An Optimal Browser Design for GPU Utilisation Ekioh Ltd, Cambridge UK
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Release Notes for X11R6.8.2 the X.Orgfoundation the Xfree86 Project, Inc
Release Notes for X11R6.8.2 The X.OrgFoundation The XFree86 Project, Inc. 9February 2005 Abstract These release notes contains information about features and their status in the X.Org Foundation X11R6.8.2 release. It is based on the XFree86 4.4RC2 RELNOTES docu- ment published by The XFree86™ Project, Inc. Thereare significant updates and dif- ferences in the X.Orgrelease as noted below. 1. Introduction to the X11R6.8.2 Release The release numbering is based on the original MIT X numbering system. X11refers to the ver- sion of the network protocol that the X Window system is based on: Version 11was first released in 1988 and has been stable for 15 years, with only upwardcompatible additions to the coreX protocol, a recordofstability envied in computing. Formal releases of X started with X version 9 from MIT;the first commercial X products werebased on X version 10. The MIT X Consortium and its successors, the X Consortium, the Open Group X Project Team, and the X.OrgGroup released versions X11R3 through X11R6.6, beforethe founding of the X.OrgFoundation. Therewill be futuremaintenance releases in the X11R6.8.x series. However,efforts arewell underway to split the X distribution into its modular components to allow for easier maintenance and independent updates. We expect a transitional period while both X11R6.8 releases arebeing fielded and the modular release completed and deployed while both will be available as different consumers of X technology have different constraints on deployment. Wehave not yet decided how the modular X releases will be numbered. We encourage you to submit bug fixes and enhancements to bugzilla.freedesktop.orgusing the xorgproduct, and discussions on this server take place on <[email protected]>. -
CA Network Flow Analysis Release Notes
CA Network Flow Analysis Release Notes Release 9.1.3 This Documentation, which includes embedded help systems and electronically distributed materials, (hereinafter referred to as the “Documentation”) is for your informational purposes only and is subject to change or withdrawal by CA at any time. This Documentation may not be copied, transferred, reproduced, disclosed, modified or duplicated, in whole or in part, without the prior written consent of CA. This Documentation is confidential and proprietary information of CA and may not be disclosed by you or used for any purpose other than as may be permitted in (i) a separate agreement between you and CA governing your use of the CA software to which the Documentation relates; or (ii) a separate confidentiality agreement between you and CA. Notwithstanding the foregoing, if you are a licensed user of the software product(s) addressed in the Documentation, you may print or otherwise make available a reasonable number of copies of the Documentation for internal use by you and your employees in connection with that software, provided that all CA copyright notices and legends are affixed to each reproduced copy. The right to print or otherwise make available copies of the Documentation is limited to the period during which the applicable license for such software remains in full force and effect. Should the license terminate for any reason, it is your responsibility to certify in writing to CA that all copies and partial copies of the Documentation have been returned to CA or destroyed. TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT. -
Security Analysis of Firefox Webextensions
6.857: Computer and Network Security Due: May 16, 2018 Security Analysis of Firefox WebExtensions Srilaya Bhavaraju, Tara Smith, Benny Zhang srilayab, tsmith12, felicity Abstract With the deprecation of Legacy addons, Mozilla recently introduced the WebExtensions API for the development of Firefox browser extensions. WebExtensions was designed for cross-browser compatibility and in response to several issues in the legacy addon model. We performed a security analysis of the new WebExtensions model. The goal of this paper is to analyze how well WebExtensions responds to threats in the previous legacy model as well as identify any potential vulnerabilities in the new model. 1 Introduction Firefox release 57, otherwise known as Firefox Quantum, brings a large overhaul to the open-source web browser. Major changes with this release include the deprecation of its initial XUL/XPCOM/XBL extensions API to shift to its own WebExtensions API. This WebExtensions API is currently in use by both Google Chrome and Opera, but Firefox distinguishes itself with further restrictions and additional functionalities. Mozilla’s goals with the new extension API is to support cross-browser extension development, as well as offer greater security than the XPCOM API. Our goal in this paper is to analyze how well the WebExtensions model responds to the vulnerabilities present in legacy addons and discuss any potential vulnerabilities in the new model. We present the old security model of Firefox extensions and examine the new model by looking at the structure, permissions model, and extension review process. We then identify various threats and attacks that may occur or have occurred before moving onto recommendations. -
