ACCELERATED DISTRIBUTION DEMONSTRATION SYSTEM

REGULATORY INFORMATION DISTRIBUTION SYSTEM (RIDS) ACCESSION NBR:9007250057 DOC.DATE: 90/07/17 NOTARIZED: NO DOCKET FACIL:50-275 Diablo Canyon Nuclear Power Plant, Unit 1, Pacific Ga 05000275 50-323 Diablo Canyon Nuclear Power Plant, Unit 2, Pacific Ga 05000323 AUTH.NAME AUTHOR AFFILIATION SHIFFER,J.D. Pacific Gas 6 Electric Co. RECIP.NAME RECIPIENT AFFILIATION Document Control Branch (Document Control Desk) SUBJECT: Forwards matls used in long term seismic program meetings in San Francisco,CA during Apr & May 1990. DISTRIBUTION CODE: AOOID COPIES RECEIVED:LTR J ENCL SIZE: TITLE: OR Submittal: General Distribution l NOTES:P~W5' / RECIPIENT COPIES RECIPIENT COPIES A ID CODE/NAME LTTR ENCL ID CODE/NAME LTTR ENCL PD5 LA g PD5 PD 1 1 D ROOD,H D INTERNAL: ACRS tu NRR/DET/ECMB 9H 1 1 ( NRR/DOEA/OTSB11 NRR/DST 8E2 1 1 S NRR/DST/SELB 8D 1 1 NRR/DST/SICB 7E 1 1 NRR/DST/SRXB 8E 1 1 NUDOCS-ABSTRACT l. 1 OC/~FMB 1 0 OGC/HDS2 1 0 EG F E 01 1 1 RES/DSIR/EIB 1 1

EXTERNAL: LPDR 1 1 NRC PDR 1 1 NSIC 1 1

R

D

t.lMITEDDISTRIBtmON OF ENCLOSURES DUE TO SIZE D D NOTE TO ALL"RIDS" RECIPIENTS:

PLEASE HELP US TO REDUCE WASI'E! CONTACT THE DOCUMENT CONTROL DESK, ROOM P 1-37 (EXT. 20079) TO ELIMINATEYOUR NAME FROM DISTRIBUTION LISTS FOR DOCUMENTS YOU DON'T NEED! TOTAL NUMBER OF COPIES REQUIRED: LTTR 27 ENCL

f U ~ g E Paciftc Gas and Electric Company 77 Beate Street James D. Shiffer San Francisco, CA 94106 Senior Vice President and 415/973-4684 General Manager TWX 910-372-6587 Nuclear Power Generation

July 17, 1990

PGKE Letter No. DCL-90-185 U.S. Nuclear Regulatory Commission ATTN: Document Control Desk Hashington, D.C. 20555

Re: Docket No. 50-275, OL-DPR-80 Docket No. 50-323, OL-DPR-82 Diablo Canyon Units 1 and 2 Long Term Seismic Program Meetings Gentlemen:

As requested by the NRC Staff, PG&E is providing a copy of the presentation materials used in the Long Term Seismic Program meetings in San Francisco, during April and May 1990.

Enclosure 1 — Seismic Source Characterization Meeting, April 17-20, 1990.

Enclosure 2 — Earthquake Ground Motion Meeting, April 30 — May 1, 1990. Kindly acknowledge receipt of this material on the enclosed copy of this letter and return it in the enclosed addressed envelope. ncerely,

. D. Shif

cc w/enc.: H. Rood

cc w/o enc: A. P. Hodgdon J. B. Martin P. P. Narbut S. A. Richards CPUC Diablo Distribution Enclosure

3220S/0084K/DNO/1587

90072500;7, 9007t7 O 5/I PDR ADOCK 05000275 P PDC Pgd/ l I c" PGhE Letter No. DCL-90-185

6:

ENCLOSURE 1

VIEHGRAPHS FROM SEISMIC SOURCE CHARACTERIZATION HEETING LONG TERM SEISHIC PROGRAM

SAN FRANCISCO, CA APRIL 17-20, 1990

90072500g7 3220S/0084K h

I NRC/PGKE MEETING ON SEISMIC SOURCE CHARACTERIZATION DIABLO CANYON LONG TERM SEISMIC PROGRAM ONE CALIFORNIA STREET, ROOM 271 SAN FRANCISCO, CALIFORNIA APRIL 17 - 20 1990 1

AGENDA

TUESDAY APRIL 17 '990

8:30 a.m. Introduction

8:45 a.m. Zone -- Style of Faulting

guestions GSG 1, 2, 3, 4, 12, 13

guestions SSC 2, 4

12:00 noon Lunch

1:00 p.m. Hosgri Fault Zone -- Style of Faulting (Continued)

4:00 p.m. Lorna Prieta Earthquake Issues

Field Trip Discussion -- USGS (Dave Schwartz) 5:00 p.m. Adjourn

WEDNESDAY APRIL 18 1990

7:00 a.m. Field Trip: Lorna Prieta Earthquake, Santa Cruz 7:00 p.m. Adjourn

LSC/WUS:sjm - 4/9/90 FILE: NRCAPR90.SSC

The southerly part of the San Simeon fault trace extends southeast from a saddle south of the area where Arroyo de la Cruz turns inland into the mountain front. This part of the trace follows the base of the prominent east-facing escarpment forming the west side of the valley of Arroyo Laguna and then crosses a marine terrace lowland fringing San Simeon Bay. In addition to field mapping by ESA (19?4), and Hall (1976), this part of the fault was investigated by Envicom, (1977) Qater reported on by Asquith, 1978), which used ground magnetometer traverses to identify fault strands and backhoe trenches to expose them. This part of the fault zone consists of a pair of strands separated by a down-faulted slice which underlies the floor of Arroyo Laguna Valley and extends to the head of San Simeon Bay. Two of the Envicom trenches (trenches' 5 and 6) exposed a waw Q west&ipping reverse fault along the trend of the west slope of Arroyo Laguna. In both trenches Franciscan melange bedrock was faulted eastward against and over a. folded se uence of sand silt and gravel interpreted by Enyicom as old marine h of San Simeon Bay. There, contacts between rock units are concealed by older dune sand deposits, but the units exposed along the shoreline are, from west to east, Monterey Formation, marine fossiliferous pebbly sandstone (in a single I

, ~>Jc

J. SAN SIMEON FAULT

Airport Creek Trench 0

N66E Zone of Fractured Peds

Topsoil (A) (A) Qt O g+E (E~) ~ 2 X SlltY ClaY (Bt) ~ (Bt~ Q3 I ) I I Q3 I I i ~'- Sandy C)ay Y, QS Sandy Silty Clay Jl +I I Ab (Btb) Z QS Silty Clay ~ . ij Buried A mb) O Silty Clay Sandy Clay (Bds) 06

Buried A (Ab)

Fault Gouge 9 Silty Clay

' N40W Sack Clay <'0 Slickensides plunge 6-7'E

s s ~ ~ ~ ~ ~ a ~ I 1 Sandy Clay 4 C-14 AGE 10670 %260 B.P.

X = Modern Soil 0 2 FEET Y, Z = Buried Paleosols

SW TRENCH T-4

SAN SIMEON FAULT ~ Airport Creek (MAJOR TRACE)

TRENCH NE T-3 TRENCH 8,950 s260 T-1 SW ~ SW ~~ ~ nys t NE 1 ...... " ~ „.s'~ i t " EXPLANATION ~l-.~r o' . t a" S a S,;",. ".:. 1%" 9,760+180 QUATERNARYUNITS 0 S r r Q Topsoil (A, AB and E horizons) Main shear N40W, Af~ 10.690 <130 grooves plunge (Holocene) 6. g SF 11,150 at15 irSr'.>.". Younger Alluvium (Holocene) sw TRENCH Older Alluvium (late Pleistocene) Ig T-5 NE SHEAR ZONE UNITS

I'ain Deformed Older Alluvium (Tertiary?) shear Afy N4'IW, mullions ~ > p Fault gouge plunge9- tte SE 10.670 '260 D MESOZOIC UNITS

t Franciscan Assemblage and related rr a rocks (Jurassic and Cretaceous) l 13,790 e260 TRENCH T-2 NE

Fault; dashed where approximate; A away, T towards Main shear N25 ~ 40W, 0'ooves plunge Contact; dashed where approximate 35160 0560 Radiocarbon age in years B.P.

Figure 8. Simplified logs of Airport Creek trenches showing a major strand of the San Simeon fault (View to NW). I f Q

S',I GEOLOGIC LOG OF THE SAN SIMEOA FAULT EXPOSED IN AIRPORT GREEK TRENCH T-1

lf0$ 0 -M VltWkIT SI1 0010 Or10 OI00 OI40 OI$0 Or$0 0.10 OI$0

$K dINOId Iorlllog Ol rhlKIt«0

20rN 01 ««hah f orohge hearts vrNN Ito of sar«NI . ad«Id flrNera dared cloy IIIrhgI«NI S«N sehdg llhl, oracy IvNvNI eoKK ethd grKIKNOIICtrlIKN co«IKI INcorNO Ihrgldhcl 14 «Nh 0vel. Crsadehll lNIIof IOCO, rdddyeohto Aooro SOON Kael Closer echo. Ahodsr «rovhdtd ~IOIKsdoh INcvrKahd madel cger soSN oh INds. Klhestd dhe Ktrd ArcvtK lrKorhN rrNrlt cshls.l or ION Srh40gl dedeeedeh INCVra sl dre trey ~4y: sharded vrfeca adeN hht fgaly Kggcvrv ~tlgs KNKafoot,'ahCaro I ggrdd lier. CatK caerde 10 aei: dred llhrcvrKIII aec«he< aarcrde ICC 0 ho«had red. «a ol IMNsl rey chere OPSOS1$ ~ 011 0 OOOONI 04 Kthwty Srh. COKI 011 0, gNOCCK 0

I [TQFi Tres 'Ih 1 A

I ~ ~ I

~ / "r p Q ~ -0. 0 Ml Inl 0 0 Ne red c rani ««44th llroh asldr. llhahKI4 ffhtdrdrhd ~ r ~thdKI ~ kaohthd Io ' I Ssht arorerfr slhssv ~NOONre4, Origo dr ad«Id ~horVl sehsahrrN. OOKO. aorvdhd CrdK heed« KOIONON,red shell MOOWrhha rrvrhrh 4lrhe4 Ilorh9 lll ScohtN4 Vah Orrd ~ Aaarasi«ONKO rv rated«N ehd hKKr los vre, sf Co«VCIKSIW seer«ed I«N ortrer Mor «0 ca«cthvte4rN 04 osl4ked INshK loca Otds rh vvevhgt4 IINrlOhd TIAO Kre« Othsls 14C 10 ~orNON coorso ore«N4 wd vied OKor«oteod Icawo ~OWSIN tlNN dldffl$ «NINO II.fSO gII0 er ~ S. Cared cfog Kehr vvy Ivrohdhed seed«shel yr OA Shod KSSW COOSKI IlKvNO. IOKIKvtvhg Co«roasrN chohool wroV roK TshrrcdKor«00N4 cfeley Is«4:afvlgrlleyl I I dhrKON tgd«K gorge $0«gr sill.OllorrhH. ffrN dr deed. hlehly ollldcl C 1. 10l$00ISOyrht. aldd y OINerto Arh:em: gsa dohd vorsorea

sheer; Klow,eho 0 cora cohrKII (g Oodof ChrdNdraa r40lltavhdlhl dsrdel«N grthor Oar Ireo.w. Odrt arsy aohdfhg cohvolad ar l4c sr ~ hc ~ 44«tl rrrreri afsdr ~feeds;rtrr Iddlrhtvll ar««K $ - I'401:retel ~ I Oat«el helhrld lao fred«e«O. Os«4; ~ roeear I ~ lrrvhehdrlhdr vhrvssrrho Vds4sh IOVIVltIs sfell dNK IarN vrlKIMgl1 1 arrest«girl shd a ~rholnvds oerdrl

N15 E

0 ~ 60'0' '+ 10'0'0'0'0SOIL: brn. to dk. brn. " r. pebb. with scatt. boulders TERRACE SAND: tan, fr. gr.

~ Sl TERRACE GRAVEL: Can to buff to rd-brn., ang. to md. pebb. and cobb. clayey sand natrix ~ 1h in

~ BEDROCK: shale (nelange) weathered 10 to nassive clay, blue-gy. to buff with sone shale nasses.

/::. ~ . ~~:.. - . ~ , I ~ ~....r.% .'-..% i. '. cs TREIICH 5 q ~ Faulted 10'S'0'49E

15'ault "w+u ~ N40E, 80N TERRACE SANDS, SILTS, AND GRAVELS; in anticlinal fold with dips up to 35 deg. ~,+,4 b

v ~ r . i ~ r v r 10'0'0'0'0r ~ ~ ~ ~ g ~ 0 r ~ ~ 0 / 0 o o ' / r ~ e '5''0'LD ~ 4 0 O r o ~ ' ~ ~ ~ s 5 r

BEDROCK: shale as above ALLIIVIW:silty clay. brn. to brn-tan, occ. pebb., and 10'igurc O N35N, i~O ~ clayey silt snd silty sand, 12 90~ pebbly. tan bec. brn. at TRENCH 6 top; cobb. and 18" boulder GEOLOGIC LOGS TERRACE: as above east cnd trench. at of TRE!ICHES 5 a 6 f II

er

, ~

K

l MAP OF TRENCH LOCATIONS AT AIRPORT CREEK LOCALITY SAN SIMEON FAULTZONE

Spring

Env. 4 Deflected Channel

T-3

Major strand of San Simeon fault T-5 T-2

Env, 6

Env. 5 j'~.7

~ ~ X 76.7

Airport Creek

Trough of probable p Ep tectonic origin

~ ~ ~ ~ ~ ~ ~ ~ 0 ~ ~ 'o ~ ~ ~ ~

50 in

30"-wide backhoe trench

Env. 1 Backhoe trench excavated by Envicom

EP-1 O 30"-wide backhoe exploratory pit 'I C

jl,

<1 U g

~ I/

4 QUESTION GSG 1

?he logic tree used to characterize the Hosgrl fault zone seems to capture the suite ofdi+crcnccs of opinion about the style offaulting. ?herc arc, however, opinions other than PGckE's wkly mpwt lo thc weighting ofthc varktus paratnctcrs.'n ccnain areas along the fault zone thc intcrprctations based on the geological information and the interpretations based on some geophysical (seismic reflectio) interpretations appear to dier. 1hz dip ofthe Hosgrl ls a case lipolttt. PGkE s interpretation ofits geophysical data is that is shows the Hosgri as a mainly stccply dippingfault. ?his along with the geologic information is interpreted as being indicative ofpredominant strike slipfaulting. J. Crouch presented seismic riflection data which he interprets as showing thc Hosgri to bc a low angle thrust. Ham you looked at this information? 8%at is your intetpretation? Do you agree with Crouch's dipping fault? How do you rcconct'ic this with the hypothesis ofstrike slipfaulting7 Could thc differences in the geophysical data bc duc'o thc'ata processing methods? Also, many ofPGcfcE's interpretations of senical faults appear to bc based on shallow high resolution data and there may not bc strong evidence to cstcnd than in depth as vertical. Provttle yoiirbasis Jbr tktcnttliilng the dowa dip gcotnctty and the djgbcnccs'ith those tncntloncd above,

APPROACH

~ Evaluate data and interpretations of others

Crouch, Bachman, Shay

McCulloch, Lewis

perform structural analyses

~ Provide basis for PGBcE interpretation

prepare series of montages to illustrate interpretation of geophysical data

describe data base, data processing, velocity model

describe interpretation procedures, constraints, limitations

incorporate results of structural analyses

~ Compare PG8tE interpretations with interpretations of others 0

I

r g< Cr,g "g. "ye

' I, ~

1

y" Fault-Bend Fold PURISIMA HOSGRI STRUCTURE FAULTZONE

Axial Surfaces " vu QrI 'cu

I r

\ rc~ ur 'l ~. 8'".l."

Cll tu ICu IV Ll I O CL ~r u 4I t uCr ' 41 2.0 lu4 l

~ ruI'lluu 'luc ul,, r ~« u V' rr I~~uuuv 'uu r I ~,u I 'r

,'"," West-Tilted cw'L Domain I~ PGSE-3 „„, East-Tilted, ':~000 3 0 Domain

(T - T'n Point Sal Reach Montage)

Fault-Propagation Fold

SttOTPONTS 1500 1 150 t250 1255 1t5I 1 l55 1050 0.0 West-Tilted Domain

1.0

s tt AxialSurfaces CL 2.0

3.0

J106 'I:48,000

(J106 on Piedras Blancas Montage) ~ ' PURISIMA HOSGRI STRUCTURE FAULTZONE Ocean Floor 500 l50

Mid.Pliocene 1.0

Top Miocene 2.4 m Top Basement t I 0 t I I t I \ I I 2.0 ~ I I t I I ~O 4.0 Q

PG&E-3

Symmetrical gently dipping limbs = fault bend fold

SttOtPOItt tl 1SOO 1 l50 1l00 1050 1500 1250 1200 11SO 1100 1050 Ocean Roor

1 CS m a Top Bas men 2

O 0 2 t0 l EO J106

Asymmetric fold with steep short forelimb = fault propagation fold t 'N . PURISIMA HOSGRI STRUCTURE FAULTZONE

acean ROOI 500 450

'5.0 Mid-Pliocene

Top Miocene Basement a Top t l :-:.:.:.:.:::: ::; :; :::::: :: \:::;:.:.. .:: :::t:: .. l g I // 2O 0( O '0m3 :::::::::::::::::::::::::.:::::::::t'::::::::::::;:::::\:::::::::::..:.:.....'. ~ :::.'...'.'.:.:: 'Possible R'ange.::4:::.::: ..'.:.'.:.':.'.:.'.:.':::: . 40 g -':.:.::.:::.::.::::::.::.:::.;:.of:Faults:Positions',,:::::.:::..;::

PG8(E-3

Fault position can be anywhere within broad range

Olpoklta (500 SI50 ((50

5 lV nl Q ciht5 Top Bas men 2

O TL 3 3 Possible Range of (0 Fault 4 J106 Positions

Fault position is tightly constrained I

l'g

~U ~g Fault-Bend Fold PURISIMA HOSGRI STRUCTURE FAULTZONE SHOTPOEH1S

0.0

II 'l I » ~ ,n~ I"II'

~ww» 1.0 I w WEEI' Q~ wT.

~, '< I''" Ell

~» n O aO ~r. ~»

l@%lE 2llllla

.gI» * 2.0 '4'

nl'll +EE IIIWI Ir u, 'IE»». I» l ~T III+I I Possible II. 1 '- Rangeof ~»lI» ~ Positions I »I

PG BEE-3 '4S 000 3.0

(T- T'n Point Sal Reach Montage)

Fault-Propagation Fold

SHOTPOEHTS 1500 1550 1500 1350 1%0 1250 1200 1150 1100 1050

~ » 0.0

r

n O EL

C'ossible 2.0 Range of Positions

J106 1:48,000

(J106 on Pledras Blancas Montage)

ONan RN) PURtSIMA KOSGRI ONan ~ PURISIMA HOSQRI STRUCTURE FAULTZONE STRUCTURE FAULTZONE

Mid.plocene Mid-Pliocene I Top Mhcene Top Mhcene I I I I Top Basement I 8 8 Top Basement I I 8 8 I I I I I I I I I 1 I I 1 I I I I I ) I I I 4 I ~4 00

PGS E-3

PURISIMA HOSQRI PURISIMA HOSQRI STRUCTURE FAULTZONE STRUCTURE FAULTZONE

Mid.pihcene I I Top Mhcene Top Miocene I I I Top Basement 8 8 Top Basement I 8 8 I I I I I I I I I I I I I I I I I

POCK PQCE-3 l

2

~ v

%I

IIII

~,

4kt $

!4' P CJ Fault-Bend Fold

t p -sin(~) [sin(2y)-sin 0) cos(y-0) [sin(2y-0)- sin 0)- sin y

0

Fault-Propagation Fold

sin(y-y+) sin(y+-P) sin(y-P) m0 sin y sin y+ sin y sin(2y~-p) sin y sin 0

yt'etachment

or Lift-OffFolds ~f I GROWTH FAULT-BENDFOLD:

Model:

I ~ ~ ~ M O O Ov ~

CP

CL

Example: PURISIMA HOSGRI STRUCTURE FAULTZONE

Growth Interval

I I VV'I'IV I ~ I 'I'.0

'IVV

ene ' ~i V

Mioc VV»

i i 'VV

2.0 'III gll

To 8 ement 'VI

V I

v\ V II iV

PGSIEv3 1:08,000 >4

I .I v% P - T'n Point Sal Reach Montage) l+ A, < l,' Ocean Floor PURISIMA HOSGRI STRUCTURE FAULTZONE

500 450

Mid.Pliocene 1.0

Miocene Top t ~ I ao m Top Basement t a I t t I t 0.0 > \ 0 \ 3

$.0 I

PGKE-3

6.0

PURISIMA HOSGRI STRUCTURE FAULTZONE

Ocean Flcof 450

Mid.Pliocene 1.0

Top Miocene 0-0 m Top Basement I 0 'I I t I K t I 0.0 K I O 2

CV 4.0 ~ 10

5.0

PGSE-3

Horizontal scale {kilometers) 0 2 3 4 0 0

2000 m CD E 4000 O

2 K 6000 n

8000

10,000 0 0 0 I I 1 t! j j ~ I ) j il ! I 2000 ! 1 I I CO 4000 I CD j E I I ~j 6000 I I I ] 2 n y I 8000

10,000 Line SM-4 {Nekton 233) f~p

Cg~' SW NE Horizontal scale (kilometers)

4 . 3 0 0 0

2000 —— N ~

C g 4000 g 6000 2

8000

10,000

0 0

1 '~. 2000 I 1. ~ 4000 I ~ I 6000 / I 2

8000 /

10,000

Line SM-1 (Nekton 202) ll 1 A4 SW NE Shotpolnta 1100 0

2000 <

4000

-2 ~

10,000 < -3K

W,OOO! I 18,000 ~ t "5

18.000

0 0 'i I I 2000» I 1 >O~l 1 I .Ii II \ I . ii \ II jl 6000 1 I II

'L \ S 8000- \ I 1 I \ 1 1 g 1 i 10.000'2.COO) i I 1 I \ I I / ~ I I 1 ~ I I 1i,000 I i I j 16,000 I

18,000 LINE GSI.100

SW NE Shotpointe 1000 1100 0 I I 0

eooo 2 ~g 8000 a 10,000 3

12,000

14,000

0 0 II iii %J 2000 I I II Li( I 1 I( jl $ I i xl 4000 \ lly ! I I j eooo I j j I I I I I ! I I ii/' I 22 8000 I I I I j I I I 10,000 l l I I 12,000 I I 14,000

LINE GSI-103

/ J g' ~ ~ ~ ~ ~ ) of'ygne~"

Pno~4 Sl nc &we'4ferwik~ (IHistnual ia kata~ Ter 4ty volcan i'c.g ~RIP IJad48 lfplhy b4gt hldtl f) ( QUESTION GSG 1

Zhe logic tree used to characterize thc'osgri fault zone seems to capture the suite'f digcrences of opinion about thc style offaulting. Ihere are, however, opinions other than PGc%E's with respect to the weighting ofthc varfous parameters, In certain areas along the fault zone thc fnterpretatfons based on the geological Information and thc interpretations based on some'eophysical (seismic reflectio) Intetpretatfons appear to dl+n; 1he dip ofthc Hosgrf ls a case in point. PGdcE's fntetpretatfon ofits geophysical data fs that Is shows the Hosgrf as a mainly stccply dippingfauft. 1hfs along with information fs fntetpreted as being Indicative ofpredominant strike sNp faultfng. J. Couchthc'eologic presented seismic reflectio data which hc interprets as showing thc Hosgri to be a low angle thrust. Have you looked at this fnformatfon7 f Do you agree wtth Crouch 's dipping fash p Hnrn do~u rnsnntttnrhts rthh rhs lggtnthrnr's sfsrtrhn slipfnnhtngp ghttgd tbn„ dtfbnrrttn ll~ lht gnnphtlllnd dnnl hn dnn sn drn ign~orrttnmtng Nsthndrg; rtlrn, nrnnp nfPGdrE s interpretations ofverticalfaults appear to be basetf on shanow high resolution data and there tnay not be strong evidence to extend them ln depth as mrtfcaL ~~tfihjjr%e iowa . i6'p geontett$ and the digcrences with those mentioned above.

CONCLUSIONS

~ Interpretation of steeply dipping fault is based on an integrated analysis of variety of geophysical, geological and seismological data sets

CDP seismic refiection data

ratio of lateral to vertical slip

Point Sal seismicity

Point Buchon seismicity

retrodeformable structural analysis

linearity of fault trace

tectonic and kinematic data

San Simeon/Hosgri pull-apart

regional alignment with San Simeon fault zone

worldwide analogs

~ Down-dip geometry is not based on shallow high-resolution seismic data

~ PG8cE's interpretation of CDP and high resolution geophysical data is provided on the montages {January, 1990) and described in Attachment A.

Hosgri is steeply dipping in upper 1 to 3 kilometers I j),~

lk„gg, QUESTION GSG 1

Zhe logic tree used to charrtctetize thc Hosgrifault zone seems to capture thc suite ofdlgnences of opinion about thc'tyle offaulting. 7hae are, tunvevcr, opinions other than PGkE's with respect to thc'eighting ofthc various panrmcters. In certain anm along thc fault zone the interpretations based on thc geologlaxl information and thc interpretations bared on some gcophyricxxl (seismic rrfhctlon) interpretations appear to diane; Zhe dip ofthc Hosgrl is a axse ln point. PGc%E s interpretation ofits geophysical data Lr that Lr shows thc Hosgrl as a mainly steeply dippingfault. This tdong with the geologic lnfornuttlon Lr interpreted ar being indicative ofpredominant strih. sNpfatdtlng. J. Ctxhud'x I Baw yoa huthul ta thh hhhrm attaat What Is your Iototyrsttulouy Do yaa ahtaa lohh 6tthth'ol F Pox'do recotrdk Could tho dgivcnccs in thc geopthysical data be duc'o the data processing methods'ho, many ofPGc%E's interpretations ofverticalfaults appear to be bared on shallow high resotutlotr data and there may not be strong evidence to extend them in depth as vertlcaL Prrrvkleyour basis for dctcrtrrining thc down dip geonretry and the di+crences with those mentioned above.

~ We have evaluated specific data sets and interpretations of Crouch and others (1984) and McCulloch

~ We do not agree with the interpretation that the Hosgri is listric thrust fault near Point Sal

differences in interpretation are not due to data processing

differences probably due to different interpretational procedures, approach and integration of data.

listric refiector vertically separated by high-angle Hosgri fault zone

~ Listric thrust fault interpretations of Crouch and others (1984) and McCulloch are not consistent with observed deformation and seismicity

faults and folds cannot be restored

contrasting orientation of crustal shortening

Point Sal and Point Buchon seismicity

linearity and lateral continuity of fault trace

ratio of lateral to vertical slip

reverals in vertical separation

San Simeon/Hosgri pull-apart basin

absence of geomorphic relief A4

4 \

N

v

t jE

1

1"

5'~

I

P ~ & O

as o P~ 0/'y c9 e 0 +~ 0 20 km Og Santa Ynez g

~ Diablo Canyon Power Plant

Faults of south-central coastal California E h Sense Of Slip Definitions

A Normal-slip 90

60

0 0 .Q. 'p4,, Q. CO 0 ~r g

~cd <+ %Q odor/y 'P~ CO j3 +CO

90 Reverse-slip B From Bonila and Buchanon, 1970

Rake angle g, SS/DS Fault Type degrees (colan g) HN (dip 90') HN (dip 60') Strike-slip <30'1.732 )1.732 )2 Reverse Oblique <60'o 304 >0.577 to 1.732 >0.577 to 1.732 )0.67 to 2 Reverse 90'o 60' to 0.577 0 to 0.577 0 to 0.67

g Rake of striae; inclination from the horizontal measured in the plane of the fault

For a 90'dipping fault plane: For a 60 Nipping fault plane vrith rake of 30': SS 1.732 30'ake V ~ vertical separation os v» 'I sin 604 V/DS os»1 0.866 V/1 H/V ~ ~ cotan ) strike-slip (SS)/dip-slip(DS) 1.732/0.866 2

SENSE OF SLIP DEFINITIONS

Strike-slip Oblique Reverse 21 l:2 Horizontal: Vertical '0 QUESTION GSG 2

D.B. Slemmons proposed that the Hosgrl may be experiencing oblique fault neo&a N set~gask'epths and that this ls being partMoncd into strN» slip and dip sNp on the near sarfaea je4a, As stated by George 7hompson, this region may be responding similarly to the San Andreas region with thc horizontal strike slip component ofstrain being accommodated on thc Hosgri systetn and the eompressional component being anommodated on the sub-parallel reverse faults and folds. AeeMt a dhcussiott ofthere tnodeis their. appnrprktteness and any leppllcatlons ofthese ceaatuts N 4c NIP,

APPROACH

~ Develop concept of strain partitioning

observations

regional versus local

coseismic versus independent

Theoretical crustal model

~ Assess implications for seismic hazard evaluation

~ Apply concept to characterization of Hosgri fault zone

EXPLANATION

Historical earthquakes along the San ~o. Andreas fault zone and bordering thrust 1983 faults showing approximate length of buned fault rupture Co slings surface or

198S Kettleman Hills Axis of Quaternary anticline r ~~ Thrust fault, sawteeth on upthrown block

196S Parkflaid srrara-srrp raulh arrows show sansa or slip

SOUTH Bakersfield

Sen Luis 0' 0

CENTRAL 1952 Kem County + 0/.(

Pt. r Pt Conception .. CALIFORNIA

~ ~ ~ 'La 19Tl San Fernando

s, 1987 O C~ Nhlttler

30 mi

0

0

Burma

0 99'

99'5'+ C

15'."

O.. O '. Z".

Andaman 10o+ Sea

+10'0+

'' 50 91' Sumatra ~ .

From Harding and others, 1985 e a Unnamed northeast-dipping tQ thnjst fault subparaliel to 0 Frijoles strand Pacific Ocean

Holocene fluvial deposits deformed and faulted against Purlslma Formation ~ '+Q

~ '. 0 go Fault dip vertical Fault dip N37'E PolntAfloNuev .. ~ Eg

First marine terrace displaced about 6 meters. Evidence for recurrent activity during past 3000 feet 200,000 years

1000 meters (Modified from Weber and Lajole, 1979a) I

l

g'4

IPt

4 g w~,P( - g) wo:t Eaat L:2 LT ''L." 'I: '...l.."'.I."L 1'~"i ; L'.. ll-'Ptl.t..'I..I':...3 t., I ~ ~ ~ A

~ .. ~ ~ 4 . ~ a

~ ' ~ ' . ~ . ' ~ I ~ I' ~:.~~; h ~

' PUOCBlEgNSTOCBlK

g f c.. I l. (I 3I

Hoitzontal acala 2ml 3 km

~~V~ rA ~ ep v, ~ $J ~ e See Figure SSC Q4-4 for location of profile (From Harding and others, 1985)

EXPLANATION

T Displacement toward viewer A Displacement away from viewer F

1p r I, . «.'h IL

P )

r

i

Q. l SW 0

1 ~ ~ ~ ~ J

.BRAwcHtvop. 'f E FAULTS 2

Cg r P 6 ~' I-' 'H (g~ ~ f

4 CENTRhL 'T A STRhND

(From Harding and others, 1983)

EXP LANATlON M Mississippian T Displacement toward viewer 0 Ordovician A Displacement away from viewer E 1t EXPLANATION San Simeon Diablo Canyon Power Plant Point Cy~ ~ ~ 0 Fault, dotted where inferred

Axialtrend of anticline or o syncline Piedras Point Blancas Estefo Antiform

P.~ Buchon Point San Luis South Basin Compressional Domain

O~

(P~ Point Sal 0

Point Arguelto

20 mi

30 km 0

0

~ 'QC C'P~~> p f

5%

Ey gl

L Regional Local h3 to 8km @3 to Bkm

6 km 3 0

Tertiary Region of lee basinal strain partillonIng. moment release Partitioned structures are not 'ocal during earthquakes. separate seismic sources and must be characterized together to assess Basement source zone characteristics at depth. %?w ,gQ~,; Transition zone.

Regional fuIcruotof'otrofn portftfonlno. Portitonod otrucOtooo Region of large Ro ooporslo oolsllllcootwcoo %0) moment release hdepondent oolco zcoo during earthquakes. choroctorfstfcs.

,,'ega~~~, Base of seismogenic zone or change In rheoiogicat property $ SS SSS Ductile S of crust. 'S'S S Deformation SSS $ $ S Oblique strain in lithosphere $ $ $

$ $ $ $ Q't > Is 'i'iO+ $ $ f $ 5

EXPLANATION g Dispiaoement toward viewer Dispiaoemera away tram viewer

0 5ml

0 8 km A yooei +-. Y.

'I~

Projection of San Simeon Fault Zone

EXPLANATION p+ r Fault, relative sense of motion shown, dashed Hosgrl where location not well constraIned, dotted FaultZone where fault does not deform late Pliocene strata

Thrust fault, sawleeth on hangIng waN, dashed where location not well constrained, dotted where fault does not deform late Pliocene strata

Anticlinal and synclinal fold axis, dashed where location not well constraIned, dotted where structure does not deform late Pliocene strata l Regional strain partitioning

Local strain partitioning

SW Purisima structure 0 Sea floor Mkf-Pliocene Unconfotmlt Mid-Pliocene O O+ Top of Miocene Unconformity Miocene Zone of low moment release during earthquakes Basement

. ~iS Transition n 5 A.

Zone of farye

10 10 6 4 2 0 Distance from fault (km)

EXPLANATION 8 Displacement toward viewer

e Displacement away from viewer 'v EXPIANATION

Historical earthquakes along the San ~o Andreas fault z'one and bordering thrust 1983 faults showing approximate length of . Coallnga surface or butted fault rupture

1985 Kettieman Hills Axis of Quaternary anticline ~~ Thrust fault, sawteeth on upthrown block

1968 Parkflaid Srrike.slip fault, arrows show sense or sip itiform Pt. Estero o> ~o '.. SOUTH

eSen Lub outh Basin Obbpo 1857 Farl TeJon Bakers iield ompresslonal ~ ~ +, orna In

0 CENTRAL Purlslma 1952 Kem County 'w Structure ~~o.

~ Pt. Hgueio ~ e ' ~ ~ ~ ~ e ~ ~ Pt. Conceplan .. r CALIFORNIA 1927 ~ ~ e, ~ l Lompoc Earthquake 1971 San Fernando ' /~ oc

0 30 mi

0 50 km +f,

a. A; 0 QUESTION GSG 2

D.B. Skmmons proposed that the Hosgri nuty be eqmfeneing obliqueJttttlt ntotiow u acksaj~e, m~ml ~gp Rii ~Mo~slip~~slip~S ~~r ~'~ stated by George Zhompson, this region may be respond)ng similarly to the San ~m region wish the horizontal strike slip component ofstrain being anommodated on the Hosgri systctn and the eompressional component being anommodated on thc sub-parallel mme faults and fit. ProviCe a discussion ofthese models their appropriateness and any implications ofthese concepts to thc LZZP.

CONCLUSIONS

~ Strain partitioning is a useful concept for evaluating deformation in south-central coastal California

~ Both regional and local strain partitioning appears to be occurring

regional: Piedras Blancas antiform, South Basin Compressional Domain

local: intra-fault zone upward diverging splays

~ Recognition of strain partitioning is important for characterizing fault behavior and seismic hazard

~ We have incorporated the concept of strain partitioning in our assessment of sense of slip and slip rate on the Hosgri fault zone

contribution of Piedras Blancas antiform

\ contribution of Purisima structure

contribution of intra-fault zone deformation t

jPi (J'

E

P I

i&~

i1'

0P%gq~K P'

* QUESTION GSG 3

PmAdc the new bformatlon presented at the tneetlng on the upDP rates acnes the HaegrfJfaah sear,'ased on relative displacement ofthe basement, top ofMiocene, thc mid-Plloocne discontinuity and the post-Wisconsin Iow stand, including the uncertainties in thc analysis. Also darify the ~~ ~ct regan&g thc'levation ofthe 18 thouiand year, late Shconsin, kni stand. 7his is given as -120 meters, in Table 3 and Pktte 5 ofrhc Response to Question 491, but as -140 and -160 tneters i» thc discussion, at the meeting ofJune 14, ofthe north Estero Bay slope break, Ifthe lower value is correct, provide the published source or other supporting data for this departurefrotn globally established values. Ifevidence supports both the lower value to thc west ofthc s~oee seatp ofthc Hosgri, and thc mapped -120 meter level near rhc Hosgri scarp, discuss thc rate ofverticalfaub slip thereby implied.

APPROACH

~ Compile vertical separation and rate data

Top of basement unconformity

Top of Miocene unconformity

Mid-Pliocene unconformity

~ Include maximum deformation across entire fault zone, not only individual high-angle strands

include coastal uplift rates

include structural relief on Purisima structure and other areas of strain partitioning

~ Evaluate spatial and temporal variation in rates of vertical separation

~ Evaluate use of late Wisconsinan low sea level strandline to assess deformation on Hosgri fault zone ~ $

4~;

ji<

Cj ~

EI Selsm'l 80-100

S.P. 450 S.P.500 SW Typical shor e Slrarrgraphrc Coturnn Sanla Mar ahr ca IIIIIIIIIIIIIII!llllllllllllllll|l'ell P44NN3 Wel P 0406 Nl T.D. T.O. 5755'n~ 4 5755'esisevlry 0 ~ 4, 0 6a Garnrna Ray 'o o Non o: I.t ad II Marino o..." 'l 5 8 5 ) o, o

Foxen and younger Paocene

Upper Slsquoc P>ocene Upper hence no Sisquoc » Ss Lower Slsquoc Lower Slsquoc

de ~ $ 5000 94 »»»»»l ,»» '» JC I ~ IP C 6000

~»» ISO ~ ~ rde '

~ ~ I I ~ ~ Ix.e ra I aa oo

Ir r ",O 8000 r ~ 0 c)

(From Cla rka nd others, In pres s) 1* VERTICALSLIP RATES BASED ON VERTICALSEPARATION OF UNCONFORMITKS ACROSS THE HOSGRI FAULT ZONE

TOTALVERTICALSEPARATION (m) VERTICALSLIP RATE (mm/yr) SEISMIC LINE Post Mid-P Top-B (-17 to 5.3 Top-M Mid-P Coastal Uplift Post Top-M Maximum'2.8 Maximum'ate'5.3 (-17 Ma) Ma) (%)'5.3 Ma) (-2.8 Ma) Post Top-M Ma) Post Mid-P Ma) (mm/yr) (mm/yr) (mm/yr) (mm/yr) (mm/yr)

nrthern Reac CM-51 428 119 - 309 «0 0.08 0.08 0.04 - 0.11 0.11

W-76A «1922 («1335) 642 404 «0 0.12 0.12 0.14 0.14 («69%)

I-113 «2113 s1541 666 s285 «0 0.12 0.12 0.10 0.10 (s72%)

San u's i o eac PGE-I 857 261 s0.23 0.16 s0.31 0.09 0.32

W-14 710 330 s0.23 0.14 s0.37 0.12 0.35

GSI-85 476 - 619 285 - 404 0.20 - 0.22 0.09 - 0.12 0.34 0.10 - 0.14 0.36

GSI-86 690 380 0.20 0.13 0.33 0.14 0.34

GSI-87 880 571 0.20 0.19 0.39 0.20 ~ 0.40 (0.26') preferred value based on elevation of exposed basal Squire Member onshore

I:5'.GSG-Q-3. T-I March 28, 1990 Page I P

~ I'+

gt'

I

>c,-

%I+ t

~ Qk~ Table GS 1 (continued)

TOTALVERTICAI.SEPARATION (m) VERTICALSLIP RATE (mm/yr) SEISMIC LINE Top-8 («17 to 5.3 Top-M Mid-P Coastal Uplift Post Top-M Maximum'ost Mid-P Maximum'«2.8 17 Ma) Ma) (%)i (5.3 Ma) Rates (5.3 Ma) Post Top-M (2.8 Ma) Post Mid-P Ma) (mm/yr) (mm/yr) (mm/yr) (mm/yr) (mm/yr)

San uie 0 i» CM-119 881 595 «p 0.17 0.17 0.21 0,21

J-126 1095 571 «0 0.20 0.20 0.20 0.20

GSI-97 1048 598 «p 0.20 0.20 0.21 0.21

GSl-1pp Hosgri 1119 «0 0.21 0.21 0.19 0.19

[Hosgri + Purisima] I [1238] [712] «p [0.23] [0 23) [0 25] [0.25)

1976 953 (48%) 1023 «0 0.19 0.19 0.18 0.18

[Hosgri + Purisima] [1834) [1238] [691] «p [0.23] [0.23] [0 25) [0.25]

Point Sal Reach GSI-1 pl Hosgri 1715 «811 (47%) '04 0.14 - 0.17 0.17 0.34 0 0

13'0 357'547] 13'0.19') [Hosgri + Purisima] [1477) [1167] [0.14 - 0.17] [0.22] [0.39] 19<] ~204 Hosgri 857 571 0.14 - 0.17 0.16 0.33 0.20 0.37

GSI-106 Hosgri 428 - 2095 -215s - 1452 643 476 0.14 - 0.17 0.12 0.29 0.17 0.34 ((0 - 69%) [1143] [571] [0.14 - 0.17] [0.22] [0.39] [0.20] [0.37] [Hosgri + Purisima] [2000]

I:hPr-RGSG-Q-3. T-1 March 28, 1990 Page 2 I

+A,

I

~l

4

,F ~ 4 Cg Table G -1 (cotttltltlet))

TOTAL VERTICALSEPARATION (m) VERTICALSI.IP RATE (mm/yr) SEISMIC LINE Top-B (-17 to 5.3 Top-M Mid-P Coastal Uplift Post Top-M Maximum'ost Mid-P

Maximum'ate'5.3 (-17 Ma) Ma) (%)'5 3 Ma) (-2.8 Ma) Post Top-M (2.8 Ma) Post Mid-P Ma) (rltN/yr) (tttm/yr) (mm/yr) (mm/yr) (mm/yr)

S utheru eac G~S1-I 2C Hosgri -732" -0.14

lHosgri + Purisima) f756] f1122J f536J f »O. I4] f0.21J f0.3SJ f0.19) f0.33J

GSI-I 15 Hosgri -524' -0. l4

Hnsgri + Purisimal f 1501) fl024) f524) f -O. l4) f0.19] f0.33] f0.19J f0.33)

I I -O. l4

-357'Hnsgri + Purisimal f976] f 1000] f570J f -0.14) f0.19] f0.33J f0.20] f0.34J

GSI-123 Hosgri 1142 786 -0.14 0.15 0.29

Hosgri I + Purisima] f1261] f905] f476] f-0.14] f0.17] f0.31J f0.17] f0.31J

Note@ I - Indeterminate

'Percentage of vertical deformation of the top of basement unconformity that occurred prior to development of the top of Miocene unconformity. zLate Pleistocene uplift rate based on the elevation of the 120,000-year-old marine terrace. Maximum value calculated by adding a maximum coastal uplift rate east of the fault zone to the vertical slip rate based on the elevation of the unconformity west of the fault zone.

4The presence of the unconformity on both sides of the fault zone allows for a direct measurement of the total vertical separation. 5Down on the east

I:tPGFtGSG-Q-3. T-I March 28, 1990 Page 3 k"

k>$ fty EXP LANATlON ~ Diablo Canyon Power Plant = Boundary between reaches of the Hosgri Fault Zone 0~ ~ Estero i Point p8 Purislma structure gg Maximum post-middle Pliocene vertical slip rate (mnvyr) across ~g~ based on direct -- ESterO 0.26 Preferred value 0qa measurement ol vertical separation using y0 onshore exposure of basal Squire member ~Maximum post-middle Pliocene vertical

e<" 0 QO q,eac~ p~ N POint ——Fault; dashed where inferred Bu vis G

00~ t

cd t0% s».gggS q,eac~ >.~o< o (Ph

<06

0'ZG GSK Punsima Point

Scf 9,eaace

10 mi

15 km gk

l

1' EXPLANATlON

~r 'fh Diablo Canyon Power Plant \ QS i l Boundary between reaches of the Hosgri Fault Point Estero Zone PS Purisima structure Ester 529 Maximum post-top h4ocene (Top-M) vertical slip rate (mmtyr) across Bay ~Qggyjg ~ Maximum post-top h4ocene (Top-M) vertical

et" ~Q,3 0 —Faell; dashed where inferred peac~ gt ~ ~ Axial trend of antidine or syndine Point Buchon ~A QgL ou,

~g.s +5 Q Point San Luis g,6 9 si.s Q 3I ~pl pa~ q,eeac" GSh + C~ G ,2'

O ~Qadi 70 gy-of r g~S 0+$59 ~eacc>

~ q,eacc> ,si'urisima Point =, AS l~ 10 mi

15 km

Profiles of the coastal zone (0 to -200 m) of south central California showing post-late Wlsconsinan sediments and the San Simeon and Hosgri fault zones

0 Af \

n rn

0 F n HOSGRI 0 r A IT u uo

HeettII 00tuII 0 tt SIMEON

Uo 0

EXPLANATION I F. DCPP Post-late Wlsconslnsn sedlrnent 0 U W. Hoeyrl u 0 Fault: U = up, D = down, A = A 'T e v away, T= towards

A T E. HOSGRI >I -100 oou 00 0 5 kilometers Vertical exaggeration - 25X I. t4o. Pttrtaeeee PL

A T

J. Surf I

W. HOSGRI c'y'K~"~ 'P"

ry EXAMPLES OF FAULT-RELATEDVERTICALUPLIFI'ATES AND ASSOCIATED RELIEF ON ADJACENT MOUNTAINBLOCK

Vertical UpliR Observed Relief F ul m nn mm r Transverse Ran es

Pleito 0.4 - 0.7

Sierra Madre 1.2 - 3.0 1,000

II San Cayetano 0.6 - 1.5 1,000

Owens Valle Independence -0.1 2,100

Lon Valle Hilton Creek 1.0 - 2.0 1,150

Mono Valle Lundy Canyon 2.0 - 2.5 1,650

Others Wasatch, Utah 1.0 - 2.0 2,000

Alpine Fault, NZ 2.5 3,000 10.0 - 20.0 3,000 kgb Observed versus expected range front elevations, past 850,000 years

1000

850 m 800

~ ~

600

ELEYATlON J t> (meters) ~ Expected:.- 400 (1 mm/yr) .

