Review Antimicrobial and Cytolytic Peptides of Venomous Arthropods

Total Page:16

File Type:pdf, Size:1020Kb

Review Antimicrobial and Cytolytic Peptides of Venomous Arthropods CMLS, Cell. Mol. Life Sci. 60 (2003) 2651–2668 1420-682X/03/122651-18 DOI 10.1007/s00018-003-3106-8 CMLS Cellular and Molecular Life Sciences © Birkhäuser Verlag, Basel, 2003 Review Antimicrobial and cytolytic peptides of venomous arthropods L. Kuhn-Nentwig Zoological Institute, University of Bern, Baltzerstrasse 6, 3012 Bern (Switzerland), Fax: +41 31 631 48 88, e-mail: [email protected],URL: http://www.zoology.unibe.ch/ecol/ Received 17 March 2003; received after revision 11 June 2003; accepted 17 June 2003 Abstract. As a response to invading microorganisms, the interact together, resulting in extremely rapid immobi- innate immune system of arthropods has evolved a com- lization and/or killing of prey or aggressors. This review plex arrangement of constitutive and inducible antimicro- provides an overview of antimicrobial peptides identified bial peptides that immediately destroy a large variety of in the hemolymph of venomous arthropods, and espe- pathogens. At the same time, venomous arthropods have cially of cytolytic peptides in their venom. For these pep- developed an additional offensive system in their venom tides a dual role is proposed: acting as antimicrobials as glands to subdue their prey items. In this complex venom well as increasing the potency of the venom by influenc- system, several enzymes, low-molecular-mass com- ing excitable cells. pounds, neurotoxins, antimicrobial and cytolytic peptides Key words. Antimicrobial peptides; cytolytic peptides; venom; arthropods; synergism. Introduction membrane of bacteria and parasitic protozoans. The un- structured antimicrobial peptides are electrically at- As strategies in antagonistic relationships, prokaryotic tracted to negatively charged groups of the cell surface, and eukaryotic organisms have developed hundreds of where they adopt an a-helical conformation and accumu- different cytolytic peptides and proteins during their evo- late on the membrane. This can result in the formation of lution in different phyla of the plant [1] and animal king- transient pores, membrane perturbation and cell lysis [8]. dom [2]. Many cytolytic peptides are specific antimicro- Antimicrobial peptides in vertebrates and invertebrates bially acting peptides that are part of the innate immune can either be induced by microbial infection and inflam- system of invertebrates and vertebrates. They serve as mation or produced constitutively. In vertebrates, biogen- primary defense weapons against invading prokaryotic esis occurs in circulating phagocytes, destroying intracel- and eukaryotic microorganisms, a fact which is well doc- lularly phagocytosed pathogens by defensins and like- umented by a constantly increasing number of publica- wise in different tissues and epithelia from where they are tions and reviews [3–6]. actively secreted into the lumen, as has been shown for Gene-encoded antimicrobially acting peptides show great enteric a-defensins [9]. In some crustaceans [10, 11] and variety in amino acid sequence, structure and target chelicerates, these peptides are stored constitutively in specificity. Many of them are cationic, amphipathic pep- hemocytes and released into the hemolymph by exocyto- tides with molecular masses lower than 10 kDa and show sis after microbial injury as an ancient form of host de- a higher specificity to prokaryotic than to eukaryotic cells fense [12, 13]. Insects exhibit a further mode of action in [7]. The main site of antimicrobial activity is the plasma response to microbial challenge. Depending on the im- munogenic character of the microbial invaders, the tran- scription of different antimicrobial peptides, mainly in * Corresponding author. the fat body, is induced by two different pathways. The 2652 L. Kuhn-Nentwig