Progetto CARG Per Il Servizio Geologico D’Italia - ISPRA F

Total Page:16

File Type:pdf, Size:1020Kb

Progetto CARG Per Il Servizio Geologico D’Italia - ISPRA F I S P R A Istituto Superiore per la Protezione e la Ricerca Ambientale SERVIZIO GEOLOGICO D’ITALIA Organo Cartografico dello Stato (legge n°68 del 2.2.1960) NOTE ILLUSTRATIVE della CARTA GEOLOGICA D’ITALIA alla scala 1:50.000 foglio 619 S. MARGHERITA DI BELICE A cura di: P. Di Stefano1, P. Renda1, G. Zarcone1, F. Nigro2, M. S. Cacciatore1 Con ilPROGETTO contributo di: G. Cusimano1, E. Di Stefano1, D. Luzio1, S. Monteleone1, R. Sprovieri1, S. Bonomo2, M. Sabatino1, A. Contino1, A. D’Alessandro1, F. Pisciotta2 CARG 1 Università di Palermo, Dipartimento di Scienze della Terra e del Mare 2 Istituto di Geofisica e Vulcanologia, Palermo Ente realizzatore Regione Siciliana - Assessorato Territorio e Ambiente Direttore del Servizio Geologico d’Italia - ISPRA: C. Campobasso Responsabile del Progetto CARG per il Servizio Geologico d’Italia - ISPRA F. Galluzzo Responsabile del Progetto CARG per la Regione Siciliana: G. Arnone Per il Servizio GeoloGico d’italia - iSPra: Revisione scientifica: R. Bonomo, E. La Posta, M. Rossi, M. Marino Coordinamento cartografico: D. Tacchia (coord.), F. Pilato Revisione informatizzazione dei dati geologici: L. Battaglini, V. Campo, M. Rossi (ASC) Coordinamento editoriale: D. Tacchia, F. Pilato Per la reGione Siciliana: Coordinamento informatizzazione: Pietro Di Stefano InformatizzazionePROGETTO e allestimento cartografico per la stampa a cura di: Consorzio Ticonzero s.a.s. Allestimento editoriale e cartografico: G. Zarcone CARG GeStione tecnico-amminiStrativa del ProGetto carG: M.T. Lettieri - Servizio Geologico d’Italia - ISPRA D. Greco (dal 2003) - R. Giordano (dal 2009) - Regione Siciliana - Assessorato Territorio e Ambiente Si ringraziano i componenti dei Comitati Geologici per il loro contributo scientifico Stampa: SyStemCart S.r.l. - 2013 INDICE I - INTRODUZIONE ............................................................. Pag. 9 1. - INQUADRAMENTO GEOGRAFICO .............................. » 9 2. - AMBIENTE FISICO .......................................................... » 10 II - ORGANIGRAMMA E METODOLOGIE ..................... » 15 1. - ORGANIGRAMMA ........................................................... » 15 2. - METODOLOGIA ............................................................... » 16 2.1. - Criteri di rilevamento ........................................................ » 16 2.2. - Criteri BiostratigrafiCi ..................................................... » 17 2.3. - note sulla Biostratigrafia dell’intervallo serravalliano - Quaternario ............................................. » 20 2.4. - Cronostratigrafia dell’intervallo serravalliano - Quaternario ........................................................................ » 21 III - INQUADRAMENTO GEOLOGICO REGIONALE E STATO DELLE CONOSCENZE .................................... » 25 1. - INQUADRAMENTO GEOLOGICO REGIONALE ......... » 25 2. - STUDI PRECEDENTI ....................................................... » 29 IV - STRATIGRAFIA .............................................................. » 33 1. - INTRODUZIONE .............................................................. » 33 2. - SUCCESSIONI SEDIMENTARIE PALEOZOICO - CENOZOICHE AFFIORANTI .......................................... » 35 2.1. PROGETTO- suCCessioni del BaCino siCano ............................................ » 35 2.1.1. - complesso di Lercara (LER) ............................................... » 36 2.1.2. - Formazione Mufara (MUF) ................................................ » 37 2.1.3. - formazione Scillato (SCT) .................................................CARG» 38 2.1.4. - calcari oolitici di Monte Genuardo (GUD) ....................... » 40 2.1.5. - calcari di S. Maria del Bosco (BOO) ................................. » 44 2.1.6. - formazione Barracù (BUU) ............................................... » 46 2.1.7. - Lattimusa (LTM) ................................................................ » 48 2.1.8. - Formazione Hybla (HYB) ................................................. » 48 2.1.9. - formazione Amerillo (AMM ) ............................................. » 49 2.1.10. - marne di Cardellia (RDE) ................................................. » 52 2.1.11. - formazione Ragusa - membro Irminio (RAG2) .................. » 54 2.1.12. - calcareniti di Corleone (CCR) .......................................... Pag. 55 2.1.13. - marne di San Cipirello (CIP) ............................................. » 56 2.2. - suCCessione di transizione tra Piattaforma CarBonatiCa saCCense e BaCino siCano .................................................. » 57 2.2.1. - formazione Cozzo di Lupo (CZP) ................................... » 57 2.2.2. - calcari oolitici di Monte Genuardo (GUD) ...................... » 59 2.2.3. - calcari di S Maria del Bosco (BOO) ............................... » 62 2.2.4. - formazione Barracù (BUU) .............................................. » 62 2.2.5. - Lattimusa (LTM) .............................................................. » 65 2.2.6. - Formazione Hybla (HYB) ................................................. » 65 2.2.7. - formazione Amerillo (AMM) ............................................. » 66 2.2.8. - marne di Cardellia (RDE) ................................................ » 69 2.2.9. - calcareniti di Corleone (CCR) ........................................... » 69 2.2.10. - marne di San Cipirello (CIP) .............................................. » 70 2.3. - suCCessione della Piattaforma CarBonatiCa saCCense .... » 70 2.3.1. - formazione Cozzo di Lupo (CZP) ...................................... » 71 2.3.2. - Formazione Inici (INI) ..................................................... » 74 2.3.3. - formazione Buccheri (BCH) .............................................. » 77 2.3.4. - Lattimusa (LTM) ................................................................ » 79 2.3.5. - formazione Hybla (HYB) .................................................. » 80 2.3.6. - formazione Amerillo (AMM) ............................................. » 80 2.3.7. - formazione Ragusa (RAG) ................................................. » 81 2.3.7.1. - formazione Ragusa - membro Leonardo (RAG1) .. » 81 2.3.7.2.PROGETTO - formazione Ragusa - membro Irminio (RAG ) ... » 82 2 2.3.8. - calcareniti di Corleone (CCR) ........................................... » 82 2.3.9. - marne di San Cipirello (CIP) ............................................. » 83 3. - DEPOSITI SIN-TARDOROGENI ...................................... » 83 ePositi mioCeniCi CARG 3.1. - d ............................................................... » 83 3.1.1. - formazione Terravecchia (TRV) ........................................ » 83 3.1.2. - formazione Baucina (BAU) .............................................. » 84 3.1.3. - Depositi evaporitici l.s. ........................................................ » 84 3.1.3.1. - formazione Ciminna (CII) .......................................... » 85 3.1.4. - Gruppo Gessoso-Solfifera (GS ) ......................................... » 86 3.1.4.1. - formazione di Cattolica (GTL) - membro selenitico (GTL2) ........................................... » 86 3.1.4.2. - formazione di Pasquasia (GPQ) - membro dei calcari aCongerie (GPQ3) .................. Pag. 88 3.2. - dePositi PlioCeniCi ................................................................ » 88 3.2.1. - Trubi (TRB) ....................................................................... » 88 3.2.2. - formazione marnoso arenacea del Belice (BLC) .............. » 89 4. - DEPOSITI QUATERNARI .............................................. » 93 4.1. - dePositi Quaternari marini ............................................. » 93 4.1.1. - formazione Agrigento (AGG) .......................................... » 93 4.1.2. - sintema di Marsala (MRS) ............................................. » 95 4.2. - dePositi Quaternari Continentali ................................ » 95 4.2.1. - sintema del Fiume Belice (SBE) .................................... » 95 4.2.2. - sintema del Fiume Carboj (SCJ) ................................... » 96 4.2.3. - sintema del Fiume Verdura (SVD) ................................. » 97 4.3. - unità non distinte in Base al BaCino di aPPartenenza .. » 98 4.3.1. - Depositi di origine mista di debris flow e torrentizi (i) . » 98 4.3.2. - Travertini (f1) ..................................................................... » 99 4.3.3. - Depositi palustri e lacustri (e) ...................................... » 100 4.3.4. - Depositi eluvio-colluviali (b2) .......................................... » 100 4.3.5. - Depositi alluvionali in evoluzione (b) ........................... » 100 4.3.6. - Detrito di falda (a3) .......................................................... » 100 4.3.7. - Deposito di frana (a1) ...................................................... » 101 4.3.8. - Discariche ed accumuli di origine antropica (h1) ...... » 101 V - TETTONICA .................................................................... » 103 1. PROGETTO- INTRODUZIONE .............................................................. » 103 2. - LE UNITÁ TETTONICHE AFFIORANTI ..................... » 104 2.1. - unità derivanti dalla deformazione del dominio siCano . » 106 2.1.1. - Unità tettonica Monte Barracu’ CARG.......................................... » 106 2.1.2. - Unità tettonica Monte Triona .............................................. » 108 2.1.3. - Unità tettonica Fiume Sosio-Monte Lucerto .................... » 110 2.1.4. - Unità tettonica
Recommended publications
  • First Results of an INGV Project for the Integrated Analysis of the Active Tectonics in SW Sicily M
    GNGTS 2016 SESSIONE 1.1 FIRST RESULTS OF AN INGV PROJECT FOR THE INTEGRATED ANALYSIS OF THE ACTIVE TECTONICS IN SW SICILY M. Mattia1, G. Barreca2, C. Bottari3, V. Bruno1, P. Burrato3, F. Cultrera2, L. Dardanelli4, S. De Gregorio5, L. Ferranti6, L. Guzzetta7, P. Madonia5, C. Monaco2, C. Pipitone4, F. Pepe8 1 Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo - Sezione di Catania, Italy 2 Dip. di Scienze Biologiche, Geologiche e Ambientali, Sezione di Scienze della Terra, Università di Catania, Italy 3 Istituto Nazionale di Geofisica e Vulcanologia, Roma, Italy 4 Dip. di Ingegneria Civile, Ambientale, Aerospaziale dei Materiali (DICAM), Università di Palermo, Italy 5 Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Palermo, Italy 6 Dip. di Scienze della Terra, dell’Ambiente e delle Risorse (DiSTAR), Università “Federico II”, Napoli, Italy 7 INAF - Istituto di Astrofisica e Planetologia spaziali (IAPS), Rome, Italy 8 Dip. di Scienze della Terra e del Mare (DISTEM), Università di Palermo, Italy We present the first results of a project financed by the “Struttura Terremoti” of INGV to study the potential sources of earthquakes in south-western Sicily, including the area hit by the 1968 Belice earthquake sequence and the archaeological area of Selinunte, affected by two earthquakes in historical times. We adopt in this project a multi-disciplinary approach with the goal of addressing the following points: 1) define the active tectonic framework of south- western Sicily, 2) investigate and characterize on-shore and off-shore faults, potential sources of damaging earthquakes, and 3) evaluate the current deformation rates. To do this, we collected a new set of geodetic (GPS and InSAR) and geochemical data, and performed geological and geomorphological surveys on-land in the area between Mazara, Castelvetrano and Selinunte.
