Biological Inventory of Saba
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Appendix A: Consultation and Coordination
APPENDIX A: CONSULTATION AND COORDINATION Virgin Islands National Park July 2013 Caneel Bay Resort Lease This page intentionally left blank Virgin Islands National Park July 2013 Caneel Bay Resort Lease A-1 Virgin Islands National Park July 2013 Caneel Bay Resort Lease A-2 Virgin Islands National Park July 2013 Caneel Bay Resort Lease A-3 Virgin Islands National Park July 2013 Caneel Bay Resort Lease A-4 Virgin Islands National Park July 2013 Caneel Bay Resort Lease A-5 Virgin Islands National Park July 2013 Caneel Bay Resort Lease A-6 APPENDIX B: PUBLIC INVOLVEMENT Virgin Islands National Park July 2013 Caneel Bay Resort Lease This page intentionally left blank Virgin Islands National Park July 2013 Caneel Bay Resort Lease B-1 Virgin Islands National Park July 2013 Caneel Bay Resort Lease B-2 Virgin Islands National Park July 2013 Caneel Bay Resort Lease B-3 APPENDIX C: VEGETATION AND WILDLIFE ASSESSMENTS Virgin Islands National Park July 2013 Caneel Bay Resort Lease VEGETATION AND WILDLIFE ASSESSMENTS FOR THE CANEEL BAY RESORT LEASE ENVIRONMENTAL ASSESSMENT AT VIRGIN ISLANDS NATIONAL PARK ST. JOHN, U.S. VIRGIN ISLANDS Prepared for: National Park Service Southeast Regional Office Atlanta, Georgia March 2013 TABLE OF CONTENTS Page LIST OF FIGURES ...................................................................................................................... ii LIST OF TABLES ........................................................................................................................ ii LIST OF ATTACHMENTS ...................................................................................................... -
African Traditional Plant Knowledge in the Circum-Caribbean Region
Journal of Ethnobiology 23(2): 167-185 Fall/Winter 2003 AFRICAN TRADITIONAL PLANT KNOWLEDGE IN THE CIRCUM-CARIBBEAN REGION JUDITH A. CARNEY Department of Geography, University of California, Los Angeles, Los Angeles, CA 90095 ABSTRACT.—The African diaspora to the Americas was one of plants as well as people. European slavers provisioned their human cargoes with African and other Old World useful plants, which enabled their enslaved work force and free ma- roons to establish them in their gardens. Africans were additionally familiar with many Asian plants from earlier crop exchanges with the Indian subcontinent. Their efforts established these plants in the contemporary Caribbean plant corpus. The recognition of pantropical genera of value for food, medicine, and in the practice of syncretic religions also appears to have played an important role in survival, as they share similar uses among black populations in the Caribbean as well as tropical Africa. This paper, which focuses on the plants of the Old World tropics that became established with slavery in the Caribbean, seeks to illuminate the botanical legacy of Africans in the circum-Caribbean region. Key words: African diaspora, Caribbean, ethnobotany, slaves, plant introductions. RESUME.—La diaspora africaine aux Ameriques ne s'est pas limitee aux person- nes, elle a egalement affecte les plantes. Les traiteurs d'esclaves ajoutaient a leur cargaison humaine des plantes exploitables dAfrique et du vieux monde pour les faire cultiver dans leurs jardins par les esclaves ou les marrons libres. En outre les Africains connaissaient beaucoup de plantes dAsie grace a de precedents echanges de cultures avec le sous-continent indien. -
The Genus Brassavola, (L.) R.Br