Matrox MGA-1064SG Developer Specification
Matrox Graphics Inc. Matrox MGA-1064SG Developer Specification Document Number 10524-MS-0100 February 10, 1997 Trademark Acknowledgements MGA,™ MGA-1064SG,™ MGA-1164SG,™ MGA-2064W,™ MGA-2164W,™ MGA-VC064SFB,™ MGA-VC164SFB,™ MGA Marvel,™ MGA Millennium,™ MGA Mystique,™ MGA Rainbow Run- ner,™ MGA DynaView,™ PixelTOUCH,™ MGA Control Panel,™ and Instant ModeSWITCH,™ are trademarks of Matrox Graphics Inc. Matrox® is a registered trademark of Matrox Electronic Systems Ltd. VGA,® is a registered trademark of International Business Machines Corporation; Micro Channel™ is a trademark of International Business Machines Corporation. Intel® is a registered trademark, and 386,™ 486,™ Pentium,™ and 80387™ are trademarks of Intel Corporation. Windows™ is a trademark of Microsoft Corporation; Microsoft,® and MS-DOS® are registered trade- marks of Microsoft Corporation. AutoCAD® is a registered trademark of Autodesk Inc. Unix™ is a trademark of AT&T Bell Laboratories. X-Windows™ is a trademark of the Massachusetts Institute of Technology. AMD™ is a trademark of Advanced Micro Devices. Atmel® is a registered trademark of Atmel Corpora- tion. Catalyst™ is a trademark of Catalyst Semiconductor Inc. SGS™ is a trademark of SGS-Thompson. Toshiba™ is a trademark of Toshiba Corporation. Texas Instruments™ is a trademark of Texas Instru- ments. National™ is a trademark of National Semiconductor Corporation. Microchip™ is a trademark of Microchip Technology Inc. All other nationally and internationally recognized trademarks and tradenames are hereby acknowledged. This document contains confidential proprietary information that may not be disclosed without written permission from Matrox Graphics Inc. © Copyright Matrox Graphics Inc., 1997. All rights reserved. Disclaimer: Matrox Graphics Inc. reserves the right to make changes to specifications at any time and without notice. -
Inlined Information Flow Monitoring for Javascript
Inlined Information Flow Monitoring for JavaScript Andrey Chudnov David A. Naumann Stevens Institute of Technology Stevens Institute of Technology Hoboken, NJ 07030 USA Hoboken, NJ 07030 USA [email protected] [email protected] ABSTRACT JS engines are highly engineered for performance, which has Extant security mechanisms for web apps, notably the\same- led some researchers to argue for inlined monitoring for IFC. origin policy", are not sufficient to achieve confidentiality The main contribution of this paper is an inlined IFC mon- and integrity goals for the many apps that manipulate sen- itor that enforces non-interference for apps written in JS. sitive information. The trend in web apps is \mashups" We present the main design decisions and rationale, together which integrate JavaScript code from multiple providers in with technical highlights and a survey of state of the art al- ways that can undercut existing security mechanisms. Re- ternatives. The tool is evaluated using synthetic case studies searchers are exploring dynamic information flow controls and performance benchmarks. (IFC) for JavaScript, but there are many challenges to achiev- ing strong IFC without excessive performance cost or im- On IFC. Browsers and other platforms currently provide practical browser modifications. This paper presents an in- isolation mechanisms and access controls. Pure isolation lined IFC monitor for ECMAScript 5 with web support, goes against integration of app code from multiple providers. using the no-sensitive-upgrade (NSU) technique, together Access controls can be more nuanced, but it is well-known with experimental evaluation using synthetic mashups and that access control policies are safety properties whereas IF performance benchmarks. -
Matrox MGA-2164W Developer's Specification
Matrox Graphics Inc. Matrox MGA-2164W Developer’s Specification Document Number 10568-XX-0100 August 18, 1997 Trademark Acknowledgements MGA,™ MGA-1064SG,™ MGA-1164SG,™ MGA-2064W,™ MGA-2164W,™ MGA-VC064SFB,™ MGA-VC164SFB,™ MGA Marvel,™ MGA Millennium,™ MGA Mystique,™ MGA Rainbow Run- ner,™ MGA DynaView,™ PixelTOUCH,™ MGA Control Panel,™ and Instant ModeSWITCH,™ are trademarks of Matrox Graphics Inc. Matrox® is a registered trademark of Matrox Electronic Systems Ltd. VGA,® is a registered trademark of International Business Machines Corporation; Micro Channel™ is a trademark of International Business Machines Corporation. Intel® is a registered trademark, and 386,™ 486,™ Pentium,™ and 80387™ are trademarks of Intel Corporation. Windows™ is a trademark of Microsoft Corporation; Microsoft,® and MS-DOS® are registered trade- marks of Microsoft