Comparison of the Athens Driving Cycle (Adc) with Ece-15 and European Driving Cycle (Edc)

Total Page:16

File Type:pdf, Size:1020Kb

Comparison of the Athens Driving Cycle (Adc) with Ece-15 and European Driving Cycle (Edc) Global NEST Journal, Vol 8, No 3, pp 282-290, 2006 Copyright© 2006 Global NEST Printed in Greece. All rights reserved VEHICLE EMISSIONS AND DRIVING CYCLES: COMPARISON OF THE ATHENS DRIVING CYCLE (ADC) WITH ECE-15 AND EUROPEAN DRIVING CYCLE (EDC) E.TZIRAKIS1* 1 Laboratory of Fuel Technology and Lubricants K. PITSAS2 Chemical Engineering Dept., NTUA F. ZANNIKOS1 Iroon Polytechniou 9 15773 Zografou Athens, Greece S. STOURNAS1 2 Ministry of Transport Anastaseos 2 & Tsigante 10191 Holargos Athens, Greece Received: 09/12/05 *to whom all correspondence should be addressed: Accepted: 30/05/06 e-mail: [email protected] ABSTRACT Vehicle emissions constitute the main source of atmospheric pollution in modern cities. The increasing number of passenger cars, especially during the last decade, resulted in composite traffic problems with serious consequences on emissions and fuel consumption. This project was carried out in the Laboratory of Fuel Technology and Lubricants at NTUA in order to examine the effects of the driving patterns on fuel consumption and exhaust emissions from cars in the Athens basin. The typical driving profile consists of a complicated series of accelerations, decelerations and frequent stops and it is simulated by driving cycles on a laboratory chassis dynamometer. The New European Driving Cycle (NEDC) is applied in laboratory test approvals in the EU and is based on traffic data from European capitals (Paris and Rome). Traffic data from Athens was not included in the development of NEDC. The FTP 75 driving cycle and the Japan 10-15 modal cycle are currently used in the United States and Japan respectively. The different than other European cities and rapidly changing traffic conditions in Athens as well as the expanding transportation network and the atmospheric pollution problems impose the need to develop the Athens Driving Cycle (ADC). In this paper, onboard electronic equipment (GPS, OBD II reader, accelerometer, etc) was used and “real world” traffic data was collected, covering almost all the Athens road network for a two year period. Dedicated software was developed for the statistical analysis of the recorded parameters and therefore the first ADC was modeled with the following characteristics: ADC duration is 1160 seconds, the overall distance is 6512 meters, the mean velocity is 20.21 km h-1 and the maximum velocity is 70.86 km h-1. For comparison purposes, three passenger cars of different classification (Citroen Xsara 1.6L, a Mitsubishi Space Runner 2.0L Turbo and a Chrysler PT Cruiser 2.4L Turbo) were tested on a laboratory chassis dynamometer, applying three distinctive Driving Cycles: the Urban Driving Cycle (ECE-15), the New European Driving Cycle (NEDC) and the newly designed Athens Driving Cycle (ADC). Results show that NOX emissions are higher in ADC than ECE and EDC, up to 2.5 times. Higher CO emissions are recorded during ADC for 1.6L and 2.0L cars while ECE-15 gave the higher CO emissions for the 2.4L vehicle. Overall HC emissions do not show any significant variation. Fuel consumption is higher for ADC mode in all cases. KEYWORDS: NEDC, ADC, Driving Cycles, chassis dynamometer, exhaust emissions, fuel consumption VEHICLE EMISSIONS AND DRIVING CYCLES 283 1. INTRODUCTION Traffic is one of the main sources of atmospheric pollution in cities around the globe and Athens is no exception. The tremendous increase of transportation vehicles resulted in serious traffic problems consisting of frequent stops and intense driving (vigorous accelerations and decelerations). Vehicles are responsible for almost all of the Carbon Monoxide (CO) emissions, for about the 75% of the Hydrocarbon (HC) emissions and volatile organic compounts (VOC), and for about the 65% of the Nitrogen Oxide (NOx) emissions[1]. According to the APHEA programme (Air Pollution on Health-a European Approach) for Athens, the concequences of pollutants on the people’s health are devastating even if their concentration in air is below the safety levels [2]. The estimation of pollutants and the emission prediction for the European countries (CORINAIR programme) is based on specific software like COPERT ΙΙΙ [3] and FOREMOVE (FORecast of the Emissions from MOtor VEhicles)[4]. MEET project (Methodologies for Estimating air Pollutant Emissions from Transport), has developed a data base consisting of measurements on exhaust emission coefficients collected from various laboratories [5]. These coefficients are used by the COPERT software. Emissions from vehicles are affected by the driving patterns which mainly depend on traffic conditions. “Driving Cycles” have been developed to provide a speed-time profile that is representative of urban driving [6]. They are used to assimilate driving conditions on a laboratory chassis dynamometer for the evaluation of fuel consumption, the exhaust emissions and emission coefficient [7]. There are