Antimicrobial peptides of arthropods Imd pathway controls the immune response to Gram-neg- Antimicrobial peptides in the hemolymph of ative bacteria, and the Toll pathway is activated after in- venomous arthropods fection with fungi and Gram-positive bacteria [5]. After induction, a rapid release of diverse antimicrobial pep- Antimicrobial peptides isolated from the hemolymph of tides into the hemolymph follows within hours [14]. Fur- actively venomous arthropods have quite different struc- ther constitutive expressions of these peptides are also re- tures from the cytolytic peptides identified in their ven- ported in hemocytes, salivary glands [15] and in the oms. According to their structure, antimicrobial peptides midgut of Anopheles gambiae [16, 17]. can be arranged into four families: a-helical, linear pep- Additionally, other cytolytic peptides are used facilita- tides devoid of cysteines, the proline-rich and glycine- tively for the improvement of living conditions and access rich peptides, and the cysteine-rich, open-ended cyclic to nutrition. Bacteria that produce cytolytic peptides peptides such as insect defensins [14]. seem to have a growth advantage over their natural com- In the hemolymph of the scorpion Leiurus quinquestria- petitors for the same growth substrate and in the same tus (Buthidae) [26] a 4-kDa scorpion defensin was iden- ecological niche [18, 19]. This bactericidal activity can be tified with a high sequence homology to an insect de- specifically targeted at bacteria of the same group [20] or fensin from the dragonfly Aeschna cyanea [27]. The scor- may occur as a more unspecific cytolytic activity against pion defensin is a cationic 39-residue peptide with a prokaryotic and eukaryotic cell membranes, as in the case CSab fold and three intramolecular disulfide bridges, a of gramicidin S [21]. Cytolytic peptides from the para- common structural motif also present in scorpion toxins sitic protozoans Entamoeba histolytica and Entamoeba [28]. A further defensin from the hemolymph of the scor- dispar (amoebapores and disparpores) primarily destroy pion Androctonus australis, also belonging to the family the phagocytosed bacteria as food. The cytolytic activity Buthidae, showed 95% identity with the Leiurus de- toward eukaryotic cells that some of them exert seems to fensin, both acting mainly on Gram-positive bacteria be a mere side effect [22, 23]. [29]. These high sequence similarities suggest a common On the other hand, arthropods such as scorpions, spiders ancient peptide structure for scorpion neurotoxins and in- and stinging hymenopterans have developed venom sect defensins [30]. From the same hemolymph, two fur- glands that mainly produce three different groups of com- ther antimicrobially acting peptides were characterized: ponents, based on their molecular mass. The first group buthinin, with three disulfide bridges, active against both consists of proteins, including several enzymes such as Gram-positive and Gram-negative bacteria, and androc- hyaluronidases, phospholipases and sphingomyelinases. tonin, with two disulfide bridges. Androctonin is bacteri- The second group is represented by a peptide fraction cidal in the micromolar range to both Gram-positive and with molecular masses around and lower than 10 kDa, Gram-negative bacteria. The peptide additionally exhibits containing several neurotoxic and cytolytic compounds. a fungicidal activity and is nonhemolytic up to a concen- A third group is composed of low-molecular-mass sub- tration of 150 mM [31]. Its sequence shows a close simi- stances such as ions, free amino acids, biogenic amines, larity to antimicrobial tachyplesins and polyphemusins neurotransmitters, acylpolyamines, heterocyclic com- isolated from the hemolymph of the horseshoe crabs pounds and alkaloids [24, 25]. The cooperation of all Tachypleus tridentatus and Limulus polyphemus, belong- these mentioned components in