Corporation. AutoCAD® is a registered trademark of Autodesk Inc. Unix™ is a trademark of AT&T Bell Laboratories. X-Windows™ is a trademark of the Massachusetts Institute of Technology. AMD™ is a trademark of Advanced Micro Devices. Atmel® is a registered trademark of Atmel Corpora- tion. Catalyst™ is a trademark of Catalyst Semiconductor Inc. SGS™ is a trademark of SGS-Thompson. Toshiba™ is a trademark of Toshiba Corporation. Texas Instruments™ is a trademark of Texas Instru- ments. National™ is a trademark of National Semiconductor Corporation. Microchip™ is a trademark of Microchip Technology Inc. All other nationally and internationally recognized trademarks and tradenames are hereby acknowledged. This document contains confidential proprietary information that may not be disclosed without written permission from Matrox Graphics Inc. © Copyright Matrox Graphics Inc., 1997. All rights reserved. Disclaimer: Matrox Graphics Inc. reserves the right to make changes to specifications at any time and without notice. -
POWERVR 3D Application Development Recommendations
Imagination Technologies Copyright POWERVR 3D Application Development Recommendations Copyright © 2009, Imagination Technologies Ltd. All Rights Reserved. This publication contains proprietary information which is protected by copyright. The information contained in this publication is subject to change without notice and is supplied 'as is' without warranty of any kind. Imagination Technologies and the Imagination Technologies logo are trademarks or registered trademarks of Imagination Technologies Limited. All other logos, products, trademarks and registered trademarks are the property of their respective owners. Filename : POWERVR. 3D Application Development Recommendations.1.7f.External.doc Version : 1.7f External Issue (Package: POWERVR SDK 2.05.25.0804) Issue Date : 07 Jul 2009 Author : POWERVR POWERVR 1 Revision 1.7f Imagination Technologies Copyright Contents 1. Introduction .................................................................................................................................4 1. Golden Rules...............................................................................................................................5 1.1. Batching.........................................................................................................................5 1.1.1. API Overhead ................................................................................................................5 1.2. Opaque objects must be correctly flagged as opaque..................................................6 1.3. Avoid mixing -
Enabling Hardware Accelerated Video Decode on Intel® Atom™ Processor D2000 and N2000 Series Under Fedora 16
Enabling Hardware Accelerated Video Decode on Intel® Atom™ Processor D2000 and N2000 Series under Fedora 16 Application Note October 2012 Order Number: 509577-003US INFORMATIONLegal Lines and Disclaimers IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. A “Mission Critical Application” is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS. Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined”. -
Moore's Law Motivation
Motivation: Moore’s Law • Every two years: – Double the number of transistors CprE 488 – Embedded Systems Design – Build higher performance general-purpose processors Lecture 8 – Hardware Acceleration • Make the transistors available to the masses • Increase performance (1.8×↑) Joseph Zambreno • Lower the cost of computing (1.8×↓) Electrical and Computer Engineering Iowa State University • Sounds great, what’s the catch? www.ece.iastate.edu/~zambreno rcl.ece.iastate.edu Gordon Moore First, solve the problem. Then, write the code. – John Johnson Zambreno, Spring 2017 © ISU CprE 488 (Hardware Acceleration) Lect-08.2 Motivation: Moore’s Law (cont.) Motivation: Dennard Scaling • The “catch” – powering the transistors without • As transistors get smaller their power density stays melting the chip! constant 10,000,000,000 2,200,000,000 Transistor: 2D Voltage-Controlled Switch 1,000,000,000 Chip Transistor Dimensions 100,000,000 Count Voltage 10,000,000 ×0.7 1,000,000 Doping Concentrations 100,000 Robert Dennard 10,000 2300 Area 0.5×↓ 1,000 130W 100 Capacitance 0.7×↓ 10 0.5W 1 Frequency 1.4×↑ 0 Power = Capacitance × Frequency × Voltage2 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 Power 0.5×↓ Zambreno, Spring 2017 © ISU CprE 488 (Hardware Acceleration) Lect-08.3 Zambreno, Spring 2017 © ISU CprE 488 (Hardware Acceleration) Lect-08.4 Motivation Dennard Scaling (cont.) Motivation: Dark Silicon • In mid 2000s, Dennard scaling “broke” • Dark silicon – the fraction of transistors that need to be powered off at all times (due to power + thermal -
Use of Hardware Acceleration on PC As of March, 2020
