2016; Accepted: 9 October 2016; Published: 13 October 2016 Abstract: Macaw palm (Acrocomia aculeata) is native to tropical forests in South America and highly abundant in Brazil. It is cited as a highly productive oleaginous palm tree presenting high potential for biodiesel production. The aim of this work was to characterize and study the genetic diversity of A. aculeata ex situ collections from different geographical states in Brazil using microsatellite (Simple Sequence Repeats, SSR) markers. A total of 192 accessions from 10 provenances were analyzed with 10 SSR, and variations were detected in allelic diversity, polymorphism, and heterozygosity in the collections. Three major groups of accessions were formed using PCoA—principal coordinate analysis, UPGMA—unweighted pair-group method with arithmetic mean, and Tocher. The Mantel test revealed a weak correlation (r = 0.07) between genetic and geographic distances among the provenances reaffirming the result of the grouping.
    [Show full text]
  • List of 735 Prioritised Plant Taxa of CARE-MEDIFLORA Project
    List of 735 prioritised plant taxa of CARE-MEDIFLORA project In situ and/or ex situ conservation actions were implemented during CARE-MEDIFLORA for 436 of the prioritised plant taxa. Island(s) of occurrence: Balearic Islands (Ba), Corsica (Co), Sardinia (Sa), Sicily (Si), Crete (Cr), Cyprus (Cy) Occurrence: P = present; A = alien (not native to a specific island); D = doubtful presence Distribution type: ENE = Extremely Narrow Endemic (only one population) NE = Narrow Endemic (≤ five populations) RE = Regional Endemic (only one Island) IE = Insular Endemic (more than one island) W = distributed in more islands or in a wider area. Distribution type defines the "regional responsibility" of an Island on a plant species. Criteria: Red Lists (RL): plant species selected is included in the red list (the plant should be EN, CR or VU in order to justify a conservation action); Regional Responsibility (RR): plant species selected plays a key role for the island; the "regional responsibility" criterion is the first order of priority at local level, because it establishes a high priority to plants whose distribution is endemic to the study area (an island in our specific case). Habitats Directive (HD): plant species selected is listed in the Annexes II and V of the Habitat Directive. Wetland plant (WP): plant species selected is a wetland species or grows in wetland habitat. Island(s) where Distribution Island(s) where Taxon (local checklists) Island(s) of occurrence conservation action(s) type taxon prioritised were implemented Ba Co Sa Si Cr Cy RL RR HD WP Ex situ In situ Acer granatense Boiss. P W 1 Ba Ba Acer obtusatum Willd.
    [Show full text]
  • In Vitro Propagation of Digitalis Trojana Ivanina., an Endemic Medicinal Plant of Turkey Nurşen Çördük and Cüneyt Aki
    Chapter In Vitro Propagation of Digitalis trojana Ivanina., an Endemic Medicinal Plant of Turkey Nurşen Çördük and Cüneyt Aki Abstract Digitalis trojana Ivanina is a member of the Plantaginaceae family and known by its common name, Helen of Troy foxglove. It is perennial endemic to Çanakkale and Balıkesir, northwestern Turkey. In order to develop an efficient shoot regen- eration protocol, the leaf explants of D. trojana were cultured on Murashige and Skoog (MS) medium containing 6-benzyl adenine (0.1, 0.5, 1.0, 3.0, 5.0 mg/L) and α-naphthalene acetic acid (0.1, 0.5, 1.0 mg/L), 3% (w/v) sucrose and 0.8% (w/v) agar. The highest number of regenerated shoots was obtained from leaf explants that were cultured on MS medium with 3.0 mg/L BA+0.1 mg/L NAA. Regenerated shoots were rooted on MS medium without plant growth regulators. Rooted plants (2–3 cm) were separately transferred to pots containing a mixture of peat and perlite (2:1 v/v) and acclimatized successfully in a growth chamber. Keywords: endemic, foxglove, in vitro, propagation, regeneration 1. Introduction Turkey has a rich biodiversity as a result of its location, its geological struc- ture and different climatic zones. Turkey hosts three biogeographical regions: Mediterranean, Euro-Siberian and Irano-Turanian. As a result of located on the meeting point of these three different regions, Turkey is one of the most important areas in the world in terms of biological diversity. It is one of the world’s richest countries with regard to diversity of plant species, hosting 167 families, 1320 genera and 9996 species [1].