247 m 200

Observed, ', {0.24 mm/yr) 0 0

j! PUBLISHED VALUES OF LATE WISCONSINAN LOW SEA LEVELSTAND

-80 meters Badyukov and Kaplan (1979) Pirazzoli (1987)

-90 to -100 meters Milliman and Emery (1970) West Atlantic Cunay (1965) Texas Gulf coast

-120 meters Curray (1965) Gulf of Mexico Nardin and others (1981) Santa Monica shelf, CA Shackleton (1989) Global compilation

-100 to -150 meters Ota and Machida (1987) Japan Bloom (1977) Global compilation

-135 meters Chappell (1987) North Australian shelf

-150 meters Chappell (1987) North Australian shelf

-165 meters Chappell (1987) North Australian shelf

-150 to -160 meters Ota (1987) East China coast

Maximum submergence in the offshore south~tral California coastal region may be slightly in excess of the eustatic rise in sea level; thus, elevation of submerged low stand strandline would be lower than global average (Clark and others, 1978). li

f'r QUESTION GSG 3 xiii'5 6 i based on rekrtive~~displacement ofthe basement, top of'Miocene, thc mid-Pliocene dlscontiruuty and thc post-SVsoonsin low stand, fnehtding thc uncertainties In thc analysis. Ahe kt m~ K 6~~8 B i i i meters, in Table 9 and Plate 5 ofthc Rerponse to Question 49I, but as -M7 and -INmeters in the discussion, at the meering ofJunc 14, ofthc north Estero Bay slope break. Ifthe lower vrdue Is correct, provide thc'ubDshed source or othe supporting data for this ckpartrrre from globally established values. Ifevkknce supports both thc lower value to thc west ofthc srrrfaee scarp ofthc Hosgng and thc'apped -120 meter level near thc Hosgri scrrrp, discuss thc mte oj>ettleal fault slip thereby implied.

CONCLUSIONS

~ Maximum vertical rates of separation

0.11 to 0.40 mm/yr post mid-Pliocene

0.08 tv 0.39 mm/yr post top-Miocene

rates include coastal uplift and deformation of Purisima structure

~ Up to 72 percent of basement serration occurred during pre-Top Miocene deformation

~ Late Wisconsinan low sea level stand cannot be used to assess vertical separation

does not cross Hosgri fault zone

uncertainty in published sea level elevations that range from -80 to -160 meters

uncertainty in map location and lateral continuity

~ Shelf break in Estero Bay appears to be composite scarp formed by wave erosion and deposition during multiple low sea level stands f

i

ggl

c 4.

If~ Q

i .QUESTION GSG 4

Prole lhe analysis ofthe:ttpllP rtttes across the'Hosgrf ~ the Ltteral Act df46splaeetttent, and thc mart'ations along the iength ofthc Hosgri as discussed at thc meeting. Include thc basis for their mcasurcmcnt, thc uncertainties, and a discussion ofthe geometry ofthe fault and its effects upon the cwluation ofthc cortical and horizontal displaeements, Also sununarize thc evidence for strike-slip and dip-slip along thc 15 kilometer reach ofthc Hosgrt'ault that estendsPom the westernmost scarp at 59- meter ridge northward across thc north Eerie Bay sloptt break and expiain how the geometry ofthc 30-meter high, scarp-like, part ofthc'orth Estero Bay slope'reak can bc'erived by right iaterai striWslip.

APPROACH

~ Compile rates of vertical and lateral separation

geophysical data across Hosgri fault zone

coastal uplift rates

San Simeon fault zone

San Simeon/Hosgri fault zone

~ Calculate ratios of lateral to vertical components of slip

spatial variation along fault zone

.consider regional tectonics

~ Given slip rate ratios, evaluate fault rake and sense of slip

~ Evaluate origin of North Estero Bay slope break

clarify location and elevation

Northern San Luis/Pismo San Luis Obispo Point Sal Southern Reach Reach Bay Reach Reach Reach

San Simeon- Southwestern Hosgri Los Osos Boundary Casmalia Lion's Head Southern stepover fault zone faults fault zone fault zone Terminatio, l l

~O Preferred t Hosgri and Purisima 0 H:V H:V ':V H:V t H:V ) > 5 10:1 to 30:1 l 2:1 to 11:1 l 2.4:1 to 14:1 l >1:1 to 18:1l >1:1 to >7:1

~rz~~atta Post-middle Pliocene (2.8 Ma) horizontal slip rate Maximum post-middle Pliocene (2.8 Ma) vertical slip rate across the Hosgri Fault Zone Maximum post-middle Pliocene (2.8 Ma) combined vertical slip rate across the Hosgri fault zone and Purisima structure

Hosgri Fault Zone southward decay of lateral slip

+o 1Q SOUTHERN Stepover 1-3

COAST

L OS RANGES j o~ DCPP +Op r

C~ 0 C~ 0/g~ ~ Lions Fwtt

+up X5 2'pe R e 20 mi ++ga

20 km WESTERN TRANSVERSE RANGES 'I ~

[J HQRNAFIUs: TEGTQNIc RoTATIQN oF TIIE SANTA YNE7. RANGE

4fjX

I

Late Miocene Present

Fig. 12. Development of the present-day fault geometry and fold pattern within thc Santa Maria basin, as a conse- quence of post-Miocene clockwisc rotation of thc Santa Yncz Range about an castcrn contact point (dot). Termination of Plio-Pleistocene strike-slip displacement on the Hosgri fault was accomplished by N-S compresslonal deformation with;n the Santa Maria basin, to the east ol'hc fault.

San Simeon'oint

0 5mi

0 10 km

'I +g > 4 + i '.:. Point '.:,.~F a,i ~ ' Estero

PA C IF I C

OCEAN

~no Bay

EXPLANATION

Fault; dashed where inferred; sawteeth on upper plate of a thrust fault

Regional break in slope between middle and . Point Buchon outer zones of continental shelf Diablo Canyon Northern Estero Bay slope break (Niemi and Power Plant others, 1987)

,C

Pont San Luis U The shell break in this region is a two stepped profile. The base ol the North Estero Bay Slope Break marks the bottom ol the steeper, more prominent upper part.

59 ridge

( ~~(0 The shelf break is a broad, poorly defined feature in the region southwest ol the elevated 59 Meter Ridge area.

%% 'Ltt, s l f If

Ew

4

8 Sooloor hhecion LINE CM-35 150lo 150m 124 m 75 70 65 60 55 50 45 0.0 -0.0

0.1 -0.1

0.2 0,2

0.3- -0.3

I- 1 >. 04 -04 3 0 0 0.5 -05 g

0.6- -0.6

0.7- -0.7 l

J:,( 2, ~

~INutunl«HIWNIMIINHW«wmt«PWI«vte»warn» IWNI N I I NlffuffffnnffuIus NffffhuffuINWNHNlhltefuNICNPNHNIPPNWHNNINI ItfflI N«uu N«hsh'Nhl N«HP NHNI ISssltuhPulthtunuh«NPHNHNNNH'«H'WWCNI I Hnl NW'sale'I NHWHIWW\Itff uhthnutffht4N Nffh WHIINNhnht« mffvlulwwun ~ MNMINWNMNINIWNNNNNPNIHuh I«HHWHIHNINWNH ~aennmwnmmnuw stuuuwwuuu«aauw«vwtumwmtuwmffmpmw vsmtmlmtmwssunwmutuumnmmnmnffmnmnmuumc nmffwutntemt «Inhlwennffnwshewt t«NINIWIWIWNWIWNIHIMINHINWNINIWNNMNINMIHNIMI«nffh«NINIPNNI4lhtl«NNPNNINHNMN4NWNH«Is«~«ulthlnllttuttff«HIIIINIHIIIIIPHI Nhhlhhu«NNNNHCN«hi Nuhnuhhl SHIN IWtNNNWW«ltultuhntlNI N«lehuffsluu Nhmnll NWNWIIWHNNNIHHIHNWIWNCW «nfl ~MWIHIWIM Nu WHWHININIMIWHINHNIHN«tffnlNuu«NWNNNhIWHH«wmwlINIMmwmlelMItwHNNNNhNNNNHNNNHN«uNNNuNNNHlNlhhwttlNlvPHNNNNNlNHlNHIhHNlNWNmWlWWtItINlhtlht«NWNWNNHNWN«ltlh'HhntuhnffNHNNNWH«hm IINIffH4«Cffffm«uem Mtswswsensff mmffnmvntl ttfft«4«ffmmwtmmvnmuwttn ttffuwffwum~ms nnelm ttwffnttffunnmtNnss*nnl ~ WIN«NINNN INN HN INIINI HPI ~MIN«MS HNI HHMNN«hlhl Nl Imhlmwlw«WPHPIMMN«tuus«h4HINI M ~ NHPM INNtNhult

~ ~ 4 I'I~«et«WH V "I N r ', ~ ~ a»tff n"I« lvc tv .r ~ cr v

~ PI at

'«.1,.

e tt

Which«PCI

~ r', ta ~ . m,rnp&$ .. ~ W«nhr CA 4 a hvac'ur, haa'ift'c 4 4 nil.own, 'rr. 1.1' 1 Ir. cp sht' PA h Itl ~ ~ eft .«4 hv .~ N vi".Ira' ~ ',»Npht ', »41 ar

' Macfsh rt. Cnw«41 ~ 4th 'v ' 144 411 44'a «41'r e 4 m I 1'cl'&,tr'eel. ~ I '111 vh,vaav hl " 4 ~ rff wa 4 hivranl Iw 1 ~ rvh ec has'l1, ~ «I 'N I ~ t'«1' „4 'N ~ 4' ~ rh .Cr'

- ~ .~'rvr« Ac Athvn r «vr»vrar» tshhrr aff« 'vhv4m P4 wvvat r'.

t l

b

+i Base LlNE CM-45 ~ 165 m 01 05 10 15 20 25 0.0 0.0

0.1 0.1 c 0.2 0.2 'g O CJ

0.3 0.3

0.4 0.4 0 0 0.5 0.5

0.6 0.6

0.7 0.7 Y

'i~ ~ I I I I MWSIPNINNININNWNHNIIMNSNSNONMHWNWWNNMMeltmuuutmuhultu~t~llI SNNuululuhhulun WPWIINPIUNMNNNMWhnlumtuPIPNININUNPNSNuh Nlu nut NSINNINIHllultuNININISINthlluuuuun,uuulluuulMtl Ntuuhu Nt OSIMMNIH IwNNIIINNlhhINPIINHINIIINNNHIINIhMNSNINNNHIINIHIIN Wuu PNPNNIN INNWNNNIPIWWMNINI IIIPIIIIIHIIIIIIIIININWIINNNIPS NINSIIIIIIIIIII IINNIHNIIIIIIIIHHINNII mlhultul NININN h IIII NN NNIPIIIIPIIS44114 IIIIPHII IHINMPPHNIhNINN WHSNIHNNSNNNINNNNNNNNNHINHMNNNHINNNNNNNWSNINIHNNNHN Nhu INISNMNNININNIN Nuu NNNI WNNII HI IIIIIIINW NISINIIIIINNIsNINNNha INNIHNINNN lnmhmwnlwhhm NNSII4SIIIININPNIPNHININIHIIhWINHINIISNIIINININSNNISM NMNIMI INWNMUSI~INSIIIIININIPSIIINI ~IIIOPNNNIMMINPHIINSMNNNNNNWIINWMMPMSHPNlul luuunMulffu uumuut NNNWItuWMINMSIINI'PSPV ~ IHIhh uuHSNWWNPSMIWNSMI OSWIINNI INPINHIN IIIPIISNllIIIINn IIIP Nu IulIIIIIW HIINIHIW NIWIIIIMIhunuhumunhllulhhMMNIMINIMINMIMNPMMINSMNÃlttl'IdummmutluntnnNnu uhlhlmtmhnuthu u ISVVPWI~VSVntnrrn elNINNMNHHNNNWI SNNSIPI I '4 mnmvnvhmheeumutppppnt ~ ~ tlhnshpmunvumrt nn ~ rr r uh ~ ~ ~ ~thhWIhhhSNA sus,'LhhhhhhhePuutnhtmihrlsas!4 thunIMH NNNpmmunhmnummpumhmmntMNHuluppmmnummuhhhs uhtpuuwmu'tdhsp tv.tpr A» ININONNIIINN Mpnsmulw «uhnw 'IWNINISNINNINN SI SNIINP ISIHNWI Wlrtlnuum NIWWIWIINWMMI ~I\I NlulhuuulhlluuluPIN m~se ils'M'ehm Iru u 'trteuhrt.es nests Mulnl hnlhuuhPWrMNnNPuuhemuhmdlhh s ~ SPutsr ~ 1'"-, ~ ~ % ' Ph P SNWNnshumttumhmnmuhtnthhrn '44 Weteu Uhnhuh Pmhh hhhIPMO ~ hn h J VSSE'u SV. tAt r ' 1 ri L VVI ~ hsnmhmdut Ntmk'luun nn I A ~ tmrumlwmhrrnlwwpstu ~ M~smmmm

urntnmk'hnl

~'\hit AI up

' rel ', «rnwmsnnhswlhmhue p

'uplle " I .Netvnhpspstpltllo @II MjehhlNw M Is'4 'lhttl Natal ll'+4 ~ end tsultrtht held phl su,tech ntl Ip I\ddt" I IP 'hnel" «pjl uen44 4 aph ~ gpnhelhs» ( pueuut ~, I ~tp I'Il" 4 1

~1'k

h,

Jt JL 'L.

A QUESTION GSG 4

Ae vuk the analysis ofthc uplijl rates across thc Hosgri ~us the lateral tete ofdisplacement, and the nrnations along thc length ofthe Hosgri as discussed at rhc meering. Include the basis for their mcasurcmcnt, the uncertainties, and a discussion ofthc geometry ofthc fault and its egccts upon the neluation ofthe venieal and horizontal dlsplaecmenrs. Also sununarizc thc evidence for strike-slip and dip-slip along the 15 kilometer reach ofthe Hosgri fault that estcnds fiem thc'esternmost scarp at 59- meter ndgc northward aaess thc north Estcte Bay slope break and esplain how thc geometry ofthe 30-meter high, scarp-like, part ofthe north Esrcro Bay slope brcak can be dcri md by right-lateral strike-slip.

CONCLUSIONS

~ Ratio of lateral to vertical slip ranges from —2:1 to —30:1

lateral slip rate 1 to 3 mm/yr from San Simeon fault and San Simeon/Hosgri pull- apart basin

maximum vertical slip rate 0.1 to 0.4 rnm/yr from mid-Pliocene unconformity and coastal uplift

~ Ratio may decrease from north to south as lateral slip is consumed by crustal shortening in Los Osos/Santa Maria domain

may approach 1:1 south of Point Sal assuming minimum lateral and maximum vertical rates

"...the sense of slip on the Hosgri fault zone may change along its length, ranging from more purely strike-slip in the northern reach to perhaps equal components of strike-slip and dip-slip towards it southern end... (p. 2-108, PG&E, 1988)

~ North Estero Bay slope break and shelf break in Estero Bay are not generally coincident with the Hosgri fault zone and did not form by either dip-slip or strike-slip fault activity 14

AP

l'

A

I j l

ghvi QUESTION GSG 5

Provide the analysis used to determine the location, moment, and magnitude of the 4 1Vovember 1927 "Lompoc" earthquake including the uncertainties, and the letter from Dr. Abe pertaining to his tsunami magnitude deternii~iation and the Hilotide gauge recording. Discuss potential timing errors that arise from clock error, marking error, or other causes inherent in the or San Frarrcisco marigrams. Describe how the tsunami analysis technique has been calibrated against data.

TSUNAMI ANALYSIS OF THE 1927 LOMPOC EARTHQUAKE

OBJECTIVE: estimate the location and seismic moment

APPROACH: waveform modeling of recorded tsunami

Location: use travel time and waveform shape

Seismic Moment: use waveform amplitude

Validation: use reciprocal path from the 1975 Kalapana, earthquake to California to test accuracy of travel time and amplitude calculations 1 '

I

J

f V, 124 '123 122 121 120 '19 '18 117 116 39'N

Fort Point

38'00 California

g O o O ~ oo 37'5'ong 000 ~ (o Port San Luis

Beach 34'a

Solla 33'

32'XPLANATION

—1000 — Bathymetry contours in meters Station location

Area shown in Figures GSG Q54 0 and Q5-5 I

I '

' 157'W 156 '55'54 '1'N oo Maui

oo

Oo

Hawaii 20'ilo

Kalapana

800

0 19'ooo

gQ

18'XPLANATION

—1000 —Bathymetry contours in meters Station hcation 1975 Kalapana earthquake

COMPARISON OF OBSERVED AND CALCULATED ARRIVALTIMES AND AMPLITUDES OF THE TSUNAMI OF THE 1975 KALAPANAEARTHQUAKE

Arrival Time (h:m) Amplitude (cm)

obs. cal. obs. cal.

La Jo11a 5.37 + 2 5:35 20 16

Long Beacl> 5.46+ 2 5:47

Port San Luis 5.17 + 2 5:14 26 "6 4j'

V> Fort Point

La Jolla

Hilo, Hawaii

EXPLANATION

Arrivaltime of tsunami Ag f( 122 ~V 121 120 119 III II 36 N

35 + Gawthrop {1978) location

+ Hondalocation Long Term Seismic Program revised location

~i20{) 100

P )0 f 600 $ o oo o o 33'

EXPLANATlON —1000 —Bathymetry contours in meters —Best esfimafe of kcos —----- 2-minute uncertainty in travel time + 1927 Lompoc earthquake 1,

'1 ~ ~ ~ ~ ~

~ ~

~ ~ ~ ~

~ ~ ~

~ ~ i ~

~ ~ ~ f

l< t t )4

'j

gl

P

I Helrnberger's location

10 min 20 min 30 min j

T i",

V~

'z'7

! Gawthrop's location

t/

10 min 20 min 30 xnin

Fort Point observation

Honda

Gavrthrop corrugate

40 60 80 100 120 nwn from 6:00 I . observation

LTSP

0 E G anthrop

conjugate

0 P,Q 40 60 80 100 120 min from 6:00 34 ~

% 41

PA Hilo observation 10

-10 " LTSP 10

-10 Honda 2 10

Gawthrop 10

-10 conjugate 10

-10 0 20 40 60 SO 100 120 rrun from 8:00

Fort Poia.t

OBSERVATION

0 -5 z,Tsp (mm)

0

: urface

0 -5 800 m depth

0

Honda

L 0 20 40 60 80 100 120 min from. 6:00

La Jolla

OBSERVATION

0

LTSP (Skm)

0

surface

0

200 m depth

0

Honda

0

0 20 40 60 80 100 120 mia. from 6:00 I "I l

),f $ t 'I

'4 I

t

Azimuth to De Bitt station

\

we Plant~

'I /1 AII OI QI

ompoc

~ants Ba L a~ I ~~

~ sSRS,.Ssiila,Lusts asnrt ....

121o

1927 Lompoc earthquake epicenters Area encloses SSS-S and pe Byerly(1930) location estimates uncertainty in tsunami Hanks 8 (1979) location Oo Gawthrop (1978) 0 PG&E (revised) , ~Surface projection of zone Arcs drawn from De Bill and rupture Santa Barbara seismograph stations Surface projection of fault plane glq

&f

E

+g

i/ + J

lq l, EARTHQUAKE RESEARCH INSTITUTE

THE UNIVERSITY OF TOKYO

ADDRESS 'UNKYO KU. TOKYO. JAPAN (llS) CABLE ADDRESS: 2ISINKEX TOKYO TELEX NUMBERS 272 2I4b(ERl TOIQ

April 28, 1 989 Dear Dr. Kenji Satake:

Some years ago, I received- the same questionnaires about the Lompoc tsunami of 1927, one from Tom Hanks and the other from Robert Page. There was a concern, at that time, with respect to the nuclear reactor. They recommended me to study further, but I have not, though I am still concerned over it. Do you remember that I previously summarized this pic at the seminor in Hokkaido University '? I rigorously ained Mt=7.6 +/- from the records at Hilo and Honolulu in awaii. In the late study, I found that records in California give the smaller estimate, i.e. 6.9, as far as my method for use of local tide gage data is applied to the records. This difference between the near-source and the far-field Mt is suggestive of a strong directivity, but I am not confident of discussing any more without detailed study. It is quite interesting that only the Lompoc tsunami was recorded at the Hawaiian Islands across the Pacific.

Sincerely,

PP 5 () J

K. Abe xc: Prof H. Kanamori E

h

l4 CONCLUSIONS:

Both the travel times and the waveforms of the tsunami indicate an offshore location compatible with that derived from seismic waves

Locations beneath water shallower than 200 meters, including any location on the Hosgri fault, are incompatible with the travel times and waveforms

The seismic moment derived from tsunami recordings is 3 x 1026 dyne-cm., corresponding to a moment magnitude of 7.0.

The tsunami magnitude of 7.6 derived from Hawaiian recordings by Abe (1979) reflects strong bathymetric effects, especially near Hilo, that were not taken into account. Abe (1989) obtained a tsunami magnitude of 6.9 from California tide gauge records

Waveform modeling that takes account of bathymetric effects gives seismic moment estimates in Hawaii and California that are consistent with each other

QUESTION 6

Provide a discussion ofthe felt data for the 4 November 1927 mainshock and the aftershocks and how they relate to the proposed locations. Zhe isoseismal maps of the 4 November 1927 and the 29 May 1980 earthquakes were compared and based on the companson arguments about the location ofthe 1927 event were made. It may be inappropriate to make this hnd ofcompanson since the strikes ofthe faults as determined from the focal mechanism studies appear to be diferent. lee differences in the radiation patternsfor the two events could cause diferent felt data geometry even ifthe events were in the same location.

APPROACH

~ Review intensity data for the 1927 earthquake

~ Evaluate intensity data with respect to the 1927 earthquake location

~ Compare intensity data with other regional events I

s ~

1

,1 I

+'(

'4

$e ~ 5 ANGER I pREgLEY GONZALES ~, N ioOROSI 1 SELMAQq ll,N ~~OEZ w'V ~H~RD OV5AUA I N WG aTYe I 41%%ST J ~ TNARE 3 'l SAN LUCAS'S \ ~r ~ PORTER VILLE 36 +' 'lg I PARKm)~i-s<] ~ SAN h4QXL~ SHA~ONg(jQ(AME ~ KERNVILLE ~ 5ABELLA 4 'I CAMbRIA HARMONYelTEMPLETON ~ OSCRESTON i- yS + ATASCAOERO 6 7 y8UiloNwlllolrg~p~~ 5 6 1EHACHAPIPOZOO~ / N 5 I S yMcKITTRICK / 6-7 c l STAFT f ~ MOJAVE 5o HAL 77 7 ~ ~ s-7 PArTIWAY y ~ I 4-5 ~ 7 bETTERAAA .N T -GORMAN' TKHARR5TONY ~LOS ALAMOS SQÃFERy 7 v 04-11-1 927 SCHEGECK ~y g IjfNSAMATI4R ~ PALMOALEO 'LAS Cem 3WAXIER ARLIGHT ~~g6+ l 6 FLLMORE GAVIOTA - I ...,"- ~TERIA 03-'4 P~ NAPLES 4 ~ ', F SANTA bARSARA ~~ ~SANTA PAULA 5+ Pacific — Ocean 5 6 r.- GLENDALE 0 ~ r' N C ~ 34 LOS ANGELES 5 F WHITER SANTA MOhKA 3'4 LONG EXPLANATION bEAOI REOOhOO EEYUCH 5 N VICENTE 3Q mt ELK Intensity location of Evernden and others (1981) TQ fntenslty location of Toppozada and Parke (1982) SAN PEDRO 40 km PQ POKE revised Instrumental location 7o Modtfled Mercalll intensity d f20~ ll9 I 'd»' RESULTS

~ 1927 earthquake intensity data are consistent with the PG&E revised location

intensity data are severely limited by the offshore location of the event

relatively low onshore intensities suggest a location not next to the coastline

small felt areas for intensity VI and VIIonshore are consistent with Ms 7.0 located southwest of Point Arguello

~ PASO RObLES 4tRF) '1 ~ bAKERSFIELD 3tRF) SAN LLAS Ob5PO j ~M@ KITTRICK 3-4tRF) I PtSN) bEACH I b 6tRF) ~ P ~X '5 ~)eCICQPA 4tRF) 35 ~SAttTA MAR

30 ml

40 km )20 I)9

EXPLANATION Epbenter 7 ~ Meditled Mercam Intensity i. Ze 1210 120'19'18'6'6'+

1-3 o1-3

~ 1-3

~ 5 35' 35'0 1-3 ~

5 56 e4 6 og ~ 4 8-27-1 '4 ~ 4 4 5

0 30 mi Pacific Ocean 50 km Epicenter

121'20'19'XPLANATION

ee Modttied Mercalti intensity

121

120'19'18'5'1'69

~ 5 ~ 1-3

5 o4 4 5 5 ~5 5 o4 35' ~ 4 ~ 5 ~ 5 o4 ~ 5 ~ 4 ~ 1-3

1-3 1-3

30 mi Pacific Ocean

121

120'19'XPLANATION

Epfoenter so Modified MercaIII intensity 0 121 120'19'18'

3

~ 4 3 ~ ~ 4 o4 ~ 5 ~5

4 5 4 ~4 35' ~ 5 35'

5-29-1980 > 4

~ 3 3

30 mi Pacific Ocean 50 km

121 .

120'19'XPLANATION

Epicenter so Modified Mercalli Intensity It

'I t " tt'ttt 't lf«

~ ~

I ~ I I I I

~ ~ I

~ ) ~0 I ~ ~ ~ ~ ~ I) V A I) ~Aa+@ ). * I~ I 10 ~, IV ~

~ ~ ~ ~ ~ I ~ ) 4 n-m "., ) I ~ ~ ~ ~ ~ ~ ~ ~ ~ 'I I ~ ~ ~ ) 11 I I I I ~ ) II ~ Rs I ) I ~ ) I ~eeeog ~ ~ I ) ) ~ s Vl'

~ ~ 1 Figurc I G ~ 11 'I ) 06-7 V )~ ~ ) ~ I ~ ~ I C'A I.III)RYI A g>)) lv IV I 11

~ ~

~ ~ ~ I ~ ~ ~ ~ ~

) s

o 1

~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ )'I~ 0

0 60% KIPLANATX)II *Eocenl« ~ IVIH tlWWtfR 0 100 km yJ 15'I 5tOO ~ 5

~ ~ ' Vl

~

'5 le e~e I h ~ ~ A' eee

4 ee l V

I

~ ~ l Z ee ee Vll ~~~ f g I /, Xheleeee / t4 4r ~ gee Ceee

s

l ~ 4 V

f~ANA1IQII *fpC»el» ~ F»I CI »lohPt'f 5 J 0 10mi J.

0 20 km ;l

i

T

Y„

S k

~ 5ANGER 4

~ r.@RELYII a OOROSI r ~~DEZ ~ sr ) 1 ~ HA!4QRD OV5AUA J KNG PTY J oTRARE s: OCOALNGAr SAN LUCASO yrs sr Y L \ 36~ o ~ PORTER VILLE .. SANAIIDK~ +' 1g PARKaOO < W I 4-5 P \ Z-E ~ KERNVILLE sssrrrsrsMplsroN ~ j g ATASCADERO ~SUTTONWILLOgbAKERg:OLD gQ 5-6 ~ ~ ~ RPARD 5 5 6 ~ O~ 5 OMcKITTRICK SAN LQS 7 g44 LAPAHZA l rsssr srsr L ~s-s ! ELLOWS s 6-7 -.-.-~f y soTAFT TEHACHAPI l ~r> ~ NNS~~ i o5$ ~5 7' / ~ OJAVE 35'AL ~II feI GUADALrss A Vw~rA / ~ Ir7l \ fAmWAY f I-~ 7 bETT8IJSJIA 'I. gs r ssss'sst f —- - -.-GOR~ ------— 5 4NFERO a5 T@HARRIstoN> > oLosr ALAMos 04-11-1 927 s KHEDKK sr sr s SsgssssrsrAVM'2 ~ 6 7 PALMDALEo Wf45 LAS CRUCES 6 C CONQFC ION PaLMC4 GAVIOTA /- CARPNTERIA ~ ~ SAUGUS Pg NAPLES o SANTA bAIIARA 4SANTA PAULA PASADENA Pacific Ocean r ~ N LOS ANGELES ~ 5 F WHTTER SANTA MOCHA 3'4 34'0 LONG bEAOI EXPlANATION REDO')O KACH ml ELK lntenslty location of Evernden and others (1981) TQ lntenslty location of 7oppozada and Parke (1982) 40 km PQ PGILE revfsed Instrumental focatfon 7o Modified Mercaiil intensity 4 120i ll9 I ,4 Table GSG Q6-1 FELT REPORTS OF FORESHOCKS AND AFTERSHOCKS OF THE NOVEMBER 4, 1927, EARTHQUAKE

Time of Event P-wave Tim and L cati n f Fel R rts Timed

Nov 4: 3 AMLompoc, Santa Maria, San Luis Obispo 313 3-3:30 AMLompoc 5:51 AMMain shock 5:51 6:12 AMSanta Maria-. 6:11 6:14 AMSanta Maria 6:13 7:00 AMSan Luis Obispo 6:56 and 7:04 7:42 AMSanta Maria 7:44 11 AM(approx) aftershock felt at sea 10:58 and 11:02 t 12 PM (approx) aftershock felt at sea 1?'00

Nov 5: 12:17 AMSurf 00:16 and 00:18 t I:00 AMPaso Robles to Hadley Tower I:01 3:37 AMSurf to Hadley Tower (south of San Luis Obispo) 3:34 4:06 PM Buellton 6:25 PM Lompoc (strongest event) 18:39 7:10 PM Buellton 19:11

Nov 6: 2:10 PM off Point Conception 14'l l

2:50 PM Buellton , 14:51 3:10 PM off Point Conception 15:05

Nov 8: 2:02 AMBuellton I:58 ?'15 AMLompoc

Dec 5: 3:45 AMBuellton, Surf, Guadalupe, Santa Maria, Santa 3:50 Margari ta

Dec 31: ?'10 AMPoint Arguello

Diablo Canyon Power Plant tong Tenn Setarnto t'rograrn

RESULTS (continued)

~ Intensity data comparisons with other events in south-central coastal region reveal azimuthal variations in isoseismal patterns

azimuthal variations may be related to crustal structure, source radiation, and local site conditions

data are not adequate to refine and resolve these factors I

~ Felt data for aftershocks are consistent with the mainshock intensities

felt aftershocks are also instrumentally recorded

aftershock intensity data are limited, generally locally reported V

iJ

(4 QUESmoN 6

Provide a discussion ofthe felt data for the 4 November 1927 mainshock and the agershocks and how they relate to the proposed locations. Theisoseismal maps of the 4 November 1927 and the 29 May 1980 earthquakes were compared and based on the comparison arguments about the location ofthe 1927 event were made. It may be inappropriate to make this kind ofcomparison since the strikes ofthe faults as deternined from the focal mechanism studies appear to be diferent. The differences in the radiation patterns for the two events couM cause diferent felt data geometry even ifthe events were in the same location.

CONCLUSIONS

~ Intensity data are limited due to the offshore location of the 1927 earthquake

~ Mainshock and aftershock intensity data are consistent with the PGEcE revised location of the 1927 earthquake

QUESTION 7

In U.S. Geological Survey Professional Paper l223, Seismic Intensities of Earthquakes of Conterminous United States-Their Prediction and Interpretation," Everenden, Kohler, and Clow used the observed intensity dataPom the 4 November 1927 earthquake and their predictive model to evaluate several estimates ofthe epicenter, fault length, and fault orientation ofthis event. 7he authors conclude that, ifthe general applicability ofthe predictive model is accepted, the intensity dataPom the Lompoc earthquake require a location on or very near the Hosgri fault. Provide a discussion ofthe conclusionjom this study in light ofPG&E's analysis ofthe earthquake.

APPROACH

~ Review Evernden and others (1981) analysis

~ Assess applicability of and sources of uncertainty in their analysis

Evernden and others (1981) Analysis

Input parameters

Location offault Fault length and orientation Attenuation parameter Depth offocus Site geology

Output parameters

Predicted intensity value at each site P~

Agee

L„

/)l'

E aYoeendPr ~ reeyaato ~ Qs1paa

Pab Aio

HoSerer ~ ~ eaecrrr4e I ~ Sednee / Queer Seine ~ Oroel 0 50 km Cannel e gone rdee ~ Srdedad ~ Id' Sly Sor Hemadez

~ Trdere Pdeel Yaley

Lockwood ~ ~ Perklekl

~ Chokrne K ernie hebeaa e ~ Ade4Ma Annene ~ P~ Aoblee ~ Araeck~ Sorkrnwllow CefUcoe ~ Sireraer e ~ ~'e Sa„~ ~ Pore Parcra QdOekk

Hosgrl Fault Zone

-Vl ~ V-IV Sca. l4da Vll P~ Point Sal o Skeered Sroodere gt aX p ~Schekbck 'e~ Wheerer ~) ~ P Point Arguelto Sprays Saraa Parda

PG8 E revised 85'10 hcation Qverre Porrcrna e ~

Aedondo PL Vina' 12V r

3i

t * QUESTION 7

In U.S. Geological Survey Professional Paper 1223, Seismic Intensities of Earthquakes of Conterminous United States-ZAeir Prediction and Interpretation, " Everenden, Kohler, and Clom used the observed intensity data from the 4 November 1927 earthquake and their predictive model to evaluate several estimates ofthe epicenter, fault length, and fault orientation ofthis event. Vhe authors conclude that, ifthe general applicability ofthe predictive model is accepted, the intensity datajom the Lompoc earthquake require a location on or very near the Hosgri fault. Provide a discussion ofthe conclusionjom this study in light ofPG&E s analysis ofthe earthquake.

CONCLUSIONS

~ Intensity data for.the 1927 earthquake provide inadequate constraints for the Evernden and others (1981) inversion for event location

inadequate short-range data

inadequate azimuthal coverage

QUESTION GSG 8

Ef the seismograms from the Santa Barbara Wood-Anderson instruments are available for the 4 November 1927 earthquake, it may be possible to get an accurate azimuth from a vector analysis of these horizontal instruments to help in establishing the epicenter. Also, re-read the S-P times from all the Santa Barbara records for this earthquake. ~II

~ j

et REGIONAL SEISMOGRAM ANALYSIS OF THE 1927 LOMPOC EARTHQUAKE

OBJECTIVE: estimate the location

APPROACH'ongitude: use S-P times of aftershocks recorded at Santa Barbara (following Hanks, l979)

Latitude: use back azimuth from Pasadena

Location: from intersection of Santa Barbara S-P arc and back azimuth from Pasadena

Validation: use S-P times of more recent earthquakes off Point Conception to calibrate S-P time vs. distance; use back azimuths from Pasadena of more recent earthquakes C

p+) -j~

~k. Y L 1983 Coali

\

l I / Ol/ OI Oi

o >0) /. I~ eLo-m—p.-o-.c- ,I M'~ta Ba ~J \ B~g i I "~ e.. ","..." - ~ .. ~ 'SOS,.Santa .t.ucia Bank ... " ~ -- Santa Barbra he ~ S'%ST,~nga

121'

EXPLANATION

1927 Lompoc earthquake epicenters 0 Earthquakes 969) Qe Byerly (1930) a Santa Lucia Bank (10/22/1 8 Hanks (1979) b Santa Lucia Bank (11/5/1 969) Qo Gawthrop (1978) c Point Sal (5/27/1 980) Q PG8E (revised) d Point Conception (08/27/1 949) Arcs drawn from De Bitt and Santa Barbara seismograph stations

S, this paper

S, C IT

1

Table GSG QS-1

Ts p TIMES OF THE NOVEMBER 1927 LOMPOC AFTERSHOCKS RECORDED AT SANTA BARBARA (SBC)

Ts-p CIT Li& Date TlQle (sec) (sec)

11/04/27 10:52 12 12.2 16:17 16(~) 13.9 19:28 11.5+ 12.0 20:06 12.0 12.4 20:43 12.0 12.6 21:30 12.5 14.5

11/05/27 19:00 12.5 1 1.7 20:26 12.8+ 12.2 20:51 13 1 1.8 20:53 12.0+ 12.4 20:58 12 11.5 23:09 12.1 124

11/06/27. 01:05 134 13.4 » 02:29 12.5 12.6 02:40 13.5 14.0 02:49 12.5 12.5 04 49 14.5 14.7 09:11 14 12.4 09:39 12.0+ 11.9 '2:02 12 11.8 17:27 13 13.0 23:02 13 13.3

11/07/27 01:30 12.5+ 12.6 03'43 13 14.4 04:55 14 13.8 06:20 13.5 13.2 07'17 12 15.1

NOTES:

Time is given as hours:minutes and is approximate time of aftershock.

CIT is the T> p time as it appears in the Caltech unpublished tables.

LTSP is the new estimate of T> p, yielding an average of 12.9 seconds. gt 16 ~ / / / 0 / 15 / I / I I 0,/ I 0 / I 0 I / I / 14,'— 0 / / I 0 I I I / I 0 0 13 .0 I / 0 I I o, o 12, O ll / I I / I / I / / I 10 ~ I 10 12 13 14

CIT Ts-p (sec) 'I

R

l'~ Table GSG QS-2 S-P TIMES OF RECENT EARTHQUAKES OFF POINT CONCEPTION

Time Latitude Longitude Depth Mag- Ts-p No. (Figure Date hr:min sec ~N ~W ~km nitude G~GG 8-6 07/18/80 05:14 50.99 34 34.00 120 41.95 4.75 3.00 12.7

05/10/85 15:48 00.34 34 25.12 120 45.60 7.64 3.69 11.8

11/23/86 02:08 59.77 34 17.69 120 39.30 13.27 3.07

02/27/87 22:43 19.32 34 31.00 120 46.51 0.00 3.61

08/06/88 05:35 10.86 34 30.46 120 48.59 12.21 3.00 13.1

09/24/88 07:33 44.60 34 24 45 120 47.77 13.19 3.20

01/09/89 23:01 17.16 34 29.61 120 43.73 9.11 4.00 12.3

01/10/89 00:34 37.65 34 25.25 120 45.15 5.64 3.00 11.6

01/10/89 12:45 42.32 34 28.97 120 42.38 8.67 3.10 11.2

/10/89 17:21 21.51 34 29.64 120 41.52 4.38 3.10 11.1

04/26/89 14:47 10 40 34 26.79 120 46.29 5.95 3.80 12.3 10

NOTES:

Illegible seismogram No time marks Time period: 1980-1989

Magnitudes: 3 or greater

Latitudes: 34'5'o 34

35'20'35'o Longitudes: 121 10' ~ a 4I

Cl

~ 0 ~ ~

~ $

1'i- J' Nt '

1983 Coalinga earthquake

Azimuth to De Bilt / stadon

t

\ Di io Canyo

'rt i~ 1 I tr OII OI t A )g

t - ~~PQc I/ ~'ttznta Ba

~ ~ ~k azlrnurh

~ S~.~ta t ana Bank..." SRSS ~nga

121'XPLANATION

1927 Lompoc earthquake epicenters O Earthquakes 969) Oe Byerly (1930) a Santa Lucia Bank (10/22/1 8 Hanks (1979) b Santa Lucia Bank (11/5/1 969) O~ c Point Sal (5/27/1 980) i Gawthrop (1978) 0 PG8E (revised) d Point Conception (08/27/1 949) Arcs drawn from De Bitt and Santa Barbara seismograph stations

East-iVcst North-South

Lompoc Mainshock 11-04-27 W-A .8sec

Lompoc Aftershock 11-05-27 W-A 6.sec

Point Conception 8-27-49 W-A 6.sec

Santa Lucia Banks 11-05-69 W-A .Ssec

i8 888SEC

FOR NS time shift. = -0.2, -0.1, 0.0, 0.1, 0.2 Point Sal 1-90 NS time shift = 0.0 FOR angle = BAZ-40 to BAZ+40

Compute TAN from NS and EW z N Compu(c — TAN; T g 2:+i( next angle N Save minimum — TAN; E: its BAZ T g

250 270 290 310 330 next NS time shift Back Azimuth, flI

4 Back Azimuth 0 0Ch 0~ Oo0 0m 0

8-27-49 PLConccption

10-22-69 SantaLucia Banks

11-05-69 SantaLuciaBanks

5-29-80 Point Sal

11-05-27 Lompoc Aftershock

l I -04-27 L()mpm: Mainshock

NOD h g g td p] 'a O Q CA h D

O ~ ~ O cn + o+ o 0 t. Q4 CA ~ ~ wi ~ ~ A 0 CA '

'(

I i1

4'

~ L 'v 1983 Coalinga earthquake

Az

we Plant~~,.

1 I / I Ol ;',). C . OI ~~l Pt. Sat '. "")

I ( ', ''~ inta Ba

~ I ~lQQ li orn pa~ en a 'L .,"". " ~ ... ~ 0 20 km SS!M,~;t;acia Bank..." -"--"..., ., Santa Bartaas aao ~ a &SSs~nga

121'XPLANATION

1927 Lompoc earthquake epicenters 0 Earthquakes QB Byeriy (1930) a Santa Lucia Bank (10/22/1969) 8 Hanks (1979) b Santa Lucia Bank (11/5/1969) OG Gawthrop (1978) c Point Sal (5/27/1 980) 0 PG8E (revised) d Point Conception (08/27/1 949) Arcs drawn from De Bitt and Santa Barbara seismograph stations

CONCLUSIONS:

Our readings of S-P times of 1927 aftershocks recorded at Santa Barbara agree with the CIT times used by Hanks, and are calibrated against distance by more recent events

The latitudes of more recent events are reliably estimated from back azimuths from Pasadena

The longitude constrained by S-P times is 120.9'.

The latitude constrained by the back azimuth from Pasadena is 34.35~ N.

QUESTION GSG 9

Tite seismogenlc structure on which the 4 Nonrnbo &27earthquake ocesrred shouid be ident tJied and esnlunted for tnaxitnum earthquake potential and its closest approach to the Diablo Canyon site. Account for this in both the probabillstlc'nd the detetminlstie analyses.

APPROACH

~ Summarize structural setting of the 1927 earthquake location

~ Establish structural association of the 1927 earthquake

spatial association

style of deformation

fault geometry

fault dimensions

~ Characterize the Santa Lucia Bank fault as a seismic source

deterministic and probabilistic analysis ~a"

I,

j~ y' 'j g1

36o

~ ~ ~ ~ +o ..~

~ ~ ~ res' ~ oo ro , ~

', ~ Offshore , ~ '> I ~ I l I /

35' I r ~ r ~ rere Pt. Sa '"" ll' ')X)g ClismsltIFnull 8 t(, +~ ~ x od ~,o ~ X StcllctUcd W+„Fd Ult

'K x% '"'" ~" r~ t ii ~ re,~r n re' e gS

1927 Lompoc Earthquake 0( ~RU-10

'll, 0 20 km 34'220 121o 120O EXPLANATION ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ Marine reflection line Airgun refraction line Sonobouy recording High explosive shot Refraction recorders Seismograph station Note: Base cnap explanation provided In PGK E (I988. Plate 3). 0

k'~Vs 1971 1955 1985

360

APril 1g EXPLANATION 1981 Limitotg

1999 1919 ) ", 19'c \ '986'. \ 1969 3EMcS

197S~ ~ tlrat~otlon Piota White —Dilation I Black —Ccmq~salon I I '19&2 Oct. o+ >1969 '.~e '0Z q +"-'-t999 "~ 0 (9 'L )

.1969 r

0 20 km

121'

Diablo Canyon Power Plant 8

5~ 125' 124'23e 121' MFZ ~ ~ ~ ~ ~ s s ~ s King Range s s

~ s e ~ e s e EXPLANATION San ~ ~ Simeon ~ Psieosubduoiion zone s ~ Sinks slip Point Arena

F~ ~ s S~

~ e s

s ~ e San Gregorfo Fault

e ~ 3T sr San Simeon Fault

~ ~

~ ~ e ~ ~:: !,', 0/y'.:.:.:.:.:. Sari - ~o>:i::::::,, + Simeon e Santa Lucia-Orocopia Allochthon ~ ~ s rr Sur-Obispo Salinia 4' e ~ Composite s ~ +ps s e s e s rr spS s e e e e San Simeon Stanle Mtn. Gy 125'24'23e M~gnrr

122'21'20'odified

from McCulloch (1 987) C

Ng ~ p

4

T

~C .

l' Chapter 2 Page 2-68

374 0 ~ 0 ~ ~ rf, f% ~ o 0 ~ 0 ~'o ~ 0 Do ~

e 0 ~ ~ ~ 0 0 0 yo ~

~ Oo ~ ~ 6 ~ ~ 0 o j Ob g ~ y ~ ~ ~~ ~ ~ a ~ %. (q~ XgC 4». ~ ~ 0 0 r ~ ~ 0 ~ ~ ~ fbi Oe q 0 ~~ ~ ~ '.o 'o

Oye q 0 0 ~'0~ P" ~ h

t I I IIJbgnitu de I 35' ~ 0.0 —0.9 I I X ~ ~ 1.0 —1.9 I o 2.0-2.9 q Ox ~ ~ 0 3.0-3.9 ' Oo 4.0 -4.9 5.0 —5.9 6.0 -6.9 e

0 o 0 ~'""0 ~/ 0 00 0 20hn c4.""

'21'

~ .Diablo Canyon

IZ ~ Area of earthqu@ces discussed ln text

NOTE: a~ Inep exp4netIon provided on pleIe 3.

Figurc 2-27 Map of'seismicity data from the U.S. Geological Survey and CaHfoznia Institute of Technology, January 1, 1980, through May 31. 1988.