two major categories of driving cycles, legislative and non-legislative. According to legislative driving cycles, Exhaust Emission Specifications are imposed by governments for the car Emission Certification. Such cycles are the FTP-75 [8] used in the USA the NEDC used in Europe and the 10-15 used in Japan. Non-legislative cycles, such as the Hong Kong driving cycle [9], the Sydney driving cycle and the herein presented Athens driving cycle, find broad application in research for energy conservation and pollution evaluation. There are two ways of developing a driving cycle. One is composed from various driving modes of constant acceleration, deceleration and speed (like the NEDC and ECE), and is referred as modal or polygonal [10]. The other type is derived from actual driving data and is referred as “real world” cycle. Such cycles are the FTP-75 and the ADC. The real world cycles are more dynamic, reflecting the more rapid acceleration and deceleration patterns experienced during on road conditions. This more dynamic driving in real world conditions results on higher emissions compared to those under the standard emission (modal) test cycles [11]. The standardized inspections are official procedures of measuring fuel consumption and emissions. They are in force since 1970 and are frequently updated. The directive 70/220/EU, describes the procedure that all new types of vehicles have to follow, for their emission certification. The driving cycle used by the EU countries for the certification of passenger cars and light trucks, consists of four segments of ECE-15 (also known as Urban Driving Cycle: UDC) and the Extra Urban Driving Cycle (EUDC). The procedure is also called New European Driving Cycle (NEDC) after it was converted to cold start procedure by eliminating idling procedure i.e. emission sampling procedure starts at the same time that engine starts. This change was accomplished in the beginning of 2000. ECE-15 cycle is representative of city driving conditions in a typical European city (eg. Paris and Rome). EUDC simulates high speed driving and is applied directly after the fourth segment of ECE-15 (Figure 1). The NEDC gives information about the vehicle operation in high speeds and an overall estimation of the emitted pollutants. However, there is poor correlation with real driving patterns and their effects on fuel consumption and emissions. The differences of Athens compared to other EU cities, as far as the infrastructure, the road network and the public transportation system is concerned, imposes the need to develop a representative driving cycle for more accurate evaluation of the exhaust emissions and the fuel consumption. 284 TZIRAKIS et al. Figure 1. NEDC 2. METHODOLOGY 2.1. Athens Driving Cycle (ADC) development Figure 2. Flow chart of the procedure adopted for ADC development and emission measurement Driving data was collected in the whole area of the Attica basin seven days a week from 6:00 until 24:00. The number of samples in each time zone is proportionate to the traffic density according to information from the Ministry of Environment Physical Planning and Public Works [12]. The “chase car” method was applied for the collection of driving data [13], [14]. The test vehicles are typical passenger cars of different engine capacity, equipped with a GPS receiver (Global Positioning System), an accelerometer, an OBD information recording (On Board Diagnosis reader), synchronized by a lap-top computer [15]. The distance of the driving cycle that is to be developed for a specific city, should be according to a representative distance that vehicles cover in that specific city. The distance chosen for ADC development is equal to the mean route length per cold start that vehicles cover in Athens. This overall distance is equal to 6.9 km for the urban area[16]. This distance was reduced by 5% because on the one hand the recordings took place in the urban as well as the suburban area of Athens were the traveling speeds are higher and on the other hand the cycle should have duration that can be easily compared with the EDC. Several methods were used in the past in order to process the huge amount of the on-road driving characteristics of the test vehicles [10], [17]. VEHICLE EMISSIONS AND DRIVING CYCLES 285 In this project, data were statistically processed using specially developed software taking into account parameters such as the topographical characteristics of the Attica basin (road slope) and other relative studies [18], [20] and the Athens Driving Cycle for 2002 (ADC 2002) was derived (Figure 3). Also extreme phases were removed such as very high top speed phases. Only the vital phases were kept to be processed and finally give the resulting ADC. The characteristics of the cycle match the overall summary characteristics of the data up to 99%. It consists of 16 phases of various durations. Idle time in the ADC seize a large proportion of cycle time, cruising time is just non-existent and the vigorous changes in traveling speed describe the aggressive way that passenger cars are being driven in the specific city.