the venom enables these ing to the old marine arthropod group Xiphosura [32, 33]. arthropods to paralyze and/or to kill other arthropods in As assumed for cytolytic peptides from the venom of terms of foraging and defense. As a reproduction strategy, scorpions, antimicrobial peptides in the hemolymph also parasitic wasps also paralyze other arthropods and lay an seem to be constitutively present, because their concen- egg inside or outside of the prey, which serves as a nutri- tration does not increase after bacterial injury [26, 29]. tion source for their offspring. This review will focus on Antimicrobial peptides from the hemolymph of spiders antimicrobial and cytolytic peptides from the hemolymph are currently known from one unchallenged mygalo- and venom glands of poisonous arthropods identified morph species, Acanthoscurria gomesiana (Theraphosi- over the last 40 years. Common to all peptides is their am- dae), from which gomesin had been characterized [34]. phipathic structure and their ability to disturb membrane This peptide contains four cysteines and is active against structures. In context with the fact that all external world- different Gram-negative bacteria (0.4–6.25 mM), Gram- facing epithelia, ducts and glands dispose of growth-in- positive bacteria (0.2–12.5 mM) and fungi (0.4–25 mM). hibiting substances against potential invaders, a possible Gomesin exhibits hemolytic activity of 16% at 1 mM, dual role, especially for the peptides identified in the which does not increase up to concentrations of 100 mM. venom, will be discussed. Interestingly, the viability of Leishmania amazonensis promastigotes was reduced to 50% in the presence of 2.5 mM gomesin. Structural and sequence alignment of gomesin with protegrin from porcine leukocytes [35] and androctonin revealed several similarities in their amino CMLS, Cell. Mol. Life Sci. Vol. 60, 2003 Review
Recommended publications
  • ACTX-Hv1c, Isolated from the Venom of the Blue Mountains
    S.J. Gunning et al. Janus-faced atracotoxins block KCa channels The Janus-faced atracotoxins are specific blockers of invertebrate KCa channels Simon J. Gunning1, Francesco J. Maggio2,4, Monique J. Windley1, Stella M. Valenzuela1, Glenn F. King3 and Graham M. Nicholson1 1 Neurotoxin Research Group, Department of Medical & Molecular Biosciences, University of Technology, Sydney, Broadway, NSW 2007, Australia 2 Department of Molecular, Microbial & Structural Biology, University of Connecticut School of Medicine, Farmington, Connecticut 06032, USA and 3 Division of Chemical and Structural Biology, Institute for Molecular Bioscience, University of Queensland, Brisbane QLD 4072, Australia 4 Current affiliation: Bristol-Myers Squibb, 6000 Thompson Road, Syracuse NY 13057, USA Subdivision: Molecular Neurobiology Abbreviations: ACTX, atracotoxin; 4-AP, 4-aminopyridine; BKCa channel, 2+ + 2+ large-conductance Ca -activated K channel; CaV channel, voltage-activated Ca channel; ChTx, charybdotoxin; DRG, dorsal root ganglia; DUM, dorsal unpaired median; EGTA, ethylene glycol-bis(b-aminoethyl ether)-N,N,N’N’-tetraacetic acid; IbTx, + iberiotoxin; J-ACTX, Janus-faced atracotoxin; KA channel, transient ‘A-type’ K channel; 2+ + + KCa channel, Ca -activated K channel; KDR channel, delayed-rectifier K channel; KV + + channel, voltage-activated K channel; NaV channel, voltage-activated Na channel; Slo, Slowpoke; TEA, tetraethylammonium; TTX, tetrodotoxin. RUNNING TITLE: Janus-faced atracotoxins block KCa channels ADDRESS CORRESPONDENCE TO: Graham M. Nicholson, Department of Medical & Molecular Biosciences, University of Technology, Sydney, PO Box 123, Broadway NSW 2007, Australia. Tel: +61 2 9514-2230 Fax: +61 2 9514-2228; E-mail: [email protected] 1 S.J. Gunning et al. Janus-faced atracotoxins block KCa channels ABSTRACT The Janus-faced atracotoxins are a unique family of excitatory peptide toxins that contain a rare vicinal disulfide bridge.