Pacmc Gas and Hectrlc Company ~

pi

>El' k

L

~ ~

'e k

lablo 0

~ .:4~e' ~ ~~ "/Sire

, ~ '> l ~ ~ ~ ~ ~ $ ~ ~ l J l I ~r, 35' I t rnnn ~ re , ~

ke ek ~ ~ ~ 0~' ~ rrn ~ X r~tl 4 ~s<

W, ~ \ g/r ~~r 0 20 km

121' EXPLANATlON ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ Merlne relleellnn line p~keln eel~~k Airgun refraction line Q Sonoh y recoHino 0 Hi~ awPlos Refraction recorders i SeiNnogrsptl station ~ Diablo Canyon Power Plant a Magnitude Mw vs. Surface Rupture Length

Strike Slip Faults, 30 Data Points o e 7 tD U ~ 0 ~ ~ cn 6

Mw = 4.90 + 1.24 log(Rupture Length)

10 100 103 Surface Rupture Length (km)

Wells and others, (preprint)

Magnitude Mw vs. Surface Rupture Length

Reverse Faults, 10 Data Points

V. ~ ~ 7 UI

m 0 6

Me = 4.29 + 1.69 log(Rupture Length)

10 100 Rupture Length (km) 10'urface

Wells and others, (preprint)

Magnitude Mw vs. Rupture Area

All Slip Types, 94 Data Points

/ a D

U 6 O

Mw = 4.12 + 0.97 log(Rupture Area)

10 100 10~ Rupture Area (km2)

Wells and others, (preprint)

Magnitude Mw vs. Rupture Area

—+ Strike Slip Faults —* ~ Reverse Faults 8 —a ~ Normal Faults V 7 Ol U

o 6 U w)r~ ~r~

10 $ 00 )0" Area 10'upture (km2)

Wells and others, (preprint) Jl

P( '1"

,l f,

1 t

pL

f i Sense of Sovthem Oflshore basement I separatbn Santa Maria Baslnl~g

H „Q Faugh o

0 rC 0 0 0 ~~ 0 Q 0 0 0 0

0 0 0 0 0 0

ttott,

1927 Lompoc Earthquake . +M4~ (Lat. 34.35'N, Long. 120.

5 ~>a~=.,

Sl'5'N+ 121'rtN

0 0 0 otsOO 0 0 0 0 0 0 0 0 0 0 10 mlles 0 0 0 0 0 15 kilometers

Uncertainty endoses SSS-S Sources of fault data: bcatbn estimates and uncertainty ~ McCulbch, 1987 In tsunami katbn (see Response ~ Wilngham and Kamllton, 1982 to Ouestbn GSG 5) PGaE, 1988

( baC» MAGNITUDESANTA LUCIABAI'QC FA'ULTZONE

65 Reverse 7.35 65 Strike-slip 7.15 65 780 Reverse or S~e-slip 6.93

GROUND MOTIONS FROM SANTA LUCIABABBYFAULTZONE

M i m 34~h ~i'5 ~l~i~n Mw 7.1 km 0.11 g 0.16g 4 10-1

~ Hosgri 10 Santa Lucia Bank I aa/)r 10

10

10-'0

8

.25 .5 .75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 Spectral Acceierction 8 to 8.5 Hz (g) t

'

),I QUESTION GSG 9 arge¹Ic stt¹cture o¹ iWch the'4 Nmentber 1921 attti'tqsake oceanwF should be identijied and evaluated for meah¹ea wWq¹akc"potetuial and its closest approach to the Diablo Cmrpevt site. hccount for this in both the,pnabaMhttc oaf Sc iktet¹sMNfc ttsttt5eet.

CONCLUSIONS

~ Several lines of evidence suggest that the 1927 earthquake was associated with the southern Santa Lucia Bank fault zone:

Epicenter lies within southern Santa Lucia Bank fault zone and close to prominent fault-and-fold couple seen in RU-10. The couple lies along trend of Santa Lxia Bank fault and appears to have similar history of activity and style of deformation.

Contemporary style of deformation along Santa Lucia Bank is compressional, which is same as focal mechanism.

Strike and dip of Santa Lucia Bank fault zone are consistent with focal plane of 1927 earthquake.

Size of 1927 earthquake suggests source structure is relatively large, laterally continuous fault more than 100 kilometers long. There are no other large, prominent faults or folds identified in the source region. ~ Alternative candidate structures are unrecognized fault within Santa Lucia Bank High or fault within southernmost offshore Santa Maria Basin; therefore, Santa Lucia Bank fault zone i's a conservative structural association for the 1927 earthquake.

~ Evaluating the Santa Lucia Bank fault zone as a seismic source results in a maximum magnitude of Mvt 7.1.

~ Deterministic and probabilistic ground motions resulting from the Santa Lucia Bank fault zone show that it has an insignificant contribution to the seismic hazard at the site. r<

R'(

)4'

J

fgJ' QUESTION GSG 10

Plmkk a ~e ofthe pnerentatiott tnade by Jay ¹nrson. Discttss and neittate any consistencies or inconsistennes ofhis tnodel wbh the PGBE geologic and geophysical Jieid data.

APPROACH

~ Evaluate structural cross section presented by Namson

Theory

Assumptions

~ Evaluate consistencies and inconsistencies with observed geologic data and kinematic constraints in the region

~ Evaluate applicability of model for seismic hazard asseument VQQ ~ ~ ~ ~ ~ ~ 4 ~ ~ ~ ~ 4 4 0 ~ 0 0 ~ 4 ~ ~ rnnr ~ 0 rpe ~ ~ ~ . 0 ~ 0 l00 ~ led SSI As 00 0 ~ ~ 0 ep re 0 en ~ (tI'oc( w ~ 40 00 0 Or ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0 ~ 0 ~ ~ ~ ~ ~ ~ ~ ~ ~ O 0 4 c ~ ~ epo p~ 0 phoo ~ ~ ~ ~ y 0 O ~ ~ ~ ~ ~ ~ ~ ~ ~ 0 ~ ~ ~ F. ~ 0 ~ ~ ~ ~ 0 di ~ ~ ~ '0 ~ ~ 0 ~ ~ ~ yQ'0 0 ~ ~ ~ h ~ ~ ~ ~ 40 ~ J ~ 0 ~ 4 0 0 ~ ~ ~ ~ ~ ~ ran ~ ~ lrc«(h, ~ ~ d' 't ~ "oe»S:, ~ ~ + 0 ~ ~ ~ ~ ~ l e" ~ ~ CS 0 yp 0 ~ ~ P ~ ~ 4 ~ 0 ~ ~ Ce ~ ~ ~ ~ h ~ Chrt I F 0 ~ 1 I ~ 0 ~ 0 'te 0 h rl 0 0 ~ ~ ~ 0 ~ 0 ~ ~ ~ '''

'eol 0 ~ ~ 0 ~ ~ ~ SLO.:

0 P 0 4~ t hhhhh h 4< 0 ~ CS ~ 0 0 po ~ ~ ~ ~ ~ es so 00 ~ p y ~ 'MOCngen .shy'.'. ch.'h ~ ~ sc ~ Y ~ O ~ 4 ~ Uy ~ ~ ~ 0 4 ~ 0 O ~ ~ c ~ 0 ~ 4 ~ ~ 0 ' 0 4- 0 -.,c tg V.O. ~ 0'tsr '4e ' jSMe ~.. 0 ~ l 0 0 ~ ~ tepee p(norm snocoyenb ~ ~ 040 00 00 eo ~ ep, 0 ~ 0 ~ ~ ~ ~ 0 ~ 0 ~ oo~ cs C3 0 ~ ~

0 ~ ~

~ ~ ~

~ 0 C

~ 0 ~

~ r acerb ~ ~

~0 ~ ~ 0 0

ce 4 yF~~Oyy 0 ~ ~ ~ ~ q 0 ees c( 0 end ((ceps Fonnssbne C ~ ~ ~ e pope ~ ~ ~ ~ Und(been%a(ed Eoonle Q tppec tuceseb nilte ~

Fcaebcm Conpbs end Coesl ((snye OphbRe Cetcymecenyceed sensory(

Und(fwentbled ycen'Cb end ynebsb ccc(n o( I» Se(nbn bbA

ep t ~4 t %ft ~ C

g f

'I"s

~P A

8',

" ' R4N~ ~:~ '%~MFW~ E' ~ N~~~Ã~P..

I'la + w ~ ~ + ~ q )q I l~ )r'\ g'l) )q 1) ) )r 1 r r r g o)g ! ) ) +% ) hl s! )g+ %)lr I)1)+ ~ )'1 I )11 a r I )1 W)1) )I~ ~ \1( 1 r+ 1 )ps 1! r)1! ~i !r ( )r! + \I ~ ~ % (I I w ~ 1 I ~ %r ~ ~ ~ I~%\ ~ ~s l~»>1 ~ !r)rl)alp+)l ~ ~ ~ r)%a I

8'

~ ) 8 A

Fault tip Slip

% ' 1 \ ! Ir 1 ~ + )w ~ ~ 1 gal(1(1 I 1 I I(Iq ! ~ q rl)W!s)qil1) Iigb 1~ ~ ) 1) ~ Plr! I 1) ) I ~ )1) w 1 ~ (1)11!'d1 1( ~ ! ! I>r r 1 ), 1)1' 1) Ã~

CQ

g~lq y

e

v KO : Santa Ma a Provlnclal Maria Plsrno Huasna l.a Panza Range Ill Stages Basin Basin Basin Carrizo Plain Area

~ 0 .et a ian Paso Robles Fm Paso Robles Fm n es QTu Garea a Fm Plio- enturian Morates Fm cene ee ian oxen m Pismo Fm eimontian Sisquoc Fm Santa Margarita Fm Santa Trrsp Mohnian 10 Margarita Fm Monterey Fm Monterey Fm C Monterey Fm VI Luisian Monterey Fm Relizian Point Sal Fm Point Sal Fm iso m Obis o Fm bis o Fm Saucesian Vaqueros Fm 20 Lospe Fm Rincon Fm Rincon Fm Tom Vaqueros Fm Vaqueros Fm CD 8r Simmler Fm CJ Zemorrian

CXI Sespe Fm Sespe Fm ~ ~ 0 tH Refugian Ynezlan Oro geny 40 e C Narizian Unnamed o TKu V Strata 0 50 tll Uiatisian Penutian Buiitian c 60 Vnezian Cl O Danian err 6 Unnamed KJu TO Unnamed Strata Creta- Knoxville Fm ii Strata ceous rystal ine KJf Mzgr Franciscan Franciscan Franciscan Basement Jop pCgn Salinian Block 0 Phmo 8astn

Hosgri Fault Zone Mid-Cenozoic unconformity

Ta

Qf)op gh I

1

W* I

l'f

J II

P Lornpoe - uutlstrns bsn Antonto - Los Atsrnos Oreutl Antkttne Antkllne ylotnt ben Lute Antkllne b byncttne

va a Weel rIP000 raas XIVI a aaaaa a Ia la 1 100 ~ I+ ~ ~ ~ Up~-, aaaa apaaa F00 I / / 'la / / -t ~wtlrpa Sor ~ lala Tlwlr

Oe 00

1 ~ le u0

1 ~ IPI

~aa Iaa ~0 lm lala

SI 00 V40 ~aalear a IVIIa~1000

~ 00

0 00 rha000 aepe ~ F

k r

2.0

1 t 1.0 1.0

'gag * X i'I'%24)g ( r pP~ P~

~ -1.0 1.0 S-1 neVyt -1$ 40

L%bC~~ QllCOlllNTTSI7 0.5 km eickcning I k wX( I i5 ' -5 / ~ / X / --r---.. C 7 ug -10 // -10 W / -15 0 10 Krn -15 t e

v> i< , 'arq J'eta

p~ ~ * QUESTION GSG 10

inconsbtencies ofhh model with the PGcLE geologic and gmphysical Jield data.

CONCLUSIONS

Namson and Davis (1990) apply fault-bend and fault-propagation fold theory and techniques to evaluate crustal structure in onshore Santa Maria Basin.

~ interpret basal detachment within basement at depth of 11 to 14 kilometers

~ detachment overlain by series of southwest vergent blind thrust faults

We disagree with the crustal model for several reasons:

~ assumptions inherent in the modeling approach are not valid in the region

plane strain deformation

basement deforms in manner analogous to brittle, bedded strata, that bed length and thickness are preserved

~ crustal model is not consistent with known, observed geologic and kinematic data in the region

rates and patterns of observed uplift

location and dimensions of active folds

original horizontality of mid-Cenozoic unconformity

omits several known Quaternary faults

Rates and style of deformation derived from model are not appropriate for assessing seismic hazard in contemporary tectonic setting. ~ 0

kl PACIFIC PLATE NORTH AMER(CAN PLATE

San Andreas Fault

WW/I ~ ~ ~ ~ ~ A 8

Brittle-Ductile Transition

Plate Boundary Ulhosphere

Aesthenosphere

Coast Ranges

e D F

Qa Qv ~ Boundary

Tectonic Thlckenlng Inc!plant Subduction Uthosphere Aesthenosphere 0

JN 30'0'0'5'

~

~ ~ 121'0km 50'0'

30'XPLANATION

Lower hemisphere flrstmotlon plots White - Dllatlon Black —Compression

8 Dfablo Canyon Power Plant '4I + 36'30'l11'20'

36'30'/rr

oo

0 20 km

+ 35'30'22' 120'

35'30'N

eh ~ 5e c

1 PocNce

~ ~ EXPLANATION 0 DloHo Canyon Pewor Ptent —~ - Poelgl doned ashore oppreclmor~ loco(ed, Inlerred, or cencoolod e

Pc- i) .A '/ Sur/ObirpoterraN~Srtinimblrrcit~

Santa Lucia Santa Lucia Hosgri Nacimiento escarpment bank fault zone fault zone Coastline

4. 4.0 r 6.0 4S LO 4.0 61 52 54 6.0 6.6 5.6 6$ 6.7 'S 5.8 r L4 6.7 7.1 5.8 8.0 20 7.1 '42 8.0 7.1 7

-120 -100 40 -20 Distance (km)

EXPLANATlON Numbers inside model ~ velocity in iun/sec ~ 4

1 30'980 - May/1988 Relocations

0

~ 0 0 ""4 Magnitude v,~ 00 —09 ~ 1.0 —1.9 Ej o 2.0 —2.9 0 3.0 —3.9 20'0' O~ o~ 0 ~ 0 ~ ~ ~ faulr Oyy ~ g G~ ~ ~ 4 r ~ o 35'0'21'0'0'0'0 20km Diablo Canyon Power Plant

NOTE: Base map explenet:on provided on Plate 3,

8osgri fault zone A'echo fault ~ Los Osos fault zone A B r B' 0 ~ ~ o ~ '0 ' o~gq ~ ~o 'b ~ ~ E ~ ~t 4C o o P o -10 0 -10 0 ~ 0

CL ~ ~ ~ O ~

-20 -20 v 10 20 10 20 Distance {krtt] Distance (km)

30'980 - May/1988 Relocations

o ~ 0

~ Magnitude 00 —09 1.0 —1.9 o 2.0-2.9 0 3.0 —3.9 20'0' ~ ~ ~o o ~ o 0 ~ ~ ~ ~ '' ~ ~ fg ~ . .. ( ~oe, rz ~ ~ o «0 oP ~ ~

0 20km 350 10'21'0'0'0' Diablo Canyon Power Plant

NOTE: Base map explanellon provkted on Plate 3.

Hosgri fault zone Pecho fault ~ Los Osos fault zone A As 8 r 8' Oo ~ 0 (p ~ ~ g ~ ohiog «o 'b E o ~ ~W E o ~ -10 0 -10 ~ o

C1 ~ ~ ~ O O ~

020 -20 10 20 0 10 20 Distance (km] Distance {km) I

L7

P.

l QUESTION GSG II

Probablllstic aaf deterministic analyrer. (ineiuding a logic tree) for thc hypothesis ofa kCad tbmt and thc'neiusion ofa ¹mson-type model in thc analysis ofthc compression ofthc'an Luis-Pismo Block should be provided.

APPROACH

~ Develop structural cross sections across San Luis/Pismo block using theories and techniques of fault-bend and fault-propagation folding

~ Incorporate all available data regarding the location and rates of Quaternary deformation

~ Identify possible seismic sources

~ Evaluate earthquake magnitude and ground motion from the modeled seismic sources

Probabihty CumuLatiee ProbabiLity c tk XJf / ~r

k GAMBRIA BLOCK cBBQ

0.0 E~~ ! X+Cy 0 10 ml

Esroro 0 15 km aay 50.0 ~4 O.B< " ~l ~gag~+ «".l~ 0.20 ase1s'+ ~ LccBe +ee ce t2t'co'.20 PIBMO BLOCK W 0.19 ~~-~W'~~+~ RANGE BLOCK Bay Fault 0.11 a4.y, r 0.13

0.15 jlj/////pg~~ //<./p/

0 Dtabto Canyon pcBtrer plat SANTA MARR VALLEYBLOCK ~ neee cene ee eneceeee ce eyncnne 0 20 0oastal upRft or subsldenco rata lnmmlyr

eo ~~olsaucaa~ ~ +<'@~a~

~/j/j/jj//j Souewrestem bourgzgy ol the ~0q.g~XQ 'an Wls/Plsmo structural block

10-'

10

10

10-4

10-'0 4„

10 7 —HosgrI Blind Thrust

10-8 .5 1 1.5 2 2.5 Spectral Acceleration 8 to 8.5 Hz (g) l't GROK'6) MOTIONS FOR POSTULATED THRUST RAMP

Peak Ir in F I a ni Mgdi~n 34th Postulated Ramp 6.1 0.39 0.67 Postulated Ramp 6.3 0.45 0.74

10

10

') A

10 ~

10

5.5 6 6.5 Magnitude, Nm 'E :0

all Magnitude Mw vs. Rupture Area

All Slip Types, 94 Data Points

e (P e 0 ~

Mw = 4.12 + 0.97 log(Rupture Area)

10 100 10~ 104 Rupture Area (kmZ) l LV Rupture Length (km) Rupture Width (km) Slip Rate (mm/yr)

21 0.16 0.6 0.2

Thrust Ramp 35 0.21 0.3 1.0 0.6

0.26 0.1 0.2 -'i<

) 'I)"

C

l~ r

:h

d

1O J

V

I Jg EXPLANAI itIN A

A''opoarephlc profile IF laura 2 t 7l

Offshore Structures Faults solid where well constrained. dashed where infened and well located; doued where inferred and approximately located

~ ~ Structurally complex xone

Onshore Structures Fault; dashed where approximately located; heavy dot where concealed but well constrained; ilaht dot where Interred

burled monocllne ~ arrow shows direction of downwarp ~jg(8~ 8g . 0 Step In bedrock, uncertain origin; bar and dot on lower side r ~ Diablo Canyon Power Plant

~ ~

~Ose

lrre ~ I \ g l~ rare ~ A 4~ ~ Olson Fault ~ ~ ~ ~ ~ San Luis Bay Fault aran Srx Lvlr

0

Argex ~ ~ s ~ o s s 1 \

bkm Contour Interval ~ 200 feet

Note: Base map from Plate 3 J

1 Magnitude 4. 00 4.50 5.00 5.50 6.00 6.50 7.00 7.50 4.49I 4.99I I I I I I I Oepth 5.49 5.99 6.49 6.99 7.49 7.99 (km) 0- 0.9 3 1 0 0 0 0 0 0 1- 1.9 14 4 0 0 0 0 0 0 2- 2.9 8 4 1 0 1 0 0 0 3- 3.9 15 2 0 1 0 0 0 0 4- 4.9 23 3 1 0 0 0 0 0 5- 5.9 47 14 0 1 0 0 0 0 6- 6.9 28 ll 0 0 0 0 0 0 7- 7.9 13 5 1 2 1 0 0 0 8- 8.9 39 16 2 2 1 1 0 0 9- 9.9 14 6 0 1 0 0 0 0 10-10.9 20 8 0 1 2 0 0 0 11-11.9 13 10 2 2 0 0 0 0 12-12.9 5 4 0 2 1 1 0 0 13-13.9 7 2 1 1 0 0 0 0 14- 13 7 2 0 0 0 0 0 C E 42. 42.

Magnitude 0 6 0 7 0 6 oh 0 5 pO o 4 p pX 0 1970-1986

o 0

oO o @0 op

32. 4 'I

Jt1f 1971 1973 1966 1968 1969 1979 1980 1975 (b) San Borrego Fernando P™gu Parkfield Coyote Mtn. Coyote Lake Liverrnore Pocatello Valley 0 10 20% 0 10 20 30% 0 10 20% 0 10 20% 0 10 20'% 10 20% 0 10 2016 0 10 20 30%

see IsA e.o s.s 10 d.4 5.3 E 5.8 d. $ 15 o LU S S S Q T / T ~ N 46 dO N=48 N=143 N =298 N=65 N=111 N=62 N=500 20 A A+B

From Sibson, 1984 w\ ~ ~

~ ~ .

I ~ ~ ~

~, ' ~ « ~ ~I,I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ \ ~ ' ~ ~

I ~

~ ~ ~ I I ~ ~ I ~

~ ~ ~; ~ ~ ~ ~

~ ~ 0 ~ ~ ~: ~ ~ ~

~ ~ ~ ~ ~ . ~ &2'll'07

Los Os~

QI g~ i~o IS'oF +w'I'x

~ c+

DrW hole

D Otson '~h D Favtl +aim MI0+ 'I 2ft4F lrl'CCr fautt u O h~' ~ ~~een~ O~~ Fault

u D o

EXPLANATlQN

~ I ~ ~ Fault, dashed where foca5on is uncertain; dotted where interred by B model; U up, D down 8'.30 0.30 Map projec5on of major monoctfnaf an5cfkre axial surface; arrow Indicates dip direc5on g 0.20 E Map projec5on ot major monoclinal syncHne axial surtace; arrow Indicates dip dkec5on P 0.10 1 0.10 I Map projec5on ol major syncfine axial sur face Mode B F.f"'~~ Map projec5on of underlying fault ~~ Observed uplft rate Dkec5on ot transport on lault ramp Upliftrate predcted by Model 8 Diablo Canyon power plant dlt lee ree rr r~

vl I ~tv eeC~

Model I Aeelaed 5ecrron ffalfa Oafa Sfa faaaaf tfaf los Oeef fafaa ~ aa laa faa faataa

~W

Affa faa

\

Model A l4flOnHSeCIOn Pg

j» f(' ~ QUESTION GSG 11

Ptobablllstlc and dctcrministicanaEyrcr (including a tree) tiu. a hRaf and i logic for hypothesis of tbmt thc indusion ofa Namson~ model in thc nudysis ofthc compression ofthc'an Luis-Piano Nock should bc'rovidad.

CONCLUSIONS

~ We provide a structural analysis of San Luis/Pismo block using the theories and techniques of fault-bend and fault-propagation folding.

~ Two significant problems encountered in modeling the San Luis/Pismo block:

assumptions required by the technique are not supported by geologic observations of neotectonic deformation and rheology of Franciscan Complex basement

structural solutions are non-unique because of sparse subsurface data

~ We constructed two cross-sections that span range of permissible structural solutions:

sections are end-members representing extreme styles of deformation in basement

~ sections incorporate to extent possible all observed data on Quaternary deformation

~ ~ ~ In one model, all of the deformation observed at surface is accommodated in upper 5 ~ ~ ~ ~ hlometers of crust; unlikely to be associated with earthquakes having M z 5.5.~ ~

~ In other model, postulated blind thrust ramp is assumed to be a seismic source and logic tree is developed.

~ Contribution to seismic hazard at site is not significant. pg h k

gt

= u

gq" '

4

+1

-'I

1~ QUESTION GSG 12

Provide the new infotmatlon which was presented at rhc meeting about thc pull-apart basin at the Sea Sbneon-Hosgn stepover.

APPROACH

~ Describe offshore structural relationship between San Simeon and Hosgri fault zones

~ Prepare structural trends map, isopach maps and structure contour maps

~ Evaluate geometry and dimensions of pull-apart basin

~ Discuss implications of basin for evaluating rates of deformation

Monterey Bay

g 5 + 36o30 5 121o

~c

+o

20 mi O~

20 km G~ Vp

San Simeon 35'30'22'e 120' + Bay Estero 35'30' Bay

Point

Pp San Luis

EXPLANATION ~ Diablo Canyon Power Plant +o Point Sal

Point Arguello

+ 34'30'21O *g8

,t 1

'I 9 seafloor samples of San Franciscan Complex Simeon Point San 33 seafloor samples of Simeon Monterey Formation Bay xo~ X EXPLANATION Fault, dashed where inferred, single tick on downthrown side, teeth on upthrown block of thrust fault

Axial trend of syncline

Seismic reflection line shown in zo t GSG Q1-A

Area of GSG Q12-9 and GSG Q12-10

oint tero

Estero Bay

5 km ($ a hinn 12-A March 1 Pa 7

TIME (Ioconde) TIME (seconds)

a a a a O O O ei O OI O O D 'aI

O C

Cl I Ol CV IO C CY O C o Q ~ W g Vl Q 'a It5 O Ul K IIII O Ch tee N O I- CL O O < II,I"jl

LL I CA C/7 K C9 .I 2 0CO o o 'a x E a I ~ (

I a O ~ I

a a o O O C O CV O ei

(OPUoool) ggglJ (tPllooo'I) PPg J I

Dd " i ~

l~

4 h

4 't

II r )2-A M

TIME (aeconda) TIME (asconda) O 0 0I 0

al C 0CI O ~ v $4 'OI E

a>

0cI ~ v v ~ \4 CI g 0,0 4o CY v'Oql C C o Q ~ H g Q c 0 cI al ce O R Vl Cv O CL z ivQ a)' 0 N A l/l

O '0 ~ v g 9 ca ~ ~ K Q C9 ~ pe ~ 6 tO 4o p g LO ql 0 K c ~La O

L J ~J z 0 0 0 0 0 2 0 Ol 0 III 0 X H (epuooea) BWIL (epuooee) gyyg h 0 7

~ k a)u

u'>D

r+ ™m D ug uD Point E

As Est~ g Bay D X.r

S2 ~ . u

$.3

D EXPUWATION ao '+s«~ Southeast pefaction ol San Skneon Iaull zone D « // —- Fault tdashed where lateral contstuity Is [ ~ '5 inleted) +4

un nv nu Boundary ol San SsneorvHosgrl l pul apart basin

Erosional truncatktn of pliocene sediments .20 —-- Two way travel time contours to base ol Pliocene sediments; contour Intervaf .10 seconds, dashed fates are supplementary contours at 0.5 seconds Intervals ~~ East fa6ng seafhor step Lif ~ Cretaceous or twassfc Franciscan Compkrx rocks al @ver geology location I

f<

- o)u

+o U)D - U)D

I D U >U D D

eo

D I u UD

I X++ t o. E~ g Bay

S- UP/ D

lao~ EXPLANATION D 5 U Southeast projection of San Simeon fault zone

Fault (dashed where lateral continuity is s tQ~~~ inferred)

IIII I la IIII Boundary of San SlmeonrHosgn pul.apart basin

40 ——Thickness contours ol post-Miocene deposits: contour interval 40 meters, dashed lines are supplementary ,u contours / at 20 meter intervals ~ Zero thickness ~~ East. facing seaftoor step KJf ~ Cretaceous or Jurassic Franciscan Complex rocks at diver geology location I'1

fp ! San Simeon Point

+o S.

q

5km

Estero EXPLANATlON Bay ~ A Fault, dashed where inferred, single tick on downthrown side

Area of seafloor bedrock outcrop

Post-late Wisconsinan sediment l thickness > 8m - ~

ph

I

ll A Post-mid Pliocene 0

~,w, ) „,4'P' '.w,~C-

San Simeon . Fault Zone

B 0

:..-:.'",,;::::-:::::::."::..a ',.";:.-'.:.:'::.:."..':.'..'::::::.':-.:::..:-:.:.':.. - ':~iinS~~ Hosgri San Simeon Fault Zone Fault Zone C 0

;:Dma I Dl~

Hosgri Fault Zone

0 3000 Feet

0 1000 Melers :

V pl' Estero Bay i 'an Simeon F auli Zone

Hosgri Fault Zon 6 mt 8 km ~ Thickness of post-Wisconsinan sediments a 8 m gg Area of seafioor bedrock outcrop

A. Hosgri/San Simeon Stepover

Dead Sea

t> tTrrt ~ ~~ ~ fI Jordan V. Fault 'I 4rava ~ uk~ ~ Fault Arava Valley

Late Pleistocene-Holocene Dead Sea Basin Pliocene.Pleistocene Sedom Basin Miocene Hazeva Basin 0 20 km

B. Dead Sea Fault Zone (Manspeizer, 1985)

Saudi Arabia Dakar Basin

Tlran Basin Aragonese Arnona Gulf Elat Basin Basin Basin of Sinai Aqaba

0 20 km

C. Dead Sea Valley - Gulf of Aqaba (Ben-Arraham and others, 1979) '4". F

~ I

~ ll

, ~ ~ 4

%P

* 0 Estero <. San Simeon Bay Favlt /onone

Mosgri

6 mt 8 km ~ Thickness of post-Wisconsinan sediments z 8 m gg Area of seafloor bedrock outcrop A. Hosgri/San Simeon Stepover

Hamner Pialns yi:~i'~ Buigein ~ terrace

B. Hamner Plains, Hope Fault Zone, New Zealand (Freund, 1971)

1942M rupture

1939 rupture 0 10 km

~ C.~ Niksar Pull-apart Basin, North Anatolian Fault Zone, Turkey (modified~ ~ from Hempton and Dunne, 1983) 4* lk Estero an Simeon Fault Zonone Bay/

Hosgrl Fau(ta" f Zone

8 km Thickness of post-Wisconsinan sediments > 8 m gg Area of seafioor bedrock outcrop A. Hosgri/San Simeon Stepover

Boundary of topographic basin

Gholame Southwest Valley. S anAnctr aq Fracture pRent Zone

2mi 3km

B. Cholame Valley Pull-Apart Basin - ~

p

~ 4* ~ r

I

hk 'jI '

lh

Z',

'~ 5.

A

) ~ I LINE wEST Gl-3593 EAST

300 JORDAN R. 300 200 200E-m hi 100 100 0 1 rim 0

200 150 100 50

.0 ha'raaa rr ar ~YYA >nT( ~ h r« ~ ~ ~ ~ ~ Wa I a'«

~ W +rYEYahs«+' ra ~ YaarASS aa ar Q ~ Y ~

, aar'ar~ Y«aY+~«SESV, ~ ~ h ~ V arYESYS« ~ \ «~+/ * «aa«r Vr'sr' ~ Va ~ r p~rCh ~ «Aaaaaasa r 1, 1.0 O , a r~~ ~ + ..„yr ~ ~a«Y ~ . rsaavr~ ~\ aa . was' 2 ~ ~ «~a ~aa, ln m r r ~ rYEYST Era'L ««Aaan'1 " ~m ¹V'. hasar 2.0 W 2.0 ~ V r ~ )os ~ ~ «rr

~ paa ~ Aa«A ««a~ ~ ~ I/ ~ ra, r~a'S.'1 Moshoshm Rosh Pinna Saddio SSoss P 2'h¹h 200 150 100 50 0.0 '.0 ~ Yaa Y rr A ~ EY

'

~ w~ ~4 ~ W+hr~ W 1.0 1.0

S:v 0 g~ r ~ w r 2.0 «V. a':

From Rothstein and Bartov, 1989 0

iW (g Cj~

1 -3 mrn/yr

S San Simeon- + —y X Hosgri Stepover

s separation o overlap x ~ offset y depth (os os ~o cPyg~

~c Diablo Canyon 0 10 km

CD 0

9 PCS Table GSG Q12-A.2

ESTIMATED SLIP RATES ON SAN SIMEON AND HOSGRI FAULTZONES BASED ON GEOMETRY OF SAN SIMEON/HOSGRI PULL-APART BASIN

SLIP RATE Estimated Observed Master- Observed Basin Calculated Subsidence Rate Fault Overlap Estimated Age of Depth (assume basin Offset or (calculated from (assume overlap Sediment depth is 2 observed Basin sediment thickness ~ offset or basin Model sediment thickness) Stretching and sediment age) stretching) 5.3 Ma, 2.8 Ma 18 Ka

}t~od ears 9~80 y ~ 0.10 x (where o = 2s) y ~ 0.2& km x a 2.8 km (not applicable) a 0.53 z 1.0 (maximum post top mm/yr mm/yr y ~ basin depth of Miocene or post- x offset mid-Pliocene s = separation (spacing sediment thickness) between master faults) o overlap y a 0.012 km x 2 0.12 km z 6.7 (maximum post-late- mm/yr Wisconsinan sediment thickness)

y a 0.006 km x 2 0.08 km 8 3.3 (average post-late- mm/yr Wisconsinan sediment thickness)

x ~ 10 i 5 km 1.9 J 0.9 3.6 g 1.8 mm/yr mmlyr

Woodcock d ischer 986 subsidence ~ ~ slip y ~ 0. 28 km (not 0.28 km/5.3 Ma ~ x ~ 10 + 5 km 1.8 J 0.9 rate x rate applicable) 0.05 mm/yr mm/yr y depth y 0.28 km 0.28 km/2.8 Ma = x = IOJSkm 3.6 + 1.8 0.10 mm/yr mm/yr x ~ length of basin

SAN SIMEON/HOSGRI STEPOVER

~ Northern Termination of Hosgri Fault Zone ~ Southern Termination San Simeon Fault Zone

~ Right-Releasing Stepover ~ Active Pull-Apart

~ Theoretical and Empirical Models of Slip Rate Consistent with Transfer of Lateral Slip Between San Simeon and Hosgri l4 QUESTION GSG 12

Provide'hc new information which was presented at thc meeting about the pullwpatt basin at the See Simeon-Hosgd stepo~.

CONCLUSIONS

~ San Simeon and Hosgri fault zones are prominent, basement-involved structures that approach one another and terminate in near-offshore region between San Simeon Bay and Estero Bay.

~ Faults form en echelon right stepover 10 to 12 km long and 5 km wide.

~ Late Cenozoic subsiding basin is present in stepover region.

~ Dimensions of basin indicate that 1 to 4 mm/yr right slip is transferred across the basin. 4

(*

vA .P;,

I

4 (,

J QUESTION GSG 13

Trenching on thc'an Simeon fault zone indicates that thcrc is an important strike slip component on thc Hosgri fault ofabout 1 to 9 mmlyear contributed by the San Simeon fault. acre'iny also be a contribution frtnn the P/edras Blancas zone. Provide a discussion as ro whether thcrc is such a contribution and ifso its size and sense ofslip.

APPROACH

~ Evaluate geometry and rates of deformation of Piedras Blancas antiform

~ Evaluate contribution of vertical and lateral slip from antiform to San Simeon and Hosgri fault zones. I I„

iJ EXPLANATION San Simeon Diablo Canyon Power Plant Oy Point ~ ~ ~ Fault, dotted where inferred

Axial trend of anticline or o syncline Piedras Point Blancas Estero Antiform

Point Buchon Point San Luis South Basin Compres sion al Domain~ ~ ~ ~ ~ ~ ~ ~

Point n.' Arguclio ~o

20 mi CO;. ~

~ ~ ~ ~ 30 km l yl'ag ', 6'. Point

0 5mi

0 8 km .„.,i Arroyo Del

Biancas 'll r( 0 S '% -"-"'rg V I](( Piedras Projection of Blancas San Simeon I Fault Zone

OCambria

?

EXPLANATION tr

~ ~ Fault, relative sense of motion shown, dashed Hosgri

Thrust fault, sawteeth on hanging wall, dashed where location not well constrained, dotted where fault does not deform late Pliocene strata

Anticlinal and synclinal fold axis, dashed where location not well constrained, dotted where structure does not deform late Pliocene strata C4 4 pp

e

8,

~

I

Ca

h~* SN 0 10 km 0.0 ~If8 ~ y 'Pt~ II eP 0.0

phoae'n

1 .0 1.0

0~ Ba gpss

2.0 2.0

3.0 3.0 J-106 (Localion shown on Figure GSG Q13-2) P,

H g

t Folding 8 Flank Piedras Blanc s Antiform

0.0

-«s We O.l

a " e'g sl 0.2 ~ T f «Wi — -. 0.5 U : 04 C P A $ 045 4+e 0

~a'~ aa ~A 05 <

'C $ 0.6 C ~ ~ ~R 0.7

0.8 ",

I J' 0.9

I.O 'T . ZW

k

4 l.2 I I I.BI I rk. iy' o ~ ~ ~ ~ ~ LI

k

I

4 > Table GSG Q13-I

SLIP RATE ESTIMATES IN PIEDRAS BLANCAS REGION

RATE (millimeters per year)

Crustal Resolved Component Shortening

Piedras Blancas Antiform Total Normal Tangential Southwest Vergent 0.1 + 0.05 0.1 <0.05 Northeast Vergent 0.2 + 0.05 0.2 Combined 0.3 + 0.1 0.3 < 0.1

San Simeon fault zone < 0.1 1 to 3

TOTAL < 0.4 1 to3 J

Cgg QUESTION GSG 13

Trettching on the San Simeon fault zone indicates that there is an important strike slip component on the Eiosgri fault ofabout i to 3 mmlyear contributed by the San Simeon fault. 1here may abo be a contribution from the Piedras Biancas zone. Proiide a discussion ar to whether there is such a contribution and ifso irs size and sense ofslip.

CONCLUSIONS

~ Piedras Blancas antiform consists of folds and underlying thrust faults subparallel to San Simeon fault zone.

~ Crustal shortening is normal to San Simeon fault zone

shortening may result from strain partitioning or by local convergence in left- restraining bend

~ Rate of crustal shortening is < 0.3 mm/yr.

~ Resolved vertical component is < 0.3 mm/yr and tangential component to San Simeon fault zone is < 0.1 mm/yr. A

~p

I'

«b,

h;

II V y

y,~ J

I

+1

t , QUESTION GSG 14

Displacemenrs of2 meters per evens on thc Los Osos Jauit would suggest rupture lengths longer than those presented. Provide shc informruion used so determine rhc rupture lengths and discuss any inconsistency wish 2 meter displacemerus.

APPROACH

~ Examine the relationship between maximum displacement and rupture length for historical ruptures.

~ Assess the compatibility of 2-meter maximum displacement and rupture lengths of 19 and 36 hlometers, 1w

l

I. t 'lj'1

r

J< Esfe/O (08 /By Estero Bay OCI.( Segment 8( OC~ 4'glk to am l4y Imh Hills Segment ( C~ 0 22 Mor/0 Lopez Bav 8«in ~nr Reset voir wenM/invrr ~eertlorpllc evpfvrueh @ Luis 0.20

'I / 8/p/ BJA/I r~ ///r 0 l Segment 0.20 ~ le ..Ohon Fault 0.13 J 0.11 +"az San LrNr 0,13 005 ~F~ 'E '~~a, er 0,13 ffr; 'c/Io e( < 08 . ~ OC/r 0.15 VQ A \ O \ ~ /rc

V tp V~ err ' . v' e'.

~+p. 50.00? / C/o ~ '( +g( e(o Cg

EXPLANATION

Offshore Structures Omhore Structures

—-- ~ - Fault; solid where well comtrained, dashed —-- ~ ~ ~ ~ ~ Fault; dashed where approximately located; where Inferred snd well located, dotted heavy dot where concealed but well comtrained; where inferred end ipproximately located light dot where Inferred 5$ meter ridge Buried monocline - arrow shows direction of downwarp r.g:(g~% Structurally complex zone Step In bedrock, uncertain origin: ball on lower side 0.10 uplift rate in mm/yr derived from marine terrace investigations Inferred structural basin, may or may not be bounded by faults

Figure 2 Regional map showing segments of the Los Osos fault zone and Late Quaternary uplift rates of the San LuislPismo structural block. I It'I

1 Chapter 3 Page 3-26

Mo«vnvm Ioto> Ruptv«e Mo«imum hvcrooe Se~se Mo«imum Moonttvdc Rec«crence Rec«crcnce Moon tude Depth Lcnoth >I'S IIViCO> tcc>virtue Method Role fhstrc vt cn (sm) (em) (kmj (m) (mj

26 (0.099) 191 Rvplvre Lenoth 0.2 v O.l h (0.105) (0.7) 0.5 (0.2) Moment Rotc (0,6) C>poncnsc« 75 12 (0.595) 26 2J.. (0.5) Rvptve hrco (0.6) 0.4 v 0.2 h (04) (0.6) (0.764) 49 (O.S) (1,0) 1.5 «6 (0.5) Ret«cn Period lo. ~ ) ~cuba 0.101 (05) (10) Mo«oisplocemcnl (0.4) (0 6) ( ) ~ 5 (0.2) (0.131) (o.ios) Moment (0.5)

56 9 (0.105) 19 Rvpt«ce Leno\h 0.2 v (0.105) 44 (0.7) 0.5 (0.2) Mcmcnt Rote (0.6) E«ponenoc« 60 12 (0.411) Q6 2.1 (0.5) Ruptv«c A co (0.6) 0.4 v / {o '> (0 7) (0 77) 49 (O.S) (I 0) 1.5 «6 (tts) Relvrn Period 10,4) Chp«OC ten>tC 1>vusl (0.097) (0.5) (I.O) Mo«oisploce«nenl (Q.i) (0 6) (09) 15 57 (0 2) (o. 2s) ( (0.569) Moment (as) Notes: Values In parentheses ere probabilities h n hOrfepntel COlnppnent Of Slip rate, v n vertical component of sHp ret ~

Figure 3-6 Logic tree for Los Osos fault zone.

Diablo Canyon Power Plant yerm Seismic Pacilic Gas and Electric Company long Program \+ 103

Reverse Eqs., 15 Data Points E ~t

100

~ 0 10 ~O q4

0 0

10 1 10 Maximum DispLacement (m) ,C 103 I ~ I ~ ~ ~ I I I ~ ~ ~ ~ ~ l III I All Slip Types, 74 Dala Poinls 0 e e 0 100 0 I ~ ~ 0 ~g 0 ~ eP~~O e e ~0 10 ~O ~ 0 ~go

c

Ci) 0oo

I ~ ~ ~ ~ I I ~ I ~ I ~ t I ~ ~ ~

10 1 10 Narimum Displacement (m) C Maximum Displacement Regressed on Rupture Length Ru t r L n th km Maximum Di lacement m Reverse faulting 19 2.1 35 2.5

All slip types 19 35

Rupture Length Regressed on Maximum Displacement M ximum Di la ement m Ru ture Len th km Reverse faulting 29 All slip types

QUESTION GSG 14

Displacemenrs of 2 meters per event on the Los Ososfault would suggest rupture lengths longer than those presented. Provide thc information used to determine the rupture lengths and discuss any ineoasistency with 2 meter dtsplaeemetus.

CONCLUSIONS

~ Assessed maximum displacement of 2 meters and rupture lengths of 19 or 36 kilometers are compatible, based on a comparison with historical surface ruptures. *

l.~n

I

). ~ J 'As pe j g 'I

K I~

V QUESTION GSG 15

7he fault segmentation-rupture length presentation made at the meeting for rhe Hosgri fault "one is in question. Other segmentation points are possibie. Provide any new information pre:ented at the meeting so tha! is can be rrvirwed prior to the source charactert'evasion meeting.

APPROACH

~ Define terms related to segmentation.

~ Review bases for interpretation of segmentation points.

~ Present statistical analyses regarding validity of segmentation points. V'

'l

I DEFINITIONS RELATED TO FAULT SEGMENTATION

Fault segmentation. The discontinuities, structural features, and fault behavioral characteristics that control the locations of coseismic rupture along fault zones. We attempt to understand fault segmentation by identifying fault segments and assessing rupture segments.

Faulr segment: A geologically coherent part of a fault zone that appears to be distinct from neighboring fault segments. Adjacent fault segments are separated by segmentation points.

Rupture segment: The part of a fault that ruptures during an individual earthquake. di gl I tp

i~ p4 5

I

+C' 20 mi

A ~ San Simeon/Hosgri stepover A G Point Estero ~ Norlhem termination of Hosgri fault ~ Southern termination of San Simeon fault

B ~ Los Osos fault intersection ~ 21'ingle restraining bend 4s~ QB ~ Change in seismicity q ~~~i ~ Change in veAical slip rates ~ Change in trace complexity

Diablo Canyon Power Plant C ~ Intersection of faulting bounding SW boundary of San Luis/Pismo Block ~ Change in vertical slip rates ~ Change in seismicity ~ Releasing stepover ~ Change in trace complexity ~ Change in deformation adjacent to Hosgri fault

ca Casmalia fault intersection >a/~ ~ Change in vertical slip rates ~ in seismicity Change 4q ~ Change in deformation adjacent to Hosgri fault Point Sal

E ~ Intersection of faulting bounding SW boundary of Point Sal structural b'eck "c; F ~ Purisima structure intersection Purisima Point ~ Change in seismicity ~ 17'ingle restraining bend

~ ~ g Santa Ynez River fault intersection ~,t~ 1

P t f

l

R C'" North Anatolian Fault

Sources: Sengor et al., 1985; Dewey et al., 1986: Barka and Kadinsky-Cade, 1988: Ambraseys and Tchalenko, 1968

1939 sr Jtt42 eb R Endpoint: south end basin and releasing step 1 Erzin n r ~t 942 Releasing double Endpoint within regional-scale ~ bend ndgap restraining single bend Restraining step to Restraining single bend parallel trace Fault branch; parallel thrust 4 1942 Restraining double bend Fault branch, releasing ~ / step lo another trace, Quaternary basin south end basin Endpoint: Fault bend Fault branch~ and basin terminus Cross fault

Change In fault zone complexity to single trace Releasing stepover Wear end Quarernary basin~ Releasing double bend~ Black Sea Fault branch

Change In complexity to numerous parallel traces Releasing double bend Fault branch and simple fault zone -(i ~ North end basin and cross fault 50 km Releasing single bend

Endpoint: S end basin, releasing stepover 1939 g I

Vg 1981 Events, Gouli Fault, Iran

Sources: Berberian and others, 1984; Nowroozi and Mohajer-Ashjai, $ 985

Endpoint: change to reverse slip; restraining double bend; regional fault bend, restraining

Fault bend, restraining

Increased trace complexity, cross and branch fault, increased strike-slip component

Restraining step and gap 0 $ 5km Releasing step, cross structures, fault branch, regional releasing step l Simplification of traces and fault )I branch, Increased dip-slip component

Releasing step and basin

Releasing stepovers 4

Restraining stepover

Minor releasing double bend

Endpoint: restraining gap and step

l f r

Endpoint: restraining gap

Increased trace complexity; basin~ Releasing step ~ Releasing double-bend and slap ~ Endpoint: releasing step, basin t ; %a,

4

I FAULT SEGMENTATION CIDLRACTERISTICS

(Strike-Slip and Reverse Faults)

~ Changes in recency of slip ~ Changes in sense of slip ~ Changes in slip rate ~ Changes in trace complexity ~ Changes in seismicity ~ Changes in adjacent deformation ~ Releasing and restraining double bends ~ Single bends ~ Stepovers ~ Cross faults and folds ~ Fault and fold branches ~ Gaps, discontinuities ~ Fault terminations d'g

~c,

p

C \

Table GSG Q15-

SEISMIC LINE Maximum'ost Maximum'ost SEISMIC L1NE Mid-P Mid-P (mm/yr) (mm/yr)

orthern eac oint Sal Reach CM-51 0.11 GSI-IOI Hosgri 0 13a W-76A 0.14 [Hosgri + Ptrrisima] [0.1+

J-113 0.10 ~204 Hosgri 0.37 San Lui PGE-I 0.32 ~GSI- 06 Hosgri 0.34 W-14 0.35 [0.37] GSI-85 0.36 [Hosgri + Purisima]

GSI-86 0.34 Southern Reach GSI-87 0.40 (0.26) GSI-112C Hosgri San Luis Ob'ea CM-119 0.21 [Hosgri + Purisima] [0.33]

J-126 0.20 GSI-115 Hosgri 6SI-97 0.21 [Hosgri + Purisima] [0.33] GSI-100 Hosgri 0.19 GSI-I 18 Hosgri [Hosgri + PurisimaJ [0.25] + Purisima] ~E-3 [Hosgri [0.34J Hosgri 0.18 Gsi-i23 Hosgri [Hosgri + PurisimaJ [0.25] [Hosgri + Purisima] [0.31]

I - Indeterminate

'Maximum value is calculated by adding a maximum coastal uplift rate east of the fault zone to the vertical slip rate based on the evaluation of the unconformity west of the fault zone.

