Bipolar Junction Transistor Theory This Worksheet and All Related Files Are
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Non-Equilibrium Carrier Concentrations
ECE 531 Semiconductor Devices Lecture Notes { 06 Dr. Andre Zeumault Outline 1 Overview 1 2 Revisiting Equilibrium Considerations1 2.1 What is Meant by Thermal Equilibrium?........................1 2.2 Non-Equilibrium Carrier Concentrations.........................3 3 Recombination and Generation3 3.1 Generation.........................................3 4 Continuity Equations5 4.1 Minority Carrier Diffusion Equations...........................5 5 Quasi-Fermi Levels8 1 Overview So far, we have only discussed charge carrier concentrations under equilibrium conditions. Since no current can flow in thermal equilibrium, this particular case isn't much interest to us in trying to create electronic devices. Therefore, in this lecture, we discuss the situations and governing equations in which a charge carrier responds under non-equilibrium conditions. Topics to be covered include: • Recombination and Generation: An increase (generation) or decrease (recombination) in charge carrier concentrations away from or towards equilibrium. (e.g. due to absorption of light) • Current Continuity: Charge conservation, applied in the context of drift/diffusion. • Minority Carrier Diffusion Equations: Minority carrier diffusion in the presence of a large majority carrier concentration. • Quasi-Fermi Levels: Treating carrier densities under non-equilibrium conditions. 2 Revisiting Equilibrium Considerations 2.1 What is Meant by Thermal Equilibrium? When we discussed equilibrium charge carrier concentrations, it was argued that the production of charge carriers was thermally activated. This was shown to be true regardless of whether or not the semiconductor was intrinsic or extrinsic. When a semiconductor is intrinsic, the thermal energy necessary for charge carrier production is the bandgap energy EG, which corresponds to the energy needed to break a Silicon-Silicon covalent bond. -
An Evaluation of Bipolar Transistors Suitable for Active Antenna Applications
An Evaluation of Bipolar Transistors Suitable for Active Antenna Applications by Chris Trask / N7ZWY Sonoran Radio Research P.O. Box 25240 Tempe, AZ 85285-5240 Senior Member IEEE Email: [email protected] 30 November 2008 Revised 2 December 2008 Revised 5 December 2008 Revised 15 December 2008 Trask, “Bipolar Transistor Evaluation” 1 15 December 2008 Introduction families on a curve tracer or by measuring the performance of the device in a circuit. In the design of active antennas, the intermodulation distortion (IMD) and noise fig- When using a curve tracer, there are a ure (NF) performance of the active devices are number of items that need to be carefully ob- important design considerations together with served in order to ascertain the potential IMD cost and availability. Many designs that have performance of a given device. These include, been published in recent years claim to have but are not limited to, the flatness of the indi- good IMD performance, but make use of de- vidual traces in the linear region, the straight- vices that were obsolete even when the circuitry ness of the individual traces in the linear region, was in the design stage. Other devices that the spacing between the traces, the saturation are readily available have improved perform- voltage, and the transition between the satura- ance, and it may simply be a matter of the de- tion region and the linear region. signers lacking sufficient information to make intelligent choices so as to arrive at finished Curve families for bipolar devices are gen- designs having a performance/cost ratio that erated by applying a fixed base current (IB) to would be attractive to builders and which make the device and then varying the collector volt- use of devices that are currently in production age (VCE)while observing the collector current and which are available from popular distribu- (IC). -