    [Show full text]
  • Trap-Nesting Bees and Wasps and Their Natural Enemies in Regenerated Broad-Leaved Forests in Central Japan
    「森林総合研究所研究報告」(Bulletin of FFPRI) Vol.18-No.1 (No.449) 189-194 March 2019 189 研究資料 (Research record) Trap-nesting bees and wasps and their natural enemies in regenerated broad-leaved forests in central Japan Shun'ichi MAKINO1)* and Kimiko OKABE1) Abstract Trap-nests are useful tools to monitor solitary bees and wasps that nest in tube-like cavities. We installed trap- nests made from internode tubes of bamboos and reeds in ten secondary deciduous broad-leaved stands of different ages of one to over 100 years after clear-cutting. Thirty-two species (eight families of Hymenoptera and one of Diptera) were obtained with the trap-nests: 20 host species and 12 of their natural enemies. The species richness of most families of hosts and natural enemies, except for Pompilidae, was higher in younger to middle-aged stands than in older ones over 70 years old. On the contrary, the family Pompilidae (spider wasps) proliferated in both young and old stands, with its relative abundance becoming greater with the increase in stand age. Key words : cavity-nesting Hymenoptera, bamboo traps, monitoring, biodiversity, predator, pollinator 1.Introduction et al. 2003; butterfly: Inoue 2003; nocturnal moths: Taki et Several groups of solitary bees and hunting wasps nest in al. 2010; cerambycid beetles: Makino et al. 2007; parasitic pre-existing cavities, such as tubes or tube-like structures. wasps: Maleque et al. 2010; bees: Taki et al 2013; soil animals: These insects typically make cells in such cavities using Hasegawa et al. 2006, 2013), our results will constitute a various materials and store foods there to rear offspring useful dataset for comparing responses of abundance and (Krombein 1967).
    [Show full text]
  • A Plant Ecological Study and Management Plan for Mogale's Gate Biodiversity Centre, Gauteng
    A PLANT ECOLOGICAL STUDY AND MANAGEMENT PLAN FOR MOGALE’S GATE BIODIVERSITY CENTRE, GAUTENG By Alistair Sean Tuckett submitted in accordance with the requirements for the degree of MASTER OF SCIENCE in the subject ENVIRONMENTAL MANAGEMENT at the UNIVERSITY OF SOUTH AFRICA SUPERVISOR: PROF. L.R. BROWN DECEMBER 2013 “Like winds and sunsets, wild things were taken for granted until progress began to do away with them. Now we face the question whether a still higher 'standard of living' is worth its cost in things natural, wild and free. For us of the minority, the opportunity to see geese is more important that television.” Aldo Leopold 2 Abstract The Mogale’s Gate Biodiversity Centre is a 3 060 ha reserve located within the Gauteng province. The area comprises grassland with woodland patches in valleys and lower-lying areas. To develop a scientifically based management plan a detailed vegetation study was undertaken to identify and describe the different ecosystems present. From a TWINSPAN classification twelve plant communities, which can be grouped into nine major communities, were identified. A classification and description of the plant communities, as well as, a management plan are presented. The area comprises 80% grassland and 20% woodland with 109 different plant families. The centre has a grazing capacity of 5.7 ha/LSU with a moderate to good veld condition. From the results of this study it is clear that the area makes a significant contribution towards carbon storage with a total of 0.520 tC/ha/yr stored in all the plant communities. KEYWORDS Mogale’s Gate Biodiversity Centre, Braun-Blanquet, TWINSPAN, JUICE, GRAZE, floristic composition, carbon storage 3 Declaration I, Alistair Sean Tuckett, declare that “A PLANT ECOLOGICAL STUDY AND MANAGEMENT PLAN FOR MOGALE’S GATE BIODIVERSITY CENTRE, GAUTENG” is my own work and that all sources that I have used or quoted have been indicated and acknowledged by means of complete references.