    [Show full text]
  • Copertina Vol. 31 Suppl 1
    doi: 10.3301/ROL.2014.140 ISSN 2035-8008 RENDICONTI Online della Società Geologica Italiana RENDICONTI Online Volume 31, Supplemento n. 1 - Settembre 2014 della Società Geologica Italiana Volume 31, Supplemento n. 1 - Settembre 2014 The Future of the Italian Geosciences - The Italian Geosciences of the Future Vol. 31, Suppl. n. 1 (2014) pp. 1-816. Vol. 87° Congresso della Società Geologica Italiana e 90° Congresso della Società Italiana di Mineralogia e Petrologia Abstract Book Milan, Italy, September 10-12, 2014 main partner edited by: B. Cesare, E. Erba, B. Carmina, L. Fascio, F.M. Petti, A. Zuccari. RENDICONTI ONLINE DELLA SOCIETÀ GEOLOGICA ITALIANA Direttore responsabile: DOMENICO CALCATERRA Iscrizione ROC 18414. ROMA Pubblicato online il 1 Agosto 2014. Rendiconti Online della Società Geologica Italiana - SOCIETÀ GEOLOGICA ITALIANA 2014 www.socgeol.it Rend. Online Soc. Geol. It., Suppl. n. 1 al Vol. 31 (2014) CONGRESSO SGI-SIMP 2014 © Società Geologica Italiana, Roma 2014 Seismotectonics of the active thrust front in southwestern Sicily: hints on the Belice and Selinunte seismogenic sources Ferranti L.*1, Guzzetta L.1, Pepe F.2, Burrato P.3, Barreca G.4, Mattia M.5, Monaco C.4 & V. Bruno5 1. Dipartimento di Scienze della Terra, dell’Ambiente e delle Risorse (DiSTAR), Università di Napoli "Federico II". 2. Dipartimento di Scienze della Terra e del Mare, Università di Palermo. 3. Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Roma. 4. Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Sezione di Scienze della Terra, Università di Catania. 5. Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo - Sezione di Catania. Corresponding email: [email protected] Keywords: Active thrust system, southwestern Sicily, fault segment parameters, historical earthquakes.
    [Show full text]
  • Towards a Revised Framework for Participatory Planning in the Context of Risk
    sustainability Article Towards a Revised Framework for Participatory Planning in the Context of Risk Paola Rizzi 1,* and Anna Por˛ebska 2 1 Department of Architecture, Design and Urban Planning, University of Sassari, 07100 Sassari, Italy 2 Faculty of Architecture, Cracow University of Technology, 31-155 Kraków, Poland; [email protected] * Correspondence: [email protected] Received: 30 April 2020; Accepted: 7 July 2020; Published: 9 July 2020 Abstract: Community participation is widely acknowledged to be crucial in both mitigation and reconstruction planning, as well as in community-based disaster risk reduction (CBDRR) and community-based disaster mitigation (CBDM) processes. However, despite decades of experience, an efficient framework that is acceptable for all actors and suitable for all different phases of the process—ranging from planning to post-disaster recovery—is lacking. The examples presented in this paper shed light on the different dynamics of participatory design processes and compare situations in which participatory design and community planning were introduced before, during, or after a disastrous or potentially disastrous event. Others emphasize the consequences of participation not being introduced at all. Analysis of these processes allows the authors to speculate on a revised, universal model for participatory planning in vulnerable territories and in the context of risk. By emphasizing intrinsic relations of different elements of the process, particularly the responsibility that different actors are prepared—or forced—to take, this article offers insight towards a framework for post-2020 participatory planning. Keywords: participatory design; design for risk reduction (DRR); disaster mitigation (DM); risk awareness; resilience 1. Introduction 1.1.