    [Show full text]
  • Long-Read Transcriptome and Other Genomic Resources for the Angiosperm Silene Noctiflora
    bioRxiv preprint doi: https://doi.org/10.1101/2020.08.09.243378; this version posted August 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Long-read transcriptome and other genomic resources for the angiosperm Silene noctiflora Alissa M. Williams,*,1 Michael W. Itgen,* Amanda K. Broz,* Olivia G. Carter,* Daniel B. Sloan* *Department of Biology, Colorado State University, Fort Collins, Colorado 80523 1Corresponding author: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2020.08.09.243378; this version posted August 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Abstract 2 3 The angiosperm genus Silene is a model system for several traits of ecological and evolutionary 4 significance in plants, including breeding system and sex chromosome evolution, host-pathogen 5 interactions, invasive species biology, heavy metal tolerance, and cytonuclear interactions. 6 Despite its importance, genomic resources for this large genus of approximately 850 species are 7 scarce, with only one published whole-genome sequence (from the dioecious species S. latifolia). 8 Here, we provide genomic and transcriptomic resources for a hermaphroditic representative of 9 this genus (S. noctiflora), including a PacBio Iso-Seq transcriptome, which uses long-read, 10 single-molecule sequencing technology to analyze full-length mRNA transcripts and identify 11 paralogous genes and alternatively spliced genes.
    [Show full text]
  • The Experience Elicited by Hallucinogens Presents the Highest Similarity to Dreaming Within a Large Database of Psychoactive Substance Reports
    ORIGINAL RESEARCH published: 22 January 2018 doi: 10.3389/fnins.2018.00007 The Experience Elicited by Hallucinogens Presents the Highest Similarity to Dreaming within a Large Database of Psychoactive Substance Reports Camila Sanz 1, Federico Zamberlan 1, Earth Erowid 2, Fire Erowid 2 and Enzo Tagliazucchi 1,3* 1 Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina, 2 Erowid Center, Grass Valley, CA, United States, 3 Brain and Spine Institute, Paris, France Ever since the modern rediscovery of psychedelic substances by Western society, Edited by: several authors have independently proposed that their effects bear a high resemblance Rick Strassman, to the dreams and dreamlike experiences occurring naturally during the sleep-wake University of New Mexico School of cycle. Recent studies in humans have provided neurophysiological evidence supporting Medicine, United States this hypothesis. However, a rigorous comparative analysis of the phenomenology (“what Reviewed by: Matthias E. Liechti, it feels like” to experience these states) is currently lacking. We investigated the semantic University Hospital Basel, Switzerland similarity between a large number of subjective reports of psychoactive substances and Michael Kometer, University of Zurich, Switzerland reports of high/low lucidity dreams, and found that the highest-ranking substance in *Correspondence: terms of the similarity to high lucidity dreams was the serotonergic psychedelic lysergic Enzo Tagliazucchi acid diethylamide (LSD), whereas the highest-ranking in terms of the similarity to dreams [email protected] of low lucidity were plants of the Datura genus, rich in deliriant tropane alkaloids. Specialty section: Conversely, sedatives, stimulants, antipsychotics, and antidepressants comprised most This article was submitted to of the lowest-ranking substances.
    [Show full text]
  • Saatgut Vom Natürlichen Standort/Seeds From
    Index Seminum 2016 ANNO 2016 COLLECTORUM - DESIDERATA 2017 Botanischer Garten Universität Duisburg-Essen ** = Saatgut vom natürlichen Standort / seeds from natural habitat, all other seeds from open pollination (hybridization possible) Acanthaceae 1. Acanthus spinosus L. 2. Andrographis paniculata (Burm.f.) Nees 3. Schaueria flavicoma N.E.Br. 4. Thunbergia alata Bojer ex Sims Adoxaceae 5. Viburnum rhytidophyllum Hemsl. Amaranthaceae 6. Chenopodium bonus-henricus L. Amaryllidaceae 7. Agapanthus campanulatus 8. Allium cernuum Roth 9. Allium fistulosum L. 10. Allium obliquum L. 11. Allium sativum L. var. ophioscorodon 12. Allium schoenoprasum L. 13. Allium sphaerocephalon L. 14. Allium tuberosum Rottler ex Spreng. 15. Allium ursinum L. 16. Clivia miniata (Lindl.) Bosse 17. Tulbaghia simmleri Beauverd 18. Tulbaghia violacea Harv. Annonaceae 19. Annona muricata L. 20. Annona cherimola, Kulturform 21. Artabotrys hexapetalus (L.f.) Bhandari Apiaceae 22. Ammi majus L. 23. Angelica archangelica L. 24. Angelica sylvestris L. 25. Anthriscus cerefolium (L.) Hoffm. 26. Apium graveolens L. 27. Astrantia carniolica Wulfen 1 28. Astrantia major L. 29. Athamanta cretensis L. 30. Bupleurum rotundifolium L. 31. Carum carvi L. 32. Coriandrum sativum L. 33. Daucus carota L. 34. Eryngium campestre L. 35. Eryngium foetidum L. 36. Foeniculum vulgare Mill. 37. Foeniculum vulgare Mill. ‚Purpureum‘ 38. Levisticum officinale W.D.J.Koch 39. Ligusticum lucidum Mill 40. Ligusticum scoticum L. 41. Mutellina adonidifolia (J.Gay) Gutermann 42. Myrrhis odorata Scop. 43. Oenanthe lachenalii C.C.Gmel. 44. Oenanthe pimpinelloides L. 45. Pimpinella saxifraga L. 46. Sanicula europaea L. 47. Scandix pecten-veneris L. 48. Sium sisarum L. 49. Torilis japonica (Houtt.) DC Apocynaceae 50. Acokanthera oblongifolia (Hochst.) Benth.
