Download During Service Or End of Line

Total Page:16

File Type:pdf, Size:1020Kb

Download During Service Or End of Line University of Warwick institutional repository: http://go.warwick.ac.uk/wrap A Thesis Submitted for the Degree of EngD at the University of Warwick http://go.warwick.ac.uk/wrap/41852 This thesis is made available online and is protected by original copyright. Please scroll down to view the document itself. Please refer to the repository record for this item for information to help you to cite it. Our policy information is available from the repository home page. Engineering Doctorate Innovation Report Design of In-Vehicle Networked Control System Architectures through the Use of New Design to Cost and Weight Processes Christopher Patrick Quigley This work has been submitted in partial fulfilment of the requirements for the degree of Doctor of Engineering (EngD) Warwick Manufacturing Group, University of Warwick 30 th November 2011 1 Abstract Over the last forty years, the use of electronic controls within the automotive industry has grown considerably. In-vehicle network technologies such as the Controller Area Network (CAN) and Local Interconnect Network (LIN) are used to connect Electronic Control Units (ECU) together, mainly to reduce the amount of wiring that would be required if hardwired integration were used. Modern passenger cars contain many networks, which means that for the architecture designer, there is an almost overwhelming number of choices on how to design/partition the system depending on factors such as cost, weight, availability of ECUs, safety, Electro-Magnetic Compatibility (EMC) etc. Despite the increasing role played by in-vehicle networks in automotive electrical architectures, its design could currently be described as a “black art”. Not only is there an almost overwhelming number of choices facing the designer, but there is currently a lack of a quantifiable process to aid decision making and there is a dearth of published literature available. NetGen is a software tool used to design CAN/J1939, LIN and FlexRay networks. For the product to remain competitive, it is desirable to have novel features over the competition. This report describes a body of work, the aim of which was to research in-vehicle network design processes, and to provide an improvement to such processes. The opportunities of customer projects and availability of customer information resulted in the scope of the research focusing on the adoption of LIN technology and whether the adoption of it could reduce the cost and weight of the target architecture. The research can therefore be seen to address two issues: firstly the general problem of network designers needing to design in-vehicle network based architectures balancing the needs of many design targets such as cost, weight etc, and secondly the commercial motivation to find novel features for the design tool, 2 NetGen. The outcome of the research described in this report was the development of design processes that can be used for the selection of low cost and weight automotive electrical architectures using coarse information, such as that which would be easily available at the very beginning of a vehicle design programme. The key benefit of this is that a number of candidate networked architectures can be easily assessed for their ability to reduce cost and weight of the electrical architecture. 3 Acknowledgements I would like to acknowledge the help from others in the completion of the Engineering Doctorate. I would like to thank my academic supervisors Peter Jones and Ross McMurran and my industrial mentor Paul Faithfull for their helpful comments and guidance throughout the project. Finally I would like to thank my partner Libby Hayward for proof reading final drafts of submissions and this report. Declaration This report is the original work by the author, parts of which have been published elsewhere, as stated in the text. 4 Contents 1. INTRODUCTION ........................................................................................... 13 1.1. The Sponsoring Company – Rapicore ............................................................. 14 1.2. The Product – NetGen ..................................................................................... 15 1.3. Distributed System Development Using NetGen ............................................ 17 1.4. NetGen – Competitor Analysis ........................................................................ 22 1.5. NetGen – Current Sales and Distribution Strategy .......................................... 24 1.6. NetGen – Requirement for Improvement ........................................................ 26 1.7. Aim of Research .............................................................................................. 