The Genus Brassavola, (L.) R.Br. in W.T.Aiton, Hortus Kew. 5: 216 (1813) Type: Brassavola [B.] cucullata [bra-SAH-vo-la kyoo-kyoo-LAH-ta] There are 28 species (OrchidWiz [update Dec 2017]) that are epiphytes and sometimes lithophytes at elevations of from sea level to 3300 ft (1000 m) from Mexico, southern Caribbean islands to northern Argentina in moist or wet montane forests, mangroves, rocky crevices and cliff faces. They are most fragrant at night and many with a citrus smell. The genus is characterized by very small pencil-like pseudobulbs, often forming large clumps; a single, fleshy, apical, sub-terete leaf and the inflorescence produced form the apex of the pseudobulb. The inflorescence carries from a single to a few large flowers. The floral characteristics are elongate narrow similar sepals and petals, the base of the lip usually tightly rolled around at least a portion of the column which carries 12, sometimes eight unequal pollina with prominent opaque caudicles. The flowers usually occur, as a rule, in spring, summer and fall. The flowers are generally yellow to greenish white with a mostly white lip. It is not unusual for dark spots, usually purple, to be in the region where the sepals, petals, and lip join the stem (claw). This spotting is a dominant generic trait in Brassavola nodose. They are easily cultivated under intermediate conditions. Although this is a relatively small genus (28 species), the species show an unusually close relationship with one another in their floral patterns, coloration, and column structure making identification difficult, key to know where the plants were collected. -
"National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment. -
Bauhinia Variegata Botanical Name: Bauhinia Variegata Common Name
Bauhinia variegata Botanical name: Bauhinia variegata Common name: Bogakatra, Koliar Morphological characters: Bauhinia variegata is a small to medium-sized deciduous tree with a short bole and spreading crown, attaining a height of up to 15 m and diameter of 50 cm. In dry forests, the size is much smaller. The bark is light brownish grey, smooth to slightly fissured and scaly. Inner bark is pinkish, fibrous and bitter. The twigs are slender, zigzag; when young, light green, slightly hairy, and angled, becoming brownish grey. Leaves have minute stipules 1-2 mm, early caducous; petiole puberulous to glabrous, 3-4 cm; lamina broadly ovate to circular, often broader than long, 6- 16 cm diameter; 11-13 nerved; tips of lobes broadly rounded, base cordate; upper surface glabrous, lower glaucous but glabrous when fully grown. Flower clusters (racemes) are unbranched at ends of twigs. The few flowers have short, stout stalks and a stalklike, green, narrow basal tube (hypanthium). The light green, fairly hairy calyx forms a pointed 5-angled bud and splits open on 1 side, remaining attached; petals 5, slightly unequal, wavy margined and narrowed to the base; 5 curved stamens; very slender, stalked, curved pistil, with narrow, green, 1-celled ovary, style and dotlike stigma. Growing season and type: 1. In its natural habitat in India, the tree is deciduous, remaining leafless from Jan-Feb to April with leaf fall in Nov-Dec. 2. Flowering occurs when the plant is leafless. 3. Tree starts flowering at a very early age of 2-3 years. 4. The seeds disperse from the pods and germinate on sites with favourable light and moisture conditions, while in unfavourable niches the radicle dries up or is destroyed by birds. -
Plants-Derived Biomolecules As Potent Antiviral Phytomedicines: New Insights on Ethnobotanical Evidences Against Coronaviruses
plants Review Plants-Derived Biomolecules as Potent Antiviral Phytomedicines: New Insights on Ethnobotanical Evidences against Coronaviruses Arif Jamal Siddiqui 1,* , Corina Danciu 2,*, Syed Amir Ashraf 3 , Afrasim Moin 4 , Ritu Singh 5 , Mousa Alreshidi 1, Mitesh Patel 6 , Sadaf Jahan 7 , Sanjeev Kumar 8, Mulfi I. M. Alkhinjar 9, Riadh Badraoui 1,10,11 , Mejdi Snoussi 1,12 and Mohd Adnan 1 1 Department of Biology, College of Science, University of Hail, Hail PO Box 2440, Saudi Arabia; [email protected] (M.A.); [email protected] (R.B.); [email protected] (M.S.); [email protected] (M.A.) 2 Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania 3 Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Hail PO Box 2440, Saudi Arabia; [email