    [Show full text]
  • Colour Pages
    COLOUR PAGES CHAPTER 1. L.J. Slikkerveer; Figures 1, 2, and 3 Figure 1. Two pages of Dioscorides’ most influential herbal Peri Hylès latrikès (De Materia Medica) of the first century A.D., describing more than 600 medicinal plants used in ancient Greek medicine Figure 2. Egyptian wooden cabinet from the 20th Dynasty (1126-1108 B.C.) used for safekeeping mostly plant-based cosmetics, found in a tomb near Thebes Figure 3. Evolution of the methods of botanical investigation, as represented from left to right by Leonard Fuchs’s sketch of the thorn apple (Datura stramonium) of 1543; Köhlers more detailed pharmacognostic illustration of this plant in his Medizinal-Pflanzenatlas Vol. I of 1887; a recent typical herbarium specimen of botanical identification of the plant; and a detailed image of the leaf surface provided by an electron-scanning microscope CHAPTER 3. K.F. Wiersum, A.P. Dold, M. Husselman and M. Cocks; Figure 2. Figure 2. Homegarden cultivation of medicinal plants (Silene undulata–unozitholana) Photo: A. Dold COLOUR PAGES CHAPTER 4. T. Flaster; Figure 1. Figure 1. Market visit image CHAPTER 5. A. Brown; Figures 1 and 2. Regional Markets markets outside the region Wholesale Markets Exporter Consumers Branded in the processors National Capital District Traders Small District Processors Town Consumers Centre Heads (Agents) Local Traders Local Consumers Village Level Processor Farmers, collectors, and farm level pre-processors (e.g sorting and drying) Figure 1. The MAP marketing system Regional Markets markets outside the region Wholesale Markets Exporter Consumers Branded in the processors National Capital District Traders Small District Processors Town Consumers Centre Heads (Agents) Local Traders Local Consumers Village Level Processor Farmers, collectors, and farm level pre-processors (e.g sorting and drying) Figure 2.
    [Show full text]
  • Colour Pages
    COLOUR PAGES CHAPTER 1. L.J. Slikkerveer; Figures 1, 2, and 3 Figure 1. Two pages of Dioscorides’ most influential herbal Peri Hylès Iatrikès (De Materia Medica) of the first century A.D., describing more than 600 medicinal plants used in ancient Greek medicine Figure 2. Egyptian wooden cabinet from the 20th Dynasty (1126-1108 B.C.) used for safekeeping mostly plant-based cosmetics, found in a tomb near Thebes Figure 3. Evolution of the methods of botanical investigation, as represented from left to right by Leonard Fuchs’s sketch of the thorn apple (Datura stramonium) of 1543; Köhlers more detailed pharmacognostic illustration of this plant in his Medizinal-Pflanzenatlas Vol. I of 1887; a recent typical herbarium specimen of botanical identification of the plant; and a detailed image of the leaf surface provided by an electron-scanning microscope CHAPTER 3. K.F. Wiersum, A.P. Dold, M. Husselman and M. Cocks; Figure 2. Figure 2. Homegarden cultivation of medicinal plants (Silene undulata–unozitholana) Photo: A. Dold COLOUR PAGES CHAPTER 4. T. Flaster; Figure 1. Figure 1. Market visit image CHAPTER 5. A. Brown; Figures 1 and 2. Regional Markets markets outside the region Wholesale Markets Exporter Consumers Branded in the processors National Capital District Traders Small District Processors Town Consumers Centre Heads (Agents) Local Traders Local Consumers Village Level Processor Farmers, collectors, and farm level pre-processors (e.g sorting and drying) Figure 1. The MAP marketing system Regional Markets markets outside the region Wholesale Markets Exporter Consumers Branded in the processors National Capital District Traders Small District Processors Town Consumers Centre Heads (Agents) Local Traders Local Consumers Village Level Processor Farmers, collectors, and farm level pre-processors (e.g sorting and drying) Figure 2.