26 1.8. Flow of Doctorate Submissions ....................................................................... 28 1.9. Flow of this Report .......................................................................................... 32 2. LITERATURE SURVEY ................................................................................ 35 2.1. Trends in Automotive Electronic Systems Integration .................................... 35 2.2. Automotive In-Vehicle Networking Technologies for Control ....................... 39 2.2.1. Controller Area Network Based Technologies ................................................ 39 2.2.2. Local Interconnect Network (LIN) .................................................................. 42 2.2.3. Emergence of High Speed Time Triggered Automotive Control Networks ... 44 2.2.4. Other Emerging Automotive Control Networks .............................................. 50 2.2.5. Multimedia Automotive Networks .................................................................. 52 2.2.6. The Future of Automotive Control Networks .................................................. 54 2.3. Adoption of Control Networks in Other Vehicle Applications ....................... 61 2.4. Processes Used for Designing the Electrical Architecture of Distributed Automotive Control Systems ........................................................................... 63 2.4.1. Design of Network Schedules and Dealing with the Multi-Supplier Problem 64 2.4.2. Designing an Automotive Electrical Architecture to a Target Cost ................ 66 2.5. Which Network Technology is Most Cost Effective? ..................................... 69 3. CAR DOOR SYSTEM LIN BASED HARNESS – CASE STUDY ............... 72 3.1. Case Study Overview ....................................................................................... 72 3.2. Case Study – Main Outcomes .......................................................................... 90 4. PROCESSES FOR ARCHITECTURE SELECTION ..................................... 94 4.1. Architecture Design to Cost Process................................................................ 94 4.2. Architecture Design to Weight Process ......................................................... 101 5. MICROCONTROLLER MEMORY CAPABILITY ASSESSMENT AND VARIANT SELECTION ............................................................................... 105 5.1. ROM and RAM Capability Relationship within a Microcontroller Family .. 106 5.2. Estimation of LIN Communications Stack ROM and RAM Requirements .. 111 5.3. Microcontroller Family ROM/RAM Capability Assessment Process ........... 116 5.4. Microcontroller Variant Selection By ROM/RAM Requirement Estimation 122 6. SPORTSCAR BODY CONTROL ELECTRICAL ARCHITECTURE DESIGN – CASE STUDY ............................................................................ 126 6.1. Case Study – Overview .................................................................................. 126 6.2. Case Study – Main Outcomes ........................................................................ 145 7. CONCLUSION AND RECOMMENDATIONS FOR FURTHER WORK . 147 7.1. Conclusion ..................................................................................................... 147 7.2. Recommendations for Further Work ............................................................. 151 7.2.1. Potential Future Exploitation of Research Findings ...................................... 151 7.2.2. Embedded Software Memory Requirements Modelling ............................... 153 7.2.3. Adaptation of Processes to Other Network Technologies and Applications . 154 7.2.4. Automatic Rule-Based Optimisation of Architecture Design ....................... 154 5 8. REFERENCES .............................................................................................. 155 6 Table of Figures Figure 1 : Example screen shot of the NetGen LIN tool ............................................. 18 Figure 2 : Example LIN schedule screen shot of the NetGen LIN tool ....................... 18 Figure 3 : The NetGen code generation interface ........................................................ 21 Figure 4 : Warwick Control Toolset for ECU development (McLaughlin et al, 2010) ...................................................................................................................................... 24 Figure 5 : Top level process developed during the engineering doctorate .................. 29 Figure 6 : Suggested reading order of the Engineering Doctorate submissions and key outcomes ...................................................................................................................... 31 Figure 7: Stand alone ECUs (No Integration).............................................................. 35 Figure 8: Hard-wired ECU Integration .......................................................................