    [Show full text]
  • Versatile Spider Venom Peptides and Their Medical and Agricultural Applications
    Accepted Manuscript Versatile spider venom peptides and their medical and agricultural applications Natalie J. Saez, Volker Herzig PII: S0041-0101(18)31019-5 DOI: https://doi.org/10.1016/j.toxicon.2018.11.298 Reference: TOXCON 6024 To appear in: Toxicon Received Date: 2 May 2018 Revised Date: 12 November 2018 Accepted Date: 14 November 2018 Please cite this article as: Saez, N.J., Herzig, V., Versatile spider venom peptides and their medical and agricultural applications, Toxicon (2019), doi: https://doi.org/10.1016/j.toxicon.2018.11.298. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT MANUSCRIPT ACCEPTED ACCEPTED MANUSCRIPT 1 Versatile spider venom peptides and their medical and agricultural applications 2 3 Natalie J. Saez 1, #, *, Volker Herzig 1, #, * 4 5 1 Institute for Molecular Bioscience, The University of Queensland, St. Lucia QLD 4072, Australia 6 7 # joint first author 8 9 *Address correspondence to: 10 Dr Natalie Saez, Institute for Molecular Bioscience, The University of Queensland, St. Lucia QLD 11 4072, Australia; Phone: +61 7 3346 2011, Fax: +61 7 3346 2101, Email: [email protected] 12 Dr Volker Herzig, Institute for Molecular Bioscience, The University of Queensland, St.
    [Show full text]
  • Arachnides 88
    ARACHNIDES BULLETIN DE TERRARIOPHILIE ET DE RECHERCHES DE L’A.P.C.I. (Association Pour la Connaissance des Invertébrés) 88 2019 Arachnides, 2019, 88 NOUVEAUX TAXA DE SCORPIONS POUR 2018 G. DUPRE Nouveaux genres et nouvelles espèces. BOTHRIURIDAE (5 espèces nouvelles) Brachistosternus gayi Ojanguren-Affilastro, Pizarro-Araya & Ochoa, 2018 (Chili) Brachistosternus philippii Ojanguren-Affilastro, Pizarro-Araya & Ochoa, 2018 (Chili) Brachistosternus misti Ojanguren-Affilastro, Pizarro-Araya & Ochoa, 2018 (Pérou) Brachistosternus contisuyu Ojanguren-Affilastro, Pizarro-Araya & Ochoa, 2018 (Pérou) Brachistosternus anandrovestigia Ojanguren-Affilastro, Pizarro-Araya & Ochoa, 2018 (Pérou) BUTHIDAE (2 genres nouveaux, 41 espèces nouvelles) Anomalobuthus krivotchatskyi Teruel, Kovarik & Fet, 2018 (Ouzbékistan, Kazakhstan) Anomalobuthus lowei Teruel, Kovarik & Fet, 2018 (Kazakhstan) Anomalobuthus pavlovskyi Teruel, Kovarik & Fet, 2018 (Turkmenistan, Kazakhstan) Ananteris kalina Ythier, 2018b (Guyane) Barbaracurus Kovarik, Lowe & St'ahlavsky, 2018a Barbaracurus winklerorum Kovarik, Lowe & St'ahlavsky, 2018a (Oman) Barbaracurus yemenensis Kovarik, Lowe & St'ahlavsky, 2018a (Yémen) Butheolus harrisoni Lowe, 2018 (Oman) Buthus boussaadi Lourenço, Chichi & Sadine, 2018 (Algérie) Compsobuthus air Lourenço & Rossi, 2018 (Niger) Compsobuthus maidensis Kovarik, 2018b (Somaliland) Gint childsi Kovarik, 2018c (Kénya) Gint amoudensis Kovarik, Lowe, Just, Awale, Elmi & St'ahlavsky, 2018 (Somaliland) Gint gubanensis Kovarik, Lowe, Just, Awale, Elmi & St'ahlavsky,
    [Show full text]
  • Defensive Behavior Is Associated with Morphology and Performance in Scorpions
    Choose Your Weapon: Defensive Behavior Is Associated with Morphology and Performance in Scorpions Arie van der Meijden1*, Pedro Lobo Coelho1, Pedro Sousa1, Anthony Herrel2 1 CIBIO, Centro de Investigac¸a˜o em Biodiversidade e Recursos Gene´ticos, Campus Agra´rio de Vaira˜o, Vaira˜o, Portugal, 2 UMR 7179, Muse´um National d9Histoire Naturelle, De´partement d9Ecologie et de Gestion de la Biodiversite´, Paris, France Abstract Morphology can be adaptive through its effect on performance of an organism. The effect of performance may, however, be modulated by behavior; an organism may choose a behavioral option that does not fully utilize its maximum performance. Behavior may therefore be decoupled from morphology and performance. To gain insight into the relationships between these levels of organization, we combined morphological data on defensive structures with measures of defensive performance, and their utilization in defensive behavior. Scorpion species show significant variation in the morphology and performance of their main defensive structures; their chelae (pincers) and the metasoma (‘‘tail’’) carrying the stinger. Our data show that size-corrected pinch force varies to almost two orders of magnitude among species, and is correlated with chela morphology. Chela and metasoma morphology are also correlated to the LD50 of the venom, corroborating the anecdotal rule that dangerously venomous scorpions can be recognized by their chelae and metasoma. Analyses of phylogenetic independent contrasts show that correlations between several aspects of chela and metasoma morphology, performance and behavior are present. These correlations suggest co-evolution of behavior with morphology and performance. Path analysis found a performance variable (pinch force) to partially mediate the relationship between morphology (chela aspect ratio) and behavior (defensive stinger usage).