    [Show full text]
  • Geologia Della Sicilia - Geology of Sicily IV - Vulcanismo - Volcanism
    Geologia della Sicilia - Geology of Sicily IV - Vulcanismo - Volcanism BRANCA S. (*) 1. - VuLCANISMO QuATERNARIO DELLA ratterizzavano questo settore dell’Altipiano Ibleo SICILIA ORIENTALE (SChMINCkE et alii, 1997). La prosecuzione dell’at- tività vulcanica verso nord durante il Pleistocene La fase più recente del vulcanismo ibleo è da- inferiore-medio è evidenziata da anomalie magne- tata Pliocene inferiore-Pleistocene inferiore, ed è tiche (GRASSO & BEN-AVRAhAM, 1992) e da dati caratterizzata da un’attività vulcanica sia sottoma- di pozzi perforati dall’AGIP (LONGARETTI et alii, rina che subaerea ad affinità da alcalina a subalca- 1991; TORELLI et alii, 1998) in corrispondenza della lina (CARBONE et alii, 1986, 1987; CARVENI et alii, Piana di Catania, che mostrano la presenza di 1991; SChMINCkE et alii, 1997). grossi corpi di vulcaniti, con spessori di alcune Le vulcaniti affiorano estesamente lungo il centinaia di metri, che si approfondiscono verso bordo settentrionale dell’Avampaese Ibleo mo- nord per la presenza di sistemi di faglie dirette. In strando una leggera migrazione verso nord rispetto particolare, le vulcaniti più recenti in sottosuolo, alle manifestazioni vulcaniche del Miocene supe- attribuite al Pleistocene inferiore (LONGARETTI et riore (CARBONE et alii, 1982c). Le vulcaniti plioce- alii, 1991), sono localizzate nella parte più setten- niche del margine occidentale dell’Altipiano Ibleo, trionale della Piana di Catania in prossimità della sono rappresentate da una potente successione, periferia meridionale dell’Etna fra Paternò e Cata- costituita da prevalenti ialoclastiti e da brecce vul- nia. Tali vulcaniti presentano una composizione canoclastiche e colate a pillow. Lungo il bordo basaltica ad affinità sia tholeiitica che alcalina orientale del plateau si rinvengono prevalentemente (LONGARETTI & ROCChI, 1990).
    [Show full text]
  • Tectonic Evolution and Current Deformation of the NW Sicily Channel and the Lampedusa Plateau Based on Multi-Resolution Seismic Profiles Analysis
    PhD School in Earth, Environment and Resources Sciences - XXX Cycle - PhD Thesis Tectonic evolution and current deformation of the NW Sicily Channel and the Lampedusa Plateau based on multi-resolution seismic profiles analysis Melania Meccariello Advisor Prof. L. Ferranti PhD Coordinator Prof. M. Fedi Co-advisor Prof. F. Pepe 2017 INDEX ABSTRACT ...................................................................................................... 5 INTRODUCTION .......................................................................................... 12 1. BACKGROUND GEOLOGICAL SETTING ..................................... 18 1.1 The Sicily Channel in the regional geological contest ................... 18 1.2 Structural setting and active deformation of SW Sicily ............... 21 1.3 Regional distribution of lithostratigraphic units ........................... 29 1.4 Structural frame of the Sicily Channel ........................................... 31 1.5 Seismo-tectonic frame of the Sicily Channel .................................. 40 1.6 Volcanism in the Sicily Channel ...................................................... 41 2. FUNDAMENTALS OF SEISMIC REFLECTION ACQUISITION AND INTERPRETATION ............................................................................ 43 2.1 The seismic reflection analysis ........................................................ 43 2.2 Techniques of acquisition of the analysed seismic reflection profiles ........................................................................................................
    [Show full text]
  • And Correlation to the Late Triassic Newark Astrochronological Polarity Time Scale
    Tethyan magnetostratigraphy from Pizzo Mondello (Sicily) and correlation to the Late Triassic Newark astrochronological polarity time scale Giovanni Muttoni† Department of Earth Sciences, University of Milan, Via Mangiagalli 34, I-20133 Milan, Italy Dennis V. Kent Lamont-Doherty Earth Observatory, Palisades, New York 10964, USA and Department of Geological Sciences, Rutgers University, Piscataway, New Jersey 08854, USA Paul E. Olsen Lamont-Doherty Earth Observatory, Palisades, New York 10964, USA Piero Di Stefano Department of Geology and Geodesy, University of Palermo, Corso Tukory 131, I-90134 Palermo, Italy William Lowrie Stefano M. Bernasconi Fátima Martín Hernández Departement Erdwissenschaften, ETH-Zentrum, CH-8092 Zürich, Switzerland ABSTRACT early part of the Newark APTS. We prefer marine stages, historically based on ammonoid option #2 in which the Carnian-Norian biostratigraphy, to continental successions. For We present the magnetostratigraphy and boundary based on conodonts, as well as the Late Triassic, an astrochronology anchored stable isotope stratigraphy from an expanded its closely associated positive δ13C shift, cor- to magnetostratigraphy and radiometric dates is (~430-m-thick) Upper Triassic marine lime- respond to Newark magnetozone E7 at ca. available from the Newark continental section stone section at Pizzo Mondello, Sicily, and 228–227 Ma (adopting Newark astrochronol- (Kent et al., 1995; Kent and Olsen, 1999; Olsen review published biostratigraphic informa- ogy), implying a long Norian with a duration and Kent, 1999), while magnetostratigraphy is tion that can be used to defi ne the location of ~20 m.y., and a Rhaetian of ~6 m.y. dura- thus far available in conjunction with marine of the conodont Carnian-Norian and Norian- tion.