Recommended publications
  • Request for Proposal
    Request For Washington Proposal Metropolitan Area Transit Authority Procurement of Heavy-Duty Transit Low Floor 40 Foot Compressed Natural Gas Buses 40 Foot Hybrid/Electric Buses 60 Foot Hybrid/Electric Articulated Buses TECHNICAL SPECIFICATION PART V RFP NO. FQ12269/JWW WASHINGTON METROPOLITAN AREA TRANSIT AUTHORITY SUPPLY AND SERVICE CONTRACT RFP FQ12269/JWW TABLE OF CONTENTS WMATA/ADA REQUIREMENTS FOR HEAVY DUTY TRANSIT BUSES ...................................... 1 WMATA E&D REQUIREMENTS FOR TRANSIT BUSES IN ACCORDANCE WITH AMERICAN WITH DISABILITIES ACT (ADA) PROVISIONS ......................................................... 2 I. LEGAL REQUIREMENTS ..................................................................................................................... 2 II. DEFINITIONS.......................................................................................................................................... 2 III. REQUIREMENTS.................................................................................................................................... 2 5.1 GENERAL .................................................................................................................................. 8 5.1.1 SCOPE ..................................................................................................................................................... 8 5.1.2 DEFINITIONS ........................................................................................................................................ 9 5.1.3
    [Show full text]
  • Trends in Automotive Communication Systems
    Trends in Automotive Communication Systems NICOLAS NAVET, YEQIONG SONG, FRANÇOISE SIMONOT-LION, AND CÉDRIC WILWERT Invited Paper The use of networks for communications between the electronic windows, and, recently, entertainment and communication control units (ECU) of a vehicle in production cars dates from the equipment (e.g., radio, DVD, hands-free phones, navigation beginning of the 1990s. The specific requirements of the different systems). car domains have led to the development of a large number of auto- motive networks such as Local Interconnect Network, J1850, CAN, In the early days of automotive electronics, each new TTP/C, FlexRay, media-oriented system transport, IDB1394, etc. function was implemented as a stand-alone electronic This paper first introduces the context of in-vehicle embedded sys- control unit (ECU), which is a subsytem composed of a tems and, in particular, the requirements imposed on the commu- microcontroller and a set of sensors and actuators. This nication systems. Then, a comprehensive review of the most widely approach quickly proved to be insufficient with the need for used automotive networks, as well as the emerging ones, is given. Next, the current efforts of the automotive industry on middleware functions to be distributed over several ECUs and the need technologies, which may be of great help in mastering the hetero- for information exchanges among functions. For example, geneity, are reviewed. Finally, we highlight future trends in the de- the vehicle speed estimated by the engine controller or by velopment of automotive communication systems. wheel rotation sensors has to be known in order to adapt Keywords—Car domains, in-vehicle embedded systems, field- the steering effort, to control the suspension, or simply to buses, middlewares (MWs), networks, real-time systems.
    [Show full text]
  • Automotive Ethernet: the Definitive Guide
    Automotive Ethernet: The Definitive Guide Charles M. Kozierok Colt Correa Robert B. Boatright Jeffrey Quesnelle Illustrated by Charles M. Kozierok, Betsy Timmer, Matt Holden, Colt Correa & Kyle Irving Cover by Betsy Timmer Designed by Matt Holden Automotive Ethernet: The Definitive Guide. Copyright © 2014 Intrepid Control Systems. All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage or retrieval system, without the prior written permission of the copyright owner and publisher. Printed in the USA. ISBN-10: 0-9905388-0-X ISBN-13: 978-0-9905388-0-6 For information on distribution or bulk sales, contact Intrepid Control Systems at (586) 731-7950. You can purchase the paperback or electronic version of this book at www.intrepidcs.com or on Amazon. We’d love to hear your feedback about this book—email us at [email protected]. Product and company names mentioned in this book may be the trademarks of their respective owners. Rather than use a trademark symbol with every occurence of a trademarked name, we are using the names only in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark. The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been taken in the preparation of this book, neither the authors nor Intrepid Control Systems shall have any liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the information contained in this book.
    [Show full text]
  • Private Radio Systems Price Catalog
    All pricing is 30% off list L3Harris-Tait Products & Services Catalog August 2020 Company Proprietary and Confidential All prices and products are subject to change without notice. NOTICE! The material contained herein is subject to U.S. export approval. No export or re-export is permitted without written approval from the U.S. Government. Rated: EAR99; in accordance with U.S. Dept. of Commerce regulations 15CFR774, Export Administration Regulations. Issued: 07/30/20 Page ii https://premier.pspc.harris.com/infocenter Company Proprietary and Confidential All prices and products are subject to change without notice. Table of Contents Latest Revision 1. Customer Service and Ordering Information ......................................................................... 1.1-1 07/30/20 2. Services Support Packages ................................................................................................................. 2.1-1 07/30/20 Technical Training ............................................................................................................... 2.2-1 07/30/20 3. P25 Portables TP9600 Portables ................................................................................................................. 3.1-1 08/31/20 TP9400 Portables ................................................................................................................. 3.1-9 08/31/20 TP9400 Intrinsically Safe Portables ..................................................................................... 3.1-17 08/31/20 4. P25 Mobiles TM9400