    [Show full text]
  • Sphecos: a Forum for Aculeate Wasp Researchers
    SPHECOS Number 4 - January 1981 A Newsletter for Aculeate Wasp Researchers Arnold S. Menke, editor Systematic Entomology Laboratory, USDA c/o u. S. National Museum of Natural History washington DC 20560 Notes from the Editor This issue of Sphecos consists mainly of autobiographies and recent literature. A highlight of the latter is a special section on literature of the vespid subfamily Vespinae compiled and submitted by Robin Edwards (seep. 41). A few errors in issue 3 have been brought to my attention. Dr. Mickel was declared to be a "multillid" expert on page l. More seriously, a few typographical errors crept into Steyskal's errata paper on pages 43-46. The correct spellings are listed below: On page 43: p. 41 - Aneusmenus --- p. 108 - Zaschizon:t:x montana and z. Eluricincta On page 45: p. 940 - ----feminine because Greek mastix --- p. 1335 - AmEl:t:oEone --- On page 46: p. 1957 - Lasioglossum citerior My apologies to Dr. Mickel and George Steyskal. I want to thank Helen Proctor for doing such a fine job of typing the copy for Sphecos 3 and 4. Research News Ra:t:mond Wah is, Zoologie generale et Faunistique, Faculte des Sciences agronomiques, 5800 GEMBLOUX, Belgium; home address: 30 rue des Sept Collines 4930 CHAUDFONTAINE, Belgium (POMPILIDAE of the World), is working on a revision of the South American genus Priochilus and is also preparing an annotated key of the members of the Tribe Auplopodini in Australia (AuElOEUS, Pseudagenia, Fabriogenia, Phanagenia, etc.). He spent two weeks in London (British Museum) this summer studying type specimens and found that Turner misinterpreted all the old species and that his key (1910: 310) has no practical value.
    [Show full text]
  • Insect Venom Toxin Peptides, Its Antimicrobial Effects and Host Immune Responses: a Review
    Acta Scientific MICROBIOLOGY (ISSN: 2581-3226) Volume 4 Issue 4 April 2021 Review Article Insect Venom Toxin Peptides, its Antimicrobial Effects and Host Immune Responses: A Review Simran Sharma and Ravi Kant Upadhyay* Received: March 01, 2021 Department of Zoology, Deen Dayal Upadhyaya Gorakhpur University, UP, India Published: March 25, 2021 *Corresponding Author: Ravi Kant Upadhyay, Department of Zoology, Deen Dayal © All rights are reserved by Simran Sharma Upadhyaya Gorakhpur University, UP, India. and Ravi Kant Upadhyay. Abstract Present review article explains antimicrobial activity of hymenopteran insect venoms. Insects mostly bees, wasps, hornets use Insect venom glands secret multiple toxin components which are powerful weapons secreted from venom glands. Bees, wasps, and venom toxins to defend their hive, nests and mainly colonies in territory. These insects sting very swiftly and inflict venom in its prey. envenomation does not transmit any pathogen. Bee venom severely affects cytoskeletal system and impairs nerve cell function that hornet inflict venom for self and territorial defense and impose physiological alterations with multiple symptoms in intruders; but results in organ paralysis and deformity and even death after multiple bites. In bees severity of microbial infection is increased due in making antiviral defense. Insects secrete antimicrobial peptides in venom which protect themselves from infection by generat- to impact of biotic and abiotic factors. Few phenolic compounds such as flavonoids mixed in honey, propolis, and royal jelly assist venom components from honey bees, wasps and hornets can be used as templates for generation of new therapeutic agents and bio- ing immune response against pathogens. Purified venom toxins exhibit antibacterial, antifungal and antiviral defense.