Recommended publications
  • Regulations and Standards for Clean Trucks and Buses on the Right Track?
    CPB Corporate Partnership Board Regulations and Standards for Clean Trucks and Buses On the Right Track? Decarbonising Transport Regulations and Standards for Clean Trucks and Buses On the Right Track? Decarbonising Transport The International Transport Forum The International Transport Forum is an intergovernmental organisation with 62 member countries. It acts as a think tank for transport policy and organises the Annual Summit of transport ministers. ITF is the only global body that covers all transport modes. The ITF is politically autonomous and administratively integrated with the OECD. The ITF works for transport policies that improve peoples’ lives. Our mission is to foster a deeper understanding of the role of transport in economic growth, environmental sustainability and social inclusion and to raise the public profile of transport policy. The ITF organises global dialogue for better transport. We act as a platform for discussion and pre- negotiation of policy issues across all transport modes. We analyse trends, share knowledge and promote exchange among transport decision-makers and civil society. The ITF’s Annual Summit is the world’s largest gathering of transport ministers and the leading global platform for dialogue on transport policy. The Members of the Forum are: Albania, Armenia, Argentina, Australia, Austria, Azerbaijan, Belarus, Belgium, Bosnia and Herzegovina, Bulgaria, Canada, Chile, China (People’s Republic of), Croatia, Czech Republic, Denmark, Estonia, Finland, France, Georgia, Germany, Greece, Hungary, Iceland, India, Ireland, Israel, Italy, Japan, Kazakhstan, Korea, Latvia, Liechtenstein, Lithuania, Luxembourg, Malta, Mexico, Republic of Moldova, Mongolia, Montenegro, Morocco, the Netherlands, New Zealand, North Macedonia, Norway, Poland, Portugal, Romania, Russian Federation, Serbia, Slovak Republic, Slovenia, Spain, Sweden, Switzerland, Tunisia, Turkey, Ukraine, the United Arab Emirates, the United Kingdom, the United States and Uzbekistan.
    [Show full text]
  • Motor Vehicle Loans Emission Factors Database Methodology Database Methodology
    Economic Activity-based Emission Factors Motor Vehicle Loans Emission Factors Database methodology Database methodology April 2020 April 2020 Motor Vehicle Loans Emission Factors – Database Methodology Table of Contents 1. Overview ................................................................................................................... 4 1.1. Definitions ................................................................................................................................... 5 1.1.1 Emission factor of a vehicle...................................................................................................................... 5 1.1.2 Emission rate of a vehicle ......................................................................................................................... 5 1.1.3 Propulsion types ....................................................................................................................................... 5 1.1.4 Scopes 1 and 2 emissions ......................................................................................................................... 5 1.2. Methodology tree ....................................................................................................................... 6 2. Detailed methodology ............................................................................................... 7 2.1. Primary method: make-and-model data ..................................................................................... 7 2.1.1. Equation ...................................................................................................................................................