~The presence of the unconformity on both sides of the fault zone allows for a direct measurement of the total vertical separation. r,( C

Purhlma Point s .o g 4 Oo

~ ~ 0 ~ ~ ~ Y. 0 ~ 4 ~ ~ e 0 Oe ~o 0 4~ ee o o 4 Qo IkhCHITUOES g 4 p 0.0o o I.O+ \ 8 4. o O '.0o 0 \ 0 304 O' g O .tOO4 4.0+ 10' I o 5.0+ I ,O, .",, ~'b, 41 O I Oy

O~ 50'l oO ''~ d I 2o 50'0'0'0'IO'21~ 50'0'0'0'0'20 gE

10 San SfmoorVHosgrl Stopover

Single RI~ Offshore Los Osos of Extensbn Los Fautl Osos Fautt

System of Faulting K I SW Boundary abng SW Zone of San Luis Boundary ol Phmo Sock San Luis 50 u- Phrno Sock 8

60

Casrnafra Fault/ Casmaka N ond of Purhfma Fault Slructuro 70 t-

n's Head Fault Uorfs Head Fautt

Purhlma Structure S end of Purhima Sbgt Stucturo fr

Santa Yner River Fault 110 Change In Changes In Fault Change In Change In Vertbaf Sy Sehnidty Intersectbns Trace ~t Rales Complexity Oebrm ation P, ~A-'

w A4

l~ LOCATIONS TRIPLETS QUADRUPLET QUINTUPLET

13 Change in seismicity Fault intersection San Simeon/Hosgri stepover

16 Change in seismicity Fault intersection 21'ingle bend

Change in vertical slip rate Los Osos fault intersection 21 single bend Change in trace complexity SW boundary zone Releasing stepover Change in adjacent deformation

47 Change in vertical slip rate Change in seismicity SW boundary zone Releasing stepover Change in trace complexity 49 SW boundary zone Releasing stepover Change in trace complexity

68 Change in vertical slip rate Casmalia fault intersection Change in trace complexity 71 Change in trace complexity Change in seismicity Change in vertical slip rate 93 Change in seismicity Purisima structure intersection 17'ingle bend

«Rounded to nearest kilometer

Table . Description of observed coinciding anomalies along the Hosgri fault zone. The location of each M-tuplet is the midpoint of the window that includes the center of each anomaly comprising the M-tuplet.

I:LPGE)GSG-Q-IS. TBL April 5, 1990 Page 1 H'&'P C

'l4

'~g

s'aC.

A*

4 t Chapter 3 Page 3-20

20 mi

121'0'5'0'ambrla

120'30'5'30'0 Steporer Estero

km l. 45 km '" ~ .. ~ 4 -=- .:-.Puic.y ~. '110 k m

121'30' +3S~ 120'30" ''..

' ' SRlt» Y~ $ ~

Point Pe 121'0'

34'30' ~ 1 + ~ ~ ~ ~ ~ deneb'iablo ~ ~ O~

~ ~

Canyon Power Plant

Figure 3-4 Map showing rupture lengths considered for the Hosgri fault zone.

Diablo Canyon Power Plant Pacilic Gas attd Electric Company Long Term Seismic Program '" ~ ' ~ Ooooooo ~ osoos ~ o Qgj(g FQ i 1868(7) ——Calavataa-Sunul Fault

From Lindh, 1989

-1865

't Oo "~< 903,'1 903(5.8)

1955(5.5) ~ g 191 1,19'(6,2)

FQ g 1897, ~o 1979(5 8)

~c

From LitxN, 1969

gv I l E y ElM J3 I co O / m~ CLI CO D Cy ~ O ~q gG CO LLJ CO E O OCO +~o~~+ O C'y 8 ~l U P I I I l E I 0 gV LL

I

O

CO Co

~n

~4 e I

'l I

I

A. SAN JACINTO FAULT ZONE IIII Length Se ent ~km Sli Rate mm r San Bernardino Valley 50 8 + 3 San Zacinto Valley 65 11+3 Anza 50 11+3 Borrego Mountain 50 4+I Superstition 30 4+3

SAN JACINTO FAULT ZONE EARTHQUAKES

Lat Long Moment Length Slip Date ~D ~O" N-m ~oii~ ~m ~calc 1899/07/22 34.2 117.4 6.5 5.6 0.2 5.5 1923/07/23 34.1 117.3 6.2 15 0.1 6.0 1899/12/25 33.8 117.0 6.7 6.4 6.4

1918/04/21 33.8 117.0 6.8 7.0 ~ 15 50 1.2 6.8 1890/02/09 33 1/27 116 1/4 1980/02/25 33.52 116.55 5.0 1937/03/25 33.47 116.42 5.9 0.3 5.6 1969/04/28 33.34 116.35 5.8 0.5 5.8 1954/03/19 33.30 116.18 6.2 4.4 20 0.5 6.4 1892/05/28 33 1/47 116 1/47 1968/04/09 116.13 6.7 6.8 40 0.4 6.6 33.0533.19'942/10/21 116.09 6.3 40 0.4 6.6 1987/11/24 33.02 115.85 6.7 6.6 27 0.5 6.6 'A + .iP

El ' QUESTION GSG 15

~fault segtnentatlon-rupture iength presentation nuuk at thc meeting for thc Hosgri fault zone is in question. Other segmentation points arc possible. Provuk any nev ittfonttatiotcpresented at the meeting so that is can be rrvinved prior to thc source eharatsnizacion meeting.

CONCLUSIONS

~ Definitions of fault segmentation, fault segments, rupture segments.

~ Worldwide database of historical ruptures provides basis for identifying fault characteristics important to segmentation.

fault behavioral

structural

geometric

~ Segmentation points along the Hosgri fault zone are defined by multiple occurrence of important fault characteristics.

~ Statistical analysis confirms that the spatial coincidence of multiple characteristics is not due to a random process. We conclude that they occur at segmentation points along the fault zone.

~ Rupture of one or multiple fault segments leads to rupture length models for the Hosgri fault zone. e

:„$fi

43

i'1-

k QUESTION GSG 16

~>kgb the new itifortnatfon presented at the meeting on the southwestern boundary zone ofthe San Luis-Pismo Block.

APPROACH

~ Compile data and maps from studies along the southwestern boundary of San Luis/Pismo block

borehole data

bedrock geologic

mapping'luvial terrace mapping

analysis of detailed bathymetry

processing and analysis of near-shore geophysical data

~ Evaluate location and behavior of San Luis Bay and Olson faults

~ Evaluate hypothesis of shore-parallel fault >4

N7)

1

1 l ./ I R ISH HIL LS I ( I 450e .I / I Bs)d j 9) ( 660+ e>yx> ~ Gsep Ps ~6' Knob ~ 4 4 SO+10 0 j v ~ ..g 400~%

~35 Olson 36o (cc: 3po Fault ~ 660+ ! ~~80 660+ " "'+j Olson '::::,. i Hill 24k2 / «C;. esos::. r '62„ /4',:: cs 63+3.. "..'. 34O+ ';:

Wsveeut platform 2one within which the trace of the 02 f120,000 years old) 340+ 107+ Ssn Luis Bsy fault Is constrained 03 Wavewut platform l200,000 years old) 2'4k3 Hv ~ ~ 'ok1 Wsveeut > 04 12 platform I 320,000 years old) Point San Lu)s 0 1mi

0 1 km Py

I

k I

il

l

P, Qts gal

~ ~

Tpps Qd'< ~Op~

Qtl Qr>

C'Jf

I N70W,37NE ~ ~ 21,040+850 14C yr BP N80W,46NE KIf ~ '' ~ n "P'"''.,::. San Luis Bay Fault Tpps/KJf (2') NSOE, 43N

g,~

1/

t

~;.p. East CaCO In upper 3 Original ground surface Oround surface 60 20 cm of clay seam 18 x—------Cevareff 5%,18ft 51.k' ~" ""57.4' -. 86.6'c 54 Clay sagrft fg 6.0

48 C ////// /////// I 14 0 a 42 a ul

36 10 30 0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 102 108 Distance, feet

EXPLANATION Fault xone; arrows Indicate sense of displacement Dgc Colluvlum Marine terrace deposits. 75% rounded gravel In Fault; arrows Indicate sense of displacement fine sandy matrix. Clast predominantly Franciscan Quaternary llthologles with subordinate Pismo and Obispo Lithologic contact; solid where well constrained; Formation lithologles. dashed where approximately located Squire Member of Plsmo Formation. Gravel Tertiary Ipliocene) X 50.6'urveyed elevation In feet pattern Indicates basal part of member. IIIIllrlllllllflSoll lKlg Franciscan greenstone Cretaceous and Jurassic

Figure 9. Detailed log of the central part of the Avila Beach exposure illustrating stratigraphic relationships across the upper trace of the San Luis Bay fault. C SW

Channel margin Oeooo Sands and slits

~ ~ ~ ~~'.... =— Otganksstr =- /~ Umllsa,~~ol—( 'p~~ gg.'

. ~ ~ o ~ ~ ''::"'' ~ ' J '''...': 'Sand . " . ' I)~ r' X l~X

f ~ ~ i /, ~ of csff QQ+ /

Overview

0 ~ Oe 0 0 0 0 0+or f 0

IIXl~

'0/ ',LVQ 4 dQ~ . gWC ~ 4 jQ~% pe Sfkfo ~w/~eyw / I Fnc1te

JQfmi r ~ ~ / / / I / t ~ Detaikfd Sketch

EXPLANATION ——? Fault, dashed and queried where Qir Cobble Indistinct ge Colluvlum Contact alai Franciscan pillowed t4C sample WL-89-t collected in this greenstone zone; 2 t,040 i 850 years 8.P. a 'p

h

ft

lg . a gmvI r' +$( r Q+ a ger Tmb / ~ ~ Qal . I Q n / T pgb I r 1 l r

( i p . IO ('ppe r~ ~ ~ T ~s~ q '" wl Tpp(i+~g4 — Tppt rrr TTmo CP< I; 1 l r ~... Tm.~>- Tpps g t r ~ Tml ~ I Kg g E.r/ rr gr Jpg c 'Tpp(+)~ o /

~ t Ob .... Lj''.g i s 2 I/ V Qlg l ' s / / / ~, I I I ' gP't - ~ Qm + Kg Qu/ X x~ I/I y hi/in 2 w I Lf"2 2 r-~~ I - 1 ~ "iM 3 ~ I Qi ~ .t Qu/7 ppg ) j I

2WS Tmo ~33 q'~h'l/in.'" 'l). / \

d w4 ( \ Qu Ax I 1 A'l/m \ ~~ l Kl/nt Qu r

0 lK(II 1

' II

F.

«IP

;Q Line 13

. 79, cd))~ @~at, ~+/@,. Road

0 400 feet

0 100 meters,

39 32 4

ne1 g>e 46 ".Qc M> ''. 4 46 gnr?

0 ~30 25 g J Q»>t ) 'g~ --",, 27 g>e C' I 1 / 1 j// I / / yg'/ / EXPLANATION I ] / / ck:// / O Une 16 I / / /Q l Bedrock elevation (feet) lrom C'orehole I F y/ g I / I /, / I / I -I I O26 Bedrock elevation (feet), 1989 I Q I / borehole I / / ~ ' 33 Bedrock elevation (feet) from oulcrop I

g~ Quaternary marine deposits on wave~ platform

—30———Contour (feel) on bedrock, dashed where inferred, hachured surrounding closed depression

~y Steep bedrock at range front 'contours not shown) ks Ssn Luis Bay Fault (NTSE)

LINE 15 NW 50 150 3.7 to 4.9 m step a E X Q c:'5' 47 UJ

0 0 100 DISTANCE tmews)

16 ssw 50 150 3.0 to 4.9 m step E z 25'INE Z Q Q I r str rrr 0 0 100 DISTANCE imeters)

sw LINE 37::.::: 50 150 e 2A lo 3.4 m step E X Z Q Q I r

rU UJ 0 I|III 150::::::::: 200 DISTANCE {mews)

'::.::.:: LINE 38 E 50 150 o 2.4 lo 3A m step E X X Qe Q Q " 55 C e2.5'1' llr 0 0 0 100 200 DISTANCE tmews)

EXPLANATION

Postulated lault; dip unknown; arrow ~ Quaternary marine deposit present indicates relative sense of displacement gc Quaternary colluvial deposits Borehole, elevation (in feet) of the 2trJ Quatematy sedimenVbedrock contact Ks Undifferentiated sandstone, siltstone, conglomerate and shah (Cretaceous) Marine terrace shoreline angle, elevation In feet (meters) V>

,4

fg

A ~ Diablo Olson Deer Irish Pecho Rattlesnake Point Canyon Hill Canyon Canyon Creek Canyon San Luis

250 210+10 Obon Fault San Luis Bay Fault Q.f orQ> T INorth trace) 200 18213 / ..... ~ 0 / Q 137+5 o 150 I 03 120f7 125%5 c / o 0013 Ct 105 21 Olson Fault 90i5 lsouth trace) 100 91 +3 ru 05+3 106ka 63i3 Se tpot5 92 7513 Q> 65g5 82g2 120ka 44~3 < 5e 50 Q 38~10 3713 +3 67+3+ 42i3 4313 5c 4013 34f5 38+3 39f3 3~ 35g3 4013 ~ .~l 27%3 % 6pa3 59+2 0....,~=- —"-~ -x~x~x~x X..~-p +fC x 2613 +25 20%3 2143 53g3 l 3 19%2 45a2 ~ 3 '" 1541 3441 3513 3535 5304g /4r R4045~ ~ Qf v 13? 35plp 35g3 23+3 2412 66ka 49ka

0 2000 feet

Horizontal scale VE 40 40x

EXPLANATION Symbols Shoreline angle ISLA) with well expressed wave.eut platform x SLA: elevation based on surveying of exposed SLA )feet; values tl foot unless otherwise shown) ——Shoreline angle ISLA) without well expressed waveeut platform 0 SLA; elevation based on drill hole projection {feat) "' "Erodedshorelinc angle ISLA) SLA: ~ lavation based on projection of surveyed bedrock exposed in seacliff or stream lfeet) + SLA: elevation based on trench logs of Hardlny and Lawson f1973) ffeet) Notes 0 SLA; elevation from 1:2000 scale topoyraphic map, 10.foot contour interval l. Error bars are shown except where symbol 5e ~ 120 ka marine terrace) is larger than error ~ Faunal assemblage sample ISubstage ~ Coral U - series date 4 Bone U -series date / Point Buchon U EXPLANATION D ——" Fault, dashed where approximately located, dotted where inactive; U = up. D = down

—Anticline, dashed where inferred

—Syncline, dashed where inferred

Geophysical line illustrated in text; number refers to geophysical survey and systemused

P 8 Fault or structural feature pick illustrated in text 2 ~ Diablo Canyon Power Plant

aul'I Ol n f D ?

San Luis Efa U U ~ ay Fault +y U D D D

Point San Luis

GEOPHYSICAL LINE

Une Survey System Figure I CM6 CDP 18 2 BBN 11 Boomer 19 U 3 CM13 CDP 18 D 4 AQT 36 Sidescan 20 5 AOT P84 Sparker. Sidescan 13. 14 5 km 6 AOT 34 Sparker 10 7 CM 119 CDP. Sidescan 9,12 8 AQT 29 Sparker 11 3 mi , l~(

J \ I 1'I' SLA ~. 9045

SLA Pp, 37+3 +e

SLA . 85+4 gc '>IO

/'c 12. to 15.toot. high X nickpoint in stream ~ I ...:.'~52.60 A' A'~ Shear zone ., ~ SLA WCP WCP 24+3 85g3'arine deposits Pa ci fi c Ocean

> .u C also .r North 'Trg~ "SLA soka ~ .::.: -'." x As shear zone: 1r .0fra ~~ SLA II. ~ .. WCP undisplaced Wcp ~ "~ gc 24t2'LA~ EXPLANATION gc '. ~st 27a3 colluvium ..~" g< Quaternary 25 3 SLA . Cretaceous sandstone lunnamedl 75.807'(f~ .''s -. wcp rocks: Cretaceous or Jurassic Franciscan Complex 28+ K/f/rrs Metavolcanic - greenstone

c/r Red chert Pa ci fi c Ocean Shoreline angle. double dot where p where offshore: dotted where Fault: dashed ~ buried concealed: teeth on upper plate: arrow ~... indicates dip direction, half arrow Indicates 35f2 SLA Shoreline angle elevation Iieet) direction and plunge of slickensldc WCP Wave cut platform elevation Ifeetl lineations; moditied from Hall and others 25t3 0 400 teat I1979I Borehole of shear zone in basement Strike and dip I.lmded bedrock outcrop /A'/A'J/mr/ x 0 100 meters Bench mark 2one within which Olson fault is constrained

Qm y I Tmm >r- / js "-.P c TA/» OM. mn ~~ ~r )gg, I CC Tmm/p

) Tmry/Tmm.~ 45, . '~-,N es -~ fg

b

r"p ~ 45''5 ~ M~ -a

r

* ~m ) Tmnt/Trm.' ram iri L ~L Tmm/Tmr. //

Diablo Canyon Power Plant rl v ~ 28 64 >) Zo~

l2 .Ssq ~26 8 .so anW

I ~ 20 1 ~g.s 8( 13 8 .Iit Olson'Fa" ts" San ~ 16 Vis ~~~I B~a @~all ~ 4 ~ 2l ~ r g64 10 .20 ~ 16 +.34 1 ~(12 .l2 I )12 lr' 4 ~ ~ ~ 4 -38 .26 36 I >'f20

56 p - -8 60 p ' x~4 Point San Luis <.22~ 20 'I '-e2 'OO ~ 2l ~ sl t

-66 .4l I 42~ ls I 26 20 ~ \ A I ~53

1 I .36 —.34 -'."'.So ~ Sl ~ 60 46 28) I -34 / /41aa

.e4 ~ 68~ ~ 59 ~ 5'2 auI ~$ 8 ~ 42

86

12 '0 I I 64 I gaza<> we IJ I I I ~ 74 44''r gee>

I

]ate 424 I I I r'12 I I I l. / ~70 ~20

I Point Buchon Q4' 1 I ~66 F4 I I <6 40' (

~ 66 0 I ~@66 -0

1 ~ 70 I

<6 ~~ ~ .20 %p .~, ).>, a%Or / \ I

~ 14 I Diablo Canyon Power Plant

116 C 26 -64 '4 'IVI ) ~ 20i

A2 ~ 26 ~7$ ~ sax I 60 > I 20t g 6

L~ IS Iii OIS( rI 76 'V I > l g54

.r"oo ..J'"Ga>~ ~azar~

See Figure Aligned with northeast-dipping I GSG Q16-22 g inactive fault exposed in sea cliff with Coincident East Trace Approximate contact between fess resistant of fault zone the Hosgri Miguelito Member lithologies to the north and more resistant Monterey Formation lithologies to the south Point Buchon S

,i(

2

CO — Constraints on Near CM86 23(W) Coastal Faulting SW —Reaches where faulting can be precluded 45 CQ 55 h)

E' / "'r / Point uchon / (

/ 0 2mi

0 3 km

h

EXPLANATION

~ ---- strandline Q 1 (80,000 years old) ~ ~ Point . Q2 strandllne (120,000 years old) San Luis ——07re strandline (>560,000 years old)

~ Qt t strandline (>1,000,000 years old) -30m- 30.meter Isobath

'jy'P/~j~ Resistant lithologies of the Monterey " and Obispo formations ~, Diablo Canyon Power Plant

QUESTION GSG 16

Provide the nnv information presented at thc meeting on thc southwestern boundary zone ofthc'cut LuLs-Pismo Block.

SUMMARY

~ Additional data are provided in Attachments A through E. Analysis of data is provided in Response.

~ Data and analyses indicate:

northeast-dipping reverse faults

0.02 to 0.12 mm/yr slip rate

~ Data and analyses provide constraints on potential locations of onshore and offshore San Luis Bay and Olson faults.

~ Data and analyses preclude existence of shore-parallel faulting. ~

'6s

) tp)1 p

r~

5) p,.

I' QUESTION SSC 1

Provuk additional support for rhe choice of'logic tne paratneters and weights used in the seisncic source charactnizarion analyses, including a descnption ofthe soiidtatioe process of the PG&E panel Pom which the weighting ofthe wxrious source characteristics were denwd and applied in rhe program.

APPROACH

~ Reference detailed discussion of logic tree elements, weights, rationale, and support in probability theory.

~ Describe process of developing logic tree interpretations carried out by the project team. I PREVIOUS DOCUMENTATIONOF LOGIC TREES

~ Final Report, Chapter 2, 3: basis, parameters, weights

~ Question 40: basis in GSG data', uncertainty treatment

~ June 1989 GSG Meeting: GSG data

~ August, 1989 SSC Meeting: weights, sensitivity

ELICITATIONPROCESS

~ Logic tree values and probabilities developed by a consensus of the project team

~ Heavy reliance on data developed as part of LTSP

~ Evolutionary development of logic trees and progressive reduction of uncertainty (Scoping Study - Phase II/

~ Not an "expert panel," but single consensus representing range of alternatives and relative credibility

~ Technical defense of assessments, consistency checks, and documentation

~ Multiple meetings, field visits, and interactions

~ Sensitivity and implications 4N LTSP PROJECT TEAM

Dr. Clarence Allen CalTech Dr. Bruce Bolt UC Berkeley Mr. Lloyd Cluff PG&E Dr. Kevin Coppersmith Geomatrix Consultants Dr. N. Timothy Hall Earth Sciences Associates Dr. Douglas Hamilton Earth Sciences Associates Ms. Kathryn Hanson Geomatrix Consultants Dr. William Lettis Geomatrix Consultants Ms. Marcia McClaren PG&E Mr. Cole McClure Bechtel Mr. Jan Reitman Consultant Dr. William Savage PG&E Dr. Paul Somerville Woodward-Clyde Consultants Dr. Yi-Ben Tsai PG&E

SENSE OF SLIP

Strike Slip (0.65)

Hosgri Fault Oblique

Thrust (0.05)

DIP (degrees)

(0.6) Strike Slip (0.65)

70 (0.4)

90 (0.3)

,Hosgri Fault Oblique 60 (0.3) (0.6)

4S (0.1)

(OA) Thrust (0.05) (0.5) P~ Dip Sense of Slip

Strike-sUp

~ 900 Obli ue

Thrust

Strike-slip

Hosgri 60'blique

Thrust

Strike-slip

30O Oblique

Thrust I DIP. SENSE OF SLlP

Obl e 90'.48

Thrust

Strike-sl'osgri

60' Obl

70'.46

Thrust

Strike-sli

A5'.06

SLIP RATE (mm/yr)

0.5 h (0.1)

(0 4) Strike sli (0.65) 3h (0.4)

6h (0.1)

0.4 v 0.2 h (0.25)

Hosgri Fault Obli ue 0.4 v 0.4 h (0.3) (0.5)

0.2 v 0.4 h (0.25)

Thrust 0.4 v (0.05) (1.0)

10

10

10

10-4

10

10 6 —LTSP Weighting 7 Strike Slip 10 ---- Oblique Reverse/Thrust 10-8 .5 1 1.5 2 '.5 3 Spectrol Accelerotion 8 to 8.5 Hz (g)

1O-'o

10

1O-'O-4

10 4„

10

LTSP Weighting 1O-' 0.4 SS, 0.5 0, 0.1 TH

10-s .5 1 1.5 2 2.5 Spectrol Acceterotiort, 8 to 8.5 Hz (g) J

1 Chaoter 6 Page 6-7

Ground Motion Source Character&ation Characterfsatlon

l. 2. 3. 4. S. 6. 1. 8. 9. sense dip depth of length maxhnum seismicity rate of tnedtan she reduction/ of slip angle setsmogentc of fault magnitude model acttvtty attenuation ampllacatkna acne equation

Figure 6-3 Elements in logic tree used for Hosgri, Los Osos, and San Luis Bay faults.

Diablo Canyon Power Plant Pacific Gas and Electric Company tong Tenn Seismic Program 4" k

L

Ziv ' Chapter 6 Page 6-l

10

10 CJ

10 EJ X O eeoc eee,'ee eeeceo~ee cr 10+ Err ~ e ~ e< o ee ~ ~e oo eee ceo on ee ~ o ee ~ee ~a oo ee ~ e~ eee ~ ~ee ooo ee e~ ~ ~cae e+ ~ ~ ee ace ~ ~ ~ ~ o~ o eee ce ee ~ o ee ~ ~ ee o eeo ~ ee ee" o ~ e ~e

'\, ag 10'0ot0 cccee

1.00 1Z5 1o50 1.75 2.00 2Z5 250 2.75 3.00 %25 %50 3.15 4-00 Special acceleration (g) or peak ground acceleration Explanation Hosgri fault zone oooo ~ . ~ oo ~ o —~ West Huwla fault zone —————Los Osos fault zone -- Rinconada felt ~ eeeeeeeeeeeeeee San Luts + fault —Offshore Lompoc fault ~ ~-e~--~ Nacimtento fault Santa Lucia fault

Figure 6-6 Comparison of mean hazard from Hosgri fault zone to mean hazards from Los Osos and San Luis Bay faults. and to approximate mean hazards from other faults.

Diablo Canyon Power Ptant Tenn Program ~ Pacific Gas and Electric Company Long Seismic p DIABLO CANYON MEAN SEISMIC HAZARDS (HOSGRI FAULT) SENSITIVE TO SLIP TYPE

1O-'3 hl

10 ~ f4 b 1o-' hl bl C3 STRIKE SUP 1O-'O-'0 — ——. - OBLIQUE Crl —- —- - REVERSE/THRUST

7 R

1O-'.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 SPECTRAL ACCELERATION 3 TO 8.5 HZ (G) %IF' DIABLO CANYON MEAN SEISMIC HAZARDS (HOSGRI FAULT) SENSITIVITY TO ACTIVITYRATE GIVEN STRIKE-SLIP FAULT 10-i

1o-' —ACIYVITYRATE 1 ——.- ACTIVE RATE 2 —---- ACTIVI'IYRATE 3 —--- ACTIVITYRATE 4

10" 0.25 0'.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 . 2.75 3.00 .SPECTRAL ACCELERATION 3 TO 8.5 HZ (G) ~ 4

~amp DIABLO CANYON MEAN SEISMIC HAZARDS (HOSGRI FAULT) SENSITIVITY TO SEISMICITY MODEL 10"i

1o-'O-'0-~

' 1O-'0-e EXPONENTIAL ' MODEL —- CKQ&CTERISTIC MODEL

10 T

1O-'.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 .SPECTRAL ACCELERATION 3 TO 8.5 HZ (G)

g ~IS W

E

'tW

r DIABLO CANYON MEAN SEISMIC HAZARDS (HOSGRI FAULT) SENSITIVITY TO MA3IIMUMMAGNITUDE (ALL SLIP TYPES) 10"i

—MAX MAO=6.25 ——, - MAX NAG=6.50 —- —- — MAX MAG=6.75 ———— MAX MAG=7.00 ------MAX MAG='7.25 —--- —MAX MAG=7.50 - MAX MAG=7.75 10"I 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 . 2.75 3.00 .SPECTRAL ACCELERATION 3 TO 8.5 HZ (G) Pt3 DIABLO CANYON MEAN SEISMIC HAZARDS (HOSGRI FAULT) SENSITIVITY TO DEPTH OF SEISMOGENIC ZONE

1O-'O-'0

s

10

1O-'O-' EH - 12 KM -- —-- 15 KM fo 7

1O-'.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 SPECTRAL ACCELERATION 3 TO 8.6 HZ (G) k~'> QUESTION SSC 1

Provuk additional support for the choice of'logic tree. pmmnctcrs and weigha'sed in the snstnic source characterization analyses, including a description ofthe sollcitatiow proces ofthe PGdcE panel Pom which the weighting ofthe wvious source charactcrt'sties were ckri~ and applied in the program.

CONCLUSIONS

~ Logic tree elements and weights developed by consensus of LTSP Project Team.

~ Consensus values arrived at through data discussions, field trips, and interactions.

~ Sensitivity tests and feedbacks were undertaken to show implications of parameters and weights. II",t, + f)„

,I 4

g +pl

~1

*

,p~ QUESTION SSC 2

Zhe sense ofslip PGc%E deri es for the Hosgri fault is based on evidence ofstrike-slip observed on the San Simeon fault 50 kilometers north ofthc Diablo Canyon site. Gcologie cusd gcqehyelcwf Aefe shag thc Hosgrifault appear to ofa tnore direct n4fetce ofa thrust or ~ ccu~aaV qfAfp, %is evidence includest

a. A thick upper Pliocene and Quaternary marin section west ofthe fault that isjuxtaposed against a basement surface, or a thin cover ofupper Quaternary sediment on basement, cast ofthe fault., b. Angular uneonformitles (top Miocene and mid-Pliocene) that are deformed as they approach the fault from thc west; southwest dips on thc top-Miocene unconformity range up to 40 degrees, those on the mid-Pliocene unconformity up to 20 degrees. Zhesc rclatlons indicate that thc fault has had a vertical component ofslip during thc Pliocene and probably well into the Quaternary. c. Zhc wedging~ut against the western face ofthc'osgri (or o~ its blind western branches) of unconformity-bound packets of Pliocene and younger strata. Zhe wedging, together with the deformation described abo>e, indicates a growth fault that has been actin since early Pliocene time. Moreau; it demonstrates that thc time >clues assigned to thc two uneonformities may become unreliable near thc fault and in thc block to thc northeast ofit; in these regions each unconformity represents a much grcatcr depositional or time; gap than it does to thc west, in thc ofshore Santa Maria basin. d. A warped and faulted presently sca floor and a similarly deformed late'iseonsinan (IS Ka) surface follow the same trend, and indicate the same scnsc ofvnsieal slip, as that defined by the late Plioeene- and Quaternary structures along thc Hosgri. c'. 7he broad Hosgri fault zone now separates a subsiding depositional basin on thc'outhwest from a stable or nsing wan-cut platform on thc nonheast; the prcscnt boundary and stratigraphic relations across the fault closely mimic those that prneiled during thc earlier history ofthc Hosgri.

In light ofthese faaors, justify thc Interpretation ofthc'osgrifault ar bdag pmkesiaerQ strike-st in depo.

APPROACH

~ Describe classifications of fault types

published definitions

our definition

application to Hosgri fault zone

~ Evaluate data and lines'of reasoning provided in question that indicate vertical separation

~ Provide basis for interpretation that Hosgri fault zone is strike-slip fault *I' HOSGRI FAULT ZONE

DATA SETS FOR ASSESSMENT OF SENSE OF SLIP

~ High resolution seismic

~ CDP seismic reflection

~ Bathymetry e Seismicity

~ Paleoseismic investigations e Stratigraphic correlations o Paleomagnetic ~ Quaternary investigations

~ Stress

~ Worldwide analogs p.

'h HOSGRI FAULTZONE ANALYSES TO ASSESS SENSE OF SLIP

DATA AND ANALYSES ~ Regional structural setting ~ Shallow and deep penetration seismic refiection data along entire length of fault zone ~ Quantify components of slip lateral and vertical reversals of separation inherited versus contemporary ~ Geomorphic expression linearity relief ~ Relationship to San Simeon fault zone mapping and paleoseismic studies San Simeon/Hosgri pull-apart basin: existence and transfer of slip ~ Distribution and nature of seismicity

focal mechanism s ~ DownMip geometry seismicity CDP seismic refiection data ~ Regional tectonic and kinematic data ~ Worldwide analogs geological geophysical Ig

rl HOSGRI FAULT ZONE EVIDENCE FAVORING STRIKE-SLIP DISPLACEMENT

REGI NAL STRUCTURAL ~ Aligns with known regional strike-slip faults. ~ Proposed regional stratigraphic correlations support strike-slip displacement ~ Subparailel to plate margin and San Andreas fault ~ Separates domains of contrasting regional trends. ~ Oblique to and truncates known thrust and reverse faults e Orientation of regional crustal shortening supports strike slip

HOSGRI FAULT ZONE EVIDENCE FAVORING STRIKE-SLIP DISPLACEMENT

COMPONENTS OF SLIP

~ Lateral to vertical ratio exceeds 2:1

~ Rate of lateral slip decreases north to south

~ Rate and sense of relative vertical separation varies along. trend.

't

~ Sense of vertical separation reverses within individual profiles. s " 4<% HOSGRI FAULT ZONE EVIDENCE FAVORING STRIKE-SLIP DISPLACEMENT

GEOMORPHIC EXPRESSION

~ Linear surface traces

~ Local southwest-facing scarps

~ Absence of prominent or subdued range front ~4

0 HOSGRI FAULT ZONE EVIDENCE FAVORING STRIKE-SLIP DISPLACEMENT

RELATIONSHIP TO SAN SIMEON FAULT ZONE

~ Related via right releasing stepover

~ High-angle strike slip fault with late Quaternary slip rate of 1 to 3 mm/yr

~ San Simeon/Hosgri stepover is active late Quaternary pull-apart which effectively transfers slip between San Simeon and Hosgri fault zones I HOSGRI FAULT ZONE EVIDENCE FAVORING STRIKE-SLIP DISPLACEMENT

SEISMICITY

~ Focal mechanism solutions near Estero Bay and San Luis/Pismo structural block indicate strike-slip on a near vertical fault to a depth of 6 km.

~ The 1980 and 1984 Point Sal earthquakes in block east of the Hosgri occurred at depths of up to 40 km, indicating a near vertical Hosgri fault to that depth. ,1

A I

;i

Y'

0

~ ~ V

c

MAGNITUDES

0.0+ 2.0+ 3.0+ 4.0+ ay~. Yg i

y t

~r-.t~

kgl, 1

~cl

I EXPCANATION

Lower hemisphere first motion plots White —Oilation aleck —Compression

HOSG Rl RINCONADA A FAULTZONE FAULTZONE A

-10

E -20 Z TOP OCEANIC CRUST 4- -30

-40

-50 10 20 30 40 50 60 70 80 DISTANCE (km) t V RE LOCATIONS

35'

g ~ 0 o 0 0 D o 4 'i ~o 0 60'20'40'

Hosgri Casmalia A A' P tault zone ,Hfau)t zone

0

E 0 0 0 O oO CL ~ o o A ~ p o O -10

0 10 Distance (km) E1 HOSGRI FAULT ZONE EVIDENCE FAVORING STRIKE-SLIP DISPLACEMENT

REGlONAL STRESS FIELD AND CRUSTAL KINEMATlCS

~ P-axes from focal mechanism solutions indicate NNE-SSW maximum compression.

~ Borehole breakout stress orientations show regional northeast compression.

~ .Macrofabric analysis of late Cenozoic rocks indicate regional NNE-SSW compression

~ Faults and folds bend to the north as they approach the Hosgri fault zone.

~ NE-SW crustal shortening represented by late . Cenozoic folding and active reverse faulting east of the Hosgri fault zone requires right slip, not thrusting, on the NNW-trending Hosgri. «'W'*

'I C

'l

~ f HOSGRI FAULT ZONE

FAVORING STRIKE-SLIP DISPLACEMENT'VIDENCE

PLATE TECTONIC MODELS ~ Kinematics of block rotation in the western Transverse Ranges require right-lateral strike-slip displacement on the Hosgri fault zone.

~ Orientation of Hosgri fault zone with respect to orientation of vector of unresolved movement between Pacific and Worth American plates. n I HOSGRI FAULT ZONE EVIDENCE FAVORING STRIKE-SLIP DISPLACEMENT

WORLDWIDE ANALOGS

~ Geological

~ Geophysical

~ Seismological

HOSGRI FAULT ZONE

~ Deformational Histo Recurrent Cenozoic displacement with associated basin formation and fold deformation Encompasses variety of Cenozoic tectonic settings resulting in complex pattern of deformation Paleogene (pre 25 ma) Possible significant (> 100 km) lateral displacement Late Oligocene to late Miocene (- 25 ma to 6 ma) Transtensional deformation Eastern margin of series of subsiding basins Late Miocene to Pliocene Transpressional deformation Significant episode of compression about 6.0 to 2.8 Ma Quaternary Displaces Post-Nisconsinan sediment Right lateral strike slip Local areas of vertical slip associated with uplifting and subsiding blocks Ã

P~1''

A'~ QUESTION SSC 2

7he sense ofsBp PGdcE deri~for thc Hosgri fault ls based on evkknce ofstnke-slip observed on the San Sinccon faalr Sct hitornetcre noah ofthe Dfahto Guoton etta treologto aaf geopltgttcal chan ahro6 the Batgrtfcnch career to ctree acorn cgrice oitcteirce a thrrat ao taratee cnapemst s . ghtc clif

a A thick upper PBocene and Quatenraty marine section west ofthc fault that fsjuxtaposed against a basement surface, or a thin corn ofupper Quaternary sedftnent on basement, east ofthc'ault.

b. Angular unconfonnitfes (top Miocene and mid-PBocene) that are deformed as they approach thc fault fiom thc west; southwest dfps on the top-Miocene unconfonnlty range up to 40 degrees, those on the mfd-PBocene unconformity up to 20 degrees. 7here relations indicate that thc fauLr har had a vatfcal * component ofsBp during thc PBocene and probably well into the Quaternary.

c. 7he wedgfngwut against the western face ofthe Hosgri (or o~ its bBnd western bnrnches) of unconformity-bound packets ofPBocene and younger strata. 7he wedging, together with described aboghe, indicates a growth fault that has been adfw since early PBocenethc'gonnatfon time. Moreover, it demonstrates that the time'aluer assignat to the two unconfonnitfes may become unreBabfe near thc fault and in the block to thc northeast ofit; in these regions each unconformity represents a much greater depositional or time, gap than ft does to thc west, ln thc onshore Santa Maria basin.

d. A warped and faulted presently sca floor and a similarly deformed fate 7Visconsinan (18 Ka) surface followthc same trend, and indicate thc same sense ofwvtfcaf sBp, as that dined by the Late PBocene and Quaternary strudures along the Hosgri.

c. 7he broad Hosgri fauLt zone now separates a subsiding depositional basin on thc southwest from a stable or rising wa~ platform on thc nonheast; thc present boundary and stratigraphic relations across the fault closely mfmfc those that prehhai fed during thc carBer history ofthe Hosgri.

Er ttght efthere factonr Jnrtlfct the btcertrretatton ofthe lgorgrtlhitt ar beTigtrccnhnatniiatgg ctrtheoltt'r ln ghatOdet'o

CONCLUSIONS

~ Although evidence of strike-slip on San Simeon fault zone is important, assessment of Hosgri fault zone is based on integrated analysis of geological, geophysical, tectonic and seismological data.

assessment includes all of the data and lines of reasoning described in Question SSC 2

~ There is no "direct" evidence of thrust or reverse faulting as indicated in the Question, only vertical separation.

~ Fault classification is based on rake of fault movement.

strike-slip faults with dips h 60 degrees have lateral to vertical slip ratio of 2:1

QUESTION SSC 2 (concluded)

~ Allof the data and lines of reasoning presented in the question are incorporated in assessment of vertical component of slip

~ Analysis of lateral to vertical rates of slip on Hosgri fault zone are 2:1 to 30:I, decreasing southward. ~ li~

t

e

S'i

T R

t QUESTION SSC 3

Pro~ a detaiied discussion ofhow and why the'erugc'isplacentens estimated for the Saa She~ fault was applied ro the Hosgrt'auLt as a maxintunt dfspiaoemarC.

APPROACH

~ Clarif'y use of average displacement estimates on the San Simeon fault for Hosgri fault. W1 t,

g lg

1 A, Chapter 3 Page 3-21

Monmum Iolol Rupbec Merimum average Sense Oeour Length Lenglh Oisokxemcnt Oisolocement Rote

20 (0.25) Rupture Long% (0.1) 45 I (0,25) 90 12 410 (0 4) (0.4) Ruptree Aeo Croonentw (O.d) (1.0) 70 No Ooto 2 rd (0.2S) (0 4) Strlc Srp (0.25) (1.0) (0.5) (I 0) folol Length Moment Rote Choroct«stc (0.65) 'IS (o.l) 110 (0.25) (1.0) (0 6) (0.4) (0 I) (0.1) Moment (aas)

20 9 110 (0.5) (0.1) (0$ ) 45 OOSOue 60 12 250 (0,5) Rupture t,englh '.4 v 0.2 h (0.5) (0.6) (0.7) (0.4) 70 No Octo No Oolo r6 (as) (0.25) Crponentor (O. I) (1.0) (1.0) (1.0) Ruptsec @co uwwH RN OA 0. ~ h/ (0 '1 110 (0.5) (I 0) (0.5) Choroc ter sic (O. I) .4 v O.d h (0.6) (tL25) 9 110 20 (0.1) (04) (0 5) Ihrusl 50 12 4S No Ooto No Ooto r6 (ac) Crponentns (0.05) (0.5) (0.6) (0.5) (0>) (10) (10) (10) Ruptcee *co Moment Role 0.4 v (0 4) (ad) (t,o) (1.0) Chef oc terislip 15 250 (02) (0.6) (02) (o.z) (0. )

Notes: Values In parentheses pro probabilities h v horizontal component of slip rpto, v ~ vortical component of slip nslo

Figure 3-5 Logic tree for Hosgri fault zone. Dtabto Canyon Power Plant Pacific Gas and Electric Company Long Term Seismic Program F

~ ''flV f6pprtt CIItlt

s

site ttap hut W I

Oats KnoN Crdd'k Tdllpte Ot6 W'C

~ ~ )OIIIstp pelt ters ItstIT of Sprs ttsseost fputt

~ ~ ~ ~ ~ ~ ~ ~ ~ ) ~ oo) ~ ~ ~ ~ ~ ~ ~ Trpestft Tg tlrprpfrprtrf 0 ~ Tns Attfsd ~ FBI' '~ ffpptt

TIWvtft Tl.A I'an) OaaK~c I Ims*bmttt t ' I Trprstfarr

B. 1j'P (

EXPLANATioN

Oines of equal thickness) on clayey U O.l 'sopachs ~ff)fg adfttte ~ Trace of fault exposed in trenches; dashed sandmarker horizon (unitOa); contour D where approximate, dotted where concealed; interval 0.1 ft. U up, Dsadown; arrows indicate relative direction of displacement. U Fault: U=up,p down; paired arrows indicate p relative sense of displacement. Trend of fault Orientation of fault at elevation of clayey sand marker horizon Figure 12. A. Sketch showing active strand of San Simeon fault exposed in trenches on Oak Knoll Creek fluvial terrace Qt5. B. Isopach of clayey sand marker horizon showing right lateral separation across active San Simeon fault strand. i+

i x 200 ft

Oak Knoll Creek x147.1

O

10 p~Tw2A ~T.3~

~Active Strand of Fault

c4

Prominent side hill benches Tc5 Fault x233.3

EXPLANATION

U 30"wtde heckhce trench. ~ + ~ Trace of fault exposed in trenches; dashed ~ 0 where concealed where approximate, dotted or inferred; U aa up, D aa down; arrows indicc 160~ Topographic contour showing elevation relative sense of horizontal displacement. in feet; contour interval 10'.

Figure 10. Map of Oak Knoll Creek exploration site showing location of trenches.

Spring SKETCH MAFOF OEFLECTEO CHANNELOF AIRFOBtT CHEEK

9 s p t Kt c B I e Env. 4 E ~l e

Major strand of San Simeon Fault

rtrr h f U / t ~Env. 6 ~, -2 1 N.B

Airpon Env. 5 Creek

x75 7

Trough of probable tectonic origin

6 p.26

e ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

EXPLANATlON

30" wide ~~~ backhoe trench Trace of fault ex posed in trenches; dashed Env. 4 ~~ver erg ~ where approximate, dotted where concealec Backhoe trench excmatad by Bnvicom in 1977. Umup, Dmdown; arrows indicate relative sen. of horisontal displacement. OEP-26 30"-wide backhoe exploratory pit 100 feet ~5g Topographic contour showing elevation in feet; contour interval 5'. 50 meters Figure 7. Map of Airport Creek site showing location of trenches, exploratory pits and deflected channel. A w ~, i ~ . ' Surface faulting on Xianshuihe Fault Luhuo Earthquake (2/6/1973)

After Zhou et ai. 1983

Approximate epicenter 0 10 km ~ Luhuo Dandou

360

320 E 280 a CD 240 E O Cl 200 SL

120 0C N 80 O 40

E 240 200 C CD E 160 O C$ 120 CL CO 'U 80

CO 40

CD 0 0 ;"b

4

I' 0 0 0 In K 0 O 0 Z 0 Z IL'-

Z zLd 4J Z IA 0 N

6 ~1906 EARTHOUAKE K . SUP I-ld Lz~ lL N ~ f ~ AMOUNT OF SLIP RECOVERED SINCE 1906

400 300 200 100 0 DISTANCE FROM SAN JUAN BAUTISTA (KM) Figure 6. Slip measured on the San Aadreas fault following the great 1906 San Francisco earthquake. Solid dots show surface fault offsets; straight line segments indicate geodetic measurements of fault slip, with on~tandard-deviation error bars shown for each determination. Rectangle with diagonal hatching at bottom of graph indictes amount of slip recovered by elastic strain accumulation since 1906

The Forking Group on California Earthquake Probabilities, l988 J fp QUESTION SSC 3

Provuk a dcraikd discussion ofhow and why thc mewgc, displaccttseet estimated for thc Saa Shwee fault was applied to thc Hasgrl fault as a tnaxbttunt displacctttcnt.

CONCLUSIONS

~ Average displacement is estimated at San Simeon.

~ Maximum displacement per event not estimated, based on analogy to observed slip distributions.

~ Average displacement, through seismic moment, provides one estimate of maximum magnitude on the Hosgri fault. Other estimates come from rupture length and rupture area. wing

f>Vfl QUESTION SSC 4

1he characterization ofthe Hosgri fault as a predominantly strike-slip fault has been questioned because ofthe presence ofIow dip angle reverse faults in the zone. It ha! beet saggcttal liat aeter faults which are known to Ite strfkeeNp may have knv dip angle rnerse or thrttstftntlts am~af wkly them ln a mantter sitnlktr to that seen along the Hosgri. Ifthere is geophysical evidence for such a situation provide it. 7he San Gregorio fault in the vicinityofMonterey Bay has been mentioned as a possible candidate.