protected] 4 Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail PO Box 2440, Saudi Arabia; [email protected] 5 Department of Environmental Sciences, School of Earth Sciences, Central University of Rajasthan, Ajmer, Rajasthan 305817, India; [email protected] 6 Bapalal Vaidya Botanical Research Centre, Department of Biosciences, Veer Narmad South Gujarat University, Surat, Gujarat 395007, India; [email protected] 7 Department of Medical Laboratory, College of Applied Medical Sciences, Majmaah University, Al Majma’ah 15341, Saudi Arabia; [email protected] 8 Department of Environmental Sciences, Central University of Jharkhand, -
Schaus' Swallowtail
Bring this image to life: Schaus’ Swallowtail see reverse side for details Heraclides aristodemus ponceanus Florida Museum 3D Butterfly Cards Inspiring people to care about life on earth The critically endangered Schaus’ Swallowtail (Heraclides aristodemus ponceanus) is a large, iconic butterfly found in South Florida. Historically, the butterfly inhabited dense upland forests called tropical hardwood hammocks from the greater Miami area south through the Florida Keys. Habitat loss and fragmentation over the past century have led to severe population declines and range reductions. Today, Schaus’ Swallowtail is restricted to only a few remaining sites in the northern Florida Keys, making it one of the rarest butterflies in the U.S. and our only federally listed swallowtail. Although small numbers occur on Key Largo, the main population resides on islands in Biscayne National Park. Because recent surveys indicate extremely small numbers of butterflies throughout its range, the risk of extinction is thought to be very high. Collaborative conservation and recovery efforts are underway for the Schaus’ Swallowtail. They include regular population monitoring, captive breeding, organism reintroduction and habitat restoration. • Download the Libraries of Life app from the iTunes or Android store and install on your device. • Launch the app and select the Florida Museum icon. • Hold your mobile device camera about 6 inches away from card image. • View specimen and click buttons to view content. Cover photo by: Jaret Daniels The Florida Museum of Natural History is a leading authority in biodiversity and cultural heritage, using its expertise to advance knowledge and solve real world problems. The Florida Museum inspires people to value the biological richness and cultural heritage of our diverse world and make a positive difference in its future. -
Preliminary Checklist of Extant Endemic Species and Subspecies of the Windward Dutch Caribbean (St
Preliminary checklist of extant endemic species and subspecies of the windward Dutch Caribbean (St. Martin, St. Eustatius, Saba and the Saba Bank) Authors: O.G. Bos, P.A.J. Bakker, R.J.H.G. Henkens, J. A. de Freitas, A.O. Debrot Wageningen University & Research rapport C067/18 Preliminary checklist of extant endemic species and subspecies of the windward Dutch Caribbean (St. Martin, St. Eustatius, Saba and the Saba Bank) Authors: O.G. Bos1, P.A.J. Bakker2, R.J.H.G. Henkens3, J. A. de Freitas4, A.O. Debrot1 1. Wageningen Marine Research 2. Naturalis Biodiversity Center 3. Wageningen Environmental Research 4. Carmabi Publication date: 18 October 2018 This research project was carried out by Wageningen Marine Research at the request of and with funding from the Ministry of Agriculture, Nature and Food Quality for the purposes of Policy Support Research Theme ‘Caribbean Netherlands' (project no. BO-43-021.04-012). Wageningen Marine Research Den Helder, October 2018 CONFIDENTIAL no Wageningen Marine Research report C067/18 Bos OG, Bakker PAJ, Henkens RJHG, De Freitas JA, Debrot AO (2018). Preliminary checklist of extant endemic species of St. Martin, St. Eustatius, Saba and Saba Bank. Wageningen, Wageningen Marine Research (University & Research centre), Wageningen Marine Research report C067/18 Keywords: endemic species, Caribbean, Saba, Saint Eustatius, Saint Marten, Saba Bank Cover photo: endemic Anolis schwartzi in de Quill crater, St Eustatius (photo: A.O. Debrot) Date: 18 th of October 2018 Client: Ministry of LNV Attn.: H. Haanstra PO Box 20401 2500 EK The Hague The Netherlands BAS code BO-43-021.04-012 (KD-2018-055) This report can be downloaded for free from https://doi.org/10.18174/460388 Wageningen Marine Research provides no printed copies of reports Wageningen Marine Research is ISO 9001:2008 certified. -