Ferranti Quick Reference Guide
FERRANTI SEMICONDUCTORS A short-form data book covering discrete components & integrated circuits @ FERRANTI pic 1983 The copyright in this work is vested in Ferranti pic and this document is issued for the purpose only for which it is supplied. No licence is implied for the use of any patented feature. It must not be reported in whole or in part or used for tendering or manufacturing purposes except under an agreement or with the consent in writing of Ferranti pic and then only on the condition that this notice is included in any such reproduction. Information furnished is believed to be accurate but no liability in respect of any use of it is accepted by Ferranti pic. Issue 2. February 1983 Prinled in U.S.A. iii CONTENTS This data book contains abbreviated information on the entire range of Ferranti Semiconductors. Individual data sheets are available on request, as is technical advice on the usage of any of the devices listed. PRODUCT LIST SECTION 1 DISCRETE COMPONENTS SECTION 2 INTEGRATED CIRCUITS SECTION 3 UNCOMMITTED LOGIC ARRAYS SECTION 4 PACKAGE OUTLINES SECTION 5 SALES OFFICES, SALES REPRESENTATIVES DISTRIBUTORS (ii) ALPHA·NUMERIC PRODUCT LIST DEVICE TYPE PAGE(S) DEVICE TYPE PAGE(S) DEVICE TYPE PAGE(S) BAT21 H13. H14 BC182P E4 BCW29 H5 BAT21J H13. H14 BC183P E5 BCW29R H5 BAT22 H13. H14 BC184P E9 BCW30 H5 BAT22J H13. H14 BCW30R H5 BAT23 H13. H14 BC212P E6 BCW31 H5 BAT23H H13. H14 BC213P E6 BCW31R H5 BC214P E10 BAT24 H13. H14 BAT24H H13. H14 BC237P E4 BCW32 H5 BAT25 H13. H14 BC238P E5 BCW32R H5 BAT26 H13. -
Precision Voltage-To-Current Converter/Transmitter Xtr110
XTR110 SBOS141C – JANUARY 1984 – REVISED SEPTEMBER 2009 PRECISION VOLTAGE-TO-CURRENT CONVERTER/TRANSMITTER FEATURES APPLICATIONS G 4mA TO 20mA TRANSMITTER INDUSTRIAL PROCESS CONTROL G SELECTABLE INPUT/OUTPUT RANGES: G PRESSURE/TEMPERATURE TRANSMITTERS 0V to +5V, 0V to +10V Inputs G CURRENT-MODE BRIDGE EXCITATION 0mA to 20mA, 5mA to 25mA Outputs G GROUNDED TRANSDUCER CIRCUITS Other Ranges G CURRENT SOURCE REFERENCE FOR DATA G 0.005% MAX NONLINEARITY, 14 BIT ACQUISITION G PRECISION +10V REFERENCE OUTPUT G PROGRAMMABLE CURRENT SOURCE FOR G SINGLE-SUPPLY OPERATION TEST EQUIPMENT G WIDE SUPPLY RANGE: 13.5V to 40V G POWER PLANT/ENERGY SYSTEM MONITORING DESCRIPTION The XTR110 is a precision voltage-to-current converter designed for analog signal transmission. It accepts inputs V Force 15 16 +V of 0 to 5V or 0 to 10V and can be connected for outputs of REF CC R9 V Sense 12 +10V 1 Source 4mA to 20mA, 0mA to 20mA, 5mA to 25mA, and many other REF R Reference 8 Resistor commonly used ranges. V Adjust 11 13 Source REF Sense A precision on-chip metal film resistor network provides input Gate V (10V) 4 A 14 scaling and current offsetting. An internal 10V voltage refer- IN1 2 Drive V In 3 7 ence can be used to drive external circuitry. REF R1 Offset (zero) R3 R The XTR110 is available in 16-pin plastic DIP, ceramic DIP 5 6 Adjust and SOL-16 surface-mount packages. Commercial and in- R 4 A1 dustrial temperature range models are available. R2 Span 8 Adjust R7 V (5V) 5 10 4mA IN2 Span R6 Common 2 9 16mA Span Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. -
Multidisciplinary Design Project Engineering Dictionary Version 0.0.2