    [Show full text]
  • CAN Gateway in the Implementation of Vehicle Speed Control
    Investigation of a Flexray - CAN Gateway in the Implementation of Vehicle Speed Control A DISSERTATION SUBMITTED TO THE DEPARTMENT OF ENGINEERING TECHNOLOGY OF WATERFORD INSTITUTE OF TECHNOLOGY IN COMPLETE FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTERS OF ENGINEERING Author Brian Somers Supervisor Mr. John Manning June 2009 Dedicated to: My Mother: Ann Somers and My Father: Tom Somers Declaration I hereby declare that the material presented in this document is entirely my own work and has not been submitted previously as an exercise or degree at this or any other establishment of higher education. I, the author alone, have undertaken the work except where otherwise stated. Signed: Date: Acknowledgements I hereby acknowledge the contributions to my work and offer my thanks to people who have helped and supported me during the course of this research. My Supervisor: Mr. John Manning: I would like to thank John for his continuous supervision, encouragement and invaluable guidance in all areas throughout the course of this research. My Family and Friends: I would like to thank my family and friends for their support, encouragement and understanding throughout all of my studies. The AAEC (Advanced Automotive Electronic Control) Research Group: I would like to take this opportunity to thank all members of the research group, both past and present, whose assistance, knowledge and support has been first-rate. In particular I would like to thank Henry Acheson and Niall Murphy for their addi- tional support throughout the project. There are also many more people who have contributed in countless others way and deserve my thanks also - Thank you! Abstract As the quantity of in-vehicle electronics has increased, automotive networking has been introduced to replace point to point wiring.
    [Show full text]
  • Extracting and Mapping Industry 4.0 Technologies Using Wikipedia
    Computers in Industry 100 (2018) 244–257 Contents lists available at ScienceDirect Computers in Industry journal homepage: www.elsevier.com/locate/compind Extracting and mapping industry 4.0 technologies using wikipedia T ⁎ Filippo Chiarelloa, , Leonello Trivellib, Andrea Bonaccorsia, Gualtiero Fantonic a Department of Energy, Systems, Territory and Construction Engineering, University of Pisa, Largo Lucio Lazzarino, 2, 56126 Pisa, Italy b Department of Economics and Management, University of Pisa, Via Cosimo Ridolfi, 10, 56124 Pisa, Italy c Department of Mechanical, Nuclear and Production Engineering, University of Pisa, Largo Lucio Lazzarino, 2, 56126 Pisa, Italy ARTICLE INFO ABSTRACT Keywords: The explosion of the interest in the industry 4.0 generated a hype on both academia and business: the former is Industry 4.0 attracted for the opportunities given by the emergence of such a new field, the latter is pulled by incentives and Digital industry national investment plans. The Industry 4.0 technological field is not new but it is highly heterogeneous (actually Industrial IoT it is the aggregation point of more than 30 different fields of the technology). For this reason, many stakeholders Big data feel uncomfortable since they do not master the whole set of technologies, they manifested a lack of knowledge Digital currency and problems of communication with other domains. Programming languages Computing Actually such problem is twofold, on one side a common vocabulary that helps domain experts to have a Embedded systems mutual understanding is missing Riel et al. [1], on the other side, an overall standardization effort would be IoT beneficial to integrate existing terminologies in a reference architecture for the Industry 4.0 paradigm Smit et al.
    [Show full text]
  • Architecture for a Remote Diagnosis System Used in Heavy-Duty Vehicles
    Institutionen för datavetenskap Department of Computer and Information Science Final thesis Architecture for a remote diagnosis system used in heavy-duty vehicles by Anders Björkman LIU-IDA/LITH-EX-A--08/034--SE 2008-06-30 Linköpings universitet Linköpings universitet SE-581 83 Linköping, Sweden 581 83 Linköping Linköping University Department of Computer and Information Science Final Thesis Architecture for a remote diagnosis system used in heavy-duty vehicles by Anders Björkman LIU-IDA/LITH-EX-A--08/034--SE 2008-06-30 Supervisor: Jan Lindman Scania Fleet Management Department at Scania CV AB Examiner: Petru Eles Dept. of Computer and Information Science at Linköpings universitet Abstract The diagnosis system of a Scania vehicle is an indispensable tool for workshop personnel and engineers in their work. Today Scania has a system for fetching diagnostic information from field test vehicles remotely and store them in a database, so called remote diagnosis. This saves the engineers much time by not having to visit every vehicle. The system uses a Windows based on- board PC in the vehicle called an Interactor. The Interactor has a telematic unit for communication with Scanias Fleet Management System and the CAN-bus in the vehicle. In the next generation of the Interactor, its telematic unit is to be replaced by a Linux based telematic unit called the Communicator 200 (C200). The purpose of this master project is to create a new architecture for a remote diagnosis system that uses the new telematic unit Communicator 200. The thesis gives an analysis of the current remote diagnosis system used at Scania and proposes an architecture for a new generation remote diagnosis system using the C200.