APPROACH

~ Conduct literature review of fault interpretations from seismic data

compile criteria indicative of strike-slip faulting

compile examples

~ Compare published criteria and examples to Hosgri fault zone ft CRITERIA FOR DISTINGUISHINGSTRIKFWLIP FAULTS

Summarized from Christie-Blick and Biddle (1985), Stone (1986), Zal& (1987), Withjack and others (1987), and Harding (1989):

Map Characteristics

~ Linear or curvilinear, long, laterally continuous fault zone

~ Narrow zone of highly varied structures (faults and folds) with en echelon arrangement

~ Principal displacement zone. is associated with a narrow, laterally persistent antiform or synform bounded by downward merging faults

~ Structural trends adjacent to and on either side of the principal displacement zone are incompatible

~ Principal displacement zone is associated with anomalous compressional and extensional structures at restraining and releasing bendslstepovers

Uetail ot t-nncipal displacement zone

Syttthetlc (R) shear Horsetail splay Secondaryl synthetic shear (P)

Antithetic (R'hear ~ Principal displacement zone

-'., Releasing bend

Principal displacement zone

Restraining bend

EXPLANATION

Normal-separation fault

Reverse-separation fault

Fault, arrows indicate sense of slip

Fold

Overturned fold

Areas of subsidence and sediment accumulation ~ g9

Aj .

1 CRITERIA FOR DISTINGUISHINGSTRIK~LIP FAULTS

Profile Characteristics

~ Basement separation along the principal displacement zone

~ Upward-diverging splays from the principal displacement zone, with either reverse or normal displacement

~ Thickness ofjuxtaposed sedimentary sections changes across the fault

~ Adjacent fault strands in a single profile have a different sense of vertical separation

~ The sense of vertical separation'changes along trend from profile to profile

~ The sense and magnitude of vertical separation on a fault strand changes up-section within a single profile (that is, apparent reversal in fault throw with depth)

~ Merging fault strands at depth have different apparent vertical separation

~ Change in the amount and/or direction of dip of the principal displacement zone along strike

Abrupt change in the nature of seismic facies or signature across the fault

~ Abrupt change in the style and/or intensity of deformation along the fault

~ Upward-widening zones of reflection terminations I.

1

'fi!

I +p

'r4 gL r MAJOR CHARACTERISTICS ~ Basement involved ~ Zone sub-vertical at depth ~ Upward-diverging and reJolnlng

splays'UXTAPOSED ROCKS ~ Contrasting rock type ~ Abrupt variations ln thickness and facies In a single stratigraphic unit

~ SEPARATION IN ONE PROFILE ~ Normal- and reverse-separation N j/ faults ln same profile ~ Variable magnitude and sense of separation for different horizons displaced by the same fault

N —Apparent normal SUCCESSIVE PROFILES R —Apparent reverse ~ Inconsistent dip on a single fault ~ Variable magnitude and sense of separation for a given horizon on single fault ~ w/%I Variable proportions of apparent 'L l normal- and reverse-separation faults / i / / ~ i Ilg \j Time-stratigraphic unit with variable gg I g tq~rl I I a /% % ~ b l~ i h I I li ~ I la, i \ /lit%. I 'l'I / +w f 'L ylang sedimentary facies i)I ~l~ g

g)i~> ~ ) ~ il~ )~)g g tl ~% Crystalline basement I ~ g Il lia~ \ Ig I ~ Principal displacement zone (From Christie-Blick and Biddle, 1985) E'/

"! >VV 0

l

~Q~-'B R A N C HI N 0 g.

~ ~

E ( FAULTS 2 ) Ql

CO ~ ~a aJ v Cg ((p(' h ~(4 yO r J 1 ~% 3 r ~ g ~ ~ 'a ~

~ GENTRAL 2 KM ~ STRA ~ ND

~ 1l ~ ee ~ e

- (From Harding and others, 1983)

EXPLANATlON ,L Wrench fault with normal separation; U = up, D ~down

Normal fault profile

Reverse fault profile

Crest of antkfine

correlative folds B'ossibleB-8'f —Seismic profile (Figure SSC Q4-5)

O2 —Seismic profile (Figure SSC Q4-6)

U 0

9F IS'+

Approximate. gaea shown

Oz

s'+ + 9l'ew'+ . st. U 0

+s'From

Harding and others, 1985) 4,

~i

8:

~

5> 0 SEST1 s EAST )0 0

~ >

$ ~ ill H.

Wfhl

Ch CIa 2.0

CO K

3t

Q 4.

0 MILKS K

From Lowell, 1985 f>

~

CQ O'V%ST 00 8 8 EAST 10

ee Q 2.0 CO

3.0

i,o MllQ KM

5.0

From LoweN, 1985 I.

4, ( t p

L

C

'E

.'~d'r..'„

Q 'c

'p. k

C 0.0-

~ W ~ ~" &' C

1.0- .~r

- - ~ - ~

.'L ~ ' ~f ,r I P J E -1006 ~ 3.0-

6 15,000 c, I- C5 4.0- <; ~F~+~~~~~.P~%.'~i i. v'f+ggi ii".j

~ ~

fA- J~/~ Horizontal scale 5.0-

(From Harding and oihers, 1985) F1', l3Cir, IYl F„Z

108'

P'~~z Y/g~~ 1 8 pe r /~i, Biliings (Afar DobIn and Erdmann, 1955)

North 0.0 —-— ~ ~ ~ E

V» ~ ~ /P~P " '""OEOOMOP TplTIAflY~Q. ~ a o ~ '/II~,P'ME JAAII/r~

~ ~ --'. Oa~ r . w;...-, EEE g '+ P OO ~ '4~, ~ss ~ 'W ~ ~ ' h W.H' ,o OD MEEOEOIO ~ O. PAIEOEOM E NIESOZOC - U. PNNL ~'IP,'~V. +~A ~. ~~% r ~ e ~r"' ED « I O — ~~.-~ '..'rr".'"v'i IIJIISS. - OROOVCAN ' v: ~ ~ ~ r ' ~ ~ '7 Jet ~ 4t+af ha ~V ~ ~ ~ A l 1 ~ v hr ~\ I6 BRIAN -., ~~E !

-~'un BRIAN '~~'~~„CAlN %ha ' ~ ~ ~ ~ +%I «~hVp ~

~ ~ s ~ P%NMBRIAN amyytT - ';-- ' 9 ~ 'PRECANBRIAN BASHNENT "v:,h"r.' r VhV ?- @~teal W%

"'~"".~" 2 mi ~ Oh r h "rI~ .'~ '~Vv ' ~ i 3 kill J~~r.

(From Harding and others, 1985) J

~ I * 10

J) of seismic 122415'ocation profile

122'00'21'45'anta

Cruz

3T00'onterey

correction Bay Moss Vertical exaggeration 14: Landing 36'45'ipHigh - resolution profile

go Monterey 6o~ o

36'30'0 Dip correction ,Vertical exaggeration 6:1 Intermediate - resolution Nautical miles

Section - D-D'ntermediate D resolUtion I' 0

0.5

2250

1.0 Win r //y~ 1.5 4500 1375 Seconds 3.6 km

(From Greene, 1973) *t

Cs I

i+ I San Gregorlo Fault

ld.

!- ..i. ~

Photo of seismic profile

d-D'd, .4 — ..:., ~ ':".

0

0.12 350 107 I

I 0.25 700 215 Seconds Feet Meters Section d-D'igh-resolution

0 1.9 km 0 1 Naical mile

(From Greene, 1973) I 122o46'8o0 Drakes Point Reyes»Y

'. Golden . Gate

10 mi 122'30'o 37 30' 10 km

0 Cy

Line S31 Q4-13 Figure SSC Seal '. Cove

Pillar Line S-29 'oint Figure SSC Q4-12

122'30'37'0'g y O

\ \ b fg(

pl

x)

i

I L 800 900 0.0

%NO ~

~ ~... ~'~r ' E ~

m EU 0

1.0 I-

800 900 0.0

PLEISTOCENE ' ' ~ I g ~ E rUPPER PLKXXNE cn 0 t5 ~ ~ &P 0 ~ ~ o ~ ~ m EO ~r O MIOCENE~. ~~ ~ 4«iA:~~~~ ~o

~ ag

coo 900 1000 0

4000 CL

8000 /

Ib" 800 900 0.0

I ~o' ' ff. w~qVe'fuff .« fV

800 0.0— PLEISTOCENE

~ UPPER PL ~ E I~

«n LU c 0 «~a'ff.~W~f wg ff'«':MIDDLE co AND LOWER MIOCENE... cb 4p '.r ~. r . ~ "i~~p "-™~

800 0

2000

4000

* C

'i Outer Salinia Santa Cruz Granitoid Basin Basement

0 0 Monterey Fan Santa Cruz High {Late Oligocene to J y I 2 s E Quaternary sediment) )V K $ 0> V yV a (ff 4 V I EU .''.(;., ~ (r, E ~ ~ ~ ~ ~ ~ ~ ' ~ O 6 ' I O r ~ Nacimiento Q. Pacific Plate .' o~ CL p Fault {?) Basement i', - r,;~~.- 8 ~ ~ San Gregorio- Tertiary Franciscan Tertiary Hosgri Fault Accretio nary San Simeon Accretionary Prism Terrane Prisim

EXPLANATION

Fault, arrows show sense of displacement

~ ~ ~ ~ ~ Top of subducfed slab

Displacement toward viewer

Displacement away from viewer

(From Saleeby, 1984) J

F;

f

j'', y *

l ~ P 0402-1 HOSGRt P-0397-1 (1km N)N) PURlSlMA STRUCTURE FAULT ZONE (100m SE) WEST TRACE EAST TRA NO.4 500 450 400

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

' ~ ~ I ' i s ~ ~ I ((( ( I(((((((', < I < « <) II (((((I(( IA'I <((, 'i4((~%)$((((((4~QY@g~g+qi> >V,:,));))'( l .."„,<,,4~ I ~, ~ I < i< aa aol) aooAoooaoo

~ ~ ~ ~ Ie

"'» I» iYih%) o)(f()'o I ~ 'i(a<((l )( i(~ )))1 I I,(\ I IN ))IIII aa)l los((())g$

~ A ) I~[ttg',( ) ) I I les

'a,

o

~ I )i< so oa'I ~ ~ ~ ()I([o~ ) II]) ~ I)a< o' ~ ~ I ~ s~)))) ))))I IT))e(» (%( ~ ' . ))) < ~ . v'( I )) )< )II)I~ JI ~ + il < ((I I -'I() (('((<'«(I'.,' (( fi ) )i((( j((((.(("

~ "'(!'(Aii%>jQg(((((« (,",,'i I

5aa < ~ i I I(o(((V )(~~ (((')')")'"«"((('.("4)iv.f')'"((v ))))))))((,Il<(((Nf )) )))))II)t )))III '"l'' f "I:.I f[( ~ I i i ~ 'I )))Iq'<()N) (((f e.(((((((', V. I)l;,)Aff'y((l(I).(''i). !„)((( (a< ((, t)) (((«. "(( I( I"):. ())'((!N(f)l])f) (\(( '' ( '(<), ')7'l$ i,)Q~()'g'))1'((I((),, N() (I((((.«( ( 'vu.;.'; )„;,„i ~))t')ff,))%((,))I(( (( )';g I

I )( I ( ~ I ' ~ (I I I'. Ill

,' ))))I I ((( II I 'i;(ii I 'l((((((VI ~ ~ '))I ''e((((((((

I< '("i (( ))),)(.' ( ~ ~ II IIII) I)ls ( ~ ([ gg(Q$f) 'ii (((f([<)< fi " '))))) ( (e«((((((i( ((I(( l(()5iggl% (g ()Ii

~ ( ')(I I( ) )))5('() ))Is" I (I )A> " ~ 'I»))]f " (() s))~((( P((((I(g ~ (((

'((I ~ I . < (< s ' i ( ') o I')»)))))(I(((qq) C I(I( I,,''(gi(() ) )),)) ) I((,((I) ,. )I

'6 ~ ~ ')I"I (((( ~ '))(() (Nr I ~ a << I<(((s(( (/(' ( i I I I <' (( ~ I (< )]) ( f I )I'((((((( ~ I sof)I(o ((Io sl~)o («< '((I;,((I» i i'((\((I(e I)iil f 'it'!'"'f ~ ~ l,;I I ~ I ~ ( ))) )f4, eli 'f( '))("~'

a'i

~

ts

~r HOSGRI PURISIMA S'tRUCTURE FAULT ZONE WEST TRACE P-0415-1 EAST TRACE X'.0 900 (200m SE) 1100 1200 NO.5 1300

1.0

/ V

2.0

3.0 Jllg ~ '

a.o

5.0 GSI-106 r

5*

I

}1

l HOSGRI PURISIMA STRUCTURE FAULT ZONE WEST TRACE. EAST TRACE -lo~poiNvsi 100 150 200 250 300 350 400 4so No4 soo 'k . 0.0 0.0

4

mr

V'.0

1.0

0 2 0 2.0 C 0 fTl 0 I Vl lO A 0 UJ Q. 3.0 3.0 g)

4.0 4.0

5.0 5.0

Gsl-101 . >r

~

'1

I PUAlSlMA S'tAUCTURE HOSGRI I FAULT ZONE z P.0422-1 Z {100m NW) WEST TRACE EAST TRACE ~0.7 NO.6 sHonowTsi 600 100 800 900 0.0 0.0

~ h '1

$ .0 1.0 LP

~" rir ( .,(

2.0 . 2.0 ~ ( ~tr . ~ iii('

~ ~ ~ r ..'N r.i r v/ i g ~ e(r 'A 'I ~ irlrrV' 'w ' r \ ~ 4flv i ~l(V r tl Md', ~ r ' ~ ~ ~ ., ~ +r '~f~ « 'i '

e((iir ~ i , ~ vr 'v (r

.I ~ ~ 'r V 3.0 W(a)a, 4t rA%~~ ri 3.0 i(rrrr '( ~ (j r' \a i r ' '" ~ ~ .. r. ~ ~ ~ ~ r .'7. " .-'(r(, 'Ar ~ '-.v ile~~~~~ ' ' 4.0 4.0 GSt-'t 't 2C nI QUESTION SSC 4

7he characterization ofthe Hosgti fault as a predominantly strike-slip fault has been qtcstioncd beoause ofthc presence ofbw dip angle reverse faults in thc zone. It has been suggested that other faults which are known to bc strike-slip may have low dip angle reverse or thrust faults assodatcd with than ln a mannsr similar to thar sssn slang rhs Fasgrt ~thma Is jargrhrgshril arg Jsrrrnpi mrsh a Rh7afk~iievgde Lt. Zhe San Gregorio fault in thc valet'nity ofMonterey Bay has bcett tnentioned as a possible eattdidate.

CONCLUSIONS

~ Several researchers have developed criteria to identify and characterize strike-slip behavior imaged on seismic data.

presence of upward diverging normal and reverse faults

change in magnitude and sense of vertical separation both in single profile and along strike

change in stratigraphic thickness across fault

~ Seismic reflection data are available across numerous strike slip faults worldwide.

San Gregorio fault zone, California

Washita Valley fault zone, Ardmore Basin

West Andaman fault, Andaman Sea

Bering Sea fault zone

Lake Basin fault zone, Montana

~ Hosgri fault zone exhibits characteristics of strike-slip behavior on seismic data similar to characteristics occurring on known strike-slip faults 'worldwide. "N>'t

+1 II

N,

d

I W9 f'g~'8

3,i, QUESTION SCC 5

Faults ofthc soudnverr boundary one ofthe San Luis-Pismo blxk on rhc closer fauirs to the Diablo Canyon site, panicuiarly rhc San Luis Bay and Olron faults. 7hc most ~ anatyecr ojthrrsefaulrs should bc submirtcd. PGhE models thc sourhwerr bonnier ofthc San Luis-Pismo block as a dr~e zone offaulting and considers thc smallfaulrs nprerscd ar thc ssufare as individual seismic sources. Address thc'ossibility that thc errtbe soudnvest border gone may be lrttegretat sckaegeetc Bcpl'nd may have thc potential for a larger earthquake than thc individualfauLts. What ~nt wordd this have?

APPROACH

~ Assess the likelihood of coalescence of southwestern boundary at shallow depths within the crust.

~ Consider implications of balanced cross sections to geometry of southwestern boundary at depth and associated earthquake implications.

Assess earthquake potential of San Luis Bay and Olson faults. 'r

)4 gl, South tern Boundary of the San Luis/Pismo Block

Morro 8~ ot "". (~ Wb Orot +/r ..

~ ~ ~0.33 ~

4vtt . Bort Loto 0.13 )to Son Lots V /o„(~rrgt 0.13

5 mt ~or 8 km +o O O~ ~ 0 1< erntr r /r~ e/ O~

Cg ~ X Corrrr r/rr e/ ro ~ Potnt Sat oo ly Magnitude Mw vs. Rupture Area

All Slip Types, 94 Data Points ! o

g y 0 ~

Mw 4.12 + 0.97 log(Rupture Area)

100 10~ Rupture Area (km2)

Wells and others, (preprint) ! s Magnitude Mw vs. Subsurface Rupture Length

All Slip Types, S8 Data Points

~P 7 0 Q U D

o 6 D

Mw ~ 4.55 + 1.38 log(Ruphre Length)

4 1 10 100

Rupture Length (km) 10'ubsurface

Wells and others, (in preparation) 4d. 0

Qlg

g$ Magnitude Mw vs. Rupture Area

—+ ~ Strilce Slip Faults —a ~ Reverse Faults 8 —h ~ Normal Faults V. 7 4l U D C a 6 U >r~

10 100 Areo 10'upture (km2)

Wells and others, (preprint)

Magnitude Mw vs. Subsurface Rupture Length

—+ ~ Strike Slip Faults —* Reverse faults Normal Faults

7 atD

C v 6 V

10 100 10~ Subsurface Rupture Length (km)

Wells and others, (preprint) l r,

C, Scenario 1 3mi Olson Fau San Luis Bay xxxxxx Fault 5 km xxxxxxx

tve Scenario 2 noe os Qerros ".$0/g p ~ ~ ~ ~ Scenario 3 %e

~~0 jc'ao/g yo

. Gy

G~

EXPLANATION

~ Diablo Canyon Power Plant

Fault, dashed where approximately located, dotted where Inferred; tlok on upthrown btook x x x x x x Potential extensions of the San Luis Bay fault ~ % I C ScenaHo 2

Scenario 1 en 3mi Olson FauR x x x x i~o XX XX XXXX ~eo San Luis Bay Fa& 5,km narfo 3 Scenarfo 2 Point San Luis %4~p iW en~ ~ ~ ~ ~ Berros p «7~+/ ~0o ~>o ~~up «0

4~

EXPLANATION

~ Diablo Canyon Power Plant

Fault, dashed where aPProximately iooated dotted where inferred; tiok on upthrown block x x x:. x x Potential extensions of the Olson fauR I

J };w

(P

gpss "l~g ~'lg+( MAXIMUMMAGNITUDES FOR SAN LUIS BAY FAULTSCENARIOS

MAGNITUDE,Mw

SCENARIO RUPTURE Rupture Area Rupture Area LENGTH (km) Subsurface Regression Regression Length Width = 8 Width = 12 Regression km km

5.6 5.8 5.9 5.9 5.9 6.1 12 6.0 6.0 6.2

GROUND MOTIONS FOR SAN LUIS BAY FAULTSCENARIOS

PEAK ACCELERATION SCENARIO MAGNITUDE, DISTANCE (g) Mw (km) Med. 84th

5.8 6.8 0.31 0.55 6.0 6.8 0.35 0.61 6.1 4.5 0.47 0.80 C'» MAXIMUMMAGNITUDES FOR OLSON FAULTSCENARIOS

MAGNITUDE~Mw

SCENARIO RUPTURE Rupture Area Rupture Area LENGTH (km) Subsurface Regression Regression Length Width = 8 Width = 12 Regression km km

5.0 '5.3 5.5 5.5 5.7 5.8 5.7 5.8 6.0

GROUND MOTIONS FOR OLSON FAULTSCENARIOS

PEAK ACCELERATION SCENARIO MAGNITUDE, DISTANCE (g) Mw (km) Med. 84th

5.3 2.9 0.35 0.67 5.7 2.9 0.44 0.79 5.8 2.7 0.48 0.85

Hosgri Olson San Luis Bay —+ Blind Thrust 10

A 10

L

\ \

1 1l \

'L 10-s 5.5 6 6.5 7 7.5 Nngnitude, Nm

10-1

10

10

1O-4

1O-'0 L

10 7 Olson 1O-'osgriSan Luis Bay Blind Thrust

.5 1 1.5 2 2.5 Spectral A.cceterntion 3 to 8.5 Hz (g) 'ES

'I

an QUESTION SCC 5

Fatdts ofthe sotttinvest boundary zone ofthc San Luis-Pismo block are thc dosest faults to thc Diablo Canyon site, partietdarly the San Luis Bay and Olson faults. Zhc'ost neet tuaa~ qfHeat~ should bc submittctL PGcfcE makls the southwest bonkr ofthc San Ltus-Pt'srno block as a digasc zone offaulting and consukrs thc smallfaults expressed at thc surface as individual seisnuc sources. Address thc possibility that thc eetfne soutbvctt bonfcr lose ntay be lntegtacaf AaAaa~e %yak and may have thc potential for a hrger earthquake than thc individualfaults. What cfect vvowldthis have?

CONCLUSIONS

~ Several lines of evidence lead to the conclusion that the southwestern boundary does not coalesce into a single fault zone in the upper several kilometers of the crust.

Southwestern boundary is a 5- to 7-km-wide zone of deformation accommodating uplift of San Luis/Pismo block.

Individual faults are discrete, discontinuous, and, in some cases, subparallel. Uplift of the block is accommodated by multiple faults.

Most faults dip consistently to the northeast and are not opposing.

The southwestern boundary is quite different from the Los Osos fault zone, which is characterized by opposing dips of faults and stepdown in block uplift over very narrow zone.

' ~ "Integration" downdip may be postulated by consideration of balanced cross sections.

detached at —5 km depth

die out in fold axis or extend to ramp at 8 km

earthquake implications for ramp given in Response to Question GSG 11

~ Interpretation of all data on San Luis Bay and Olson faults and consideration of balanced cross sections leads to possible scenarios regarding their rupture length, maximum magnitude, and ground motions.

~ Comparison of recurrence rates for San Luis Bay and Olson faults shows them to be one to two orders of magnitude below Hosgri fault zone. , l~~ )

r.

l '

l,"

's v

g t

4'r

e

k.

l Pl t

1'

4

)j; QUESTION SSC 6

PGdcE has intnprered the Los Osos fault on thc northeast side ofthc San Luis-Pismo block; and the Olron, San Luis Bay, and Nibnar Avenue faults on its southwest side as near-vertical, block-boundary faults along which thc block has been uplift. Is tMs modd conslstntt with the geologic Lfaw&4m Usted below'kase crplain PG%E's lntnpntatlon. a. Surface geologic dataPom the Los Osos and San Luis Bayfaults, which doctrnrent low or moderarc dips inward, toward the synclinal aus. b. Subsurface geologic data from the Honolulu-?Idewater drillhole, which show multipk rcpctition of Tertiary strata in thc'ower part ofthe hole, down to the total depth ofabout 11,000 feer; dips in thc repeated section are low to modnate in sharp contrast ro thc steeper dips at rhe surface and in thc uppn part ofthe hole. c. Surface geologic map relations which require post-Pismo compression, folding and reverse or thrust faulting.

APPROACH

~ Evaluate data and lines of reasoning provided in question regarding deformation of San Luis/Pismo block

~ Provide rationale for down-dip geometry of faults bordering the block , "(P

'~l CHARACTERIZATIONOF FAULTS BORDERING SAN LUIS/PISMO BLOCK

~ Reverse of thrust faults

~ Dip moderately to steeply beneath block (and Pismo syncline) Los Osos fault zone: 30'o 60'W, weighted average 51' bedrock shear zone: 60'W to vertical ~ trench exposure: 0'o 22'W progressively steeper ~ retrodeformable analysis'. 55'o 70'W Southwestern boundary faults: 40'o 70'E, weighted average

64'll exposures indicate dips >

40'an Luis Bay fault surface exposure progressively steepens'o > 46'E 3 point analysis: > 78'E retrodeformable analysis: 40'o 75'E ~ Olson fault bedrock shear zone: 60'o 80 NE offshore seismic data: ) 70'E retrodeformable analysis: 52 to 75'E ~ Wilmar Avenue fault surface exposure: 55'o 60'E ~ Santa Maria fault Union "Mahoney" well: 66'E ~ Pecho f::Jlt offshore seismic data: near vertical

~ Faults are not characterized as "near vertical"

Santa Lucia Range Antictinorem I I Honolulu-Tkfewater Pismo Helter Lease No. 1 Hosgri Point San Luis Syncline l Fault 2one Anticline I I / I Klfe-Jop I I ~ ~ Mid.Cenozoic ~wsw I Elfin j unconformity 'a~'I'oNt / I / I .rg ly -/ / / 8 E 5 j 5 j / I I o I / l 'y I I / Santa Lucra Thrust ~ / / / 10 I 10 Point San Luis Thrust / / /

15 15

A' Slhtl LUCflAihoiAhffCtfhOf IVI' la PitltlNahOe AntlellnOdum te Lfeteeae Oem eteeeen ~ Ilee tete mes care ~ Avtt Ceeee ffetee ttletate latin ~ er~ Qerr jyagwy ~ ere fcatt fcatt terre f ~ I ar oa ~ ter I ' K ~ra / j tee J I j ~~ I ~ --+ I ~ faa ~ / I / ~etaf Sea Ltee Qettte luce Tlrwt r ~tete 5euwtOe ftrta» j y/ ee /. fa fllee

tae Ioe Sara+tee faa faa

ter aeCaeae reaaarre ~Jr

tew ttffterr ltffae AC Honotvlv. Ttdeereter Sen Lvls Set Fsvtl \ I I Hedel Loess Ho.l Fsvtl Los Oeos Fevtl i Feud Zone ~I I Hoeorl FwllZone ~ ~ ~ ~ Pecten '\ c reer recce Fevtl ~ r \ // I/eN//n I I - eht e I / 0 I I I \ I !,I tnn' 1 tnr e/p ).. I t e I l I teei 1 I ~eg A'O.OOO I rl 1 ra I l,r I ! \ I 1 r stere r I 1 I %Pe I ee /g//n I I I 1 e/pe I rpfJ / I2,000 I 1 I / 14.000 I / I 15.000 5

MODEL A

5 kjjometels

B' Onotvtu. Ttden etef Hoegd FwllZone Son Lvte Bey arson Holler Levee Ho.1 Edna Eeet recce Fe oilZone Fwll tee 0 I Fwtl Zone ~ I / 0 'e / I / tee / / / / /t~ tnn r I I/fee / g//re Ir//re / / te I \ / / I I / I / ~ 1 Q/n l. t / (/ / / / IIIP tet I / Il / / . I' I / r~~~ 1 i I I 2 ™ t / i / / / I / / 1 / 5/f» r t//n / 5 rr j L / / I / Iil ge//Q/re re I\ j 10.000 l / I / e 1 / 5 1 / I I 'l / I 12.000 / / Jf \ / / I I 1 / 1I.OOO I / '1 / r I 7 \ / 15.000 \ / I 5 15.000 /

MODEL B 'I HONOLULU-TIDEWATERWELL

~ Two stratigraphic repetitions recorded in 1950s

~ Analysis using current stratigraphy (Hall and others, 1979) indicates one or no repetition

~ Dip meter data are recorded as weak to fair in quality

low confidence in data

drilled core of syncline where flat dips are expected

~ Only one queried "fault" is recorded

~ Retrodeformable analyses by PGEcE and Namson indicate not structurally plausible for block-bounding faults to intersect base of Pismo syncline. j,t

h QUESTION SSC 6

PG&E has interpreted thi Los Osos fault on thc northeast side ofthe San Luis-Pismo block; and the Olson, San Luis Bay, and Wilmar ennui faults on its southwest side as near-clerical, block-boundaty faults along which thc block has bein uplifted. 5 this model consistent with the'gcebg4r klfa~iae" Lhtcd below'~ Please explain PGc%E s interpretation.

a. Surface geologic data Pom thc Los Osos and San Luis Bayfaults, which document low or moderate dips inward, toward thc synclinal axis.

b. Subsurface geologic dataPom thc'onolulu-?idewater drillhole, which show multiple repetition of 'Tertiary strata in the lower part ofthe hole, down to thc total depth ofabout 11,000 feet; dips in the repeated section arc low to moderate in shatp contrast to thc steeper dips at thc surface and in thc upper pan ofthe hole.

e. Surface geologic map rc'lations which require post-Pismo compression, folding and reverse or thrust faulting.

CONCLUSIONS

~ Our interpretation of San Luis/Pismo block is consistent with and incorporates all of the data and lines of reasoning presented in the Question.

~ The San LuislPismo block is undergoing northeast-southwest directed compression.

is bordered by reverse faults. Los Osos fault zone dips 30 to 60 degrees 'lock southwest; San Luis Bay, Olson, Wilmar Avenue faults dip 45 to 70 degrees northeast. l

II

f p

flJf.

1I p

%r.

4

,x~"J

Jg l P LOMA PRIETA EARTHQUAKEISSUES

~ To what extent could we anticipate the location, style, and size of the Lorna Prieta earthquake

~ Oblique-slip on strike-slip fault zone

relevance of observations away from of rupture segment

'I' Relationship of surface trace geometry to subsurface geometry and style of faulting.

~ Segmentation

~ Partitioning of strain in the near-surface

~ Depth extent, magnitude

~ Lack of surface rupture; undercounting of earthquakes and minimal estimate of slip in exploratory trenches aQ(

«A

f xe ma rieta, ornia, a ua Ze: An Anticipated Event

U.S. GEOLOGICAL SURVEY STAFF

Ovcrvicw of thc Earthquake and its Eaccts Thc first major earthquake on the San Andreas fault since 1906 fulfillea long-term fore»ast for its rupture in the Thc Afs 7.1 (Afs, surface )vavc magnitud«) Lorna Pricta earth- southern Santa Cruz Mountains. Severe damage oc»urred quake )vas felt as far away as Los Angeks to thc south and Rcno, at distances ofup to 100 kilometers from th»»pi»enter in Nevada, to thc east. It kfr in its wake 62 confirmed fatabtics, 3,757 areas underlain by ground known to b» hazardous in injuries, more than 12,000 homekss, and property hsscs and strong»arthquakes. Stronger»arthquakcs will someday recovery costs cstimatcd at $6 biQion (2). Although larger earth- strike »loser to urban centers in the United States, most of quakes have a8«»ted the United States in recent decades, most which also contain hazardous ground. The Lorna Pricta notably the Kern County, Cdifornia, «arthquake (21 July 1952; hf earthquake demonstrated that meaningful predictions 7.5) and the great Alaskan canhquake (28 March 1964; h1 9.2), not can be made of potential damage patterns and that, at since 1906 has an canhquake had such dramatic efects on thc 1»ast in well-studied areas, long-t»rm fore«asts »an bc nation. Indeed, the losses in ling and in public and privat» property mad«of future earthquake locations and magnitud»s. place it among the nation's most costly natural disasters. Such forecasts can s«rve as a basis for action to redu«c the The Lorna Prieta earthquake ruptured a segment of the San threat major earthquakes pose to the United States. Andreas fault in the Santa Cruz Mountains that had been recognized as carly as 1983 as having a high probabdity for rupture in the following fcw decades (3, 0). In a study in 1988, this scgnxr t was assigned the highest probabdity for prodtxing a h9 6.5 to 7 N THE IATE AFTERNooN oF 17 OcroBER 1989, hs THE EYEs earthquake ofany California fatdt scgnxnr north ofthc Los Angeles of America tumed toward Game 3 of thc Ivorld Series at metropolitan area (5). Candlestick Park, the largest earthquake in no)them California Just as thc occurrence ofttus earthquake was antxipatcd, so werc r that this earthquake since the great earthquake of 1906 suuck th» San Francisco Bay its princ)pal »8»cts. Thc extent of damag« Area. Game anticipation quickly tumed to surprise, incredulity, and caused in San Francisco and Oakland at great distances ( 100 km) horror as thc cr«w of the Goodyear Blimp transmitted pictures of from the cpiccnter has many paralkls with the tragedy in hlcxico t)x collapsed sccuon of thc Bay Bridge, thc 1880 disaster in City as a result of the Michoacan earthquake (19 September 1985; Oakland, and thc Marina District firc in San Francisco. IVithin less M 8.1) some 350 km away. In both cases, dx principal culprit was than an hour, it became dear, however, that this carthquak» was not the young, poorly consolidated, water. saturated, finc.grained scdi. thc "big onc." The evident scenes of d«sauction were due to a ments that underlie h Icxxo City ar)d bne most ofthe natural margin smaller event with an epicenter well rcmovcd from San Francisco of thc San Francisco Bay. The Bay margin, moreover, has been (Fig. 1). modificd extensively with mac) made fiilas a means ofincreasing thc In this anicle, )vc summarize the causes and «8«cts of thc Lorna availabk subaerial real «state; thc fiB in most cases has been placed clear Pricta (1) «arthquakc, on thc basis of 1 month of post-carthquakc atop the naturally occumng Bay mud. Wc know from the invcstigauons, and place them in the context of two dccadcs of kssons of history as well as fiom ekmentarv physics thar thc research that allo)ved an accurate iong term forecast of bcxh thc performance of such material, even at modest kvds of srismi» occuncnce and consequences ofthis earthquake. The occurrence of shaking, is poor. Accounts of the «8»cts of thc 1865, 1868, and the earthquake where it was anticipated underscores thc canhquakc 1906 canhquakes in thc South of Market and Mission districts of hazard in other areas of California tvhere iong.tnm forecasts poinr San Francisco di8cr litde from what has been )vrittcn about these to an eksatcd risk. Even though San Francisco and Oakland su8crcd areas in October 1989. considerably in October 1989, «vents of comparable or greater In thc cpicentrd region (Fig. 1), far to the south, damage in th« sucngth willsomcdav rupture th» Hapvard and San Andreas faults hard hit communilics of Ivatsonvilk, Santa Cruz, and Los Gatos beneath thc most heavily urbanized parts of the San Francisco Bay was most scvcre in unrcinforccd masonry buildings; )vhich )vcr» Area. Th«sc card)quakes )villbe far less kind to thc Bay Area iftve do constructed long before d)e mcxkmization of California's building ot procccd vigorously to meaningfully reduce the risks from codes. Local ground conditions seem also to have pbycd a signifi. )quakes. cant role in the damage pattcms. Observed building damage revealed thc usual problems with unreinforccd brick masonry and )vid) structures having thc soft, open ground Aoors that possess prcpsrcd bv members of thc Brsnches of Enpnccring Scismobtty snd Ccolnp, Gcolopc Risk )Usa)ment, Gbbsi Scismobp; l)cncous snd Gcotftcrntsl processes, insu8icicnt rcsistancc to shear deformation induced by suong Scismobrn', Tcctonophvsics, snd 'LVestcm RcStonsl Ccobcy. Correspondence sddrcss: carthquakc shaking. There, and in nearby San Jose, modern struc- O)Ecc of Esrtht)oskcs. )7oksnncs, snd Ensinccrinr, U.S. Ccobzicsl Sttrvcy, hlsil Stop 977, 3

~ ~ ~ ~ ~.'f ~%i S ~ ~ ~ j„+ E E 10 0 10 )

~ ~ y 0 20 20

0 10 20 30 40 50 60 70 80 0 >0 20 30 Distance (km) Distance (km)

~ I ~

Depths

0 ~ + 0.0+ 20'0'7 IL 0 10.0+ BX Ntagnltudee A o a 0 ~ 0.0+ CP O~ po ~ I .0+ Mainshock -+ o 2.0+

~ 1 C g 4 0 3.0+ 50'y ~w'(i~ 0 4.o+

~ .o+ o ~ 0 00 l e.o+ ~ \ Q \ l~ 7'0+ 20 km 0 \\~

I I I / ' I 20'0'22'0' 4pl 'z 0 > 20'rom

U.S.G.S. staff, 1990

San Francisco Lorna Ptlota Parkflaid A'

I I l I I I ~ I I I I I I I I I E 0 l,1 .S< ~ ~ ~,'~$ - ~ t a .T ~ 10 0 o 0 ~,~ ~ ~a 0 0 ~ a 20 I 1 I I I I I I

San Francis'eninsula sogmont Soulham Santa Cruz Mountains aegmant Undh (B) 19B3

I I A'0 I I I < I I < I I I I < I «<: I I

a A 20 I I I I I ~ I I I I I I ~ I I I I I I < 0 50 150 250 350 Distance (km)

From U.S.G.S. staff, 1990 !l'.»

I -1

Ir 44 y, Magnitude Me vs. Rupture Area

Strike Slip Faults, 46 Data Points

0 0 0 Lp~o 0 0 0 0 0 0 0 0

Me ~ 3.92 + 1.04 log(Rupture Area)

100 10~ Rupture Area (km2)

10'ells

and others, (in preparation) wt P Magnitude Mw vs. Subsurface Rupture Length

Strike Slip Faults, 48 Data Points 0 0 0 0 7 LPEQ ~ 'aQ O~ 0 cp 6 U og 0 0

Me = 4A5 + 1AO log(Rupture Length)

10 100

Rupture Length (km) 1O'ubsurface

Wells and others, (in preparation) I" Magnitude Mw vs. Rupture Area

All Slip Types, 94 Data Points

8 V 0 7 LP tD O 0 C O 6 (P O 8 ~ A 0 0

Mw 4.12 + 0.97 log(Rupture Area)

10 100 10' Rupture Area (km2)

Wells and others, (in preparation) Itt Magnitude Mw vs. Subsurface Rupture Length

All Slip Types, 98 Doto Points 0 0 0 LPEQ 0 EP 7 0 D D C o a 6 0

Mw = 4.55 + 1.38 log(Rupture Length)

4 1 10 100 10~ Subsurface Rupture Length (km)

Wells and others, (in preparation) 'h ( A'

+ tt ' V + + + t + $ t ++ +g +t f 7. +P +gkq f. +g p +t t ~ ' + + ~$ g ++;tf+ Wirr++

+ + t + tt

10 20 30 40 50 60 70 80 90 D I STANC E (KM) From Oppenheimer, 1990 ~ CI

$ <~ A e

ftIK«

P'I

gc ~ g

1

LJ

illa& A DC PV LE

A'i

0 0 20 a.

E. 0 ~ ~ ~ ~ 0 \ r y~ ~4' '' ~ I+ 20 Ch Nov. 1 o ~ ) ' . ~ 0 C. Oct. 18

~ ~ oo <9S9 ~ ~ o 0 ~ ~ ~ ~

8. 0 ~ no~ ~ yf ~ ~ ~ ~ ~ ~ ~ ~ Q ~ oF ~ ~ ~ ~ ~ ~ ~ ~ 0 ~ ~ P o ~ ~ o «'f ~ ~ ~

o ~ gal ~ o ~ t5 ~ ~ ~ ~ ~ ~ 0 ~ ~ ~ ~ fo ~ g ~ ~ ~ I ~0 o ~ ~ ~ ~o 0 ~ ~ ~ ~ 1979 ~ ~ Q ~ o ~ E ~ ~ '1 ~ ~ I- ~ 0 ~ 0 ~ ~ ~ ~ ~ g 0 ', ~ ~ ~ ~ ~ ~ ~ ~ ~ g ~ + + ~ ~ g

~ oo ~ o ~ 0 ~ y ~

o P ~ ~ ~ ~ ~ ~ ~ ~ 0 ~ ~ o ~ o 'f QB9 ~ ~ d. 0 50 $ 00 150 200 Diitance (km) gIM~ /gP o

Figure 2. iS

'i ~}

\} a3 Planar rupture truncates San Andreas fault SW

] .++.. '+ ~ ~ ~ ~ ~ ~ ~ E t. 10

I 3' 0 0 o ++~

0 + 20 V'

b3 Rupture on San Andreas dips below 10 km l, + v ~ tb~ + ~ ~ ~

10 XI- 3 CL ~ ~ + 4J + C5

~ 1 +

20

10 20 30 DISTANCF. (KM)

From Dietz and Ellsworth, 1990 1 ig" I FAULTSEGMENTATION CHARACTERISTICS

(Strike-Slip and Reverse Faults)

~ Changes in recency of slip ~ Changes in sense of slip ~ Changes in slip rate ~ Changes in trace complexity ~ Changes in seismicity ~ Changes in adjacent deformation ~ Releasing and restraining double bends ~ Single bends ~ Stepovers ' Cross faults and folds ~ Fault and fold branches ~ Gaps, discontinuities ~ Fault terminations l

1 I'g ,',

P$ ~ ~ ~ Ie~ ~ oW ~ ~

~ ~ 0 gP

0 ~ ~ ~ ~ ~ ~ 0 t ~ C ~ ~yt B B

~ ~ yt ~ 3 MAGNlTU DES

fq1 ~O 0.0+ 0 2.0+

0 ~ o ~ ~ g Q 3.0+ ~ + 0 ~ 0 4.0+ 0 ~ ~ ~ 0 5.0+ I II $ ~ 7.0+ 20km I a. b.

From Olson, 9990 0

4

I

C '$

J', North end pre-1989 seismicity gap Double restraing bend ~North end 1989 rupture (Geodetic modeling) Lexington Reservoir c...'...:"~ North end 1989 rupture (Seismicity) San Andreas-Sargent intersection 4V Lake ELsman, ~ Lorna Prieta Peak

17 Double restroinlng bend Double releasing bend N 1989 EPICENTER

~' ~ N

South end 1989 rupture ~ ~ ~ ~ ~ ~ ~ (Geodetic modeling) ~ South end 1989 rupture (Seismicity) g/ Po Jaro Gap SAN JUAN Releasing bend BAUTISTA 0 5 KM Change in fault dip Increase in relief Surfoce creep goes to 0 South end of pre —1989 seismicity gap CO 6 8 Ii C4 g iI 8 8 S gg 3 Q) 6 X 8.

1

0 0 50 100 150 200 250 300 distance from Cape Mendocino (km)

Figure 12. Distribution of slip predicted by boundary-element models with the geometry of the 1906 rupture zone as input. The upper curve is the synthetic slip predicted from a fault zone that can slip freely but is not permitted fault-normal slip. The lower curve is the synthetic slip distribution that results from a fault zone that is permitted fault-normal and fault-parallel slip. The dots are the maximum observed slip (table 1).

From Bilham and King, 1989 I ~c

~4

L, ' L/cosa 0 ca«F4 ".~<@<'V

4,.:~'CNq,>."S.w.S&i c.,i448"A4 'h4"( q9c: '$i N A'"4 A4gK'c."k:.SA'SyS

V, i 5r.