    [Show full text]
  • The Foxgloves (Digitalis) Revisited*
    Reviews The Foxgloves (Digitalis) Revisited* Author Wolfgang Kreis Affiliation Supporting information available online at Lehrstuhl Pharmazeutische Biologie, Department Biology, http://www.thieme-connect.de/products FAU Erlangen-Nürnberg, Erlangen, Germany ABSTRACT Key words Digitalis, Plantaginaceae, cardiac glycosides, plant biotech- This review provides a renewed look at the genus Digitalis. nology, biosynthesis, plant tissue culture, phylogeny Emphasis will be put on those issues that attracted the most attention or even went through paradigmatic changes since received March 17, 2017 the turn of the millennium. PubMed and Google Scholar were “ ” “ ” revised April 27, 2017 used ( Digitalis and Foxglove were the key words) to iden- accepted May 8, 2017 tify research from 2000 till 2017 containing data relevant enough to be presented here. Intriguing new results emerged Bibliography from studies related to the phylogeny and taxonomy of the DOI https://doi.org/10.1055/s-0043-111240 genus as well as to the biosynthesis and potential medicinal Published online May 23, 2017 | Planta Med 2017; 83: 962– uses of the key active compounds, the cardiac glycosides. 976 © Georg Thieme Verlag KG Stuttgart · New York | Several Eastern and Western Foxgloves were studied with re- ISSN 0032‑0943 spect to their propagation in vitro. In this context, molecular biology tools were applied and phytochemical analyses were Correspondence conducted. Structure elucidation and analytical methods, Prof. Dr. Wolfgang Kreis which have experienced less exciting progress, will not be Department Biology, FAU Erlangen-Nürnberg considered here in great detail. Staudtstr. 5, 91058 Erlangen, Germany Phone:+4991318528241,Fax:+4991318528243 [email protected] Taxus species is a prime example [4].
    [Show full text]
  • Munibe Monographs. Nature Series, 4 Le Programme Partenarial Espagne-France- Uzten Dituzte Agerian
    Liburu honetan, Botanika Piriniotar- Sarrera - Introducción - Introduction. Kantabriarraren XI. Nazioarteko Biltzarrean Iñaki Aizpuru. Batzorde zientifikoa/Comité científico/ Comité scientifique aurkeztutako lanak biltzen dira, zeina Bertizko Jaurerria Natur Parkean (Nafarroa) Treinta años de estudios botánicos pirenaico- cantábricos. Fundamento, situación y egin baitzen. Lan guztiek azken urteetan perspectivas. Luis Villar mendikate honetan egindako ikerketak Munibe Monographs. Nature Series, 4 Le programme partenarial Espagne-France- uzten dituzte agerian. Biltzarrak, gainera, Andorre FLORAPYR: Maintenir et développer les testuinguru egoki bat eskaini zuen klima- bases de connaissance sur la Flore des Pyrénées et les indicateurs de suivi en lien avec le change- aldaketaren aurrean floraren eta habitaten ment climatique. Gérard Largier (coordination) kontserbazioaren erronkari buru egingo Conservación ex situ de Lilium pyrenaicum Gouan: dioten egitasmo berriak eta elkarlanerako un endemismo pirenaico-cantábrico. Asier Jáñez, zubiak sortzeko. FLORA ETA HABITAT PIRINIAR-KANTABRIARRAK Agustí Agut, José Ignacio García-Plazaola Flora amenazada y vegetación del monte Jaizkibel. ALDAKETA KLIMATIKOAREN ERRONKAREN AURREAN Anaïs Mitxelena, Leire Oreja, Yoana García, Mari Azpiroz Munibe Monographs. Nature Series, 4 Les Atlas de la biodiversité Communale (ABC) dans Este libro recoge los trabajos presentados le Parc national des Pyrénées: premiers résultats sur en el XI. Coloquio Internacional de La flora y los hábitats pirenaico-cantábricos l’amélioration
    [Show full text]
  • Mesophyll Conductance to CO2: Current Knowledge and Future Prospects