    [Show full text]
  • Airlink MP70 Series Hardware User Guide R8
    AirLink MP70 Series Hardware User Guide 4119008 Rev 8 AirLink MP70 Series Hardware User Guide Important Due to the nature of wireless communications, transmission and reception of data Notice can never be guaranteed. Data may be delayed, corrupted (i.e., have errors) or be totally lost. Although significant delays or losses of data are rare when wireless devices such as the Sierra Wireless modem are used in a normal manner with a well-constructed network, the Sierra Wireless modem should not be used in situations where failure to transmit or receive data could result in damage of any kind to the user or any other party, including but not limited to personal injury, death, or loss of property. Sierra Wireless accepts no responsibility for damages of any kind resulting from delays or errors in data transmitted or received using the Sierra Wireless modem, or for failure of the Sierra Wireless modem to transmit or receive such data. Safety and Do not operate the Sierra Wireless modem in areas where blasting is in progress, Hazards near medical equipment, near life support equipment, or any equipment which may be susceptible to any form of radio interference. In such areas, the Sierra Wireless modem MUST BE POWERED OFF. The Sierra Wireless modem can transmit signals that could interfere with this equipment. The driver or operator of any vehicle should not operate the Sierra Wireless modem while in control of a vehicle. Doing so will detract from the driver or operator's control and operation of that vehicle. In some states and provinces, operating such communications devices while in control of a vehicle is an offence.
    [Show full text]
  • Connected Vehicle Technical Insights
    ITS America The Intelligent Transportation Society of America (ITS America) Connected Vehicle Technical Insights Vehicle Applications and Wireless Interoperability Heterogeneous Networks, “Multi-Path” Applications and their Impact on Transportation Steven H. Bayless and Adrian Guan Technology Scan Series 2011-2015 Connected Vehicle Insights: Vehicle Applications and Wireless Interoperability ITS America Contents Contents ....................................................................................................................................................... 1 Introduction ................................................................................................................................................. 2 Varieties of Wireless Technologies in the Modern Vehicle ......................................................................... 4 Aggregation of Wireless Media and HetNets .............................................................................................. 7 Vehicle Mobility and the Challenge of Roaming Across HetNets ................................................................ 9 Security and Usability Challenges with Aggregated HetNets ..................................................................... 11 Security Vulnerabilities Inherent in Multi-Path Communications ......................................................... 12 The Usability Impact of Multi-Network Authentication ........................................................................ 13 The Impact of HetNets on Future Connected
    [Show full text]
  • Cybersecurity Research Considerations for Heavy Vehicles
    DOT HS 812 636 December 2018 Cybersecurity Research Considerations for Heavy Vehicles Disclaimer This publication is distributed by the U.S. Department of Transportation, National Highway Traffic Safety Administration, in the interest of information exchange. The opinions, findings, and conclusions expressed in this publication are those of the authors and not necessarily those of the Department of Transportation or the National Highway Traffic Safety Administration. The United States Government assumes no liability for its contents or use thereof. If trade or manufacturers’ names are mentioned, it is only because they are considered essential to the object of the publication and should not be construed as an endorsement. The United States Gov- ernment does not endorse products or manufacturers. Suggested APA Format Citation: Stachowski, S., Bielawski, R., & Weimerskirch, A. (2018, December). Cybersecurity research considerations for heavy vehicles (Report No. DOT HS 812 636). Washington, DC: National Highway Traffic Safety Administration. 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. DOT HS 812 636 4. Title and Subtitle 5. Report Date Cybersecurity Research Considerations for Heavy Vehicles December 2018 6. Performing Organization Code 7. Authors 8. Performing Organization Report No. Stephen Stachowski, P.E. (UMTRI), Russ Bielawski (UMTRI), André Weimerskirch 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) University of Michigan Transportation Research Institute 2901 Baxter Rd Ann Arbor, MI 48109 11. Contract or Grant No. DTNH22-15-R-00101, a Vehicle Electronics Systems Safety IDIQ 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered National Highway Traffic Safety Administration Final Report 1200 New Jersey Avenue SE.