Multi-Taxonomic Survey in the Sierra Del Abra Tanchipa Biosphere Reserve
Biota Neotropica 21(1): e20201050, 2021 www.scielo.br/bn ISSN 1676-0611 (online edition) Inventory Multi-taxonomic survey in the Sierra del Abra Tanchipa Biosphere Reserve Francisco Javier Sahagún-Sánchez1* & José Arturo De-Nova2 1Universidad de Guadalajara, Departamento de Políticas Públicas, Periférico Norte N° 799, Núcleo Universitario Los Belenes, C.P. 45100, Zapopan, Jalisco, México. 2Universidad Autónoma de San Luis Potosí, Instituto de Investigación de Zonas Desérticas, Altair Núm. 200, Col. del Llano C.P. 78377 San Luis Potosí, SLP. México. *Corresponding author: Francisco Javier Sahagún-Sánchez, e-mail: [email protected] SAHAGÚN-SÁNCHEZ, F.J., DE-NOVA, J.A. Multi-taxonomic survey in the Sierra del Abra Tanchipa Biosphere Reserve. Biota Neotropica 21(1): e20201050. https://doi.org/10.1590/1676-0611-BN-2020-1050 Abstract: Studies on biological diversity are essential to generate baseline information in natural protected areas. In the present study, we developed a multi-taxonomic inventory in the Sierra del Abra Tanchipa Biosphere Reserve, located northeast of San Luis Potosí, Mexico. Systematic samplings were performed between January 2017 to May 2018, for the taxonomic groups of flora, amphibians, reptiles, birds, and mammals. A total of 3 730 records of 683 species were obtained, corresponding to 427 species of flora, 10 of amphibians, 20 of reptiles, 192 of birds, and 34 of mammals, from which 47 species are threatened. The results obtained represent the critical biodiversity that can be found in this natural protected area. The information will be useful for decision-making on the management and conservation of biodiversity in the Sierra Madre Oriental’s ecological corridor. -
The Loss of Photosynthetic Pathways in the Plastid and Nuclear Genomes of the Non- Photosynthetic Mycoheterotrophic Eudicot Monotropa Hypopitys Nikolai V
The Author(s) BMC Plant Biology 2016, 16(Suppl 3):238 DOI 10.1186/s12870-016-0929-7 RESEARCH Open Access The loss of photosynthetic pathways in the plastid and nuclear genomes of the non- photosynthetic mycoheterotrophic eudicot Monotropa hypopitys Nikolai V. Ravin*, Eugeny V. Gruzdev, Alexey V. Beletsky, Alexander M. Mazur, Egor B. Prokhortchouk, Mikhail A. Filyushin, Elena Z. Kochieva, Vitaly V. Kadnikov, Andrey V. Mardanov and Konstantin G. Skryabin From The International Conference on Bioinformatics of Genome Regulation and Structure\Systems Biology (BGRS\SB-2016) Novosibirsk, Russia. 29 August-2 September 2016 Abstract Background: Chloroplasts of most plants are responsible for photosynthesis and contain a conserved set of about 110 genes that encode components of housekeeping gene expression machinery and photosynthesis-related functions. Heterotrophic plants obtaining nutrients from other organisms and their plastid genomes represent model systems in which to study the effects of relaxed selective pressure on photosynthetic function. The most evident is a reduction in the size and gene content of the plastome, which correlates with the loss of genes encoding photosynthetic machinery which become unnecessary. Transition to a non-photosynthetic lifestyle is expected also to relax the selective pressure on photosynthetic machinery in the nuclear genome, however, the corresponding changes are less known. Results: Here we report the complete sequence of the plastid genome of Monotropa hypopitys, an achlorophyllous obligately mycoheterotrophic plant belonging to the family Ericaceae. The plastome of M. hypopitys is greatly reduced in size (35,336 bp) and lacks the typical quadripartite structure with two single-copy regions and an inverted repeat. -