Multidisciplinary Design Project Engineering Dictionary Version 0.0.2 February 15, 2006 . DRAFT Cambridge-MIT Institute Multidisciplinary Design Project This Dictionary/Glossary of Engineering terms has been compiled to compliment the work developed as part of the Multi-disciplinary Design Project (MDP), which is a programme to develop teaching material and kits to aid the running of mechtronics projects in Universities and Schools. The project is being carried out with support from the Cambridge-MIT Institute undergraduate teaching programe. For more information about the project please visit the MDP website at http://www-mdp.eng.cam.ac.uk or contact Dr. Peter Long Prof. Alex Slocum Cambridge University Engineering Department Massachusetts Institute of Technology Trumpington Street, 77 Massachusetts Ave. Cambridge. Cambridge MA 02139-4307 CB2 1PZ. USA e-mail: [email protected] e-mail: [email protected] tel: +44 (0) 1223 332779 tel: +1 617 253 0012 For information about the CMI initiative please see Cambridge-MIT Institute website :- http://www.cambridge-mit.org CMI CMI, University of Cambridge Massachusetts Institute of Technology 10 Miller’s Yard, 77 Massachusetts Ave. Mill Lane, Cambridge MA 02139-4307 Cambridge. CB2 1RQ. USA tel: +44 (0) 1223 327207 tel. +1 617 253 7732 fax: +44 (0) 1223 765891 fax. +1 617 258 8539 . DRAFT 2 CMI-MDP Programme 1 Introduction This dictionary/glossary has not been developed as a definative work but as a useful reference book for engi- neering students to search when looking for the meaning of a word/phrase. It has been compiled from a number of existing glossaries together with a number of local additions. -
Optoisolators Transistors
TRANSISTORS TRANSISTORS CAT# Description Price 100 2N2222A NPN, TO-18 2 for $1.50 .60 2N2906 PNP, TO-18 2 for $1.00 .35 PN2907 PNP, TO-92 5 for .75 .10 2N3055 NPN, TO-3 $2.35 each 2.00 TO-18 TO-92 TO-202 TO-218 TO-220 TO-3 2N3904 NPN, TO-92 5 for .75 .13 2N3906 PNP, TO-92 5 for .75 .13 TRIAC 2N4124 NPN, TO-92 5 for .75 .13 2N4400 NPN, TO-92 5 for .50 .08 CAT# AMP VOLT CASE Each 10 2N4401 NPN, TO-92 5 for .75 .13 Q6025P 25 600 TO-3 base 3.00 2.50 2N4403 PNP, TO-92 10 for .80 .05 2N5401 PNP, TO-92 .25 each .20 SCR 2N5416 PNP, TO-39 $1.95 each 2SC2352 NPN, TO-92 3 for 1.00 .29 8A 200V TO-202 SCR. 200 uA gate current. 2SC3457 NPN, TO-220 .65 each .50 CAT# S306B1 45¢ each • 10 for 40¢ each 2SC5511 NPN, TO-220 .95 each .75 BC556B PNP, TO-92 5 for $1.00 Gate sensitive SCR, Teccor T106F41. D33D30 NPN, TO-92 5 for $1.00 .16 Off-state voltage: 50V. Gate trigger, D45H5 PNP, TO-220 .75 each .65 Gate: 200uA 3-pin DIP package. KSP8599 PNP, TO-92 5 for .50 .08 CAT# T106F41 2 for $1.00 MJL1302A PNP, TO-264 $3.00 each MPS8599 PNP, TO-92 5 for .50 .08 N-CHANNEL J-FET PN2222A NPN, TO-92 5 for .80 .15 TIP31C NPN, 3A 100V, TO220 .45 each .35 30V 350MW. -
Application Note No. 034 Carrier Lifetime and Forward Resistance in RF PIN-Diodes
Application Note, Rev. 2.0, Oct. 2006 Application Note No. 034 Carrier Lifetime and Forward Resistance in RF PIN-Diodes RF & Protection Devices Edition 2006-10-20 Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2009. All Rights Reserved. LEGAL DISCLAIMER THE INFORMATION GIVEN IN THIS APPLICATION NOTE IS GIVEN AS A HINT FOR THE IMPLEMENTATION OF THE INFINEON TECHNOLOGIES COMPONENT ONLY AND SHALL NOT BE REGARDED AS ANY DESCRIPTION OR WARRANTY OF A CERTAIN FUNCTIONALITY, CONDITION OR QUALITY OF THE INFINEON TECHNOLOGIES COMPONENT. THE RECIPIENT OF THIS APPLICATION NOTE MUST VERIFY ANY FUNCTION DESCRIBED HEREIN IN THE REAL APPLICATION. INFINEON TECHNOLOGIES HEREBY DISCLAIMS ANY AND ALL WARRANTIES AND LIABILITIES OF ANY KIND (INCLUDING WITHOUT LIMITATION WARRANTIES OF NON-INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OF ANY THIRD PARTY) WITH RESPECT TO ANY AND ALL INFORMATION GIVEN IN THIS APPLICATION NOTE. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. -
TRANSISTORS N-CHANNEL MOSFETS, SURFACE MOUNT IRF540NS 100V, 33A, 44M Ohms