    [Show full text]
  • CSTX-1, a Toxin from the Venom of the Hunting Spider Cupiennius Salei, Is
    For submission to Neuropharmacology CSTX-1, a toxin from the venom of the hunting spider Cupiennius salei, is a selective blocker of L-type calcium channels in mammalian neurons *,1Helmut Kubista, 2Roberta A. Mafra, 3Youmie Chong, 3Graham M. Nicholson, 2Paulo S.L. Beirão, 2Jader S. Cruz, 4Stefan Boehm, 5Wolfgang Nentwig & 5Lucia Kuhn-Nentwig 1Center for Biomolecular Medicine and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Waehringerstrasse 13a, A-1090, Vienna, Austria 2Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antonio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil 3Neurotoxin Research Group, Department of Medical & Molecular Biosciences, University of Technology, Sydney, City Campus, Broadway, Sydney, NSW 2007, Australia 4Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, A-8010 Graz, Austria 5Zoological Institute, University of Bern, Baltzerstrasse 6, CH-3012 Bern, Switzerland *Author for correspondence: Telephone: ++43 1 4277 64146 Fax: ++ 43 1 4277 9641 E-mail: [email protected] H. Kubista et al. CSTX-1, a selective Cav channel blocker 2 Abstract The inhibitor cystine-knot motif identified in the structure of CSTX-1 from Cupiennius salei venom suggests that this toxin may act as a blocker of ion channels. Whole-cell patch clamp experiments performed on cockroach neurons revealed that CSTX-1 produced a slow voltage- independent block of both mid/low- (M-LVA) and high-voltage-activated (HVA) insect Cav channels. Since Cupiennius salei venom affects both insect as well as rodent species, we investigated whether Cav channel currents of rat neurons are also inhibited by CSTX-1.
    [Show full text]
  • 21 March 2017 CURRICULUM VITAE Barry M. Oconnor Personal Born
    21 March 2017 CURRICULUM VITAE Barry M. OConnor Personal Born November 9, 1949, Des Moines, Iowa, USA Citizenship: USA. Education Michigan State University, 1967-69. Major: Biology. Iowa State University, 1969-71. B.S. Degree, June, 1971, awarded with Distinction. Major: Zoology; Minors: Botany, Education. Cornell University, 1973-79. Ph.D. Degree, August, 1981. Major Subject: Acarology; Minor Subjects: Insect Taxonomy, Vertebrate Ecology. Professional Employment Research Zoologist, Department of Zoology, University of California, Berkeley, California; October, 1979 - September, 1980. Assistant Professor of Biology/Assistant Curator of Insects, Museum of Zoology, University of Michigan, Ann Arbor, Michigan; October, 1980 - December, 1986. Associate Professor of Biology/Associate Curator of Insects, Museum of Zoology, University of Michigan, Ann Arbor, Michigan; January, 1987 - April 1999. Professor of Biology/Curator of Insects, Museum of Zoology, University of Michigan, Ann Arbor, Michigan; September 1999 - June 2001. Professor of Ecology and Evolutionary Biology/Curator of Insects, Museum of Zoology, University of Michigan, Ann Arbor, Michigan; July 2001-present Visiting Professor, Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Mexico City, Mexico; January-February, 1985. Visiting Professor, The Acarology Summer Program, Ohio State University, Columbus, Ohio; June-July 1980 - present. Honors, Awards and Fellowships National Merit Scholar, 1967-71. B.S. Degree awarded with Distinction, 1971. National Science Foundation Graduate Fellowship, 1973-76. Cornell University Graduate Fellowship, 1976-77. 2 Tawfik Hawfney Memorial Fellowship, Ohio State University, 1977. Outstanding Teaching Assistant, Cornell University Department of Entomology, 1978. President, Acarological Society of America, 1985. Fellow, The Willi Hennig Society, 1984. Excellence in Education Award, College of Literature, Science and the Arts, University of Michigan, 1995 Keynote Speaker, Acarological Society of Japan, 1999.