    [Show full text]
  • Accepted Manuscript
    Accepted Manuscript Geothermal resources within carbonate reservoirs in western Sicily (Italy): A review D. Montanari, A. Minissale, M. Doveri, G. Gola, E. Trumpy, A. Santilano, A. Manzella PII: S0012-8252(16)30462-7 DOI: doi: 10.1016/j.earscirev.2017.04.016 Reference: EARTH 2415 To appear in: Earth-Science Reviews Received date: 21 December 2016 Revised date: 21 March 2017 Accepted date: 29 April 2017 Please cite this article as: D. Montanari, A. Minissale, M. Doveri, G. Gola, E. Trumpy, A. Santilano, A. Manzella , Geothermal resources within carbonate reservoirs in western Sicily (Italy): A review, Earth-Science Reviews (2017), doi: 10.1016/ j.earscirev.2017.04.016 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT Geothermal resources within carbonate reservoirs in western Sicily (Italy): a review D. Montanari, A. Minissale, M. Doveri, G. Gola, E. Trumpy, A. Santilano, A. Manzella Institute of Geosciences and Earth Resources, National Research Council of Italy (CNR) Keywords: Geothermal systems; Carbonate reservoirs; Temperature Modeling; Fluid geochemistry; Groundwater flow paths; Sicily; Structural Geology; Italy Abstract Low-to-medium temperature fluid reservoirs hosted in carbonate rocks are some of the most promising and unknown geothermal systems.
    [Show full text]
  • Reconstruction and Conservation in the Post-Truth Era. Historical Lies, Authenticity, Material Evidence
    Reconstruction And Conservation In The Post-Truth Era. Historical Lies, Authenticity, Material Evidence Nino Sulfaro1 Doc: Now remember, according to my theory, you interfered with your parents first meeting. If they don't meet, they won't fall in love, they won't get married and they won't have kids. That's why your older brother's disappearing from that photograph. Your sister will follow, and unless you repair the damage, you'll be next. Marty: Sounds pretty heavy! Back to the future (Robert Zemeckis, 1985) In a famous 1980’s movie, the main character, Marty McFly, catapulted thirty years back into the past by a time machine, accidentally prevents his parents from meeting, causing a chain of events that puts his very existence at risk. As in all happy endings, the risk is overcome, and Marty can go back to the future without having caused any damage to the time line (fig. 1). Figure 1. A frame of the movie Back to the future (Robert Zemeckis, 1985) in which Doc ‘fights’ against the time. Sulfaro, Nino (2018). Reconstruction And Conservation In The Post-Truth Era. Historical Lies, Authenticity, Material Evidence. In: A contemporary provocation: reconstructions as tools of future-making. Selected papers from the ICOMOS University Forum Workshop on Authenticity and Reconstructions, Paris, 13 – 15 March 2017, eds C. Holtorf, L. Kealy, T. Kono. Paris: ICOMOS. 1 The plot was based on the well-known ‘paradox’ of the time traveller, according to which making variations in the past means altering the temporal fabric: after a short period of transition, the fabric achieves a new arrangement in which all that does not conform to it is destined to vanish.