    [Show full text]
  • Evaluation of Communication Interfaces for Electronic Control Units in Heavy-Duty Vehicles
    Institutionen för systemteknik Department of Electrical Engineering Examensarbete Evaluation of Communication Interfaces for Electronic Control Units in Heavy-duty Vehicles Examensarbete utfört i fordonsteknik vid Tekniska högskolan vid Linköpings universitet av Henrik Johansson LiTH-ISY-EX--12/4580--SE Linköping 2012 Department of Electrical Engineering Linköpings tekniska högskola Linköpings universitet Linköpings universitet SE-581 83 Linköping, Sweden 581 83 Linköping Evaluation of Communication Interfaces for Electronic Control Units in Heavy-duty Vehicles Examensarbete utfört i fordonsteknik vid Tekniska högskolan vid Linköpings universitet av Henrik Johansson LiTH-ISY-EX--12/4580--SE Handledare: Mats Halvarsson recu, Scania CV AB Andreas Thomasson isy, Linköpings universitet Examinator: Per Öberg isy, Linköpings universitet Linköping, 1 juni 2012 Avdelning, Institution Datum Division, Department Date Division of Vehicular Systems Department of Electrical Engineering 2012-06-01 SE-581 83 Linköping Språk Rapporttyp ISBN Language Report category — Svenska/Swedish Licentiatavhandling ISRN 2 Engelska/English 2 Examensarbete LiTH-ISY-EX--12/4580--SE 2 2 C-uppsats Serietitel och serienummer ISSN 2 D-uppsats Title of series, numbering — 2 Övrig rapport 2 2 2 URL för elektronisk version http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-78665 Titel Utvärdering av kommunikationsgränssnitt för styrenheter i tunga fordon Title Evaluation of Communication Interfaces for Electronic Control Units in Heavy-duty Vehicles Författare Henrik Johansson Author Sammanfattning Abstract The number of electronic control units in heavy-duty vehicles has grown dramatically over the last few decades. This has led to the use of communication buses to reduce the com- plexity and weight of the networks. There are reasons to believe that the de facto standard communication interface in the automotive industry, the Controller Area Network, is obso- lete in some areas.
    [Show full text]
  • An Analytical Study of Communication Protocols Used in Automotive Industry
    International Journal of Engineering Research & Technology (IJERT) ISSN: 2278-0181 ETRASCT' 14 Conference Proceedings An Analytical Study of Communication Protocols Used in Automotive Industry Rohit Mathur1, Ritesh Saraswat2, Gunjan Mathur3 Department of Electronics and Communication Jodhpur Institute of Engineering and Technology Jodhpur, India [email protected], [email protected], [email protected] Abstract— Communication protocols in-vehicle networking is suspension, or to choose the right wiping speed. “In modern a method for transferring data among distributed modules via a luxury cars, up to 2500 signals (i.e. elementary information serial data bus or by mean of wireless. The use of systems for such as the speed of the vehicle) are exchanged by up to 70 communications between the electronic control units (ECU) of a ECUs” [1]. Until the beginning of the 1990s, exchange of data vehicle in production cars dates from the beginning of the 1990s. was done by point-to-point links between ECUs, which The specific requirements of the different car domains have led required an amount of communication channels, was not able to the development of a large number of automotive systems such to manage the increasing use of ECUs because of the weight as Local Interconnect Network (LIN), J1850, CAN, TTP/C, and cost problems, reliability and complexity caused by the FlexRay, media-oriented system transport (MOST), IDB1394, wires and the connectors. These issues encouraged the use of etc. This paper presents the study on character and performance networks where the communications are shared over a of various protocols which is widely used in automotive industry and automation systems.
    [Show full text]