    [Show full text]
  • Nyffeler & Altig 2020
    Spiders as frog-eaters: a global perspective Authors: Nyffeler, Martin, and Altig, Ronald Source: The Journal of Arachnology, 48(1) : 26-42 Published By: American Arachnological Society URL: https://doi.org/10.1636/0161-8202-48.1.26 BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/terms-of-use. Usage of BioOne Complete content is strictly limited to personal, educational, and non - commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Downloaded From: https://bioone.org/journals/The-Journal-of-Arachnology on 17 Jun 2020 Terms of Use: https://bioone.org/terms-of-use Access provided by University of Basel 2020. Journal of Arachnology 48:26–42 REVIEW Spiders as frog-eaters: a global perspective Martin Nyffeler 1 and Ronald Altig 2: 1Section of Conservation Biology, Department of Environmental Sciences, University of Basel, CH-4056 Basel, Switzerland. E-mail: [email protected]; 2Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA Abstract. In this paper, 374 incidents of frog predation by spiders are reported based on a comprehensive global literature and social media survey.
    [Show full text]
  • A Review of Synonyms and Subspecies in the Genus Opistophthalmus C.L. Koch (Scorpiones: Scorpionidae)
    A review of synonyms and subspecies in the genus Opistophthalmus C.L. Koch (Scorpiones: Scorpionidae) L. Prendini Percy FitzPatrick Institute, University of Cape Town, Rondebosch, 7701 South Africa E-mail: [email protected] The synonyms and subspecies attributed to species of Opistophthalmus C.L. Koch, 1837 (Scorpiones: Scorpionidae) are reviewed, based mostly upon examination of type material. Four species and seven subspecies are synonymized, five species are reinstated, and six subspecies (three of which were originally described as species) are elevated to the rank of species, bringing the total number of species recognized in the genus to 59. A list of the 34 synonyms accepted for the species of Opistophthalmus is appended. New synonyms: O. austerus monticola Hewitt, 1927 = O. austerus Karsch, 1879; O. ecristatus Pocock, 1899 = O. boehmi (Kraepelin, 1896); O. karrooensis rugosus Lawrence, 1946 = O. karrooensis Purcell, 1898; O. laticauda crinita Lawrence, 1955 = O. pallipes C.L. Koch, 1842; O. latimanus austeroides Hewitt, 1914 = O. latimanus C.L. Koch, 1841; O. latimanus kalaharicus Hewitt, 1935 = O. pugnax Thorell, 1876; O. lundensis Monard, 1937 = O. wahlbergii (Thorell, 1876); O. pilosus Werner, 1936 = O. flavescens Purcell, 1898; O. pugnax natalensis Hewitt, 1915 = O. praedo Thorell, 1876; O. wahlbergi robustus Newlands, 1969 = O. wahlbergii (Thorell, 1876); O. werneri Lamoral & Reynders, 1975 = O. flavescens Purcell, 1898. Removed from synonymy: O. chaperi Simon, 1880; O. latro Thorell, 1876; O. luciranus Lawrence, 1959; O. praedo Thorell, 1876; O. scabrifrons Hewitt, 1918. Subspecies elevated to species: O. fuscipes Purcell, 1898; O. keilandsi Hewitt, 1914; O. lawrencei Newlands, 1969; O. leipoldti Purcell, 1898; O.
    [Show full text]