Use of hardware acceleration on PC As of March, 2020 When displaying images of the camera using hardware acceleration of the PC, required the specifications of PC as folow. "The PC is equipped with specific hardware (CPU*1, GPU, etc.), and device drivers corresponding to those hardware are installed properly." ® *1: The CPU of the PC must support QSV(Intel Quick Sync Video). This information provides test results conducted under our environment and does not guarantee under all conditions. Please note that we used Internet Explorer for downloading at the following description and its procedures may differ if you use another browser software. Images may not be displayed, may be delayed or some of the images may be corrupted as follow, depends on usage conditions, performance and network environment of the PC. - When multiple windows are opened and operated on the PC - When sufficient bandwidth cannot be secured in your network environment - When the network driver of your computer is old (the latest version is recommended) *When the image is not displayed or the image is distorted, it may be improved by refreshing the browser. Applicable models: i-PRO EXTREME series models*2 (H.265/H.264 compatible models and H.265 compatible models) , i-PRO SmartHD series models*2 (H.264 compatible models) *2: You can find if it supports hardware acceleration by existence a setting item of [Drawing method] and [Decoding Options] in [Viewer software (nwcv4Ssetup.exe/ nwcv5Ssetup.exe)] of the setting menu of the camera. Items of the function that utilize PC hardware acceleration (Click the items as follow to go to each setting procedures.) 1.About checking if it supports "QSV" 2. -
NVIDIA Ampere GA102 GPU Architecture Whitepaper
NVIDIA AMPERE GA102 GPU ARCHITECTURE Second-Generation RTX Updated with NVIDIA RTX A6000 and NVIDIA A40 Information V2.0 Table of Contents Introduction 5 GA102 Key Features 7 2x FP32 Processing 7 Second-Generation RT Core 7 Third-Generation Tensor Cores 8 GDDR6X and GDDR6 Memory 8 Third-Generation NVLink® 8 PCIe Gen 4 9 Ampere GPU Architecture In-Depth 10 GPC, TPC, and SM High-Level Architecture 10 ROP Optimizations 11 GA10x SM Architecture 11 2x FP32 Throughput 12 Larger and Faster Unified Shared Memory and L1 Data Cache 13 Performance Per Watt 16 Second-Generation Ray Tracing Engine in GA10x GPUs 17 Ampere Architecture RTX Processors in Action 19 GA10x GPU Hardware Acceleration for Ray-Traced Motion Blur 20 Third-Generation Tensor Cores in GA10x GPUs 24 Comparison of Turing vs GA10x GPU Tensor Cores 24 NVIDIA Ampere Architecture Tensor Cores Support New DL Data Types 26 Fine-Grained Structured Sparsity 26 NVIDIA DLSS 8K 28 GDDR6X Memory 30 RTX IO 32 Introducing NVIDIA RTX IO 33 How NVIDIA RTX IO Works 34 Display and Video Engine 38 DisplayPort 1.4a with DSC 1.2a 38 HDMI 2.1 with DSC 1.2a 38 Fifth Generation NVDEC - Hardware-Accelerated Video Decoding 39 AV1 Hardware Decode 40 Seventh Generation NVENC - Hardware-Accelerated Video Encoding 40 NVIDIA Ampere GA102 GPU Architecture ii Conclusion 42 Appendix A - Additional GeForce GA10x GPU Specifications 44 GeForce RTX 3090 44 GeForce RTX 3070 46 Appendix B - New Memory Error Detection and Replay (EDR) Technology 49 Appendix C - RTX A6000 GPU Perf ormance 50 List of Figures Figure 1. -
Research Into Computer Hardware Acceleration of Data Reduction and SVMS
University of Rhode Island DigitalCommons@URI Open Access Dissertations 2016 Research Into Computer Hardware Acceleration of Data Reduction and SVMS Jason Kane University of Rhode Island, [email protected] Follow this and additional works at: https://digitalcommons.uri.edu/oa_diss Recommended Citation Kane, Jason, "Research Into Computer Hardware Acceleration of Data Reduction and SVMS" (2016). Open Access Dissertations. Paper 428. https://digitalcommons.uri.edu/oa_diss/428 This Dissertation is brought to you for free and open access by DigitalCommons@URI. It has been accepted for inclusion in Open Access Dissertations by an authorized administrator of DigitalCommons@URI. For more information, please contact [email protected]. RESEARCH INTO COMPUTER HARDWARE ACCELERATION OF DATA REDUCTION AND SVMS BY JASON KANE A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN COMPUTER ENGINEERING UNIVERSITY OF RHODE ISLAND 2016 DOCTOR OF PHILOSOPHY DISSERTATION OF JASON KANE APPROVED: Dissertation Committee: Major Professor Qing Yang Haibo He Joan Peckham Nasser H. Zawia DEAN OF THE GRADUATE SCHOOL UNIVERSITY OF RHODE ISLAND 2016 ABSTRACT Yearly increases in computer performance have diminished as of late, mostly due to the inability of transistors, the building blocks of computers, to deliver the same rate of performance seen in the 1980’s and 90’s. Shifting away from traditional CPU design, accelerator architectures have been shown to offer a potentially untapped solution. These architectures implement unique, custom hardware to increase the speed of certain tasking, such as graphics processing. The studies undertaken for this dissertation examine the ability of unique accelerator hardware to provide improved power and speed performance over traditional means, with an emphasis on classification tasking.