    [Show full text]
  • Reducing Nox Emissions on the Road
    EUROPEAN CONFERENCE OF MINISTERS OF TRANSPORT REDUCING NOX EMISSIONS ON THE ROAD ENSURING FUTURE EXHAUSTS EMISSION LIMITS DELIVER AIR QUALITY STANDARDS Reducing NOx Emissions on the Road FOREWORD AND ACKNOWLEDGEMENTS Transport Ministers noted the conclusions and recommendations of this report at the meeting of the Council of the ECMT in Dublin on 17-18 May 2006, and asked the Secretariat to transmit the report to the UN/ECE with a request to expedite deliberations on improved vehicle certification tests for NOx emissions for adoption world-wide. This was duly done. The ECMT is grateful to Heinz Steven of the RWTÜV Institute for Vehicle Technology in Germany for the analysis presented in this paper. The report was prepared by the ECMT Group on Transport and the Environment in co-operation with the OECD Environment Policy Committee’s Working Group on Transport. © ECMT, 2006 1 Reducing NOx Emissions on the Road TABLE OF CONTENTS ACKNOWLEDGEMENTS ...............................................................................................................1 EXECUTIVE SUMMARY ................................................................................................................3 1. INTRODUCTION .....................................................................................................................6 2. REVIEW OF EU AND UN-ECE REGULATIONS.....................................................................7 2.1 Cars and light duty vehicles ..........................................................................................7
    [Show full text]
  • Development of a World-Wide Worldwide Harmonized Light Duty Driving Test Cycle (WLTC)
    Transmitted by the WLTP DHC Chair Informal document GRPE-68-03 th (68 GRPE, 7-10 January 2014, agenda item 2) Development of a World-wide Worldwide harmonized Light duty driving Test Cycle (WLTC) ~ Technical Report ~ UN/ECE/WP.29/GRPE/WLTP-IG DHC subgroup December 2013 Author: Monica Tutuianu1, Alessandro Marotta1, Heinz Steven2, Eva Ericsson3, Takahiro Haniu4, Noriyuki Ichikawa5, Hajime Ishii6 1 European Commission - Joint Research Centre (Italy) 2 Data analysis and Consultancy (Germany) 3 WSP Analysis & Strategy (Sweden) 4 Japan Automobile Research Institute (Japan) 5 Japan Automobile Standards Internationalization Center (Japan, DHC Technical Secretary) 6 National Traffic Safety and Environment Laboratory (Japan, DHC Chair) Contents 1. Introduction ................................................................................................................................................ 1 2. Objective .................................................................................................................................................... 2 3. Structure of the project ............................................................................................................................... 2 4. Cycle development .................................................................................................................................... 4 4.1. Approach ................................................................................................................................................... 4 4.2. In-use
    [Show full text]
  • How Urban Delivery Vehicles Can Boost Electric Mobility Decarbonising Transport How Urban Delivery Vehicles Can Boost Electric Mobility Decarbonising Transport
    CPB Corporate Partnership Board How Urban Delivery Vehicles can Boost Electric Mobility Decarbonising Transport How Urban Delivery Vehicles can Boost Electric Mobility Decarbonising Transport The International Transport Forum The International Transport Forum is an intergovernmental organisation with 62 member countries. It acts as a think tank for transport policy and organises the Annual Summit of transport ministers. ITF is the only global body that covers all transport modes. The ITF is politically autonomous and administratively integrated with the OECD. The ITF works for transport policies that improve peoples’ lives. Our mission is to foster a deeper understanding of the role of transport in economic growth, environmental sustainability and social inclusion and to raise the public profile of transport policy. The ITF organises global dialogue for better transport. We act as a platform for discussion and pre- negotiation of policy issues across all transport modes. We analyse trends, share knowledge and promote exchange among transport decision-makers and civil society. The ITF’s Annual Summit is the world’s largest gathering of transport ministers and the leading global platform for dialogue on transport policy. The Members of the Forum are: Albania, Armenia, Argentina, Australia, Austria, Azerbaijan, Belarus, Belgium, Bosnia and Herzegovina, Bulgaria, Canada, Chile, China (People’s Republic of), Croatia, Czech Republic, Denmark, Estonia, Finland, France, Georgia, Germany, Greece, Hungary, Iceland, India, Ireland, Israel, Italy, Japan, Kazakhstan, Korea, Latvia, Liechtenstein, Lithuania, Luxembourg, Malta, Mexico, Republic of Moldova, Mongolia, Montenegro, Morocco, the Netherlands, New Zealand, North Macedonia, Norway, Poland, Portugal, Romania, Russian Federation, Serbia, Slovak Republic, Slovenia, Spain, Sweden, Switzerland, Tunisia, Turkey, Ukraine, the United Arab Emirates, the United Kingdom, the United States and Uzbekistan.