8;-.'~, +Q<~<<~,;<~q):g. ~, 'if~~;~ai ~-"":,.A»(,, + x~p~$<~r~j$m .~~". <,.~,w ..«~h jo~'."R:gAgM~~~~wQ, ':cjq<~pc~:~QU,~ «Q/4~~<@<<;.:wj'.~,:<>..:~q. <$">pp~~' h

' I north american plate

„sg~.

pacific plate-

From Anderson, 1990 Ai e I, ~ g~pt

t

," /

'll t

~1

i J <

l4 l+ O+ QQ Oy ierra Azul O~

O C~ SAN 0 cP RANCISC o~ AY O O~

QQ Faults associated with the Santa Cruz bend on the San Andreas Fault

QO ~O Northern Santa Cruz Mountains

12 San Jose

Southern Santa Cruz Mountains

38.6 Santa Cruz Gi oy

Watsonville ollister MONTEREY S BAY Juan Bautista 19

0 km contour interval 200m starting at 300m

From Schwartz and others, 1990 I 0

-10 x 0. t, LJj -20 +~

0 x -10 I O. LJj -20

0 ~ 3 ~ hC — x 10 I O. Lij -20

0

hC —10 x J ~ O. LJJ -20

0 wQ+ 5 hC — x 10 I tL LJj —.20

0 10 20 30 DISTANCE (KM)

From Dielz rrrrd EIsworLh, 1990 ~L

1

'll + +

rQ / 8 / ~ ~

+y oo, >i~ r'/r / W t~ /r / /' 0 0 ~/' ++ + /'g/ + r J'/

o o CV IO

From Dietz and EAsworth, 1990

Earthquakes in Turkey

b 05.5 I Z I l ha r 0 1942 ~are = 1939 WO. ~s 50 QO.T5 r( 5aalscaP 'aaa Taps k I s la p f4g Essss

44 I o o» o» o» o o 5004o ~ 'f421 «~4km f42 ~ ~ ~ Csl41Ias 1976

0 5ltm 0 lOI p 41 1oasa

Barka and Kadinsky-Cade, 1988 Pk>''s

li (a) Restraining Double Bend

foMI thrttata strike-sl)p faults

Extension fractures (b) Restraining Stepover

From Barka and Kadinsky-Cade, 1989

bq

where u =block rnollon dlrecllon 8 =change ln strike / =dip of fault pfane tn the bend 8 ~sttp vector on the Inclined fault plane e,= hot fzontat slip Sg~verflcal (along dfp) slip

From Dietz and Etlswofth, 1990

SHEAR RESISTANCE (kbar) STAN

E-SLS'AULT 1.0 2.0 ZONK

n Xl O

Sp R'0

)nc asking t

decreasing v

20 increasing dT/dz V) increasing water content U increasing quart?/feldspar ratio I EO O I 30

from Sibson, 1984 NP San Andreas Schematic Fault Representation of San Andreas Fault

1:0 RL-SS Reverse Slip Ratio for vertical fault

o Saratoga

I I 1.5:1 RL-SS: Reverse L.P.EQ Slip Ratio Estimated slip I oximate I for 70'ipping fault nt of from Geodetic with restraining bend Modeling most lllg I afterskocks ll 1.9 m right-lateral 130 40-44 km lg strike slip 1.2 m reverse

1:0 RL-SS: Reverse N35OW Slip Ratio for vertical fault San Juan oi PP Bautista NAP

20 km

Hosgri Fault San Andreas Fault l

~ DCPP

L.P.EQ i ~ 1 'lg lo II ~ glJ

N35'W N N35'N N NAP NAP San Juan ~1 Bautlsta 0 10 km 0 10 km E MI444 DCPP ~ A'

~

IO 1/1/73- 12/31/79

C7 20

20 'IO 40 50 40 20 015rPHCQ (IIII)

~ ~ ~ ~ ~ ~ 10

X 1/1/80- 5/31/88

<

JO 10 40 50 Ie 20 OISIAHCE (IIII)

10 10/1/87- 12/31/89

-20

-20 10 40 20 OI0rueC (r11)

~dfn '> Carpoforo Ragged: Point -'( +,35'45'p Breaker. Point - or rr iocA

0 2 litt

0 3 km

+35'42'30" e„~~ /

itrroyo '?. ( N '.~c ~.,O

rO >o e/ Og "iud

121'll''5'40'+

P Iedr&'r Blancas j= Point '(f ~) ~ ..g 0 EXPLANATION C'J O. I ~—~ T- Fault; dashed where location and/or evidence for activity durlnti the pest 500 ka is less certain; dotted where Inferred; queried where uncertain; sawteeth on eV::ir upper plate of thrust fault: arrows Sari Simeon show sense of strike slip Point ~ 1 Trench or natural exposure locality 1 ~ San Simeon Cove 2 ~ Borrow Pit 3 - Airport Creek 4 -Oak Knoll Creek 1

1

I

t$ Qeologjc map of marine terr along the southern onshore reach of the S meon fault zone

'v 'lq20

0 Oak Knoll'.

„17 190g5g+ P P~>>>0 r~ "~- '1r ~s4 ~ F08 l Ao

Cg ~C TL2a(100i20Ka) r ', P .' +r:.':..::::: ( 4p:< j:: Pg -'. t

EXPLANATlON

Dune complex (c83 ~ ks) ~r4 7 '::.:i"...". San Simeon Point terrace (60 or 83 ks) KHWi-A~i (484ii.skI)n~ ~; 1 i2 78g3 Ssn Simeon terrace (83 or 105 ka) $ San Simeon Bay Tripod terrace (120 ks) 23+ c Oso terrace (214 ka) San Simeon Point m~2 Ls Cruz terrace (320 ks) 4000 lest

1000 meters i

I, al A N79W N69W

SAN SIMEON FAULT ZONE 28Q20 60 ~ Ir 250 ~ ,r ~

~ 70 ~ La Cfua terrace .,a~ 160i15 19~5~ ~ 60 175a10 (OS) t t a ~ 175i10 175%10 ~ ~s A 175~5 La Crua terr%co (OSI.. j mQfs4aa'ram» ~ ~ ~ ~ ~ ~ ~ ~ ~ tm~~wL m 155JS~I 150 132~2,H E 12112 4'24~ 40 o ~"„„~~'' Oso terrace 3 Oso terrace y,o ~ 11~2 (O4) 108% 105~ 110g10 ~~~ ~ o ~ ~ ~ ~ ~ +~+~oo «~~~~~i ~ op~~ 100 ~ ~ ~ 9 30 ur terrace Trlpod 76~476+3 bur ado s oded terrace 70i3 0 65+5 (O3) 77 2 55~5 77 82+3 7515 San Simeon terrace 30tS (a2) 30g5 San 27i2 San Simeon terrace '4r~~ l~~~eaa 1( o ~ Simeo 1612 1dq2 (0 23%2 10 frrt~gill~

Unnamed 9ullles Adobe "Airport"Creek Arroyo Broken Little Pico SE of Oak Knoll Creek dol Br)doe Crook San Simeon Point Puerto Creek

4000 feet

1000 meters VE e 40x

EXPLANATION Lines Symbols $4 with well exposed vrave cut p)atform (WCP) Shoreline anql ~ $4wlthout well expressed wave cut platform g4, elevation based on surveyln9 of exposed g4 (foot; values 1 foot unless othsrwhe Eroded $ 4 t shown) g4: elevation baaed on drill hole projections (foot) $4: elevation baaed on pro)ection of surveyed General note: Error bars are shown except where wcp exposed In seacliff, stream cut or soil pit (foot) symbol h larger than error. $4l ~ lavation estimated from bedrock outcrops plotted on USOS 7.5'opographic qusdransie mop (foot), Contour Interval 40 feet

Elevation of bedrock surface (feet)

Figure 5. Longitudinal profile of marine terraces along the southern onshore San Simeon fault zone. fp, t1osgfl Purisima Zone Structure trace East trece Shotpoints ~ 500 450 300 250 Mid P 0.0 <52 1.0 Top M -1 238 't>- Topi 2.0 -)CD -2288 Coastal uplift rate ' 3.0 " - 2eSL ', bas~mef at~, ~Igy "marine terraces ." ~as~ 4.0 f O ' ~ !a g4 5.0 * r ~ L I ~ 6.0 HOSGWFAULTZONE Maximum Vertical Vertical Separation Vertical Slip Rate Coastal Uplift Rate Slip Rate (meters) (mm/yr) (mm/yr) (mm/yr)

Mid P (2.8 Ma) 690-190 = 500 0.18 0.00 0.18 Top M (5.3 Ma) 1023 0.19 0.00 0.19 Top B (-1 7 Ma) 2428-4S2 = 1976

ROSGW FAUITZONEMDPURISIMASTRUCTURE

Mid P (2.8 Ma) [691) [o.2s) 0.00 [0.25] Top M (5.3 Ma) [1238) [o.23) 0.00 [0.23] Top B (-17 Ma) 2286-452 = [1834]

EXPLANATION Mid P Middle Pliocene unconformity Top M Top of Miocene unconformity Top B Top of basement unconformity 0 Depth in meters from seafloor to unconformity

Rates of deformatio~ (mm/yr)

0.76 4y

og 0.17

Pledras 0.1 Blancas Antiform 0.05 0.24 0.11 0.20

Point Estero San Simeon- ~ Hosgri 0.00 Step over

<0.00 0.10 p22 0.20 .3 0,20 Diabb Cajnyon 0 10 km 0.19 0.35 0.12

0.06 J

e I

s'

f'

4I

~ z

I

1 , MR. DOUG CLARK

VIEWGRAPHS

APRIL 1990 WORKSHOP

SEISMIC SOURCE CHARACTERIZATION g~

.'

h

&'I ,;; ';,;,;;a

LOV "::.::::.:::.::.::::.:::.::.:::,.( "o':::.'::'':.

\

PT BUCHON

SMV 0 SM

PT SAL OR jI;'' AM@": "':::..::::::::::$0 ':.:.:;::::::::::::.:;.Q:::::::::;::::::::,:::;::::Pg "...:.':.:.'."',,",', ".~:::::::: ..;:::;::::.:,: '~~~~K;:::::::::,".::: ':.::,:,::;:,; OS SAV "":::: ':::::;:::;::;:.::.:..P /y((:.:...'.....:..:.:.,'.,'..~"::::;;:::'.:::::::::,:::::;:;

. '::::::::::::.::.:::::::::: ..:.':.::::, ':„':.::::::::::::.::.::::::::::.:,::.::+:::::::::::::::::: LM SYRV .,:,:,,Pgy '':: SRH~~ V ::::. ,, '::.:..:::::::::::::::::::::::::::~$ 1 1:..:&.-M .rE,.:.~..LC::;:::::::::'::$ ""::::::::.:::::::::::::::::::::::.i':SANTA YNEZ RANGE:::::::::::::::::::::::.:::.:::.::.:::::::::::::::::::::::W:<""$:::

0

0 0 0 10 20m

PT CONCEPTlON 12LP30

FOLD trend, Santa Maria basin, San Wis Range

0 10 20 km

~ ~ ~ 't Qq

' L.::, ~ ~ ~ 0 ~ ~

'

~ ~ ' ~ o I~ ~ ~ S' SMe ~ y

~ ~ to ~ o ~ ~ At +4 ~ y ~ oo ~ 0% ~ ~ g ~ ~ ~ ~ ~ ~ ~

~ ~ 0 ~ V~ OO O y ~ ~oooo ~+~ooooi+0 ~ ~ +~ ~ ~ ~o ~oP ~ ~ ~~ ~O ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~+ ~ ~ ~ 0 ~ ~ 34e30 ~ ~ ~ ~ ~ ~ e CONCEPT'~

0 ~ y ~ ~ ~ ~t

121 120'bO' e .J

II 4

k> 1y

(H

'if'

Vr

,T ~ ~

'V

-a' Qs

Qs Guadalupe Santa Maria

~ ~ Mv ~s ~ Os fs ~

p~ Cy Hp A' +g ' p Pt"Sai Oy~jpp.)

4y~ Orcutt LIONS HEAD Oo ~, ~ FAULT Os Otm'0 Oo

0 3 km

Qsl

GEOLOGIC MAP - ~ ee

Figure 9

Orcutt Anticline Los Alamos Valley Sarrla Maria Valley 1km Fault 1 20 Orcult 15 15 17 ~ 10 21 22 11 12 12 22 ~ '25 25 22 20 0 10 20 20 $ 1 sea level sq Qpr TI Tm 1 osr0 „t\ Tps oti Tsq io0 Tls r Ir'a~Tsq r Tm

mid-Cenozoic uncontormily Tps l KJI-Jop Is Tls KJI-Jop

~1'n

cO 08 q1 l)

5 km

"l~ l 7 km pAlqialy g pl1 C p~) vgj1

I

aj

'y4,

VL

S~ „L

4'i

fg% lt w

P

1> jt r

~ ] 00 ~ ~ ~ ~ / ( I / ] ~ - I 0am ~ OO I ~ ~ ~ e,~> I ~ ~ 1 ~ I 0 ~ ~ 0 4'e / / ~ ~ Soil Profile cg ~ ~ (» egg / ~ ~ err 1 ~ ~ g4pgn(g C+ ~]~ e ~ ~ ~ ~ ~ ~ ~ ~ ~ ( I ~ ~ ~ ~ ~ ~ ~ ~ ~ o+'sl )lr. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 000000 ~ ~ 0 ~ ~ ~ ~ C/// ~ ~ co„

ace 7

SD 6a oc+ do da

~ o Uplift 9 7 6 6 3 21 Isotope 8ea level stages -1BO ul

300 200 100 Age, ka

Tha slope (8) of tha line drawn between the peak of saa level hlghstand and the abclssa Is tha uplift rata. lfthe upliftrata Is constant, the upliftlines ara parallel. The sea leva! curve ls modlfled from Chappell (1983) and oxygen Isotope stages and substagas ara from Shackleton and Opdyka (1973), (modlfled from laiola, 1988).

Figure Q43i-2-2. Diagram showing the relationship between sea level fluctuations and emergent marine terrace elevations on a rising coastline.

UPLIFT RATE 150 .= 0.18 mm/yr r rr 125 E ..0.15 mm/yr rrr r r rrr r r r 100 r r r rr r ,---. 75 as- 15 r *..---'s -13 V Q4 11 50 0 .:..:." a3- 9 r r r r 25 r ,~-- a2-5e ,.:.-.--'" « - 5a happ 200 300 400 500 600 700 800

AGE (ka) CASMALIA RANGE MARINE TERRACES X

jOt.k

4 ~o-s >~ /~ ( k g* . ~ 0 ~

, 'l. Qi ~Pw~f T

I t I I

r ~ ~ .) k.

~ ~ H 'o ~ rr V W(;.'~~/'

~ j ~ :v.

~I' I ~ I

~~ '''.

t

r r.. ~I g

w

i/p r I 4 4/ r'rII r I\ 4 0» i~» r ~ .\ J>. -~~.rgi.'J 'r g /'r f ~ ~

LONGITUDIALPROFILE OF Q1(5A) AND Q2 (5E) MARINE TERRACES~ MUSSEL ROCK TO LIONS HEAD FAULT

A C D E I I I I

LHF

25 50

o'X g ~~ 15 ~ 0 ~5 ~ ~ ~ ~ ~ ~ ~ o ~ ~ ~ ~ ~ ~ ~ ~ ~ 0 ~ ~ ~ 5 ~ ~ ~ ~ ~ 5

Q2 SHORELlNE ANGLE ELEYATION 'WAVECUT PLATFORM ELEVATION

1 MODERN SHORELINE ANGLE Q SHORELINE ANGLE ELEYATION t k f'

t

"~E LIONS H D FAULT

pep'.P sukFR~ st% 7

+lluIIlQ2gyyrnsm,

/ i~/ /~Ir iiliil rilr(il \< L~ l~ L~ L~ L y/ yl y/ y/i'/ l~ h~ L~ h~ 'L~ ~~/1 //'1 j ;Jop;i„') Vi u ~ r+>)pe. ,,) Jap f/ Tm /w

L~ \ g5'l 7$'N~ i~~r~

FXTRMGL( go VGA, GXA& COLS V I VW gpgcc l~p

Q.< gg g Igg ~~cE graf Os) 55;

I/IO~gggg FogPl IIT10N

/ / I) —polu& KRL OPHIOI.ITE (CGIV&TIuE SMP&trlulmp Puuivs)

SANTA MARA

~ ~ ~ ~ ~ ~

~ 0

PT SAL

0 ~ ~

200'ontour Interval R PALEO-VALLEYDEPOSITS

MARINE TERRACE DEPOSITS M 5'

N t

r7,

~ 4" e

~i

4, k' gO- P p)gS<

k4."

~i

' 'e

la & sn USGS 19801988

or~ 1980 PT SAL EQ Oqg~ ro M 5.1

~ q o "iyi> 0/g ~ 0,0-0.$ ~ 1.O —1.$ 2.0 -2.$ o 3.0 -3.$ 0 4.0 -4.$ so'20 Q s.o -s.$ Orcutt Frontal Fault 40''SI.OCATIONI A A'

~

~ ~

J! ~+ o a ~ ~ ~ ~ g>Q~e( 0 '0'a ~ ~

so A 120'40'0 Modified from PG&E (1988}

ORCUTT FRONTAL FAULT: ESTIMATED LATE QUATERNARY SLIP RATE

MINIMUMVERTICAL NET SLIP (MM/YR) COMPONENT OF SLIP (MM/YR) 60 FAULT 30'AULT

0.14 to 0.1'7 0.16 ta 0.20 0.28 to 0.34 yll~

'f: ' PVl CONCLUSIONS: * The Casmalia Range is rising at a late Quaternary rate of 0.14 to 0.17 mm/yr * Uniform uplift, with significant localized folding and minor surface faulting along Orcutt Frontal fault * Orcutt Frontal fault (Blind Thrust): minimum late Quaternary reverse slip rate of 0.16 to 0.34 mm/yr * Lions Head fault: maximum late Quaternary vertical separation of 0.012 to 0.017 mm/yr 0

,h

~~

P-

C

~C

K~ y'. I p

Ã

4I PGhE Letter No. DCL-90-185

'NCLOSURE 2

VIEHGRAPHS FROM EARTHQUAKE GROUND MOTION MEETING LONG TERM SEISMIC PROGRAM

SAN FRANCISCO, CA APRIL 30-MAY 1, 1990

' 3220S/0084K '.9007250057

NRC/PGLE MEETING ON SEISMIC SOURCE CHARACTERIZATION DIABLO CANYON LONG TERM SEISMIC PROGRAM ONE CALIFORNIA STREET, ROOM 271 SAN FRANCISCO, CALIFORNIA APRIL 17 - 20 1990

~GENDA

THURSDAY APRIL 19 1990

8:30 a.m. Discussion of Lorna Prieta Earthquake 10:00 a.m. 1927 Earthquake

guestions .GSG 5, 6, 7, 8, 9 12:00 noon Lunch

1:00 p.m. San Luis/Pismo Structural Block

guestions GSG 10, ll, 14, 16 guestions SSC 5, 6

UNR (Presentation by Doug Clark) 5:00 p.m. Adjourn

FRIDAY APRIL 20 1990

8:30 a.m. Seismic Source Characterization

guestions GSG 15

guestions SSC 1, 3 .12:00 noon Lunch'iscussion 1:00 p.m. 5:00 p.m. Adjourn

- LSC/WUS:sjm 4/9/90 F ILE: NRCAPR90.SSC ia,

4&

1m Overview of LTSP Ground Motion Presentation

~ Discussion of the Lorna Prieta Earthquake ~ Comparison of the recorded strong ground motion data with the LTSP estimates in terms of a. Absolute values; b. Residuals. ~ Incorporation of the recorded strong ground motion data to augment the LTSP data base for analyses of a. Style of faulting factor; b. Dispersion; c. Near-source statistics; d. Vertical motions; e. Goodness of fit with numerical simulations; f. Topographic effects at DCPP site.

~ Response to NRC Questions and Comments ~ Summary of NRC questions and comments since the March 1989 Meeting on ground motions. ~ LTSP responses.

0 U .05

.01

.005

—hfedian Relationship for Rock (Mw=7.0, Oblique) .002 hfedian + or — 1 8c 2 sigma Rock Sites

.001 1 2 5 10 20 50 100 200 300 Distance to Rupture Surface (km) Lorna Prieta PGA compared with LTSP Predictions for Oblique Event

0

0 0 0

(5

N

10 20 oo 100 Frequency(IIz) >iIean residual vs frequency Lorna Prieta L'arthquake Rocl< Data (Distance < 50 1

4

al

c SUMMARY OF QUESTIONS AND COMMENTS RAISED BY NRC ON GROUND MOTIONS SINCE MARCH 1989

Topi c Question Num er Comments 6 89 0 89 2 90 ll 89 4 90 Numerical Modelin

Dip in response spectra 4 Directivity effect 19 Low-frequency component ll Green's functions(shallow) 9 Stress drop 18 Simulated time histories 10 Empirical source functions Dipping strike-slip fault Uncertaint Numerical modeling X Empirical studies X To o ra hic ffects

DCPP site 12 X X Pacoima Dam; Nahanni Sites 1 and 2 16 X Parametric and Sensitivit Studies

Effect of including hard rock records 1 Subsets of empirical data set 3 Style of faulting factors 8,17 Response spectra assuming oblique slip 5 faulting on Hosgri Adjustment factors 15 X X Justification for selection and adjustment of data 2 Choice of magnitude and distance ranges 13 Imperial Valley soil records 14 Others

Ground motions for SW Boundary Zone faults \t k

Qt I

II

~AH

ev

II'

C

Jp

U+) <~v ENCLOSURE I Request for Additional Ground Hotion Information

What are the potential effects on the ground motion regression analysis results of including the very hard rock sites in the empirical data set.

2. Provide a justification of the methods used tor the selection and adjustment of the data used in the near-source ground motion and empirical ground mot)on estimates. The just>fication should demonstrate that the methods usea do not bias the ground motion to the low side. 3. Identify the records which were used in each of the subsets of the empirical data set used for each of the various analyses. a. The median and 84K spectra resulting from the numer>cal modeling studies have a d>p in amplitude between 5 and 10 Hertz. PGSE stated that this is an artifact of the random number set used in the calculations. Substantiate this by providing spectra generated with a different sets of random numbers where this dip does not occur. 5. How much woula the empirical ground motion estimates change if the type ot faulting was assumed to be all oblique slip rather than 65K strike slip, 30" oblique slip, and 5X reverse slip?

6. Is the apparent magnitude dependence of. the dispersion in the empirical ground motion analysis real or is it an artifact of the data set? For lower magnitudes the uncertainty may be due to inter-event dispersion *while at larger magnitudes it may be due to intra-event dispersion.

7. Provide a step-by-step discussion of the uncertainty 1n the numer>cal modeling study. 8. Show the effect of different assumptions of fault type (strske slip, oblique slip, and reverse slip) in the numerical modeling study.

9. Provide a comparison between the numerical modeling study and the frequency-wave number method of the 1.5 km and 3 km source depth contributions. 10. Provide the eleven three-component time series for bilateral rupture for both the Imperial Valley and Coalinga aftershock sources from the numerical modeling study.

The amplitudes of low frequency portion of the spectra generated in the numerical modeling study appear to be deficient. At what frequencies are these spectra dependable'

12. To aid in accessing the proposed lack of topographic effect at the Diablo Canyon site, provide a numerical study using vertically polarized shear waves with ground motion amplitude referenced to sea level. li

k k ~t

A

4 (%k ft

+g k

gr

$C V K

h

'I,

V@

0

I

~" ENCLOSURE 1 (continued) Request for Additional Ground Motion Information

13. Limits on parameters used to establish the empirical data base appear to be constrained to the point where some earthquakes which may be important are not included. To determine the significance of the choice of magnitude and distance ranges to the LTSP site specific spectra, expand the data base to include earthquakes down to magnitude 6, particularly the Parkfield and Morgan Hill events, and distances to about 30 kilometers and provide the resulting spectra.

Since the Imperial Valley earthquake data were recorded on deep soil sites, their use in developing the site specific response spectra for Diablo Canyon has been questioned. Provide site specific response spectra obtained without the use of the Imperial Valley earthquakes. 15. The derivation of the various adjustment factors used to modify the empirical ground motion and their individual effects have not been described in sufficient oetail to permit an evaluation of their appropriateness. Please provide this information. 16. Recent work on the Nahanni earthquake Site 2 data (Weichert, 1989) and . in the San Fernando earthquake Pacoima Dam recording (Anooshehpoor, ls88) indicate that the high ground motions recorded may not be due to site effects. In view of this, modification of these records to account for zopographic amplification is questionable. Wnat would the ground motion estimates be without these modifications? Describe the analyses including the data bases used to determine the style of faulting factors derived from both the empirical and numerical studies.

i8. It has been suggested that stress drops are higher for oblique and thrust faults than for strike-slip faults. What is the justification for using a constant stress drop of 50 bars for all fault types in the numerica1 modeling studies? To what extent would the use of higher stress drops impact the results? 19. Directivity etfects have been observed from earthquake ruptures propagating toward and away trom seismic stations. There do not appear be any directivity effects observed 1n the ground motions from the numerical modeling studies; although, from the geometry of the station array they might be expected. Is this an artifact of the way the simulations are performed? Resolution of Differences Between Campbell and the LTSP Regarding Empirical Estimation of Horizontal Ground Motion

1. Data Set Selection (soil, soft-rock, hard-rock)

2. Style-of-Faulting Effect (strike-slip vs reverse) gf~ I DIABLOCANYON SPECTRUM, (WEIGHTED: SS=0.65, OBL=0.30, RV=0.05)

Horizontal

LTSP

Campbell

l \ \ I I l I I I 1\ I 1 \ I \ I 1 II l I l I I I 1

II

I I

0 0.1 10 100

FREQUENCY (HZ) tf

4- a'4 ,„,~d? DATASET SELECTION

CAMPBELL LTSP SOIL X (200) SOFT-ROCK TEST (42) X(I ~) HARD-ROCK TEST (42) X (6'i)

Campbell found: soft-rock = soil hard-rock c soil

Has the inclusion of hard-rock site recordings in the LTSP data set led to an underprediction of soft-rock motions? J$

'I y CLASSIFICATIONOF SITES AS SOFT-ROCK OR HARD-ROCK

The classification of the data into soft-rock and hard-rock sites was not entirely consistent between Campbell and the LTSP.

The main difference was in the classification of Franciscan sites:

~ Campbell classified all Franciscan sites as hard-rock.

~ The LTSP classified some Franciscan sites as hard-rock and some Franciscan sites as soft- rock. 0 Mainshocks

1 O

0

O

I Hard 8c soft rock combined-horiz. comp. N O

2 ~ ~ 0 Mainshocks

Cyo -1 Soft rock-horiz. comp. -2 2 Mainshocks

Hard rock-horiz. comp.

.2 .5 1 2 5 10 20 50 100 Frequency(Hz) Mean residual vs frequency, rock data (basic)-LTSP Best estimated rock classification I

t Mainshocks

1 O ~ M V

0

Hard 8c soft, rock combined-horiz. comp. 0 2 2 O Mainshocks

~ & M

Soft rock-horiz. comp.

Mainshocks

Hard rock-horiz. comp.

.2 .5 1 2 5 10 20 50 100 Frequency(Hz) Mean residual vs frequency, rock data (basic)-LTSP Franciscan rock = Hard rock

2 Mainshocks

1 O

bP 0

I Hard Bc soft rock combined-horiz. comp.

O 2 2 = Mainshocks

M e -1 Soft rock-horiz. comp.

Mainshocks

Hard rock-horiz. comp.

.2 .5 1 2 5 10 20 50 100 Frequency(Hz) Mean residual vs frequency, rock data (basic)-LTSP Franciscan rock = Soft rock C DATASET SELECTION CONCLUSIONS

Conservatism introduced in the developments of the LTSP horizontal spectral shape results in a spectrum that envelopes both soft-rock and hard- rock mean spectra at frequencies above 2 Hz.

Inclusion of hard-rock site data in the LTSP data set has not lead to an underprediction of soft-rock motions.

STYLE-OF-FAULTINGEFFECT

Eqn. Coeff. RV SS CAMPBELL 0.382 1.47 LTSP 0.18 1.20 t't'<

~ I Campbell (1 989)

00 0 S0 0 0 0 0

0 Strike-Slip Reverse * Lorna Priefo

LTSP

0 o oo 0 000 00 0 S 0 0 t 0 0 S

0 Strike-Slip Reverse * Lorna Prieto

-90 -60 -30 0 30 60 90 Rake (deg) Ql, PREDICTION OF OBLIQUE-SLIP MOTIONS

CAMPBELL: OBL = RV LTSP: OBL = (RV + SS) / 2

Note: Both Campbell and the LTSP separate strike- slip and reverse categories at a rake of about 45 degrees. i g4 Mw 7.2 O 4.5 km — Cari~pbell (1989) .8

.7

c3 .6

Q)

Qo U 0 O .5

.4 ~ Reverse Q Q Strike —Slip

O 4

C- .2

0

Original Corrected Soil 8c Mech Soft-Rock 0 Style of Faulting Factor Peak Acceleration, (g) M (r4 ~ Ul (A 00

Q ~

th R7 LTSP Soil and Rock- A F' n As PUblished Vl

0 LTSP Soil and Rock— Corrected Mechanisms

LTSP Soil ond Rock— 0 without Hard Rock

- LTSP Soil and Rock- Moinshocks Only

~ ~

~ ~ ~

~ e ~

~ ~ ~ ~ ~ i ~ %pg STYLE-OF-FAULTINGEFFECT CONCLUSIONS

1. For predicting ground motions at soft-rock sites, the style-of-faulting factor for reverse events for the Campbell (1989) equation should be 0.22 with about a 1% increase in the strike-slip motion.

2. The prediction of the style-of-faulting factor for oblique events could not be reliably determined from the oblique event empirical data set. e;

r

c'g

4

' lj II

1

Iy~6'

P

~i

V< . pf

,( NEAR-SOURCE STATISTICS: SENSITIVITYSTUDIE~S

U TION 2: Selection and Adjustment of Recordings

TI N 1: * Relaxing Magnitude and Distance Criteria

TI N 14: Effect of Soil Recordings

APPR ACH:

Several sensitivity analyses were conducted to obtain median and 84th percentile response spectra; these included analyses to examine:

~ Effect of adjustment and weighting factors

~ Effect of magnitude and distance selection criteria: these selection criteria were relaxed to allow inclusion of data from magnitudes as low as 6.0 and source-to- site distances up to 30 km.

~ Effect of soil recordings on the resulting spectra were examined by conducting statistical analyses on only rock recordings.

~ Additional sensitivity analyses were conducted by including response spectra from the rock recordings from the ma Prieta earthquake. b"

f R

~ Our selection criteria, adjustments and weighting factors were based on a thorough evaluation of the tectonic setting and site conditions at the plant site, and a detailed analysis of the compatibility of the records in our data set.

~ Examination of the results of various sensitivity analyses shows that the most conservative case of the sensitivity studies is that containing 35 rock records from earthquakes having magnitudes 6 or greater within 30 km of the recording stations.

~ The estimated spectral accelerations from this larger set of rock-site recordings are very similar to those for the site-specific spectrum over the entire frequency range.

~ Inclusion of the nine (9) additional rock records from the Lorna Prieta earthquake in the near-source statistics rock data set also results in response spectra that are well-represented by the site-specific spectrum over the entire frequency range. i'7 4 u tion 2 Au ust 1 89 Pa e

Table Q2- I STATISTICS OF NEAR-SOURCE RECORDS USED IN SENSITIVITYSTUDIES Scaled to 7.2 M„and 4.5 km source-to-site distance, and weighted for style of faulting: 0.65, strike-slip; 0.30, oblique; and 0.5, thrust

fI't r is Spectral Spectral Minimum Maximum Earthquake Peak Ground Acceleration Acceleration ase Magnitude Distance Number ~chanism ~Acceterati n 3to8 Hz ~tc i4 Hz ~o ~Mw ~km ~fRec rds Thrust S~trike- ii Median 84th rdedian 84th atedian 84th

6.3 20 18'1 7 0.545 0.765 1.189 1.807 1.088 1.685

6.1 25 22 14 8 0.532 0.783 ~ 1.156 1.828 0.964 I 448

6.1 30 29 19 10 0.530 0.777 1.167 1.876 0.924 1.496

6.0 25 28 15 13 0.561 0.834 1.202 1.917 0.98 1.519

6.0 30 35 30 15 0.553 0.818 1.199 1.935 0.953 1.545

6 Site-Specific Spectrum 0.578 0.829 1.299 1.938 1.196 1.756 (from regression analysis)

Includes five soil-site records from the Imperial Valley modified to rock-site conditions.

Oiablo Canyon Power Planl 4 a: Paciffc Gas and Electric Company Long Term seismic Program

uesti n 2 Au ust I Pa

5%%uo Damping

% ~

~ I ~ c r Site-specific spectrum C I 0 I (Case 6) c co I s I ~ \ ccc I I ID ~ Ca s ~ Q co l Original record set I ~ c (Case 1) c ca I~l I I

I Case 5 of ~ Sensitivity study ~. I I I I I /I I r

~I'

2 5 10 20 50 100 Frequency (Hz)

Figure Q2-3

Comparison of the 84th-percentile Long Term Seismic Program site-specific and near-source statistics horizontal response spectra with the spectrum based on statistics of near-source records used in the sensitivity studies for the effects of magnitude and distance selection criteria.

Ocabio Canyon Power Pianl a ass Pacific Gas and Electric Company long Term Seismic Program

~ ~ ~ Case 5 of Sensitivity Study (35 records) 84 Percentile Case 5 including Lorna Prieta (44 records) 5% Damping LTSP Spectrum

I I I I I

I I I ~

0 .1 2 5 10 20 50 100 Frequency (Hz)

Near-Source Statstics (w/LP EQ 89), M>6.0, R<30l

List of Rock-Site Recordings for Earthquakes vith Manitude, Mu > 6.0 and with Source-to-Site Distances Nithin 30km

EARTHQUAKE NAME DATE MECH STAT Cl Dist PGA (km) (g)

Parkfield, CA 6/27/66 SS 6.1 1438 9.9 0.340 Koyna, India 12/10/67 SS 6.3 9001 3.0 0.556 San Fernando, CA 2/9/71 TH 6.6 279 2.8 1.124 San Fernando, CA 2/9/71 TH 6.6 266 19.1 0.140 San Fernando, CA 2/9/71 TH 6.6 126 24.2 0.178 San Fernando, CA 2/9/71 TH 6.6 127 23.5 0.139 San Fernando, CA 2/9/71 TH 6.6 128 20.3 0.328 San Fernando, CA 2/9/71 TH 6.6 ,220 15.3 0.167 San Fernando, CA 2/9/71 TH 6.6 141 17.4 0.184 San Fernando, CA 2/9/71 TN 6.6 121 29.1 0.084 San Fernando, CA 2/9/71 TH 6.6 104 27.0 0.196 Gazli, USSR 5/17/76 RV 6.8 9201 3.0 0.677 Tabes, Iran 9/16/78 TH 7.4 9101 3.0 0.753 Tabes, Iran 9/16/78 TH 7.4 9102 17.0 0.385 lsperiai Valley (M) 10/15/79 SS 6.5 286 26.0 0.152 Isperiai Valley (M) 10/15/79 SS 6.5 6604 26.5 0.158 Manmoth Lakes - A 5/25/80 SS 6.2 54214 15.5 0.099 Nmaaoth Lakes - A 5/25/80 SS 6.2 54214 15.5 0.086 Manmoth Lakes - C 5/25/80 SS 6.0 54214 19.7 0.081 Mamnoth Lakes - C 5/25/80 SS 6.0 54214 19.7 0.082 Mamnoth Lakes - D 5/27/80 SS 6.0 54214 20.0 0.207 Nennoth Lakes - D 5/27/80 SS 6.0 54214 20.0 0.199 Manmoth Lakes - D 5/27/80 SS 6.0 54424 24.5 0.105 Mexicaii Valley, MX 6/9/80 SS 6.4 6604 8.5 0.607 Coalinga, CA Main 05/02/83 RV 6.5 46175 27.6 0.154 Coalinga, CA Main 05/02/83 RV 6.5 36177 24.6 0.148 Coalinga, CA Main 05/02/83 RV 6.5 36438 29.6 0.069 Coalinga, CA Main 05/02/83 RV 6.5 36453 28.4 0.083 Morgan Hilt, CA 04/24/84 SS 6.2 57217 0.1 0.960 Morgan Hill, CA 04/24/84 SS 6.2 57383 11.8 0.258 Morgan Hill, CA 04/24/84 SS 6.2 47379 16.2 0.085 Nahanni, Canada 12/23/85 TH 6.8 6097 6.0 1.217 Nahanni, Canada 12/23/85 TH 6.8 6098 8.0 0.461 Nahanni, Canada 12/23/85 TH 6.8 6099 16.0 0.190 Nhittier Nar.(M),CA 10/01/87 TH 6.0 24399 21.2 0.154 Lorna Prieta, CA 10/17/89 OB 7.0 57007 5.1 0.566 Lorna Prieta, CA 10/17/89 OB 7.0 58135 17.9 0.455 Lorna Prieta, CA 10/17/89 OB 7.0 57180 8.2 0.450 Lcma Prieta, CA 10/17/89 OB 7.0 47379 11.5 0.430 Lorna Prieta, CA 10/17/89 OB 7.0 57383 20.1 0.149 Lorna Prieta, CA 10/17/89 OB 7.0 1652 21 ~ 5 0.075 Lama Prieta, CA 10/17/89 OB 7.0 LGPC 6.1 0.589 Lorna Prieta, CA 10/17/89 OB 7.0 BRAN 10.3 0.502 Lorna Prieta, CA 10/17/89 OB 7.0 UCSC 18.1 0.367 t<

% ~, ~ = Vg U

JI Y

I

II 4C

Il

L~

'L 4 QUESTION 6

Is the apparent magnitude dependence of the dispersion in the empirical ground motion analysis real or is it an artifact of the data set? For lower magnitudes the uncertainty may be due to inter- event dispersion while at larger magnitudes it may be due to intra-event dispersion. 4r~ p APPROACH

~ Use a large data base of rock and soil recordings covering a magnitude range of about 4 to 7'A

~ Analyze data using conventional approach using magnitude bands to identify trends in variation of dispersion with magnitude

~ Analyze the data using formal statistical model that treats total variance as consisting of inter-event and intra-event component

~ Repeat approach including data from recent Lorna Prieta 1989 earthquake Q5 CONCLUSIONS

~ The magnitude dependence of the dispersion of peak ground-motion parameters is a statistically significant characteristic of strong ground motion, and is not an artifact of the data set.

~ Such trends may be expected from the physics of the phenomenon:

seismic motions due to~ter e earthquakes will have contributions from various parts of the fault plane that wi11 tend to average out the ground motions recorded at a site, resulting in less variability than motions from smaller earthquakes acting almost as point sources f a Ottestion ctober 1989 Pa I I

1.2

Sig = 0.586 —0.00382(M-3.5) "3.37 Tau = 0.469 —0.0414(M-3.5)" 1.88

n—sigma ~ Taa .8

T"~ ~ "~~

0

Magnitude

Figure Q6-6

Inter-event dispersion (r) and intra-event dispersion (er) (Table Q6-1), compared with the fitted curves of Equations (7) and (8).

Ofablo Canyon Power Plant :t Pacific Gas and Electric Company Long term Seismic Program 'Ir ' 0

J. 4 I I.

.2 Tau Slg + Tau with Lorna Prieta + Sig with Lorna Prieta .

5 6 Magnitude Vg ue tion 6 ct her I 89 Pa el

1.2

g Total Sigma

.8

0 a ID

a6

cn

.4

.2

0 3

Magnitude

Figure Q6-7 Total dispersion (Table Q6-1).

Olablo Canyon Power Plant ~ : Pacific Gas and Electric Company Lon9 you'll SoiStnic Pgo9fwl

+ SigT + with Lama Prieta SigT = 1.39 —0.14M for M<7.2, 0.38 for M>7.2 LTSP — Sig = 1.27 —0.14M for M<6.5, 0.36 for M>6.5

5 6 cVagnitude P yt

I .l li

C

1g

g

g„S a+

~ A

f '

P,

4 Describe the analyses including the data bases used to determine the style of faulting factors derived from both the empirical and numerical studies. to , sJ, APPR ACH

~ Literatur review on the effect of style of faulting on peak ground acceleration

~ m irical un m ti n di: regression analyses of the combined rock and soil PGA data to obtain effect of style of faulting.

~ Numerical r und m ti n tudi computation of site-specific ground motions for strike-slip, oblique, and reverse for magnitude (M~) 7.2 events at a source to -site- distance of 4.5 km.

~ en itivit tudi: additional regression analyses of the combined rock and soil PGA data.

~ Examination of LTSP ground motion relationships for oblique style of faulting using ma Pri ta (M~ 7.0) rock recordings: computation of residuals for PGA at several selected periods. @Y'i

p8 ESTECT OF STYLE OF FAUL'I'IIWG ON PEAK GROK'C TION

RATIO OF PGA FOR THRUST FAULTINGTO PGA FOR STRIjKE- SLIP FAULTING COMMENTS i I

Campbell (1981) 1.17 - 1.28 The higher the Campbell (1987) 1.38 - 1.40 value the more Campbell (1989) 1.47 1', l.tg) conservative Long Term Seismic Program All magnitudes (M 4.8 to 7.4) 1.27 Magnitude 6.3 or greater 1.22 ' m in

Boore and Boatwright (1984) 1.14 - 1.28

Long Term Seismic Program 1.16 CI.H) LT P Final Re The lower the value the more conservative

<'«)~a~ ad rat 3s ~f a~Mee~e C 4'i+4.ai, C lect)

~evA meara Cits >

Table Q17-5 EFFECT OF FAULTINGSTYLE ON PEAK GROUND ACCELERATION (Based on numerical modeling studies)

Relative to Faultin St le ~PA~ ~trike-eli

Strike-Slip 0.351 1.0

Oblique 0.375 1.07

Thrust 0.406 1.16 l<

Sf'IM

. uestion 8 ct er l989 Pa I

QUESTION 8

Show the effect of different assumptions of fault type (strike slip. oblique slip. and reverse slip) in the numerical modeling study.

The effect of fault type on ground motions was analyzed using the simulations described in the response to Question 17 of this submittal. The average peak acceleration and the response spectral acceleration averaged over the frequency band of 3 to 8.5 Hz for strike-slip, oblique, and thrust faults are summarized in Table Q8-1. For the oblique fault model, the peak acceleration and the averaged response spectral acceleration exceed those of the strike-slip fault model by 7 and 10 percent respectively. For the thrust fault model, the peak acceleration and the averaged response spectral acceleration exceed those of the strike-slip fault model by 16 and 19 percent respectively.

Table QS-I

EFFECT OF FAULTINGSTYLE ON GROUND hfOTIONS

Response Spectral Acceleration P ak Acc leration avera e fr m t Hz Absolute Relative to Absolute Relative to aultin t le ~Value ~rike- ll Value@ grik~<~li

Strike-Slip 0351 1.0 0.795 1.0

Oblique 0.375 1.07 0.877 1.10

0.406 1.16 0.948 1.19

Diablo Canyon Power Ptont a a t Pacilic Gas and Electric Company Long Term Seismic Program

LTSP

0 00 0 6 0 0 II.0 o ooo o 8 ot 0 0 o 0 0 8

0 Strike-Slip Reverse * Lama Priefa

-90 -60 —30 0 30 90 Rake (deg)

Style of Faulting Factor 0 0.1 0.2 0.3 0.4 0.5

LTSP Soil and Rock- As Published (Q68c17)

LTSP Soil and Rock— Corrected Mechanisms

LTSP Soil and Rock— without Hard Rock

LTSP Soil and Rock- Mainshocks Only

LTSP Soil and Rock- + Lorna Prieta

LTSP Soil and Rock- + Lorna Prieta, Mainshocks Only + 4

E~q

A4 ~f5

~i ~ Selected adjustment factors for style of faulting

SCALING FACTOR

STYLE OF From Reverse to From Strike Slip to FAULTING Other Styles of Other Styles of Faulting Faulting Strike-slip 0.83 1.0 Oblique 0.91 Reverse 1.0 1.2

~ The results of the sensitivity studies are consistent with the results of the previously-conducted analyses to obtain style of faulting factors between strike- slip and reverse earthquakes.

~ Comparison of LTSP oblique ground motion relationships for the M~ 7.0 with the Lorna Prieta rock recordings shows that the selected scaling factor for oblique style of faulting results in relationships that provide appropriate prediction of rock motions from the Lorna Prieta earthquake for PGA and at all frequencies studied.

C4 1 0

0 oo 0

.2 .5 2 5 20 50 100 I"requency(Hz) i>lean residual vs frequency Lorna Priet.a Earthquake Rock Dat.a (Dist.ance ( 50 1

~ —..8

/@ g .7 U QAg CIZe~r si)

c9 .6 Q N O ss

Q„

Campbell LTSP (1989) (1988) 'sc. ~1

a

l4

'-' «t ~ v )

C% EXAMINATIONOF THE EFFECT ON THE SELECTED RELATIONSHIP FOR RATIO (Sa)v/(Sa)h BY INCLUDINGLOMA PRIETA DATAIN ROCK DATAUSED IN NEAR-SOURCE STATISTICS

The site-specific vertical response spectrum (S4th) was developed by:

(1) Conducting statistical analyses of near-source data (horizontal and vertical response spectra) to develop 84th percentile response spectra for the horizontal and vertical motions.

(2) Developing a smooth relationship for ratio of Sa (S4th)v/Sa (84th)h as a function of frequency.

(3) Combining the relationship obtained in Step (2) with the 84th-percentile horizontal site-specific spectrum to provide an estimate of the 84th-percentile vertical site- specific spectrum.

These steps are schematically illustrated on the following figure.

EFFE T F IN L IN L MA PRIETA DATA

To examine the effect of Lorna Prieta data on the selected relationship for ratio (Sa)v/(Sa)h, Steps (1) and (2) above were repeated by including in the data base the spectra from recordings on rock stations within a distance of 20 km. The resulting ratio of Sa (S4th)v/Sa (84th)h as a function of frequency is compared herein with the previously computed values and with the LTSP relationship. n',s C'Jg ~ ~ ~ ~ 0 ~ ~ ~ ~ ~

~ ' ' ~ t ~ ~ ~

' ~ ~ ~ ~ ~ I l ~ I I:

' ' ~ ~ ~: ~

I I I I

' g l a

I I

I I I I ~l

1„~ Mw>6.2, R<20km (18 records) Mw>6.0, R<20km, rock sites with Lorna Prieta (24 records) —LTSF Relationship

2

CD

C5 M

I g I l g CD I Ci U) /, G

0 .1 .2 1 2 5 10 20 50 100 Frequency (Hz) Ratio of Vertical to Horizontal Spectra lg1 c~

',tk 8 a k'j»

I

'h f>

Ej,'

Jl„

J

0 t TI N 12

To aid in assessing the proposed lack of topographic effect at the Diablo Canyon site, provide a numerical study using vertical polarized shear waves with ground motion amplitude referenced to sea level.

~ Finite difference modeling for SH and SV waves having various angles of incidence

~ Finite element modeling for vertically propagating SV waves.

The results of the two studies (finite differences modeling of SH and SV waves and finite element study based on SV waves) demonstrate the lack of significant topographic effects on ground motions at the location of the power block structures at the Diablo Canyon site. I

)t '

r ~ ~ 'Or'g'a, r r A ~ r "c ~ ~ ~ PL rr t SOI'lal a ~ 'r t OOI at'II

r Oatalssa a a t"r .Ij ~IO t ~IOaNO "-)OO.r s ~ ~ a ~asst Ou ~ ~ r" ,t .z~ l 'SISu

~ ~ra LSatola4 OSIIO

fs OO HllaaalW ~otasaolltaa slit r ,t ~ IS ~WlaO SOS ~

~IAO Oats OO Pa ~WW IOO ~ ~ aakla4 OOO I ~aoooao soo ~ t ~ ~IMO OOat

~Oalaas S, J SOI ~

tAClfIC OCEAN

Figure @12-I

Site plan showing location of cross section A-A'nalyzed for topographic effects on ground motions he Plant area. ~1 Table @12- I ROCK PROPERTIES USED IN ANALYSIS

Layer Shear Wave Depth Thickness Density Velocity Poisson's f t f R i

15 140 2600 0.45

15

20 140 3300 040

35

125 145 4000 0.37

160

100 150 4800 0.35 260

150 5900 022

eh~ eaayoa tower that Loag Tea Sehadc troyr3ra taclc Gas and Hectic Company ~ ~ ~

1yyy'i,

Jy " ~ '

~ 0 ~ 0

~ 0 ~

mH~ ~ 0 ~ 0

~ ~ ~ 0 0

I ~ ~ I I

~ ' ll

~ ~ ~ ~ $~ ~

Ir

~», e in 2 uu l

i

SV, higher frequency

C O O ,~(gg$ ': SV,

20'V IO C O

0'H

C5 o po l 0

0

1000 gpss+'@&kg Q Power bhck structures

500 %<@ 'w-

UJ 0 'C

CO Surface Profile

500 5M 1000 1500 20M 2500 3000 3500 4000 4500 Distance (ft)

Hgure @12-3

Response of the plant site region for different input ground motions.

Diabio Canyon Power Plant PacNc Gas and Electrtc Company Long Term Sehml c program C 6

'4 4

,I ~

'4l

a

/WE u tin 2 Pa

IA 03 I Sa/Sa(Control Motion)-(3-8.5Hz)

C O O

O L e 0

O Vl

U) 2 C 0 PGA/PGA(Control Motion) 0 0 C o 1 O

0 1000 Power block structures o 500 O ED 4J CP o 0

Vl Surface Profile -500 0 500 1000 1500 2000 2500 3000 3500 4000 4500 Distance (ft)

Figure Q12-5

~ ects of topography on normalized peak ground acceleration and normalized spectral acceleration es for horizontal motions~ along the ground surface.

DIablo Chhyo h Poof Pitht Pacific Gas and Bccbtc Company tohy perh? SOIIO?Ic Prograhi iI-Vt[

f~

Mrs ph I A 2

2.5

eec mz ----. CONTROL QOllON

o 1.5 gl O I 1 Ii i I ~ i O i O i D i I Cl 1 I CL I CA I II I I I .5 r I II / Response.Spectrum (5'amping)

0 .2 .5 2 5 10 20 50 100 Frequency (Hz)

Power bbck structures 4QQ kate " 'Y C O 200

hd o D -200 Surfoce ProQe -400 0 1000 1500 2500; Distonce (ft)

Hgure Ql2-7 mpamon of respo nse sp t of the ~ntroI motIon and computed hoamn~ mot on at node 302.