    [Show full text]
  • XI Inqua Congress
    APAT AN INNOVATIVE APPROACH FOR ASSESSING EARTHQUAKE INTENSITIES: THE PROPOSED INQUA SCALE BASED ON SEISMICALLY-INDUCED GROUND EFFECTS IN THE ENVIRONMENT Working Group under the INQUA Subcommission on Paleoseismicity PRESENTED AT THE XVI INQUA CONGRESS RENO, USA JULY 23 – 30, 2003 INQUA Scale XVI INQUA Congress, Reno, July 23 – 30, 2003 AN INNOVATIVE APPROACH FOR ASSESSING EARTHQUAKE INTENSITIES: THE PROPOSED INQUA SCALE BASED ON SEISMICALLY-INDUCED GROUND EFFECTS IN THE ENVIRONMENT Working Group under the INQUA Subcommission on Paleoseismicity Michetti A. M.1, E. Esposito2, J. Mohammadioun3, B. Mohammadioun3, A. Gürpinar4, S. Porfido2, E. Rogozhin5, L. Serva6, R. Tatevossian5, E. Vittori6, F. Audemard7, V. Comerci6, S. Marco8, J. McCalpin9, and N.A. Morner10. 1Università dell’Insubria, Como, Italy; [email protected]; 2CNR-IAMC, Napoli, Italy; 3Robinswood Consultant, Saint Martin de Nigelles, France; 4IAEA, Vienna, Austria; 5Russian Academy of Sciences, Moscow, Russia; 6APAT, Roma, Italy; 7FUNVISIS, Caracas, Venezuela; 8University of Tel Aviv, Israel; 9GEO-HAZ Consulting, Crestone, CO, USA; 10University of Stockholm, Sweden. INDEX Introduction 2 Intensity — Why today? 4 The shortcomings of earlier scales — Why Intensity should be evaluated using ground effects 6 General statements 9 The INQUA scale 13 Definitions of intensity degrees 14 Intensity - fault parameter relationships: discussion and conclusions 21 References 22 Appendix 1: References for earthquakes listed in Table 2 and 3 41 Appendix 2: distribution of ground
    [Show full text]
  • Paleozoic Evolution of Pre-Variscan Terranes: from Gondwana to the Variscan Collision
    Geological Society of America Special Paper 364 2002 Paleozoic evolution of pre-Variscan terranes: From Gondwana to the Variscan collision Gérard M. Stamp×i Institut de Géologie et Paléontologie, Université de Lausanne, CH-1015 Lausanne, Switzerland Jürgen F. von Raumer Institut de Minéralogie et Pétrographie, Université de Fribourg, CH-1700 Fribourg, Switzerland Gilles D. Borel Institut de Géologie et Paléontologie, Université de Lausanne, CH-1015 Lausanne, Switzerland ABSTRACT The well-known Variscan basement areas of Europe contain relic terranes with a pre-Variscan evolution testifying to their peri-Gondwanan origin (e.g., relics of Neo- proterozoic volcanic arcs, and subsequent stages of accretionary wedges, backarc rift- ing, and spreading). The evolution of these terranes was guided by the diachronous subduction of the proto-Tethys oceanic ridge under different segments of the Gond- wana margin. This subduction triggered the emplacement of magmatic bodies and the formation of backarc rifts, some of which became major oceanic realms (Rheic, paleo- Tethys). Consequently, the drifting of Avalonia was followed, after the Silurian and a short Ordovician orogenic event, by the drifting of Armorica and Alpine domains, ac- companied by the opening of the paleo-Tethys. The slab rollback of the Rheic ocean is viewed as the major mechanism for the drifting of the European Variscan terranes. This, in turn, generated a large slab pull force responsible for the opening of major rift zones within the passive Eurasian margin. Therefore, the µrst Middle Devonian Variscan orogenic event is viewed as the result of a collision between terranes detached from Gondwana (grouped as the Hun superterrane) and terranes detached from Eurasia.