Richness of Plants, Birds and Mammals Under the Canopy of Ramorinoa Girolae, an Endemic and Vulnerable Desert Tree Species
BOSQUE 38(2): 307-316, 2017 DOI: 10.4067/S0717-92002017000200008 Richness of plants, birds and mammals under the canopy of Ramorinoa girolae, an endemic and vulnerable desert tree species Riqueza de plantas, aves y mamíferos bajo el dosel de Ramorinoa girolae, una especie arbórea endémica y vulnerable del desierto Valeria E Campos a,b*, Viviana Fernández Maldonado a,b*, Patricia Balmaceda a, Stella Giannoni a,b,c a Interacciones Biológicas del Desierto (INTERBIODES), Av. I. de la Roza 590 (O), J5402DCS Rivadavia, San Juan, Argentina. *Corresponding author: b CIGEOBIO, UNSJ CONICET, Universidad Nacional de San Juan- CUIM, Av. I. de la Roza 590 (O), J5402DCS Rivadavia, San Juan, Argentina, phone 0054-0264-4260353 int. 402, [email protected], [email protected] c IMCN, FCEFN, Universidad Nacional de San Juan- España 400 (N), 5400 Capital, San Juan, Argentina. SUMMARY Dominant woody vegetation in arid ecosystems supports different species of plants and animals largely dependent on the existence of these habitats for their survival. The chica (Ramorinoa girolae) is a woody leguminous tree endemic to central-western Argentina and categorized as vulnerable. We evaluated 1) richness of plants, birds and mammals associated with the habitat under its canopy, 2) whether richness is related to the morphological attributes and to the features of the habitat under its canopy, and 3) behavior displayed by birds and mammals. We recorded presence/absence of plants under the canopy of 19 trees in Ischigualasto Provincial Park. Moreover, we recorded abundance of birds and mammals and signs of mammal activity using camera traps. -
Ethno Medicinal Uses of Roots of Fourteen Species of Family
Research & Reviews in Biotechnology & Biosciences Website: www.biotechjournal.in Review Paper Research & Reviews in BiotechnologyVolume: 7, Issue: & Biosciences 2, Year: 2020 PP: 104-119 ISSN No: 2321-8681 Ethno medicinal uses of roots of fourteen species of family Apocynaceaeby indigenous communities of India Pankaj Kumar1,2, Sumeet Gairola1,2* 1Plant Sciences Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu–180001, UT of Jammu &Kashmir, India 2Academy of Scientific and Innovative Research (AcSIR), New Delhi, India Article History Abstract Received: 15/11/2020 Apocynaceaeis one of the largest angiosperm familieswith numerous medicinal plant species. Plants of the family Apocynaceae are rich in Revised: 23/11/2020 toxic and medicinal secondary metabolites such as alkaloids, Accepted: 08/12/2020 triterpenoids, flavonoids, glycosides, phenols, steroids, lactones, sterols, and sugars lignans. Roots of family Apocynaceae are used by indigenous communities in different parts of Indiato treat many health problems. The present study aimed to review and analyzeethnomedicinal usage of raw root drugs of fourteen species of family Apocynaceae by India's indigenous communities. The http://doi.org/10.5281/zen available literature in scientific journals, edited books, floras, eFloras, odo.4308464 online databases, scientific databases, etc., was reviewed to collect information on the ethnomedicinal uses of the roots of the selected fourteen species by various indigenous communities in different parts of India. Indigenous communities used raw roots of the studied species to manage various health problems, including animal bite, asthma, boils, burn injuries, cold, constipation, cough, diabetes, dysentery, epilepsy, fever, fits, gonorrhea, hypertension, insect bite, jaundice, leprosy, leucoderma, piles, rheumatism, scorpion sting, skin disease, snakebite, stomach-ache, and wound healing.