TRANSISTORS N-CHANNEL MOSFETS, SURFACE MOUNT IRF540NS 100V, 33A, 44M Ohms. CAT# IRF540NS 95¢ each 10 for 85¢ each • 100 for 70¢ each TO-18 TO-92 TO-218 TO-220 TO-3 RF1S640 18A, 200V, 0.180 Ohm CAT# RF1S640 65¢ each TRIAC 10 for 60¢ each • 100 for 45¢ each CAT# AMP VOLT CASE Each 10 900v. TO-263. MAC223A8 25 600 TO-220 1.85 1.75 IRFBF20S Q6015L5 15 600 TO-220 1.60 1.40 CAT# IRFBF20S 60¢ each Q6025P 25 600 TO-3 base 5.50 5.15 BUK92150-55A. 55V, 11A, 36W, 97m Ohm. CAT# BUK92150 4 for $1.00 N-CHANNEL J-FET 100 for 19¢ each 30V 350MW. TO-92 package. CAT# 2N5638 5 for $1.00 • 100 for 15¢ ea. TRANSISTORS CAT# Description Price 100 N-CHANNEL MOSFETS, TO-220 D33D30 NPN, TO-92 5 for $1.00 .16 D45H5 PNP, TO-220 .75 each .65 BUZ11A 26 Amp, 50 Volt, 0.055 Ohms. PN2222A NPN, TO-92 5 for .80 .15 With right-angle pre-formed leads. 2N2222A NPN, TO-18 2 for 1.00 .40 2N2906 PNP, TO-18 2 for $1.00 .35 CAT# BUZ11A 75¢ each PN2907 PNP, TO-92 5 for .75 .10 10 for 65¢ each 100 for 55¢ each MJE2955T PNP, TO-220 .65 each MJE3055T NPN, TO-220 .65 each BUZ71A ST Micro. 50V, < 0.12 Ohms , 13 A. 2N3055 NPN, TO-3 $1.25 each .95 CAT# BUZ71A 75¢ each 2N3904 NPN, TO-92 5 for .75 .13 10 for 65¢ each • 100 for 53¢ each 2N3906 PNP, TO-92 5 for .75 .13 2N4124 NPN, TO-92 5 for .75 .13 2N4400 NPN, TO-92 5 for .50 .08 IRF734 1.2 Ohms (max.). -
Linear Voltage Regulators
Linear Voltage Regulators LINEAR VOLTAGE REGULATORS INTRODUCTION Block Diagram of Linear Voltage Regulator UNREGULA TED V = V (1+R /R ) INPUT OUT REF F E ERROR AMP I I OA B POWER where VREF is a temterature VOLTAGE stabilised reference voltage. REFERENCE TRANSISTOR I T IL max = VSEN max/RSEN I L where VSEN max is set by either CURRENT and TEMPERA TURE TJmax or by the absolute RSEN SENSING maximum current, whichever is R smaller. I E L O RE RF G U L U T O/P VOLTAGE SENSING O L - V + P F A A U D T T E D Discrete Voltage Regulator UNREGULATED INPUT D 0,1 µF S LF351 2N5337 10k 110V 2N3055 7,5V 60Hz 500 mW 47 to 1000 pF 0,1 µF 1k CFIL TO CI RCUI T 2N2222 GR OU N D I L RSEN R RF E G O U L + U T RE O L 0,1 µF Vout A A P D - T U E T SEPA RA TE GROUND FOR LOA D I L D Discrete voltage regulators generally provide much better performance than IC regulators because the op amp used has more gain and because the power transistor does not heat up the rest of the circuit. For most applications, IC regulators perform very satisfactorily. -1- Linear Voltage Regulators EFFICIENCY OF LINEAR REGULATORS Linear regulators are easier to design and generally less expensive but waste more power because the power elements (transistors) operate in their active or linear mode. Switching regulators are more complex and more difficult to design but are more power efficient because their power elements (transistors) are switched ON and OFF alternately and consume very little power. -
National Semiconductor Voltage Regulator Handbook 1980
CD 09O VOLTAGE REGULATOR HANDBOOK NATIONAL SEMICONDUCTOR 37 Loverock Road Reading Berkshire RG3 1ED Telephone (0734) 585171 Telex 848370 Celdis Electronic Distributed Speddisto Art ive Components I>ivi*k>n HW VOLTAGE REGULATOR HANDBOOK NATIONAL SEMICONDUCTOR Contributors: Nello Sevastopoulos Jim Sherwin Dennis Bonn George Cleveland James E. Solomon 'National Semiconductor Corporation 2900 Semiconductor Drive, Santa Clara, CalHornla 96051 [4M| 737-5000(TWX (910) 339-92J0 dmertWd: Hatloijl aoafl not «Burri* iny [•itmnslbHlny lor uta at my circuitry »ny no elrsuM pit*nl lictnut *r* implied, «no Nit>snil reimnS the fin.ni. si Sitm wiihaul nolie* to Ch*rv|}t »«> clrcuilry. nw Table of Contents 1.0 Introduction ...... ,,,......,..,, 1-1 1.1 How to Use this Book ., , 1-1 1.2 Features of On-Card Regulation 1-1 1.3 Fixed Voltage 3-Terminal Regulator Description 1-4 1.4 Comparison, Fixed Voltage 3-Terminal vs Variable Voltage Regulators by Application 1-4 2.0 Data Sheet Summary 2*1 3.0 Product Selection Procedures . .3-1 4.0 Heat Flow & Thermal Resistance .4-1 5.0 Selection of Commercial Heat Sink 5-1 6.0 Custom Heat Sink Design ,6-1 7.0 Applications Circuits and Descriptive Information 7-1 7.1 Positive Regulators .7-1 7.2 Negative Regulators 7-5 7.3 Dual Tracking Regulators 7-6 7.4 Adjustable Voltage Regulators 7-20 7.5 Automotive Applications 7*32 8.0 Power Supply Design 8-1 8.1 Scope , ,. , 8-1 8.2 Capacitor Selection 8-4 8.3 Diode Selection 8-4 9.0 Appendix , . -