Dhblo Caoroo tower that tony Tenn Sdsak haynes 0

gc

1 $

~S" 'L Pt ~ ' 0 ~

~ ~

Ot ~ ~ ~

' tO ~ ~ ~ ~ ~ ~

~ ~

~ ~

~ ~ ~ ~ s

~ ~

~ ~ ~ ~ ~ ~ ~ ~ t ~ ~ I

~ ~

~ o

~ . ~ ~ ~ ~ I I II ~ ~ I . I ~ ~ ~ ~ ~ ~ I ~ ~ I I ~ I ~ ~ I . I ~ ~ ~ t Ue Pa e2

'lr'r ~ ~ tt r ~ ,r A ~

r r A ~ r r I t. " ~, ..:::-'::: ..;".::,:,::,~',:"~AF;.:.."-. eoo "; ~ / I r ~ e ~ SIK etsK~ ~, ~Sea t 'k 53I .~"r ~"" r ~ ~ ~ .. ~ ~ ~ r ~ ~ ~ ~ ~ ~tl'K ~ ~ ~ ~ ~ ~ tt I ~ ~ t ~ rl ~ ~ ~ ~ ~ ~ I ~ ~ ~ Il ke SISKe ~ ~ I ~a ~ )oo ~ .r ~ r I "' I ~ ~ ~ lteelte IIW ,",52."..' t ~ VP ~ ~ I~ et , eeoeKSIIIte ~ Ill,tt h~ Ill ~ e~lee ill~ I

~Iae Ks~ et.> I e Il ~ ttt »r Se ~ Itlt ~crt ee lel ~ tel t VetKIel SII ~ ~ eeet w lel ~ ~ leEe ISK ~ , ~ ~ Ie Iee ttJS lre ~te Iee ,5a. lelgQ"'I I ~ I ~ Iel ~etl

0 600 Feet

wl etsaeelle PACIF IC OCEAN

Figure QI2-I

Site plan showing location of cross section A-A'nalyzed for topographic effects on ground motions in the Plant area.

Dtablo Canyon Power Plant pacltlc Gas and Eleetrte Company Long Term Sehrnto Progranr t jY

1 '5 tl

I P A .005 DC891017A21 (Vertical)

O ~ ~ 0.000 I 0 0

-0.005 0.005 DC89'f 017A22 (180 Comp.) C 0 0.000 0

Q Q O -0.005 0.005 DC891017A23 (090 Comp.) C 0 ~P 0.000 Q L Q O O O -0.005 0 10 20 30 60 Time (sec)

10 Spectral atio Ss Darn n C89101

0 7 0

U 6

Q

AF 42V 52/42V 54 42V

53/42V 00 10 15 20 25 Frequency (Hz) :T 'I 10 Spectral atio (5m Damp ng)

0 7 0 EL

O 6

Q c 4 0 AF/42E

54/42E 52/42E 53/42E

00 10 15 20 25 Frequency (Hz) gg-r 10 Spectral atio (5~ Damp ng)

0 7 O

O 6 L

Q

(0 4 0 CL 0 AF 42N

52/42N 54/42N 53 42N

00 10 15 20 25. Frequency (Hz) 4

A,

1

C+ Recent work on the Nahanni earthquake Site 2 data (Weichert, 19S9) and in the San Fernando earthquake Pacoima Dam recording (Anooshehpoor, 19SS) indicate that the high ground motions recorded may not be due to site effects. In view of this, modification of these records to account for topographic amplification is questionable. What would the ground motion estimates be without these modifications? b7 4 PR A

~ Nahanni earthquake, Sites 1 and 2 recordings

Review of study by Weichert and Horner (19S7)

Numerical modeling study k

~ San Fernando earthquake Pacoima Dam recording

Examination of aftershock recordings as reported by Mickey and others (1973), and Reimer (1973); recent data from the 1987 Whittier Narrows earthquake (Shakal and others, 1987)

Review of numerical modeling studies by Buchon (1973), Boore (1973), and Reimer and others (1973)

Review of foam-rubber model studies by Brune and others (1985) and Anooshehpoor (19SS)

Results from both the literature review and numerical modeling study confirm that the ground motions recorded at Nahanni earthquake, Sites 1 and 2 and San Fernando earthquake at Pacoima Dam were significantly affected by topographic amplification. VW tin Auu e 2

COU>)y

~ 0* ~O 45 6 g Pacoimo yr Res. 7e~„~—

Hgure Q16-1

February 9, 1971 earthquake (star); Pacoima Dam (triangle); and eight aftershocks numbered in order f occurrence (circle) (from Mickey and others, 1973).

Sabin Canyon Power Plant Long Tenn Seismic Ptoyracn

u inl uut Pa e

10

CS

CJ ca cr an g 2 O CL

i

2 5 10 20 50 100 Frequency (Hz)

Figure Q16-2

~ Overall average ratio of the resp'onse ~ spectra at the Pacoima Dam site accelerograph site to a free-field for the eight aftershocks, north component (based on Mickey and others, 1973).

Dtebto Canyon Power Plant PacNc Gas and Electric Company Long Tenn Setsrnlc Program r~

«4 1

I'c'4'Cc

~ u i n Pa 4

O rre

CO

$4e30 AFTERSHOCK 5

AFTERSHOCK 1

g~ MAIN SHOCK

g~ PACOIMA DAM AFTERSHOCK 2

SAN 34 FERNANDO

I3'URBANK

Figure @16-3

~ ~ ntral locations of aftershocks of the 1971 San Fernando earthquake recorded at Pacoima Dam Reimer, 1973).~

e

Dtnhto Canyon power Nant pacIfIc Gas and Electric CoeItaety Lang Term Seismic progrnrn

PACOIMA , g.. .. p AESERVOIR PACOIMA DAM ~~ ~ ~

~' )'r J, iz~

STATION.

RRER INCLUDEDN FINITE ELEMENTMODEL

BRIDGE

0 STATION 2 Feet

Figure @16-4

Locations of accelerograph stations used in the study of 1971 San Fernando earthquake aftershocks by Reimer (1973).

lacNc Ols and HedNc Ceeyany Wt

t ueti n A tl

1. 5. 10 PERCENT OhnP INC 25. 0 O CI O 20. —STA T I ON -—STATION 2 O I Is.

LI 10. C

C CE 5. LJ

CL V' I I.O PE>.'OOe SECONDS,o

1, 5. 10 PERCENT DAPIP 1NG 25. 0 o D 20. 0 STATION I Z STATION 2

I c IS ~ 0

LI 1 0 ~ 0 C I C a 1 I- 5 ~ 0 lp Il IJ Oi all 4J 4

0 0 ~ 2 J.C P E n I 0 C ~ 5 E C ) II 0 5

Figure Q16-5

Acceleration response spectra of the two horizontal components for the third aftershock of the 1971 San Fernando earthquake recorded at Pacoima Dam: top, S14'W component; bottom, N76'W component (from Reimer, 1973).

Drablo Canyon Power Plant PacHlc Gas anrl Electric Company Long Term Seismic Program

10

e I \ 5% Damping I1 I I I 1 I 1 I

'1 / 1 N76 W component I ~I I 1 1 I 1 I I I \ 1 I 1 I Average of N76 W and S14 W I I CO I I 1 I I 1 O I rrr I 1 Q. I 1 I I o) 1 2 I 11 I 11 S14 W component I '1 / 0 1 / CL I I / tr) I / e I / r / I 1 0 / \ r r / I r 0 / I I r / I ~ I

.2 2 5 10 20 50 100 Frequency (Hz)

Figure Q16-6

Ratio of thehorizontal response spectra at the Pacoima Dam accelerograph site to a free-field site for Event 3 (based on Reimer, 1973).

Dtablo Canyon Power Plant Pacific Gas and Electric Company Long Tetra Selsmlc Program ~jf

V E'

+ h ~ I *Ill,

A~' poco leo Doe (CSIJIP Stottoa Ho. 2<207) tte co r 4 14207-S214$ %7274. 0 1

~ % ~ 0 A f 1«42,10 ~ DPper Lejt 7uxrt ent 205 Hax. Accel.a 0.05 g

0.04 g

0 1 10 15 20 Sec.

Dare aase, 0.01 g

10

~ R,T ~ Radial, rransverse to Dare Crest

0 1 2 3 4 5 10 15 20 Sec.

Hgure @16-7

Accelerograms from the 1987 Whittier Narrows earthquake recorded Pacoima Dam. Top: upper left abutment (Pacoima Dam accelerograph site). Bottom: base of dam (from Shakal and others, l987).

Diablo canyon Fewer Pleat tacNc Lts and Electrk Coettsny Loop Tens Seisartc Proprsrn W~gl l Au

ACCELEROGRAPH SITE

550m a I3470 m/sa; m P >2000m/~ a ~ 3470 m/sec k. A'CCELEROGRAPH P I 2000 m/sec SITE (A) 40~50'30 IO 500

Hgure @16-8

Problem configuration for craves arriving at the Pacoima Dam accelerograph site from the fault plane: (a e (local topography), (b) canyon (regional topography) (from Bouchon, 1973).

l'acNc 6as and EItdrk Ceepany

e 12

RIDGE MODEL I 2 4

7 8 9 IO

CANYON MODEL I 89IO 7 6 5

2 I

Figure @16-9 idealized models of the topography at Pacoima Dam. Two-dimensional geometry is assumed. The arrows indicate the angle of incidence of the SH waves used in the analysis. The numbers indicate points at which seismograms are computed. The accelerograph site is aproximately at point I on the ridge model and point 4 in the canyon model. Because of normalization, the relative sizes of the two odels are not shown in this figure (from Boore, 1973). \

Diablo Canyon Power Plant Long Term Setmlc Program

Table Q16-I

VALUES OF THE AMPLIFICATIONOF THE HORIZONTALCOMPONENTS AT THE PACO1MA DAMACCELEROGRAPH SITE FOR A FREQUENCY OF 10 HZ (based on Bouchon, 1973)

N7 'W l4 W

SV Several times Several times larger larger

+40% +40%

Dhbto Canyon Power that tacNc Cas and Hcctrtc Company tone Tenn Setak troy'

f.f2g g (a

Og O

0.64g CC fg

UJ Ig (b) O 0.73g O

Og

0.55g Ig

0 2 4 6 8 IO TIME(sec,arbitrary origin)

Figure @16-1Q

(a) The recorded motion at Pacoima Dam in the S14 W direction during the 1971 San Fernando earthquake, after removing all energy above 15 Hz. (b) The same record after removing the amplification predicted in the ridge model with vertical incidence. The effect is very predictable from the frequency domain result, but would have been less so if the amplification ratio had been more complicated in character (from Boore, 1973).

Diablo Canyon Power Plant Long Tenn Seismic Program Pacific Gas and Electric Company f

h.

11 u in uutl P 14

Ql ~l

~ 4 ~

r 'r 1 ~

+A. h. ~'r 44)eq

I I

'~,HAJJ,

H qti

p~V~ s i i

t

>

Figure Q16-11

Aerial photograph of the Pacoima Dam and finite element model of the dam and surrounding area (from Reimer and others, 1973).

Diablo Canyon Power Plant Pacific Gas and Electric Company Long Term Seismic Program t

I

'I ~ '0

c

V u inl

~ 1' Iot Ioo 00 000 ~ 0 ~ ~ ot ~ ~ ~ 0 ~ 0 I tt ~ 0 ~ ~ \ I I ~ ' 0 0 ~ I ~ 0 I 0, 1 I I s. ' ) ill L r) '.'tP' ~ ~ ~ I .Ip' ~ t I I 0 el' ~ ~ ~ I

~ 0 ~ ~ i I,' ~ ~ ~ I 0 (a) ~ ~ ~ ~ ~ ~ 0 ~ \0 I ~ \ ~ ~ ~ ~ ~ 0,% ~ ~ ~ % ~ ~ ~ ~ 1 ~ ~ ~ ~ ~ 1 ~ ~ ~ 1 ~ ~ ~ ~ 0 ~ \ ~ ~ 01 1'et 0 ~ ~ tte 00 'eeeott I I~ %%1

~ 1( ~ Ioo ~ 0* ~ ~ ~ 00 ~ ~ os ~ Ioo Ieo ~ ~ I I ' Isoe seto ~ ~ et I' ~ ~ ~ I 1 ~ I ~ ~ ~

~ ~ 0 ~ ~ I ~ ~ ~ I s I ~ I~ ~ ~ ~ ~ ~ 4 ~ ~ 0 ~ 0 wl ~ ~ ll> . ~ ~ Qe

i 'I 'l''..a , ~ ~ ~ I~ ~ ~ ....., ~,,.... I I ~ ~ I- .I . ~ ~ I ~ ~ ~ ~ 0 (b) ~ ~ ate ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ et ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ' ~ 0 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~, ~, ~ ~ ~ ~ ~ ~ ~ ~ ~ I ~ ~ ~ ~ ~ I ~ ~ ~ I ~ ~ ~ I ~ ~ 00 ~ ~ 101 ~ ~ ~ I ~ 0 ~ I ~ \ ~ '1st 1% ~

~ el ~ eot ~ 0 ~ ~ 0 HI le ~ I ~ 01 ~ 001 F 00 ~ I'I ~ ~ ~ Iee ~ ~ ~ ~ I 0' I I ~ 0 ~ ~ l 10 i I ~ ~ ~ I~ ~ P ~ k ~ 0 ~

' ~ ~ ~ ~ ~ I s

~ ~ ~ 0 ~ I

~ ~ ~ \ (c) ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ e ~ ~ ~ ~ ~, ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 1 ~ ~ ~ ~ ~ 1 I ~ ~ ~ ~ I ~,1,1 ~ ~ ~ ~ ~ el ~ ~: ~ I I ~ I 11 ~ I I e

~ ~ ~ ~ ~ ~ stev ~ ssl ~ Is ~ I ~ ss ~ I~ ss ... Iae ~ aCSSISI ~ tl~ I ~ SS ~ I~ IS ~ . ~ SSIS stslsaass Is Is( „, Ill aaeo ~ I ~ ~ I ~ sl ~ I aloes ~ a ~ ~ sa clef lace ~ ~ c I ~ s,l ~ Is ~ ss ~ I las l,s, I I ~ ~ ~ ~ ~ I ~ ~ I

~ ~ ~ I

I, ~ I ~ I ~ ~ W Io /.: ~ ~ ~ a. ~ I, 7

I ~ I, ~ 0 ~ ~ ~

~ 1 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I ~ ~ ~ II ~ I ei1 I I ~ . ~ ~ .ae ~ ~ ,I ~ ~ ~ ~ I ~ ~ 1 ~ ~ ~ I ~ ~ I I I I I ~ II ioII IlI ~ loi. ~ ~ Iito~ al ) IIi.~ Ilie ~ ~ Il Ii.

Hgure Q16-12

Results of a three-dimensional finite element modeling of the Pacoima Dam acceleragram: (a) the observed accelerogram; (b) the filtered accelerogram; (c) the computed boundary excitation; (d) comparison of acceleration response spectra between the observed accelerogram and the computed excitation (from Reimer and others, 1973).

Diablo Canyon Powos Plant Term Seismic Ptogam Pacific Gas and Electric Company Long

1354 A. ANOOSHEHPOOR AND J. N. BRUNE 2.0 1.8 S14'W 1.6 1.4 1.2 a 1.0 r r

.6 \ P,~2000 m/sec 1 i P,~1237 m/sec i

.0 10o 10t Frequency (Hz)

2.0

N76 W

1.6 \ \ I 1.4 I \ I i 1.2 I i I i r i O 1.0 r i L i V i o gl C1. to P,~2000 m/sec p ~1237 m/sec .2 0 10-3 100 10t Frequency (Hs) FIG. 7. The spectral ratio of the ridge to free field (in the model) for two different shear wave velocities. I ee

i Pa 17

10

5% Damping

on one aftershock 1973) ~'Reimer, Peak acceleration based on numerical modelings J'ased / co / Reimer and / others (1973) ca. ~sl CD Based on eight aftershocks r (Mickey and others, 1973) ~ O / ess Boore (1973) CD / 0 0 Bouchon (1973)

Scaling factors used for Long Term Seismic Program

e5

e3 . .2 1 .2 5'- 10 20" 50 100 Frequency (Hz)

Hgure QT6-13

Comparison of the ratio of the response spectra and peak accelerations at the Pacoima Dam accelerograph site to the free-field site, from aftershock recordings and numerical modelings, with g factors used for the Long Term Seismic Program.

Diablo Canyon Power Plant Sehmle Program PacNc Gas 2nd ElecSc Company Long Term l

f."!

L

l ('. ueti I Au u I

1:50,000 27 28 ~ jlA 6 2s 2P'9 ]p» 40

~ elf'

I I

Q~'@he

r

0 I (

eA5= ~

Figure QI6-15

Topographic elevation in the vicinity of Nahanni Sites I and 2. Elevation contour intervals are 100 feet.

fwablo Canyon Power Pfont Long Term Seismic progmm ~ Pacific Gas and Electric Company

ueti nl u utl P e2

Site 1

SV

SH

800 600 400 ro 200 O 0 ca. O -200 Distance (feet)

Hgure @16-16

pographic response to vertically incident SV and SH waves at Nahanni Site 1.

Dhblo Canyon Power Plant Term Selsmlc Proyram PacNc 6as and Electric Company Long c c r

g ~ ueti n a 2l

Site 2

SV >

SH

I 400

zoo

O Q O l 200

Distance (feet)

Hgure @16-17

graphic response to vertically incident SV and SH waves at Nahanni Site 2.

Diablo Caoroo P~ Pleo'ey Term Selsek ~ 'aclflc Gas and Electric Company ~ "t 4;

4 I

V

!

'I

4t

F

"r g Question ¹ Topic Green's Functions Source Functions IS Stress Drop 9 Shallow Green's Functions ll Low Frequency 19 Directivity 4 Dip in Response Spectrum

Question ¹ Topic

Lorna Prieta Earthquake

Question ¹ Topic

l0 Effect of Coalinga Aftershock Source Functions Whittier Narrows Aftershock Source Functions

Question ¹ Topic

Step-by-Step Discussion Effect of Including Whittier Narrows Source Fns. Effect of Including Lorna Prieta Mainshock

METHODOLOGY

GREEN" S FUNCTIONS k

I ilVC I I'Oj)ilgAflOll

0 Tile pi incipal advantag» of tlute se»ii-ei»f>ii ical inetliod over the empirical Green'.s function method is the ability to accurately account for wave propagation effects at ranges and source depths for which observed records are not available at the site. ~ The principal drawback is that limited information on subsurface structure and the approximations necessary in the computation of synthetic seismograms limit the accuracy of theoretical Green's functions, particularly at high frequencies. ~ We can expect to account accurately only for certain deterministic aspects of wave propagation, ~ We assume that unmodeled complexities in wave propagation, such as scattering, multipathing and near-receiver reverberations at the site are similar to those implicitly included in the empirical source functions. ~a»

k Chapter 4 Page 4-5

Simulated accelerogram

Fault segments Station 2

,s«'~t

Simplified Green's function Path (effect of wave propagation)

Empirical source function (corrected for propagation)

Hgure 4-1 Schematic diagram of the semi-empirical ground-motion simulation procedure. For each subfault, an empirical source function with the appropriate radiation pattern is convolved with the simplified Green's funcdon. The ground-motion contributions of each subfault are then time-lagged and summed in accordance with a prescribed geometry of rupture evoluuon.

tMablo Cooyoa Powtt PLMt ~ PacNc Gas and Hectric Company tong Tenn SHsmlc Progam lj

I C 0 m p u l8 t k 0 lla 1 Mc t ll0 (1

~ $ implified Green's fbi»ctions weie coi»puted usiiig t1ic niet1iod of generalized rays (13elmberger and 1-1;>rkrider, 1978; Aki and Richards, 1980).

~ Rays corresponding to the direct, upgoing P and S waves as well

as primary reflections from each layer interface beneath the source are included.

~ Mode conversions, reverberations, and surface waves are not included.

~ Because the radiation pattern and receiver function are implicitly included in the empirical source functions, the synthetic Green's functions do not contain these factors. ~ The Green's functions are thus essentially the response of the medium for P, SV and SH potentials. 0

'1

0 I

$ ~ Time (seconds)

0 1 2 3 4 5 6 7 8 9 10 0 01 1.81x 1 0

02 1.34x 1 0

10 03 1.05x 1 0

04 8.08xl0 ~

05 6.34xl 0 ~ 20 I 06 5.13xlo ~

07 4.16xlo ~

y) 30 08 '.50xlo ~ 09 3.79xlo ~ Q) 10 3.88xlo ~ 0 1 1 4.25x 1 0

12 3.84x10-2

< 50 ]3 3.53xlo ~ O 14 3.53xlo U 15 4.85xlo"~ 60 16 5.12xlo->

17 5.23xlo ~

70 18 S.O7x10-~

80

90 0 .1 2 3 4 5 6 ? 8 9 10 Oblique, SH, Depth = 9.1 km

SOURCE FUNCTIONS ti

I' Fmplrlcal Source Functions

o Although the form of the radiated source spectrum may be specified deterministically, high-frequency details are generally unknown. ~ The empirical source function includes the detailed source spectrum, but also implicitlyincludes estimates of other unknown or stochastic effects of the source and propagation. These include near-source and near-receiver scattering, near-receiver frequency-dependent

attenuation, unmodeled propagational complexity such as

multip athin g an d re verberations, and radiation pattern incoherence. ~ In the empirical source function method, we must assume that these unknown and stochastic effects are similar on average at the Diablo Canyon site to those of the event that supplied the empirical source functions. 0 |I

I .) )P

12. 9

5.8

40. 8

141. 1

100. 6 6

~ I h» recorded seisnsogt an>s tlat;>t set ve «s eiupii ical sout ce I unct ions

include the effects of propagation f roin thc source to the recording instrument. o If they were simply convolved with theoretical Green's functions, the resulting synthetics would include two propagation terms. o We must therefore correct the source function for its propagation term before convolving with the Green's functions. o The correction that is most consistent with the usage intended for

the source functions is a deconvolution of the recording with a theoretical Green's function from the source function event to the receiver. Because the recordings of the source functions are from ranges less than one source depth, these Green's functions are quite simple (usually a step). e Then the deconvolution amounts to division by a constant which is the amplitude of the step function. "I

0 lkecei ver Fiiric f i Or>

~ The empirical source functions also include an estimate of the frequency-dependent receiver functions. ~ They include the angular decomposition of the P, SV, and SH wavefields onto vertical, radial, and tangential components (Pz, Pg, SVz, SV~, SH), as well as amplification effects due to the medium properties at the surface.

~ Because the velocity structure at the Diablo Canyon site is somewhat different from the receiver structure of the empirical source functions, and because incidence angles can be quite different, a correction must be applied to the estimated receiver functions. 0 >i

0 |radiation Pattern

~ Frequency-dependent radiation pattern effects are incorporated empirically. o We choose from a number of empirical source functions based on their original location on the focal sphere. ~ The empirical source function used is the one whose low-frequency, theoretical radiation pattern value is closest in absolute value to the

theoretical radiation pattern value required for a given fault element. 0

E

&

0 p f

1 uestion 12 Pa e9

S WAVE RADlATlON PATTERN RADlAL TRANSVERSE No 7 No 5 No-

Unfiltered Data

8NCR 2 sec

No 7 No. 7 No. 5 No. 5

~ ~ ~No 4 ~ ~ Low-Pass No 3 Filtered HOLT Data HOLT

BNCR 8NCR

Figure @12-4

Frequency-dependent coherence of the radiation pattern of accelerograms of the 23:19 aftershock of the October 15, 1979 Imperial Valley earthquake. The upper figures show. unfiltered accelerograms and their radial (left) and transverse (right) amplitudes, normalized by the total S- wave amplitude, plotted as a function of azimuth on the theoretical radiation pattern. The lower figures are for the same accelerograms lowpass filtered at 2 Hz. l QUESTION 18.

IT HAS BEEN SUGGESTED THAT STRESS DROPS ARE HIGHER FOR OBLIQUE AND THRUST FAULTS THAN FOR STRIKE-SLIP FAULTS. WHAT IS THE JUSTIFI-

CATION FOR USING A CONSTANT STRESS DROP OF 50 BARS FOR ALL FAULT TYPES IN THE NUMERICAL MODELINGSTUDIES? TO WHAT EXTENT WOULDTHE USE OF HIGHER STRESS DROPS IMPACTTHE RESULTS' 0

b GLOBAL STATIC STRESS DROP

Derived from fault dimensions

GLOBAL RUPTURE DURATION STRESS DROP Derived from rupture duration

LOCAL STRESS DROP

Derived from asperity dimensions I

tQ

,H ~ ~ 0:)

Q ~ ~

'

I

~ ~

~ g 0

/Q/8/p/ Cq, pP SAN FERNANDO SE NW 0

0. Cl I ~ ~ z ~ ~ q5 ~ 0 10 Cl olLJ 50 'c

~ ~ ~ ~ CO O 20 0 10 km NORTH PALM SPRINGS SE NW

0 E 0 o ~ 10

O 1 z ~ ~ ~ s ~ ~ ~20 0 O 20 ~ ~t> Ul $ ~ O 15 ~ z ~ ~ .S ~

20 0 5km BORAH PEAK

30 70 6 oo ~ ~ ~ ~ oQ oT ~ ~ ~ ~ 5o o10 ~ o I ~ o~e ~ ~ ~ o ~

~o 0 ~ oo ~ O ~ ~ 30 0 70 110

O

30 0 10 km %r 4 Chapter 4 Page 4-25

E 6

o 9

12

15 0 50 100 Average dislocation (cm)

E 6

CL o

15 0 50 100

Moment release (x10ii23 dyn~)

EXPLANATION palm gpringt earthquake, 1986 (Mendoza and Helmherger, 1988) Coyote Lake earthquake. 1979 (Llu and He)mhergar. 1989) imperial Valley earthquake, 1979 (Hartzell end Human. 1983) ~ 'organ Hill earthquake, t984 (Hartzeg and Heaton, 1986)

Figure 4-12 Seismic slip (above) and seismic moment release (below) as a function of depth, averaged along strike, for four California earthquakes.

Ohio Cag)yon power pt8()t PacNc 6as and Electric Company tooo Term Setsm(c Pros(38) ~jt

'4$A

'lyF' Chapter 4 Page 4-5

Simulated accelerogram

Fault segments Station Q

Simplified Green's function Path (effect of wave propagation)

Empirical source function (corrected for propagation)

Figure 4-1 Schematic diagram of the semiwmpirical ground-motion simulation procedure. For each subfault, an empirical source function with the appropriate radiation pattern is convolved with the simplified Green's function. The ground-motion contributions of each subfault are then ume-hgged and summed in accordance with a prescribed geometry of rupture evoluuon.

Olablo Canyon Power Pfanl : Pacific Gas and Electric Company Long Tenn Selsmlc Program i

1 f Rupture Ve loci ty v

0 0 0 0 0 0 0

W 0 0 0 0

0 0 0 0 0 0 0

Fio. 8. Assumed distributi<>n of'ircul u'ra«k» o» t)sv t'tult )i);~»< l~» t)sc»)>e«iti«)~;artier ni

(aggregate of circular cracks) co»»i;t) i< r.

Papageorgiou and Aki, 1983 rp;

~i@~

k

$ g

k

J ~ ~ ~ ~ 0

I I ~ I ~ 'I I I I '

I I Il I iI I 'I ' mmmmm55m5%Ã%%lRI I I I I ' I I I I

~ 1

~ s

I ~ ~ ~ ~ ~ ~ ~ ~ ~ I I,

1

A,

'a 8RAWLEY Arroy N0.1

8 RAWLEY FAULT

N0. oN0.4 N0,5 N0.7 ~ HOLTSVILLE EL CENTRO N0.8 0 N0.e

AFTERSHOCK 32'45'N N0.11 ~ N0.12 ~ N0.13 80NDS ~ CORNKR p, 0 IO km GALEXIGO USA MFX)GO EPICENTER 10/I 5 /79

A ATIONS (230 COMPONCNT)

SIMULATCD OBSCRVCD '/l l l l I I / s / / /

I / / /

I

1

15 1b 21 24 27 9 12 15

TIMC (Seconda) 4~

h

. r I ~ '

4 ~ Ay' ~ I

I ~ ~ ~ ~ j

~ . ' -x~

II g

~

'g araaxararararrraaaaraaSxrarrarasrRRkRRsrrrRR rrnaaaaaraarraarraaraarraaarraraaarraarrraa iraasraraRasRRaara Rxarrarrr5rlslarraarrarrrraaarrarara aaarararaarraaareraraarrrrraaaaaarrr arrraaaraaanaarrxaarraaaararaaa Rxsrrkaraari5555axrasraar555kRRR RxrrrrarNI$rxrrrrrrnrrrara1555

Table Q17-2 SLIP (M) ON THE FAULT ELKS lENTS OF THE STRIKE-SLII'ODEL

1.0 1.0 1.0 1.6 2.0 1.6 1.0 1.0 1.0 1.6 2.0 1.6 1.0 1.0 1.0 1.0 1..0 3.1 5.1 3.1 1.0 1.0 1.0 1.0 1.0 3.0 5.0 3.0 1.0 1.0 1.0 1.0 3.0 5.0 3.0 1.0 1.0 1.0 2.0 5.0 10.1 5.0 2.0 1.0 1.0 1.0 2.0 5.0 10.1 5.0 2.0 1.0 1.0 2.0 5.0 10.1 5.0 2.0 1.0 1.0 2.0 5.0 I 0.1 5.0 2.0 1.0 1.0 1.0 1.0 3.0 5.0 3.0 1.0 1.0 1.0 1.0 3.0 5.0 3.0 1.0 1;0 1.0 1.0 3.0 5.0 3.0 1.0 1.0

Table Q17-4

SLIP (M) ON THE FAULT ELEMENTS OF THE THRUST MODEL

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 1.0 1..0 1.0 1.0 1.0 1.0 2.0 1.0 1.0 1.0 1.0 2.0 4.0 2.0 1.0 1.0 1.0 1.0 1.0 4.0 2.0 1.0 1.0 2.0 4.0 7.0 4.0 2.0 1.0 1.0 1.0 1.0 7.0 3.0 1.0 1.0 3.0 7.0 10.0 7.0 3.0 1.0 1.0 1.0 1.0 4.0 2.0 1.0 1.0 2.0 4.0 7.0 4.0 2.0 1.0 1.0 1.0 1.0 2.0 1.0 . 1.0 1.0 1.0 2.0 4.0 2.0 1.0 1.0 1.0 ai

4 4 Table Q17-3

SLIP (M) ON THE FAULT ELEMENTS OF THE OBLIQUE KIODEL

1.1 1.1 1.8 2.2 1.8 1.1 1.1 1.1 I.l 1.1 1.8 2.2 1.8 1.1 1.1 1.1 1.1 1.1 1.1 3.2 5.3 3.2 1.1 1.1 1.1 1.1 1.1 3.2 5.3 3.2 l.l 1.1 1.1 1.1 1.1 2.1 5.3 10.6 5.3 2.1 1.1 1.1 1.1 2.1 5.3 10.6 5.3 2.1 1.1 1.1 1.1 1.1 2.1 5.3 10.6 5.3 2.1 1.1 1.1 1.1 2.1 5.3 10.6 5.3 2.1 1.1 1.1 1.1 1.0 1.0 2.9 4.8 2.9 1.0 I.O 1.0 1.0 1.0 29 4.8 2.9 1.0 1.0 1.0 1.0 4 k

I

l' CONCLUSIONS

~ A review of published summaries of stress drops shows no evidence for a dependence of stress drop on faulting style

~ A global stress drop of 50 bars is a reasonable representation of the average global stress drop of California earthquakes o The slip models used, with peak displacements of ten meters on asperities 10 km across, have local stress drops of 500 bars. These are larger than any reported for California earthquakes., and it is therefore not appropriate to consider large stress drop values.

QUESTION 9.

PROVIDE A COMPARISON BETWEEN THE NUMERICAL MODELING STUDY AND THE FREQUENCY-

WAVENUMBER METHOD OF THE 1.5 AND 3 KM SOURCE DEPTH CONTRIBUTIONS

Table Q9- I

COt IPAI

Frequency-IVavcnumber Ge neral ized Ray Meth d Method

REGION OF coherent domain; appropriate incoherent domain; appropriate APPLICATION for frequencies below 2 Hz l'or frequencics above 2 Hz

I

MULTIPLES theoretically included as empirically included as coherent multiples; double scattered energy in counted as scattered energy empirical sou rcc funct ions in empirical source functions lW

f

I ',f ~ ~ ~IS~~~~ll~~~~~~ ~WEHII~~~~a ffff ~~SRE~~~ ~ II~~ ~~&II~~~II~~~mlw~~f~~ ~KIRI~lI%I . ~~~alfau~~l~

III~ ~ ~ ~ ~ ~ ~ ~

~~la Ifi

~aWifltlffll. ~ ~~~illllff...

~ ~ Fe) 4.i

C 1

>r

p( '0

h ' ~ I ~ ~

~l~ ' ~ ~ I ~

I ~ . ~I~~~ ~ ~ ~II~~ ~ ~ ~ll~~III ~ ~ ~ ~ ~ ~I ~ ~IIIII~~~ ~ I ~ I ~~III~ ~ ~ ~~II~~~Ill~ ~ ~ ~ ~

I ~ ~~II~II~~wd MllIH ~ ~ ~~~AIR~ ~ ~ IIIt - ~~~IIII

~ ~

~ ~

~ ~

~ ~ ~ ~III~~~~I%I~~~ ~III~~~ ~ ~ ~IIII'%~~~II Itl%~ ~mlaIIIII~~ 'kt~~~~~ ~ ~ ~~IIIIIII~~~~~'IIIIISI~~~ 'IIIII ~ ~ aalltttltII - ~~ III ~~WRI~~~~I4llllll~lltlll

~ ' I ~ ~ ~ I ~ ~ ~ ~ ' ~ ~ ~ I ~ ~ 4„

4j." ' ~ '~ ~ ~

'o'I

II

~ ~ ~ ~ ~ ~ ~ ~ ~

I(J

I I

t I I II

~ t f ~ ~ ~ ~ 0 ~ ~ I I ~ ~

\I I'.

DCP SS UNI M=7.2 IV SRCS 5/18/88 4X3 4.1 km W=O-12 RT=3.5 (K)

O.IOO g occol. cO SS

O.IS2 g oCCcl. CO SS

O.I82 o oc col, CO SS

5.00 I Q.OO 15.00 2Q,OO 25,00 30.00 35.00 40.00 <5.00 5Q 't lee (secoods)

SS uni m=7.2 IV Srcs, Ref lectivity Green's Functions, F=0.5

0.000 g WJAlcccl, CO SS

0202 g w4 occcL CO SS

0.160 o vol.occoL-CO SS

0.00 5.00 10.00 15.00 20.00 25 00 30 00 35.00 CQOO 45 00 50, T lac (secoocls) '4) I, DCP SS UNI M=7.2 IV SRCS 5/18/88 4X3 4.1 km W=O-12 RT=3.5 (K)

0260 9 occcL-Dl SS

0291 9 occco Q SS

N

OM9 9 eccl-32 SS

0.00 10.00 15.00 20.00 25.00 30.00 35,00 c(LOO 45.00 5(L ' '1 inc (seconds)

SS uni m=7.2 IV Srcs, Ref lectivity Green's Functions, F=0.5

0.000 9 vn.eccl.-Q SS

02$ I 9 w4accc.-Q SS

O.cps 9 vaacceL-3l SS

5.00 11LOO 15.00 20,00 25 00 30 00 35.00 40 00 45 00 50. Sine (seconds) alp'-g

l I DCP SS UNI M=7.2 IV SRCS 5/18/88 4X3 4.1 km W=O-12 RT=3.5 (K)

0.36) 9 eccl 24 SS

0.4)9 9 eccl-24 SS

0.6)6 9 occcl. 24 SS

0.00 5.00 IQ,OO l5.00 20.00 15,00 3Q,OO 35.00 4Q,OO 45.00 5Q 2)ne (seconds)

SS uni m=7.2 IV Srcs, Ref lectivity Green's Functions, F=0.5

0.000 9 Mn:.eccl 24 SS

0$ )6 9 u&ecc4 24 SS

08)6 9 wC.eccl-24 SS

Oe00 5.00 l0.00 I5.00 20.00 25.00 30.00 35.00 40.00 45.00 5Q T>ne

0.391 9 occe<. 16 SS

N

0269 9 occe6- '1 6 SS

cLOO 45.00 50. 0.00 ILOO I5.00 20.00 25.00 30,00 35,00 T)oo (seconds)

SS uni m=7.2 IV Srcs, Ref lectivity Green's Functions, F=0.5

0.000 9 oe:mccoy-16 SS

LcIS 9 oo4ccW '16 SS

N

0233 whack-169 SS

ILOO l5,00 20.00 25.00 30.00 35.00 IGLOO 45.00 5L t>oo Csoconds)

DCP SS UNI M=7.2 IV SRCS 5/18/88 '4X3 4.1 km W=O-12 RT=3.5 (K)

02IS 5 occcL-05 SS

020) 5 occcs 05 SS

022) 5 occoL 05 SS

l(LOO I5,00 2Q,OO 25,00 30.00 35.00 c(LOD 45.00 50. T)ao (socoo5s)

I

SS uni m=7.2 IV Srcs. Reflectivity Green's Functions. F=0.5

0.000 5 oamcoL-05 SS

02)0 5 oamceL-05 SS

0.154 5 oo'~coL-05 SS

0.00 f0.00 l5.00 20.00 25.00 3Q,OO 35.00

OWl O occtLOO SS

0.435 e occcEM SS

OSM g occoUQ SS

10.00 15.00 20,00 25.00 30.00 35.00 C0.00 C5 00 50, T>oe (seconds)

SS uni m=7.2 IV Srcs, Ref lectivity Green's functions, f=0.5

1g 0.000 e col.00 SS

O.c56 O w4ac c eLOO SS

0551 g vn4occoLOO SS

5.00 10.00 15.00 20,00 25 00 30.00 35 00 40 00 45 00 50. Y)ae (seconds) hg'i, DCP SS UNI M=7.2 IV SRCS 5/18/88 4X3 4.1 km W=O-12 RT=3.5 (K)

0293 9 occcl.06 SS

O.ceo 9 occcl.06 SS

0296 9 occel.06 SS

<5.00 50, 0.00 10.00 15.00 2Q,OO 25,00 30,00 35.00 c0.00 floe CSeCOndS)

SS uni m=7.2 IV Srcs, Ref lectivity Green's Functions, F=0.5

OAXO 9 vive.oc c clog SS

0$ )2 9 w4ncccLO) SS

O.c39 9 vnbacoLO6 SS

'50, 0.00 I Q,OO 15.00 20,00 25.00 30.00 35.00 60.00 45.00 1)ae (seconds)

DCP SS UNI M=7.2 IV SRCS 5/18/88 4X3 4.1 km W=O-12 RT=3.5 (K)

0.160 g oc eel.I 6 SS

0217 6 eccl 1 6 SS

0220 II eccl.I 6 SS

10.00 15,00 2Q,OO 25.00 30.00 35,00 4Q,OO <5 00 Sloe (seconds>

SS uni m=7.2 iv Srcs, Ref lectivity Green's Functions, F=0.5

0.000 6 vn ~eel.I 6 SS

0205 g ccL16 SS

OgcI y wkoccel.l 6 SS

'I 0.00 10.00 15,00 2'0.00 25.00 30.00 35.00 CQ.OO 45.00 5Q T loo (seconds) ~ f

~t DCP SS UNI M=7.2 IV SRCS 5/18/88 4X3 4.1 km W=O-12 RT=3.5 (K)

ODSS s occc<2c SS

O.cc2 occcl24 SS

O.c05 g occcl+c SS

ILOO l5.00 20.00 25.00 30.00 35.00 40.00 <5.00 50 rcno Csoconds)

SS uni m=7.2 IV Srcs, Reflectivity Green's Functions, F=0.5

0.000 s colic SS

0.515 oni~c~cs SS

0$ 5S g w4ecce424 SS

45.00 0.00 l0.00 l5,00 20.00 25.00 30.00 35.00 ~ C0.00 50, r coo (soconccs) I ~ T

~t OCP SS UNI M=7.2 IV SRCS 5/18/88 4X3 4.1 Icrn W=O-12 RT=3.5 (K)

0362 g occeLM SS

OATS g occelM SS

Ohbb q occeL32 SS

cCLOO c5.00 50. 5.00 )CHOO 15.00 20.00 25.00 30,00 35.00 T loo (socius)

SS uni m=7.2 IV Srcs, Ref lectivity Green's Functic)ns, F=0.5

tLON) g oe'~ceL32 SS

O.C42 0 OoLOCC eL32 SS

O.SOI 0 wpLocceL32 SS

) CLOO l5,00 2CLOO 25 00 30.00 35.00 <0.00 <5.00 50, T>ao Csocooc)s) Ti -i DCP SS UNI M=7.2 IV SRCS 5/18/88 4X3 4.1 Icrn W=O-12 RT=3.5 (K)

0322 0 occcLc0 SS

occam.c0

O.c23 0

SS

OBM o occcl.c0 SS

5.00 lCLOO l5.00 ZCLOO 25.00 3Q.OO 35.00 cCLOO 45.00 50. Ycoo Cooconao)

SS uni m=7.2 IV Srcs, Ref lectivity Green's Functions, F=0.5

0.000 o m.occKc0 SS

L22b g wi~ccc.c0 SS

LJSC g ooLoc coco 0 SS

Oe00 ICLOO l5,00 20,00 25.00 30 00 35 00 cLOO 45.00 5CL Taboo Coocondo) C<,

jR PTS

~ ~ ~ ~ p~ ~

10

0 10 20

DlSTANCE (KM)

Subevent 1 5 2 combined distocation

>~>g~ Subevent 3 dislocation

3

D,

9c

+4~ Svrface Offset 80 O Q. day 335 cn

40 I- dBy 1 20

NW PTS Surfaca

~ ~ ~ ~

10

0 10 20

DISTANCE (KM)

This study - Subevent 1 & 2 combined dislocation

This study- Subevent 3 dislocation

Ftankel and Wennerberg (1989) g Hwang et al. (1989)

(After Hwang et al., 1989). I

~f

F iI ~ rI ~ Il//gI/rr/lrr/lrr/r//jr/jr/jr/jr/jr/J//r//J .EpiCenter//////////r///////rrr////////////r/////////r'/ J:E ! //J/I/r/ /J I/II /I /J/I/rr J//II /JI//

l/r/r// jrl/////J'l'JI/ riirrrrrrr///////rrl/r///rl///l//rJI'rr/rJ/'jr/jr//l // I /J//J/I/Il//////J/rlrrrrrrrrrrrrrrrrrrrrrrrrrrjr/jr/jr/i/Jll/lJ'l/////l//////l, /rl/Jrr///JJI//JJ/ Jr/jr//jr//r//r/l/I/I/rjr//r/ SFB r///rrr///r/////r///////rjr///////////~//// /I' lJ'/ /ll///l//l//l /////r/lll l/////rr/'//r///////Jrr/rr/'l/I///I'/ I/////r///rrlrI/ J/I/rr/lr Jr/rlrrrrlljr'/rl/llr/rrlr/ll///////////// C048 x r///I/l/rr///I'/I/l/I'/r/rr/J/I'Ir/ ///// /J/Il/ll///jr/jr/rlrl/ J 145 ////l/////l///r/'r/r/////J///l/ ill/Jr/r Hl I5 ~ LI66 r////r/r// e4 //l " '0057

a S262

LAB

HI I8 4 S267

PO

NI9I

PVH A

0 2 4 6 8 IO Miles Scale I: 250,000

N S SFB SMM LAB PVH A

0 2 4 6 8 lOMiles

FIG. 1. Map and cross-section of the San Fernando region from Duke et al. (1971). The epicenter arked by a cross. The surface breakage is indicated by the cross-hatched line. The filled triangles a. ations of the strong-motion instruments used in this section. Cross-hatched areas show surface e of the bedrock. The bottom of the basin for the profile A-A's shown below, where dash( ~r»s show where the boundary is not known. The cross-section has vertical exageration of 2:1. SF San Fernando basin; SMM = Santa Monica Mountains; LAB = Los Angeles basin; PVH = Pal~ ~rdes Hills; PO = Pacific Ocean. ;r

~r Q4 v$ k

gv JOHN E. VIDALE AND DONALD V. HELMBERGER

Velocity Records (a) 1971 San Fernando Earthqua ke

k - Vertica I Radial Transverse cm/soc cm/sec cm/sec

C04 I 58 l2I 47 C048 32 32 24 J I45 I8 33 29 Hl I5 9 29 23 LI66 5 l2 I5 O068 5 II l2 0057 6 l5 20 S262 6 26 27 Hl I 8 7 IO l4 S267 5 l3 l4 NI9I 2 4

Smoothed Ve locity Records

Vert ica I Radial Transverse

C04 I 36 72 l8 C048 26 23 l9 J I 45 l5 28 26 Hl I5 7 22 I8 LI66 4 7 8 0068 4 8 IO D057 4 9 16 S262 4 20 24 HIIS 6 9 l3 S267 5 II l3 N I9I 2 3 3

20 sec

FIG. 2. (a) Velocity records of the 1971 San Fernando earthquake, taken from EERL (1974). Th aces are aligned relative to a high-frequency, early arrival on the vertical component that is interprete be a direct compressional wave. Amplitude is given in centimeters/second. The station names ar ted at the far left The sta.tions are shown in order of increasing epicentral distance, but the actus ation spacing is irregular. (b) Smoothed velocity records. The records shown in (a) are convolved by ~ au an pulse about 1 sec wide to filter out frequencies that cannot be properly handled by the finite e grid. xd velocity Duke.et aL (1971) also conducted numerous small-scale refractior >rvo«4> 6~~ (ho noser eirfag o rnmot cectinaa1-wave vploeitv nmfile. With ke twl K

6a r r ~ r ~ 0 I ~ ~ I ~

r I ~ ~ 0 ~ ~ ~ ~ ~

4 0 r r ~ ~ ~ ~ ~ ~ ~ 0 ~

~ 0 0 J ~ r ~ ~

~ II ~ ~ ~ ~ ~ ~ I ~ ~

4 r ~ ~ ~ ~ r 0 ~

) o SOLI

~ ~ ~

~ 0 ~

a ~ ~ ~ ~

S ~ ~ ~ ~ II ~ ~ ~ ~ ~ le ~ ~ ~ ~ ~ r ~ ~ ~ ~ s ~

~ ~ ~ e ~ 0 6'

l A Q.9 CONCLUSIONS

THE MAIN DIFFERENCES IN GREEN'S FUNCTIONS GENERATED BYTHE TWO METHODS ARE INSHALLOW SURFACE MULTIPLES

IMPLEMENTATION OF THE FREQUENCY- WAVENUMBER SIMULATION REQUIRES COHERENT THEORETICAL REPRESENTATIONS OF SEVERAL EFFECTS WHICH ARE ACTUALLYINCOHERENT AT HIGH FREQUENCIES AND WHICH ARE REPRESENTED EMPIRICALLYIN THE GENERALIZED RAY METHOD

DIFFERENCES IN SIMULATIONSGENERATED BY THE TWO METHODS ARE MAINLY CONFINED TO FRE- QUENCIES LESS THAN 2 HZ, WHERE THE GENERAL- IZED RAY METHOD IS DEFICIENT

AT FREQUENCIES ABOVE 2 HZ, THE GENERALIZED RAY APPROACH IS ADEQUATE, AND EMPIRICALLY INCORPORATES INCOHERENT SOURCE AND WAVE PROPAGATION EFFECTS THAT ARE DIFFICULT TO REPRESENT THEORETICALLY

QUESTION 11.