    [Show full text]
  • Ph.D Thesis: Stratigraphic, Structural and Geomorphological Features of the Sicilian Continental Shelf: Study Cases from Southern Tyrrhenian and Sicily Channel
    Ph.D Thesis: Stratigraphic, structural and geomorphological features of the Sicilian continental shelf: study cases from Southern Tyrrhenian and Sicily Channel. Ph.D Thesis: Stratigraphic, structural and geomorphological features of the Sicilian continental shelf: study cases from Southern Tyrrhenian and Sicily Channel. Ph.D Thesis: Stratigraphic, structural and geomorphological features of the Sicilian continental shelf: study cases from Southern Tyrrhenian and Sicily Channel. INDEX GENERAL INTRODUCTION PART I: METHODOLOGY 1.0 INTRODUCTION 1.1 SONAR PRINCIPLES IN THE WATER 1.2 ECHOSOUNDING 1.3 MULTIBEAM 1.4 CHIRP SUB-BOTTOM 1.5 SPARKER SYSTEM 1.6 BATHYMETRIC AND SEISMIC INTERPRETATION SOFTWARES 1.6.1 GLOBAL MAPPER 1.6.2 SWANPRO™ 1.6.3 GEOSUITE ALLWORKS 1.7 SEISMIC STRATIGRAPHY PRINCIPLES 1.8 THE SEISMIC RESOLUTION PART II: CONTINENTAL SHELF ENVIRONMENT: STRUCTURAL-STRATIGRAPHIC EVOLUTION OF LAMPEDUSA ISLAND AND SOUTH-EAST SICILY OFFSHORE 2.0 INTRODUCTION 2.1 PHYSIOGRAPHIC FEATURES OF THE CONTINENTAL SHELF 2.2 DEPOSITIONAL ENVIROMENTS: AUTOGENIC AND ALLOGENIC CONTROLS 2.3 SEQUENCE STRATIGRAPHY 2.3.1 SEQUENCE STRATIGRAPHIC UNITS 2.3.2 SEQUENCE STRATIGRAPHIC SURFACES 2.4 LATE MIOCENE TO QUATERNARY STRUCTURAL EVOLUTION OF THE LAMPEDUSA ISLAND OFFSHORE 1 Ph.D Thesis: Stratigraphic, structural and geomorphological features of the Sicilian continental shelf: study cases from Southern Tyrrhenian and Sicily Channel. 2.4.1 GEOLOGICAL SETTING 2.4.2 DATA DESCRIPTION AND INTERPRETATION 2.4.2.1 Northern sector 2.4.2.2 Southern Sector 2.4.2.3 Eastern
    [Show full text]
  • K2SO4 Across the Neogene: Implications, Part 4 of 4
    www.saltworkconsultants.com Salty MattersJohn Warren - Tuesday, May 12, 2015 Danakil potash: K2SO4 across the Neogene: Implications, Part 4 of 4 marine brine feeds that most of the world’s larger Phaneorzo- How to deal with K2SO4 ic (SOP) potash ore deposits were precipitated (Warren, 2015). In this the fourth blog focusing on Danakhil potash, we look SOP is also produced from Quaternary Lake brines in China at the potash geology of formerly mined Neogene deposits in and Canada (see Cryogenic salt blog; 24 Feb. 2015). Sicily and the Ukraine, then compare them and relevant pro- cessing techniques used to exploit their K2SO4 ore feeds. This information is then used to hlep guide a discussion of process- ing implications for potash extraction in the Danakhil, where SOP in Messinian evaporites, Sicily kainite is the dominant widespread potash salt. As seen in the A number of potash mines on the island extracted kainitite from previous three blogs there are other potash mineral styles present the late Miocene Solofifera Series of Sicily (Figure 1). The last in the Danakhil, which constitute more re- stricted ore fairways than the widespread bedded kainaite, these other potash styles Sicilian-Maghrebian units (deep meteoiric -blog 2 of 4 and hydro- thermal - blog 3 of 4), could be processed Palermo X Kabylian-Calabrian units to extract MOP, but these other potash Calatami inner C styles are also tied to high levels of MgCl2, im Madonie M. in Petralia Nebrodi M. na b which must be dealt with in the brine pro- S. Ninfa asin Nicosia Be M.
    [Show full text]