2N3055 Datasheet Pdf
2n3055 Datasheet Pdf 1 / 6 2n3055 Datasheet Pdf 2 / 6 3 / 6 Maximum Ratings[edit]The maximum collector-to-emitter voltage for the 2N3055, like other transistors, depends on the resistance path the external circuit provides between the base and emitter of the transistor; with 100 ohms a 70 volt breakdown rating, VCER, and the Collector-Emitter Sustaining voltage, VCEO(sus), is given by ON Semiconductor. 1. datasheet 2. datasheet view access 3. datasheet view 2N3055 SILICON NPN TRANSISTOR SGS-THOMSONPREFERRED SALESTYPE DESCRIPTION The 2N3055 is a silicon epitaxial-base NPN transistor in JedecTO-3 metalcase.. 1Specifications2HistorySpecifications[edit]The exact performance characteristics depend on the manufacturer and date; before the move to the epitaxial base version in the mid-1970s the fT could be as low as 0.. 5 MHzPackaged in a TO-3 case style, it is a 15 amp, 60 volt (or more, see below), 115 watt power transistor with a β (forward current gain) of 20 to 70 at a collector current of 4 A (this may be 100 to 200 when testing using a multimeter[6]).. INTERNAL SCHEMATIC DIAGRAM October1995 ABSOLUTE MAXIMUM RATINGS Symbol 21 rows 2N3055 Datasheet, 2N3055 PDF, 2N3055 Data sheet, 2N3055 manual, 2N3055 pdf, 2N3055. datasheet datasheet, datasheet or data sheet, datasheet bc548, datasheet atmega328p, datasheet arduino uno, datasheet 1n4007, datasheetcatalog, datasheet esp32, datasheet lm317, datasheet lm358, datasheet view, datasheet pdf, datasheet view access, datasheet meaning, datasheets for datasets, datasheet 360 3utools Latest Version Download For Windows 7 32 Bit [1] Its numbering follows the JEDEC standard [2] It is a transistor type of enduring popularity. -
Introduction to Semiconductor Devices Presented by K.Pandiaraj Ece Department Kalasalingam University Previous Class Topics
ECE201 – ELECTRON DEVICES INTRODUCTION TO SEMICONDUCTOR DEVICES PRESENTED BY K.PANDIARAJ ECE DEPARTMENT KALASALINGAM UNIVERSITY PREVIOUS CLASS TOPICS • Atom • Electron • Proton • Neutron • Orbit levels of electrons in an atom • Valence electrons • Free electrons • Energy band diagram • Valance band, Conduction band, Forbidden band • Insulators • Conductors • Semiconductors INTRODUCTION TO SEMICONDUCTOR • The material which has electrical conductivity between that of a conductor and that of an insulator is called as semiconductor. • silicon, germanium and graphite are some examples of semiconductors. • semiconductors are the foundation of modern electronics, including transistors, light-emitting diodes, solar cells etc. INTRODUCTION TO SEMICONDUCTOR • It has a forbidden gap of about 1 electron volt (ev). • The semiconductor behaves as an insulator at low temperature. • However, at room temperature some of the electrons in valence band gains enough energy in the form of heat and moves in to conduction band. when the valence electrons moves in to conduction band they becomes free electrons. • The conduction band electrons are responsible for electrical conductivity. • When the temperature is goes on increasing, the number of valence band electrons moving in to conduction band is also increases. this shows that electrical conductivity of the semiconductor increases with increase in temperature. • In semiconductors, electric current is carried by two types of charge carriers they are electrons and holes. HOLE • The absence of electron in a particular place in an atom is called as hole. • Hole is a electric charge carrier which has positive charge. the electric charge of hole is equal to electric charge of electron but have opposite polarity. • When a small amount of external energy is applied, then the electrons in the valence band moves in to conduction band and leaves a vacancy in valence band.