THE AMPLITUDES OF LOW FREQUENCY PORTION OF THE SPECTRA GENERATED IN THE NUMERICAL MODELING STUDY APPEAR TO BE DEFICIENT. AT WHAT FREQUENCIES ARE THESE SPECTRA DEPEND- ABLE? g'9 ue tion 11 Au u t

6% Damping 2. 0 Mean

909o Confidence interval of mean

1.0

0. 5 E Cl «CQ 0. 0 O Cl r~q r~ 'la r CO

-0. 5

.0

-1. 5

-2. 0

-2. 5 ~ I O. 1 10 100 Frequency (Hz)

Hgure @I I-I eviation between recorded and simulated horizontal response spectral acceleration averaged over earthquake-station pairs.

heNc Gas and Bectric Company

Q.l l. CONCLUSION

THE RESPONSE SPECTRA GENERATED BY NUMER- ICALMODELING ARE RELIABLEABOVE 2 HZ, BASED ON ANALYSISOF DIFFERENCES BETWEEN SIMULATED AND RECORDED MOTIONS

QUESTION 19.

DIRECTIVITYEFFECTS HAVE BEEN OBSERVED FROM EARTHQUAKE RUPTURES PROPAGATING TOWARD AND AWAYFROM SEISMIC STATIONS. THERE DO NOT APPEAR BE ANYDIRECTIVITYEFFECTS OBSERVED IN THE GROUND MOTIONS FROM THE NUMERICAL MODELING STUDIES; ALTHOUGH, FROM THE GEOMETRY OF THE STATION ARRAY THEY MIGHT BE EXPECTED. IS THIS AN ARTIFACT OF THE WAY THE SIMULATIONSARE PERFORMED? +r~

t I.O g

C9 CL

0

Q p ~ Site 4.I Isa ~ Fau 0 88 ~hypocenter Distance (km)

Figure @19«1

Illustration of the directivity effect for a unilateral strike-slip rupture on the Hosgri fault. The rupture segment and the line of stations parallel to the fault zone are shown in map view below. The variation pf the average peak ground acceleration of the two horizontal components, along the line of stations, is shown above.

Qinbio Canyon Power Plant PacNc 6as artd Electric Company. tong Term Seignic Program 0

,)V Ql

0 I Pa

0 Fault-normal component V Fault-parallel component 0 IA ce

Or

EO CP ED v) ca Al I, C 0O Epicenter 0 "40 -32 -24 -16 "8 0 8 16 24 32 40 Distance along fault (km)

O 0 Epicenter Z O 0 -40 -32 -24 -16 -8 0 8 16 24 32 40 Distance along fault (km)

Hgure @19-2 ~ '""tr»~ ~ ~ of peak acceleration (above) and normalized peak displacernent (belo~) along u»laterall) propagating strike-slip fault for one particular realization of simulations. rq,

fl UNILATERAL

o IA fault normal fault paral 1 el o o l -40 -32 -24 -16 -8 0 8 16 24 32 40 epicenter

IAo

o o -40 -32 -24 -16 -8 0 8 I6 24 32 40

IAo

o o -40 -32 -24 -16 -8 0 8 16 24 32 40

IAo

o o I -40 -32 -24 -16 -8 0 8 16 24 32 40 pp

1 L

vy

pf. ue 1 n Pa e4

0 Fault-normal component V Fault-parallel component D IA cn C O

EO

tn Al ~ 'aCO 0 CA EO D Epicenter O. D D -40 -32 "24 "16 -8 0 8 16 24 32 40

Distance along fault (km)

D cJ vC E

nQ D

K 'D M CI o o Epicenter 2 Cl -40 -32 -24 -16 -8 0 8 16 24 32 40 Distance along fault (km)

Hgure Q19-3 i Distribution of peak acceleration (above) and normalized peak displacement (below) along a unilaterally propagating strike-slip fault, averaged over four simulations.

a@bio Canyon P~ Pinot tong Tenn Selsmk Program C,

'k. lf4 BILATERAL

O lA fault normal fault parallel O O O I I -~0 -32 -24 -16 -8 0 8 16 24 32 40 epicenter

lA

O O -40 -32 -24 -16 -8 0 8 16 24 32 40

O lA

O O O I -40 -32 -24 -16 -8 0 8 '6 24 32 40

O IA

O O O -40 -32 -24 -16 -8 0 8 16 24 32 40 *s ues i n l er Pa e

0 Fault-normal component v Fault-parallel component o lA

CS

O

CO lD

'aco 0 h o Epicenter o -40 -32 -24 -16 "8 0 - 8 16 24 32 40

Distance along fault {km)

o Al

CJ CCC CL D o CC

o Epicenter

-40 -32 -24 -16 -8 0 8 16 24 32 40 Distance along fault {km)

Hgure Q19-4

Distribution of peak acceleration (above) and normalized peak displacement(below) along a bilaterally propagating strike-slip fault, averaged over four simulations.

SaMo Carrrorc Porrer Purct PacNc Gas anrt Hechtc Caripany tooN Terec SHscetc Prograec c'l Q.19. CONCLUSIONS

IN RECORDED STRONG MOTION DATA, TIIE EFFECTS OF DIRECTIVITY ARE USUALLY PRESENT AT LOW FREQUENCIES BUT ARE USUALLYNOT DISCERNIBLE AT HIGH FREQUENCIES

THE DIRECTIVITYEFFECT IS ALSO MANIFESTED IN THIS WAY IN SIMULATEDMOTIONS

QUESTION 4.

THE MEDIAN AND 84/o SPECTRA RESULTING FROM THE NUMERICALMODELINGSTUDIES HAVEA DIP IN

AMPLITUDE BETWEEN 5 AND 10 HERTZ. PG&E

STATED THATTHIS IS AN ARTIFACTOF THE RANDOM NUMBER SET USED IN THE CALCULATIONS. SUB- STANTIATE THIS BY PROVIDING SPECTRA GENER- ATEDWITHA DIFFERENT SETS OF RANDOMNUMBERS WHERE THIS DIP DOES NOT OCCUR. f

0

0

)4e ue in4 u l Pa e

Random Number Set A 5% Damping

~ Sy 84th Percentile

~ ~ q C ~ iip 0 \ CO ~j \ ED Median J g C) 8 ~ S Cl 8 1 CO cr ll~ t ED S! g ~ 16th Percentile + / S ~ S e i.r

10. 100 Frequency (Hz)

Random Number Set B 5% Damping

'

~ 84th Percentile 0 S 1 e ~ Pl O ~ /$)' CQ j ED p! ~ i ~ m8 Median /gl C7 ~ CJ CQ

CS 16th Percentile

8 %.1 Frequency (Hz) Hgure Q4-2

mparison of averaged response spectra of 11 bilateral strike-slip simulation using different sets of andom numbers. N

S$+ uesti n 4 Au ust l Pa e4

5% Damping

C O

CD

CD

CD

CO

CD cf. ~ 1.0 CD N / V CD / fmperial Valfey source functions I // / I / /I I >Ca —Coalinga source functions ss'

0 0.1 1.0 10. 100.

Frequency (Hz)

Hgure Q4-3

parison of average response spectra of the suite of Imperial Valley Source functions (SH ponent) and the suite of Coalinga source functions (SV component); note that each average ctrum was normalized with respect to its own peak.

tLLMoCanyon Power Plmrt Long Term Setsmtc Progrom v/ p"

l

p, ueti n4 uu l Pa e

5% Damping

r Q r

CO I ED CP 84th Percentile CJ CO ~ ~ 1.0 e

ID ra. U C7 N ~ ~ ~ ~ ~ Ctr Median

~ 4 Ie ~" e I I I 16th Percentile I ~ ~ ~ ~

~ ~ ~ 1 e ~ / r,r'r r 0 0.1 1.0 10. 100.

Frequency (Hz)

Hgure Q4-4

rage response spectra of 1 l strike-slip simulations using an analytical source function having a sian Fourier amplitude spectrum. Note that the spectra were normalized with respect to the peak ue of the median spectrum.

Sable Canyon Porrrer Plat! Patio Gas and Hectrh Company tong Tenn Sdsmlc Prograra

Q.4. CONCLUSION

THE DIP IN THE RESPONSE SPECTRUM IS NOT CAUSED

BYTHE SIMULATIONPROCEDURE ITSELF, BUT IS DUE TO THE EMPIRICALSOURCE FUNCTIONS USED IN THE SIMULATIONPROCEDURE

VALIDATION

1989 LOMA PRI ETA EARTH(UAKE

LOMA PRlETA EARTHQUAKES

(CROSS SECTtON ALONG THE SAN ANOREAS FAULT A' ~4 tl't

~ 0 ne O ~ ng> o 4 O O)f. fault ctuster Q "c n 10 og. c' ~ ~ I n~~ ll n '4 < 'E0~ )n .CL 4 0 — Ul ~ ~ .<0 O ~ ~ O

0 I ro rr I 1 r perimeter of 20 ~ ~ main shock rupture sur face D MAlN SHOCK O

0 10 20 30 40 50 70 80 O|STaNCE (KM) ri North end pre-1989 seismicity gap Double restralng bend ~North end 1989 rupture (Geodetic modeling)

Leam,gton, Reservoir c.:.": .:".~ North end 1989 rupture (Seismicity) San Andreos —Sargent intersection 'Cy'uke Ebs~a,n. ~ Lorna Prieta Peak 17 Double restraining bend Double releasing bend

1 989 EP I CEN TE:R

~ ~ ~ South end 1989 rupture ~ ~y ~ ~ ~ (Geodetic modeling) ~ South end 1989 rupture gi/ (Seismicity) Po jara Gap SAN JUAN Releosing bend BAUTISTA 0 5 KM Change in fault dip Increase ln relief Surface creep goes to 0 South end of pre-1989 seismicity gap

/7f 7 *

'4

14,

/„ uestion 13b Pa e3

Table Q13b-2 SLIP (hl) 04 THE FAULT ELEhlEiNTS OF THE STRIKE-SLIP hlODEL 1.0 1.0 1.6 2.0 1.6 1.0 1.0 1.0 1.6 2.0 1.6 1.0 1.0 1.0 1.0 1.0 3.1 F 1 3.) 1.0 ).O 1.0 1 0 1.0 3.0 5.0 3.0 1.0 1.0 1.0 1.0 3.0 5.0 3.0 1.0 1.0 1.0 2.0 5 0 10.1 5.0 2.0 1.0 1.0 1-0 2.0 5.0 10.1 5.0 2.0 1.0 1.0 2.0 5.0 10.1 5.0 2.0 1.0 1.0 2.0 5.0 10.1 5.0 2.0 1.0 1.0 1.0 1.0 3.0 5.0 3.0 1.0 1.0 1.0 1.0 3.0 5.0 3.0 1.0 1.0 1.0 1.0 3.0 5.0 3.0 1.0 l."

Table Q13b-3 SLIP (M) OY THE FAULT ELEMENTS OF THE OBLIQUE MODEL 0 0 o o 0 0 o 0 11 11 11 18 2.2 1.8 1.) ). 1 1.1 1.1 1.8 2.2 1.8 1.) ).1 1.1 1.1 1.1 1.1 1.1 3.2 5.3 3.2 1.1 1.1 1.1 3.2 5.3 3.2 1.) 1.1 1.1 1.1 1.1 1.1 2.1 5.3 10.6 5.3 2.1 1.1 ).1 2.1 5.3 10.6 5.3 2.1 1.1 1.1 l-l 1.1 1.1 2.1 5.3 10.6 5.3 2.1 1.1 1.1 2.1 5.3 10.6 5.3 2.1 1.1 1.1 1-1 1 0 ) 0 1 0 2 9 4.6 2.9 ).0 1.0 1.0 1.0 1.0 2.9 4.8 2.9 1.0 1.0 ).0 1.0

Table Q13b-4 SLIP (h)) OY THE FAULT ELEMENTS OF THE THRUST htODEL

o.e o.s o.e o.s 1.5 o.s o.s o.e O.e o.s 0.8 1.5 0.8 0.8 0.8 0.8 0.8 0.8 O.S l.7 2.5 1.7 0.8 0.8 0.8 1.7 2.5 4.1 2.5 1.7 0.8 0.8 0.8 0.8 1.7 2.5 4.1 2.5 1.7 0.8 0.8 2-5 4.1 8.3 4.1 2.5 0.8 0.8 0.8 0.8 2.5 4.1 8.3 4.1 2.5 0.8 0.8 3.3 5.8 11.6 5.8 3.3 0.8 0.8 0.8 0.8 2.5 4.) 8.3 4.) 2.5 0.8 0.8 2.5 4.1 8.3 4.1 2.5 O.B 0.8 0.8 0.8 1.7 2.5 4.1 2.5 1.7 0.8 0.8 1.7 2.5 4.1 2.5 1.7 0.8 0.8

Oiablo Canyon Power Ptaot

:a Paciffc Gas and Electric Company long Term Seismic Program

~srtg

pit rs ~1 r'.dtn ggpc gB llCl r 0 0 0 0 0 @yDS 0 0 0 0 0 0 0 0 0 0 0 0 0 O 0 gran 0 ~orr 0 0 0 0 + 0 gil6 o 0 0 0 0 gil4 o 0 0 0 i 0 R ~ahogapi 0 0, 0 0 0 0 0

~~a ts

4/04/90 Lorna Prieta STRIKE=120 gi )bp

'~<)ilrcn l itsio f:ittaciioti

0 10 15 Tl fTl0

i

LnAv 128 70 138 — 17 Stats 4/21/90

1.0

C p 0 p

0.1 Q O O

p — recorded + - simulated

0.01 1.0 10. Closest Distonce (km)

Residuals of Data from LTSP 4/23/90

Explanation lh wa ho p s rcz Qi Rock Data/LTSP capi g Qt, Soil Data/LTSP gi13 UCSC El gil7 bran s~)ita andr gi14 4 gil2 gavl wats

Kl gi16

IO I5 20

Cl(>st:St DistltnCC

Residuals of Data from Synth 4/23/90

gil3 I explanation gi17 ger

.s 1 c Q% Rock Data/Synth gavi H srcz Soil Data/Synth gl14 g112 H UCSC Qr capt Bndr rr waho kg Kl wean gil6

-.5

10 2(I

Closest Dist Incc

Residuals of Data from LTSP 4/23/90

L'xplanalion o WQO qrcz g Rock DatslLTSP capt Soil Data/LTSP gH3 UCSC gll/ Q~ bran and r g 9~1 Bg carr gd'tip lgpc avi wats

[g git6

50 150 200 350 Epiccntr:tl Azimuth

Residuals of Data from Synth 4/23/90

Sftg Explanation . pill Q<

lgpc Qa: Rock - Data/Lanorma ggVt H srcz Soil - Data/Lanoftna ablPz El Ucsc ndr Ctlp1 corr wttho Qr D gi16 wats bran

50 150 250 350 Epicentral Azimuth

Lorna Prieta Eqk,17 Oct 89, 37 2.82N, 121 59.09W,UCSC Station

5.009x10-1 branv1.dat BRAN

4.564x10 1 brann1.dot BRAN

4.985x10-1 branal.dot BRAN

-.00 2.54 5.0B 7,62 10.16 12.70 15.24 17.7B 20.32 22.B6 Time

0 Lama Prieta 128 70 138 IV 23 src pot Filt,03/23/90

2.3<9x10-'accel.bran Bran

4.550x10 1 faccel.bran Bran

6.827x10 ~ faccel.bran Bran

-.00 2.53 5.07 7.61 10.16 12.70 15.24 17.7B 20.32 22.B6 b II Lomo Prieto 128 70 138 IV 23 src pot Filt,03/23/90 bron dorrlping: 0.05 doto id time window component fbron 0.00 to 59.99 seconds Z e

o O o O

o O LA CV

.h ~ I pl 1 I O O O O Lhi i Il

o I 0 LA LA ~ r 1 ~ i

0C 0 l I I 0 O Q Il ~' O U U

0

U \ o. D O V) LA LA .'I «'I I /

o O O O D O 0.1 1.0 10. 100. Frequency Sol Mor 24 09:02:25 1990

Lomo Prieto Eqk,17 Oct 89, 37 2.82N, 121 59r09W,UCSC Stotion BRAN domping: 0.05 doto id time window component BRAN 0.00 to 25.00 seconds V BRAN 0.00 to 25.00 seconds n BRAN 0.00 to 25.00 seconds e

0 0 C9

0 0 LA LA (V AJ

0 0 tU

I I ~ I gl I I I I ~ e I I I 0 I r LA rl~ L.lh )I 1 I' I '1 ~ Ir . LI I I C I I O I Lsl ', ~ ~ I L s 0 ~ ~ y I ~ I LLI 0 0 ~ ~ I I I f 0~ 0 QI ~ ~ U ~ I I ~ P.~ U ~ I 1 I I' 0 U I I Ol Q. O 0 LO LA / J LA I ~ \ ly I r / 0 0 0 0 0.1 10. 100. Frequency Sot Mor 24 19:41:41 1990 sr Lorna Prieto Eqk,17 Oct 89, 36 58.2N, 121 59.70W,UCSC Station

2,725x10 wohov1.dot WAHO

3.758x10 wohon 1.dot WAHO

6.594x10-1 wohoe1.dot WAHO

—.00 2.54 5.08 7.62 10.16 12.70 15.24 17.78 20e32 22.86 T>me

1.713x10" 1 faccel.waho Waho

3.866x10 l faccel.waho Waho

5.484x10 faccel.waho Waho

".00 2.53 5.07 7.61 10. 16 12.70 ) 5.24 17.78 20.32 22.86

) Lomo Prieto Eqk,17 Oct 89, 36 58.2N, ]2) 59.7QW,UCSC Stotion WAHO damping: 0.05 doto id time window component WAHO 0.00 to 25.00 seconds V WAHO 0.00 to 25.00 seconds n WAHO 0.00 to 25.00 seconds C

O O O O P) YJ

O O In I IA CV s ~ Cssi ~ s I

s

s s O O s O O s CV I bi

~ ~ s

s

s ~ ~ I I.,

s ~ s I ~ s I ~ ss .I s s s I ~ ~ ~ ~ I s s ~ 'I~ sp I \ ~ C s ~ s I 0 I I 4 I s I I I ~ ~ 4 I 0 ~ s ~ s sr I' / I ep O s O ~ p p O 0~ Qp s I U U s, ~ I 'sC

s ~ . p 0 ~ I I. I P ~ ~ U ~ rs, +p I O pp s CL O ps O V) Ill p'p ~ a IA s p ~ 1 p rp p p ! r'~

/ O O O O O 0.1 1.0 10. 100. Frequency Sat hler 24 19:57:14 1990

Lomo Prieto 128 70 138 IV 23 src pot Filt,03/23/90 woho damping: 0.05 doto id time window component fwoho 0.00 to 59.99 seconds 7

O O o O KJ

-O O IA pJ fJ

III O O O O CIi hl

O IA

C 0 0 O O gI Q O CI V V

0 I V ao O III IA LA

o O o O O O 0.1 1.0 10. 100. Frequency SOI Mar 24 09:09:49 1990

Corra litos —Eureka Canyon Rd. (CSLlIP Station 57007) Record S7007-S4609-89292.01 Llax Acce I. eel Qo ~ ~ M W W ~ eH GNT } l00:04:21 90'— 0.50 g

0.47 g

360'— 0.64 g

'0 '1 '0 0 ~ 1 I 1 I l 1 l 1 \ h 8 g l +1 1 h I 1 1 0 1 0 1 I 1 I 1 1. I I 1 1 l 1

0 1 2 3 4 5 10 15 20 Sec.

Lama Prieta 128 70 138 IV 23 src pot Flit,03/05/90

2.443xIO 1 foccel.corr Corrolitos

3.347x10 ~ faccel.corr Corralitos

7.538x10 faccel.carr Corrolitos

-.00 2.53 5.07 7.61 10.16 12.70 15.24 17.78 ~ 20.32 22.86 25,

Lorno Prieto Eqk, 17 Oct 89. Corrolitos, Eureko Cnyn Rd. cor.occ dornping: 0.05 dota id bllld window component cor 0.00 to 39.98 seconds Up 000 09 0

O O Q O re

O O lA !A cJ

O O O O N bl

C 0 0 l dp O O Q O U 1 U ~ ~ lwl~ 0 L. U CL O O CA lA lA

~ / O ~ r O O O - Q O 0.1 1.0 10. 100. Frequency Mon Jan 15 16:05:02 1990

Lomo Prieto )28 70 138 IV 23 src pot Filt,03/05/90 corr domping: 0.05 doto id time window component corr 0.00 to 59.99 seconds 2

090 ~ ~ 0 ~ r

O O Q O

I ~ ~ ~ I I

O I i O LA CA CU

1 I I I i Ill I I ~ ~ I, CD O Q O pJ CV

I I lr O I'!i 1 CA ~ I ~ I 'I

~ II ~ 0C 0 'i;,' i O O O Q O' U I U

0

U CL O V) CA tA

I t Q O O O Q O 0.1 1;0 'I 0. 100. Frequency Tue Mar 13 11:24:57 1990 0 I

~ ~ ~ ~ ~ ~\

~ ~ 2.5 1,5

2.0 I ~ , ~ ttfAtt COttRKCKD FOR tOXL DIAS 90tr'O)4'IKtICC I I I ~ I Itt IERYAL 0 ttEAtt I 'O'I CtÃREC'ffD FOR 1.5 Wr tOXL 81AS

~ I ~

'I \ I 1.0 \ r 1.0 ~ ~ \ V) ' ~ .5 I ~ ~ '\ I

~ ~ Kl \ i~ ~ ~ 0.0 ~ r LLj ~ ~ ;5 I=l

' ~ ~ K r5 ~ I~ ~ ~ 1.0 ClZ -1.5 I- V)

2.0

-2.5 La 10 100 a 10

F'REQUENCY (HZ) V FREQUENCY (HZ) r. IJ 0

1987 HHITTIER l)ARROWS 'e

'I %alt

leap STRONG MOTION STATIONS

III Sf," ALTA 0 5 10", util l+ II llll +illl4~ Hll(ill g )IIII 4le el~ +r i s' 4>el I +I l~ ~ Ir r

~ WA ll+ ERG ENGR ll 4114l'll

gll Ir < Iql IIII, htl YERN ~ i'Il~ ~ S~l r ~ + q +ill III C PQI4 h RLK WHlT'. „"- -:.„;" Puente ~ \ Httla ~ I ~ I~ ~ II II4ll~u 4 ORES tewK 4I II

Figure 1- USGS (solid circles) and CDMG (solid triangles) strong, motion stations vithin 25 km. of the epicenter of the 19S7 Whittier Narrovs earthquake. Hachured lines represent the approximate boundary of valley fill. t; WHITTIER (BRIGHT AVE.) - ASPERITY MODEL WHITTIER NARROWS DAM - ASPERITY MODEL

OBSERVED 0.190 D.260 p ~~Qj) 9 SIMIILATKD SIMIILATED I 0.292 SS i 9

0.550 9 0.520 9

90'.595 9

305'60'AOO

9 9 035'.310 O.i15 0.501 9 9

0 I 2 3 TIME (SECONDS) 'lf 0 WHITTIER (BRIGHT AYE.) WHITTIER NARROWS DAM

2.0 2.0

1.5 IO b

~\ 1.0 1.0 0

I 0 0.5 8 0.5 j 0.1 1.0 10. 0.1 1.0 10.

FREQUENCY

2.0 2.0 303' o P P ~ I ~ ~ ~ ~ ~ 0~ 1.5 1.5 I I I O O O CP I ~ I 1.0 I ~ ~ LO > ~ ~ 00 ~ ~ ~ Pr r

0 ~ g 0.5 0 0% '101

0.1 1.0 10. 0.1 1.0 10.

—OBSERVED 2.0 IOOo 2.0 - SGNIATED H 8 1.5 1.5

CP O

005 00 1.0 LO i

505 0.5 cn 0.5 iJ/

0.1 1.0 10. 100. 0.1 1.0 10. ) 'f 4 ey, r WHITllER NARROWS EARTHQUAKE (ASPERA VERTlCAL COMPONENT 1.0

O + ~ 4J O ~ C3

0.1 ~ Observed ~ Simulated +

0.1 1.0 10. HORIZONTAL COMPONENT ' 1.0

+

4J C3 D $ ~ 0.1 Observed ~ Simulated +

0.1 1.0 10. HORIZONTAL COMPONENT 1.0

+ K o ++ ~ ~ +~II 4J O ~ 4 ~ +

0.1 Observed ~ Simulated +

0.1 1.0 10. DISTANCE (km) ~ ss Iv/fv

~ Wl1 le IWNOvS r l.5 ~ vv 0

l.O M z'o

~ Cv e ~e le ~ ~ ~ ~ ~ ~e 4 ov ov rv ~ CO ~ v -l.O ~ ~ 0 Q ~ ~ ~v -!.5

?0

-?.'5 C Q lo I00 a

FREQUENCY (HZ) V C I 0 C

v/jv v/lv

2.0 BEAN CORRECTED FOR 9(P.'ONFJTENCE BOTEL 81AS INTERVAL CF BEAN ~ 'OT CORRECTED FOR BODEL 8(AS

1.0

~ v 1.0 e ~ l r9 J ~ I'~ // I ~ CQ

0.0 ' ~ ~ I a V ~ rr~ ~ g ~ ~ 1Jj ~ rr ~ 'I I ~ A v / ~ I o I A 'I~ I Q' 1.0 9 A O O

CO CO I- o ID CO CV ID 2.0 tO N EO

-2.5

10 CJ. ~ 1 10 100 C FREQUENCY (HZ) I

all FREQUENCY (HZ) V 0

u ti n IO Au u 19$ 9

QUESTION 10

Provide the eleverr three-component time series for bilateal rupture for both the Imperial Valle» and Coalinga aftershock sources from the numerical modeling stud! .

The locations of the 11 stations used in the strike-slip simulations are shown on Figure QIO-I; the slip distribution model is shown in Table QIO-I (Table 13b-2, Question 13b, January 1989). The simulated acceleration time histories for bilateral, strike-slip faulting using the Imperial Valley source functions are given in Figures QIO-2 through QI0-12, and for the Coalinga source functions on Figures QIO-13 through QIO-23. The time histories have been highpass filtered at a frequency of 0.2 Hz.

Diablo Canyon Power Plant Pacific Gas and Electric Company tong Term Sehmlc Program

SETS OF RECORDED ACCELEROGRAMS USED FOR VALIDATIONOF NUMERICALMODELING

1979 IMPERIAL VALLEY(6 stations)

1985 NAHANNI(3 stations)

1987 WHITTIER NARROWS (9 stations)

1989 LOMA PRIETA (17 stations) (preliminary slip model)

SET 1: first three events

SET 2: all four events

SOURCES OF EMPIRICAL SOURCE FUNCTIONS

IMPERIALVALLEY1979 October 15, 23:19 (15 stations)

COALINGA 1983 May 9 (12 stations)

. WHITTIER NARROWS 1987 November 4 (16 stations) (Occurred during LTSP modeling program) 0 WHITTIER NARROWS AFTERSHOCK, NOV 4, 1987

STRIKE: 150

DIP: 60

RAKE:

MOMENT: x 1024 dyne-cm

DEPTH' 13.3 km

MANIFESTATIONSOF SHORTCOMINGS OF COAI INGA SOURCE FUNCTIONS

~ Cannot be modeled using simple source and path models

~ Overestimation of the recorded ground motion data sets

~ Anomalously large fault-normal to fault-parallel ratio in simulations at Diablo Canyon 0

5t ue ti n l0 Aueu~t l989 Pa e2

@km -40 -32 -24 -16 -8 0 8 16 24 32 40 ~ g ~ ~ ~ ~ a a 'g a~ Station Locations

l2 km Strike Slip

88 km

Figure @10-I

Fault element geometry and station locations of Hosgri strike-slip fault model to simulate time histories for site-specific spectra.

Oiabio Canyon Power Piant Program :t PacÃic Gas and E(ectric Company Long Term Seismic

in Auu Pae~

Table Q10-I SLIP (m) ON THE FAULT ELEMENTS OF THE STRIKE-SLIP t fODEL

1.0 1.0 1.0 1.6 2.0 1.6 1.0 1.0 1-0 1-6 2.0 1.6 1.0 1.0 1.0 1.0 1.0 3.1 5.1 3.1 1.0 1.0 1.0 1-0 1.0 3 0 5.0 3 0 1.0 1.0 1.0 1.0 3.0 5.0 3.0 1.0 1.0 1.0 2.0 5.0 10.1 5.0 2.0 1.0 1.0 1.0 2.0 5.0 10.1 5.0 2.0 1.0 1.0 2.0 5.0 10.1 5.0 2.0 1.0 1 0 2.0 5.0 10.1 5.0 2.0 1.0

1.0 1.0 1.0 3.0 5.0 3.0 1.0 1.0 1.0 1.0 3.0 5.0 3.0 1.0 1.0 1 0 1 0 3 0 5 0 3 0 1 0 1 0

Diablo Canyon Powe Phnt Long lore Seismic ~ Pacilic Gas and Electric Company Proem

imperial Volley (22 SS; 16 RV; 20 OB) Weighting: SS x 0.65; OB x 0.30; RV x 0,05 domping: 0.05 z

O O O O rrl

O O lA LA bl

O O O O Al CV

c 0 O 0 O b l. ~ 4 U V

O O g 91 0 LA lh Al

o Oo o O O 0.1 1.0 10. Frequency Mon Feb 5 13:31:11 1990

Coolingo (22 SS; 16 RV; 20 OB) Seighting: SS x 0.65; OB x 0.30; RV x 0.05 domping: 0.05 Z

O 0 O O m

O O IA IA bJ Al

O O O O AJ Al

C O ~«0O O O ~

U U

~' ~ O ' O ~ IA J IA 0 lh

S7 0 J

O rrr O ' O O O O 0.1 1.0 10. 100. Frequency Mon Feb 5 13:30:50 1990

Nthittier (22 SS; 20 OB 16 RV) Vleighting: SSx0.65, OBx0.30, RVx0.05 do mping: 0.05 z

Cl O O FO

O O LA IA oJ oJ

O C) O cJ Al

C 9 o C 0 C 0 ~ L. tV Ct U U r o O L. tA U \ Ib Q. CO

C7 C ED C O C 'IOO. 0.1 1.0 10. Frequency Tue Feb 6 11:07:13 1990

Strike-Slip Biloterol North

Sburce Functions: 1 ~ 4 Imperial Volley Coaringo Whittier Narrows 1.2

l. ~Ql

0C 8 O I V Q U O e6

O V ~8- Q. {3

.2

0.0 -40 -30 -20 -10 0 10 20 30 40 Oistonce olong Foult (km)

Strike-Slip Biloterol Eost

Source Functions: ],4 Iraperial Valley / Coolinga / Whittier Narrows / 1.2 / / / / / / C / 0 / ~ .8 l U V0

0 CL

.2

0.0 -30 -20 -10 0 10 20 30 40 Distonce olong Foult (km)

Oblique Biloterol North

Source Functions: 1 4 Imperial Valley Cooling o Whittier Morrow' 1.2

1. Ql

C 0 / 0 8 / L. / V / Q / / e 0 / // O e6 / / Qf 0 e io o / 'e .de ,r' .2 'd

0.0 -4Q -30 -20 -]0 0 ]0 20 30 4Q r Distonce olong Foult (km)

Oblique Biloterol Cost

Source Functions: 1,4 Impeeiol Volley Caolingo Whittier Narrows ].2

/R C 0 ~ .8 0 // S U CL V / r U / Lyf 0 CL d...

.2

0.0 -40 -30 -20 -10 0 IO 20 30 40 Distonce along Foult (km)

Thrust Biloteral North

Source Functions: 1,4 Impwial Valley Coolingo Whittier Narrows 1,2

~ 1. Ql / 0 .8 P / Q / ID O / O e6 / A3- v( O V ~ - 0 ,

.2 -'h

0.0 -40 -30 -20 -10 0 10 20 30 40 Distonce olong Foult (km)

Thrust BIloterol Fost

Source Functions: ] 4 Imperial Valley Coolingo Whittier Norrows 1.2

1. ~Ql

C ~.80 0l Q U P.- u / // O e6 // / / / ,r 0 / r'Q,...b... / CL / Qf

.2

0.0 -40 -30 -20 -10 0 IO 20 30 40 Distonce olong Foult (km) Cu, GOODNESS OF FIT FOR SOURCE FUNCTIONS

~ The source function sets derived from accelerograms of the Imperial Valley.aftershock and the Whittier Narrows aftershock provide unbiassed estimates of the recorded ground motion data sets used for validation in the frequency range of 2 to 25 Hz

~ The source function sets derived from accelerograms of the Coalinga aftershock provide biassed estimates (overestimates) of the recorded ground motion data sets used for validation in the frequency range of 2 to 25 Hz

~ In order to reduce the bias in our Diablo Canyon simulations, we replace the simulations generated using the Coalinga source functions with simulations generated using the Whittier Narrows source functions

lv/>v2~1 Iv/Iv23b 1.5

IIEAII CORRECTED f'R ~ . ~ SWr. CO%'I CEIfCE teDEL BlAS NEAII 1.5 IIIIERYAL (S ffOI CORRECIED FOR nODEA BIAS

' 'L I.O A ~ 4 1.0 \ l V) 1 o5 1 \ ~' ~ 8 ~ ~ ~ ~ s+~ CO r A ~ ~ f ~ ~ ~ g / 1 ~ ~ LO ~ ~ ~ ~ \ ~ 4 ~'a 1 UJ v I O .5 A X CL' 5 I.O Gl K -1.5 I- ED V) Pl

C9 20 Ol O

IO 100 ~ I IO 100

U. FREQUENCY (HZ) Dl FREQUENCY (HZ) V C: U C 'tW

\ IvR3.oo I Ivltv23.yaI Ivl I.S

\ ~ CIKRKCIED FOR NCAN i a ttODCL BIAS '\ 90C COIB'IEENCK NOf CORRCCTE D I'OR I.S IKICRYAL Cf'iCAN tiODCL BIAS r~o r ~ ~ ~ I V' I.O ' r I.O ~pr\ V) I ,S I I Irr r\ ~rrr El 'i 1 ~ 00 r bl a ;S K K

~ r O A Vr Ot z iii irl -I.5 ~ t Ul Ul O O Ol O R,O O

L -2.5 0.0 Q. IO 100 10 IOO ~ I L I 4. FREQUENCY (HZ) 7I FREQUENCY V V (HZ) C C 0 V C C gf

~ t Co/colEb Co/co12b 45 1.5 '

~ ~ a ~ I ~ I ~ ttEAN ~ r ~ fOR ttODEL BIAS ~ ~~~ SOR 'ORRECIED CKIRCE NOT CORRECIED fOR INIETY/ALOf NEAN A ttODEL BIAS 1.5 ~ r \ '

I 1,0 / 'I 1.0 I V) 'I t o5 ~ \ ~ ~ I ~ ~ \ ~ / ~ e >'s CD ~ 1 LO ~

U3 ~ ~ ~ ~ ~ ~ ~ l~~ .5 r' F ~'4 -1.0

1.5

45 10 10 100 L FREQUENCY (HZ) FREQUENCY (HZ) kV,

~ . hWv ' ~ 5

s

Co/coll.pol Co/colt.pol 1.5 V' 1 I I NEAN I CORRECIED EOR tEIDEL BIAS ~ "" 9IPt CKIIENCE l~ INIERYAL tF NEAN 1 NDT CORREC1ED FOR I'5 ~~+ NODEL BIAS

1,0 1.0 I V) \ ,'5 \ ~ ~ I\ CO ~ ~ 0.0 11 \ 'I UJ ~ ~ ~r ~ ~ a % ~ ~ W \ .5 y ~ ~ K ~ rM ~ Q'5A -1.0 A Z

1.5 I- Ql Ul V) Ill a O Ql 2.0 Ol O O

2.5 0.0 Cl 10 100 10 100 L 4 IL 4. FREQUENCY (HZ)

FREQUENCY (HZ) V c O c

I.S

40 NEAN CORRECTED FOR NODEL BIAS COID'ITENCE ~ NOT CORRECTED FOR IMTNYAI.CF ICEAN C \ NDDEL BIAS 'I

1,0 1.0 I ~ J ~ ~ T ~ ~ V ~ ~ 1 i ~ ro, ~ 1 1~0 ~ 0.0 'lv lU ~ ,r 0 ~ aM e K T=l0' 0 -1.0 Az v I- ID Cl V) P7 lO LD Pl Pl -40 C% CD O O

L Q IO I DO 10 100 L C. F'REQU'ENCY (HZ) Jl t REQUENCY (HZ) V 0C C - ~ Vhlvhl6.po\ IAJvhl6. po I 2.5

NCAN CORRECTED f'R HODCL BlAS 901. COfo'KHCC INTERVAL CF NgAN HOT CORRECICD fOR I.5 HODCL BIAS T a

~ ~ ~ I.O ~ I.O \ ~ V) ~ ' \ ,5 ' ~ ~ VW 1I

' \ CQ \ ~ 0.0

UJ ~ w ~ ~ ~ ~ ~ oCl I' K A K 05 ~ I,O Ol0 Cl Ci z lp I.5 'T I- CO V) Pl O O Ol -t.0 O O

L L -2.5 l1 0.0 a 10 IOO IO IOO L ll. 4. FREQUENCY (HZ) V F'REQUENCY (HZ) V C O C

QUESTION 7

PROVIDE A STEP-BY-STEP DISCUSSION OF THE UNCERTAINTYIN THE NUMERICAL MODELING STUDY gC

1 3.00 5% Damping

MEDIANAND 84th PERCENTILE HORIZONTAL 2.50 ACCELERATION RESPONSE SPECTRA BASED ON NUMERICALMODELING AS GIVEN IN THE FINAL REPORT.

2.00 (\/L C I > /l O ( ~ / Cg I ( \/ o ( ( \ 1.50 ( I I \ I 84th Percentile I ~ I /I 1.00 I II I I I I Median~ I 0.50 // // r~r ~

ee'.00

0.1 1.0 10. Frequency (Hz)

UNCERTAINTYIN RESPONSE SPECTRUM ESTIMATED BY NUMERICALMODELING

MODELING AND RANDOM PARAMETRIC UNCERTAINTY UNCERTAINTY

estimated from goodness of fit estimated by varying parameters to recorded strong motions of fault models at DCPP site

OVERALL UNCERTAINTY C Table Q7-I CLASSIFICATION OF SOURCE PARAMETERS INTO MODELING AND PARAMETRIC UNCERTAINTYTERMS FOR THE WALD AND OTHERS (I988) NUMERICALMODELING METHOD

delin ncertaint Term Parametric ncertaint Terms - Average Rupture Velocity Rupture Location - Variation in Rupture Velocity Rupture Mode and Slip Velocity Slip Distribution (gross - Source Functions features) - Rise Time - Fault Element Size - Slip Distribution (detailed features)

MODELING UNCERTAINTY

Table Q7-3 STRONG MOTION DATA USED IN THE VALIDATIONSTUDY

Event Station

1979 Imperial Valley EC Sta 4 EC Sta 5 EC Sta 6 EC Sta 7 EC Sta 8 EC Sta 10

1985 Nahanni Site 1 Site 2 Site 3.

1987 Whittier Narrows Cal State LA Whittier Alhambra Downey Garvey Obregon Park Whittier Dam San Marino Bulk Mail p

' O~ 0 GX Damping

CRO 006 00 4 1,5

C 0 OOQ44 0 4 0 a 0QP 0 OO CO 1.0 0q ra 4 CO OOoo 8 CD CP C7 CO OO 0

CO a .5 EJ CO CL C4 0 0.0 4 E OO4 2o '8,%

CO CZI O "5 4 4 4 4 4 4 4 4 4 ~ 4 4 4 4 r 4 ra a+ 4 4 4 4 a4 4 44 4 4 4 4 ~

4 0 ~ 444 4 d imperial Valley -1.5 4 P lNhittier Narrows

-2.0 Nahanni

"2.5 10 100 Frequency (Hz)

Figure Q7-I

~ Residuals of the natural logarithm spectral acceleration at 5 ~ ~ ~ of percent damping for the three events ed in the validation study.,~

5% Damping 2.0 —Mean 90% confidence interval 1.5 of mean

1.0

r .5 l

Vl CQ m 0.0 O l /I -5

-1.5

-? 0

-2.5 10 100 'requency (Hz)

Figure Q7-2

Model bias of the natural logarithm of spectral acceleration. A positive bias indicates the model underpredicts the spectrum, whereas a negative bias indicates the model over predicts the spectrum. 4 tl 7 u P e

1.5

5/ Damping

Corrected for model bias

~ I ~ I ~Not corrected for model bias r \ t I r

0.0 10 100 Frequency (Hz)

Figure Q7-3

Diablo Canyon Power Plant Selsrnlc : PaclAc Gas and Electric Company Long Term Program

Table Q7-5 BIAS AND STANDARD ERROR OF THE FREQUENCY-AVERAGED SPECTRUM (3.0 TO 8.5 HZ) AND THE PEAK ACCELERATION Units are natural logarithm of acceleration, in g

Bias Standard Error No. of Earth uake Zn SA Zn PGA En SA En PGA Stations

Imperial Valley -0.164 0.122 0.226 0.251

Nahanni -0.154 0.247 0.660 0.089

Whittier Narrows -0.094 -0.151 0.318 0.330

Combined -0.128 0.003 0.34 0.31 18

PARAMETRIC UNCERTAINTY I Table Q7-6 PARAMETRIC VARIATIONSFOR PREDICTIONS Rupture Rupture Mechanism Mode Location Total Strike-slip ll 22 Oblique 10 20 Thrust 8 16 Total 58 C,i u in7 uu 1 Pa e 14

.5

5% Damping

0 4 0 0 ' 0 0 4 0 ~ Ct 0 0 O 0 co + Jk 00 ~ 4 CO 4 00 0 0 0 CD 00 4O 0 0 CP ~ 0 0 ~0 co +a 0 0 4 co 4 0 Op Q y3 Q. Vl 0 0 ~ ~ 4 0< 0 0 E 0

0 C CO CA O

C -: C co CO

Strike-slip

Oblique

Reverse

0.0 10 100

Frequency (Hz)

Hgure Q7-5 Standard error of the predicted spectrum due to parametric uncertainty. P

Dtabto Canyon Power Plant PacNc Gas and Hectrfc Company tontt Tenn SHsek Prottram Ar TOTAL UNCERTAINTY

5% Damping

O

EO

Cl CJ C) CQ

CQ

a C> C7 C4 an aa I O \ E ~~ 1.0 a a CQ I CO O I I \ 0 a L a EV \ ri a I r aa Total 'a

I a I Model Lg C ~a / goal Parametric V

0.0 10 100

Frequency (Hz)

Figure Q7-10 Comparison of the modeling plus random, parametric, and total uncertainty, not corrected for model bias. 4' Table Q7-8 UNCERTAINTYOF THE FREQUENCY-AVERAGED SPECTRUM Units are in natural logarithm of acceleration, in g

Standard Error Corrected Not Corrected Com onent of Uncertaint for Model Bias for Model Bias

Modeling plus Random 0.34 0.35 Parametric 0.37 0.37 Total 0.50 0.51

SENSITIVITY QUESTIONS:

I. Effect of excIuding the IV mainshock

2. SfabiIity of the parametric uncertainty

3. Assumption of log-normaIity

5% Damping 2.0 Mean

90% confidence intenral 1.5 of mean

1.0

.5 I I ~ 0.0 O

I ' 1 g / ~ I w -5 I l II I I

-1.5

"2.0

10 100

Frequency (Hz)

Figure Q7-4 Model bias for the Imperial Valley source functions excluding the Imperial Valley mainshock. fi-

/ 'I+I' ue tion7 A u 1 Pa el . .5 4 444 4 4 4 5% Damping 0 44 444 4 4 0 0 o o4 0 0 4 0 4 4 4 44 4 4 44 4 4 4 O 44 co 00 00 0~ 4 Ol 0 CP 0 CP 0 0 Co 00 0t 0 co 0 0 Ct Q Q 3 0 0 O. 0 0 tt0 0 t 0 O 00 E 0 t

Co 0 O 0

~ 2

D C

CO Strick slip Oblique

Reverse

0.0 10 100 Frequency (Hz)

Figure Q7-6

Standard error of the predicted spectrum due to parametric uncertainty for the second set of random numbers.

I

Dhhlo Caoroo Power Pilot PacNc Gas and Hectic Company Long Tenn Sefscolc Proyem ak4 3.0

5% Damping

I ?0 84th percentile I ~ \ ~' C 1 1 C O + Mean sigma 1 CCC \ 1 CD 1 CP CI CU

CD O CD 50th percentile I1I ~ CO ~ 11/ io \

Mean (ln SA)

0.0 l0 100 Frequency (Hz)

Figure Q7-8 Comparison of the mean, mean plus sigma, 50th-percentile, and 84th-percentile spectra based on the natural logarithmic values for the l16 simulations presented in the Final Report.

COMPARISON %'ITH THE LTSP FINAL REPORT SPECTRA P

4W-

c~ C eti n7 Au ustl 8 Pa e 22

3.0

5% Damping

2.0

O 84th Percentile Eg ED C) CJ O CO

Eg

CJ CD Q. CO

1.0

Median

0.0 10 100 Frequency (Hz)

Hgure Q7-11

Median and 84th-percentile response spectra derived by numerical modeling. The median response spectrum is from the Final Report, and the 84th-percentile response spectrum is from the overall uncertainty estimate described in this response.

Sabto Canyon Power Plant PacNc Gas and Bectrlc Cctnpany Long Term Selsmlc Program 4 -> u ti n7 Au utl Pa e 24

3.0 Numerical modeling 84th (random number set A) Numerical modeling 84th (random number set B) 6% Damping Numerical modeling 84th from Final Report Site. specific spectrum

2.0

C O co C) Cl C7 CJ Cg

0.0 10 100 Frequency (Hz)

Hgure Q7-12

Comparison of the 84th-percentile response spectra derived from numerical modeling with the site- specific 84th-percentile response spectrum.

Dtabto Canyon Power Plant Pactfic Gas anrf Hectrlc Company Long Term Selsrnlc Program 'I Jag IV. CO. MH mean. IV. MH unc 3.0

2.0

MGP rA-u

0.0 10 100

FREQUENCY (HZ)

Figure 6. ~ Updated median and 84th percentile spectra ~ ~ ~ for the Diablo Canyon site. The median is based on the ~ ~ Imperial Valley, Whittier, and Coalinga ~ ~ ~ sets of source functions; whereas, the 84th percentile considers the uncertainty in the Imperial Valley and Whiiter~ ~ source functions~ only. 4