    Plant, Cell and Environment (2008) 31, 602–621 doi: 10.1111/j.1365-3040.2007.01757.x Mesophyll conductance to CO2: current knowledge and future prospects JAUME FLEXAS1, MIQUEL RIBAS-CARBÓ1, ANTONIO DIAZ-ESPEJO2, JERONI GALMÉS1 & HIPÓLITO MEDRANO1 1Grup de Recerca en Biologia de les Plantes en Condicions Mediterrànies, Departament de Biologia, Universitat de les Illes Balears, Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Balears, Spain and 2Instituto de Recursos Naturales y Agrobiología, CSIC, Apartado 1052, 41080 Sevilla, Spain ABSTRACT INTRODUCTION: THE CONCEPT OF MESOPHYLL CONDUCTANCE TO CO2 AND During photosynthesis, CO2 moves from the atmosphere THE EVOLUTION OF ITS PERCEPTION IN (Ca) surrounding the leaf to the sub-stomatal internal cavi- PLANT SCIENCE ties (Ci) through stomata, and from there to the site of carboxylation inside the chloroplast stroma (Cc) through During photosynthesis, CO2 has to move from the atmo- the leaf mesophyll. The latter CO2 diffusion component is sphere surrounding the leaf across a boundary layer in the called mesophyll conductance (gm), and can be divided in air above the foliage surface to the sub-stomatal internal at least three components, that is, conductance through cavities through the stomata (Fig. 1a), and from there to the intercellular air spaces (gias), through cell wall (gw) and site of carboxylation inside the stroma through the leaf through the liquid phase inside cells (gliq). A large body of mesophyll (Fig. 1b). From Fick’s first law of diffusion, evidence has accumulated in the past two decades indicat- the net photosynthetic flux at steady state (AN) can be ing that gm is sufficiently small as to significantly decrease expressed as: AN = gs (Ca - Ci) = gm (Ci - Cc), where gs and Cc relative to Ci, therefore limiting photosynthesis.
    [Show full text]
  • Uncorrected Proof
    Industrial Crops & Products xxx (2018) xxx-xxx Contents lists available at ScienceDirect Industrial Crops & Products journal homepage: www.elsevier.com Efficient direct shoot organogenesis, genetic stability and secondary metabolite production of micropropagated Digitalis purpurea L. Naivy Pérez-Alonsoa⁠ ,⁠ g⁠ ,⁠ 1⁠ , Randel Martínb⁠ , Alina Capotea⁠ , Anabel Péreza⁠ , Elizabeth Kairúz Hernández-Díazb⁠ , Luis Rojasa⁠ , Elio Jiménezc⁠ , Elisa Quialad⁠ , Geert Angenone⁠ , Rolando Garcia-Gonzalesf⁠ , Borys Chong-Péreza⁠ ,⁠ f⁠ ,⁠ ⁎⁠ ,⁠ 1⁠ a Instituto de Biotecnología de las Plantas, Universidad Central “Marta Abreu” de Las Villas, Carretera a Camajuaní km 5,5, Santa Clara, Villa Clara, CP 54830, Cuba b Universidad Central “Marta Abreu” de Las Villas, Facultad de Ciencias Agropecuarias, Carretera a Camajuaní km 5,5, Santa Clara, Villa Clara, CP 54830, Cuba c Florida Crystals Corp, 25550 State Road 880 Atlantic Sugar Mill Rd, Belle Glade, FL 33430, USA d Instituto Nacional de Investigaciones Agropecuarias, INIAP Av. Eloy Alfaro N30-350 y Amazonas, Quito, Ecuador PROOF e Laboratory of Plant Genetics, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium f Sociedad de Investigación y Servicios BioTECNOS Ltda, Camino a Pangal km 2,5, San Javier, Chile g Botanical Solutions SpA, Ave. Quilin 3550, Santiago de Chile, Chile ARTICLE INFO ABSTRACT Keywords: Cardiovascular and cancer diseases are the first causes of death in the world. Digitalis purpurea L. is a medicinal Cardenolides plant that produces secondary metabolites, like digoxin and digitoxin, which are employed in therapies against Direct organogenesis heart failure. Moreover, anticancer and antiviral properties of these metabolites have recently been described. Foxglove The present work details a method to obtain in vitro plants of D.
    [Show full text]