    [Show full text]
  • A Reference Book of Driving Cycles for Use in the Measurement of Road Vehicle Emissions
    Published Project Report PPR354 A reference book of driving cycles for use in the measurement of road vehicle emissions T J Barlow, S Latham, I S McCrae and P G Boulter TRL Limited PUBLISHED PROJECT REPORT PPR354 A reference book of driving cycles for use in the measurement of road vehicle e missions Version: 3 by T J Barlow, S Latham, I S McCrae and P G Boulter Prepared for: Department for Transport, Cleaner Fuels & Vehicles 4 Chris Parkin Copyright TRL Limited, June 2009 This report has been prepared for the Department for Transport. The views expressed are those of the authors and not necessarily those of the Department for Transport. If this report has been received in hard copy fro m TRL then, in support of the company’s environmental goals, it will have been printed on paper that is FSC (Forest Stewardship Council) registered and TCF (Totally Chlorine -Free) registered. Approvals Project Manager T Barlow Quality Re viewed I McCrae When purchased in hard copy, this publication is printed on paper that is FSC (Forest Stewardship Council) registered and TCF (Totally Chlorine Free) registered. Contents Page 1 Introduction 1 1.1 Background 1 1.2 The use of driving cycles in the measurement of emissions 1 1.3 The importance of driving cycles in emission model ling 2 1.4 The art.kinema utility 4 2 The driving cycles 6 3 References 14 Appendix A : G lossary 15 Appendix B: D efinitions of art.kinema parameters 17 Appendix C : D riving cycles and kinematic parameters 20 A Reference Book of Driving C ycles Version 3 1 Introduction 1.1 Backgroun d TRL Limited has been commissioned by the Department for Transport (DfT) to review the methodology currently used in the UK NAEI 1 to estimate emissions of air pollutants f rom road vehicles.
    [Show full text]
  • Passenger Car Emissions in Turkey a Baseline Analysis of Current Vehicle Taxation Policies in Turkey and Their Impact on New and Used Passenger Cars
    WHITE PAPER APRIL 2019 PASSENGER CAR EMISSIONS IN TURKEY A BASELINE ANALYSIS OF CURRENT VEHICLE TAXATION POLICIES IN TURKEY AND THEIR IMPACT ON NEW AND USED PASSENGER CARS Murat Şenzeybek and Peter Mock www.theicct.org [email protected] BEIJING | BERLIN | BRUSSELS | SAN FRANCISCO | WASHINGTON ACKNOWLEDGMENTS The authors would like to thank all internal and external reviewers of this report for their guidance and constructive comments, with special thanks to the Turkish Automotive Distributers’ Association (ODD), the Turkish Automotive Manufacturers’ Association (OSD), Sonsoles Díaz, John German, Joshua Miller, Sandra Wappelhorst, and Zifei Yang (all ICCT). For additional information: International Council on Clean Transportation Europe Neue Promenade 6, 10178 Berlin +49 (30) 847129-102 [email protected] | www.theicct.org | @TheICCT © 2019 International Council on Clean Transportation Funding for this work was generously provided by the Istanbul Policy Center - Sabancı University - Stiftung Mercator Initiative. EXECUTIVE SUMMARY The Turkish automotive industry is the fifth largest in Europe and critical to Turkey’s economic stability. Passenger car taxes in Turkey are higher than in almost all of Europe. The largest portion comes from the vehicle registration tax (ÖTV), which is tied to engine size, or displacement. The tax nearly doubles for engine displacement above 1,600 cm3 and triples for engine displacement above 2,000 cm3. As a result, consumers overwhelmingly purchase new cars with smaller engines. Ninety percent of vehicles on the road have an engine displacement below 1,600 cm3 and almost no vehicles have an engine displacement above 2,000 cm3 (Figure ES-1). 1000 Engine displacement (in cm3) 2001+ 1601−2000 1501−1600 1401−1500 750 1301−1400 <1300 500 250 Passenger cars on the road (in thousands) 0 1985 1990 1995 2000 2005 2010 2015 Model year Figure ES-1: Passenger cars on the road in Turkey, differentiated by model year and engine size.
    [Show full text]
  • An Initial View on Methodologies for Emission Baselines: Transport Case Study
    COM/ENV/EPOC/IEA/SLT(2001)10 OECD ENVIRONMENT DIRECTORATE AND INTERNATIONAL ENERGY AGENCY AN INITIAL VIEW ON METHODOLOGIES FOR EMISSION BASELINES: TRANSPORT CASE STUDY INFORMATION PAPER Organisation for Economic Co-operation and Development 2001 International Energy Agency Organisation de Coopération et de Développement Economiques Agence internationale de l'énergie COM/ENV/EPOC/IEA/SLT(2001)10 FOREWORD This document was prepared by the OECD and IEA Secretariats in October 2001 at the request of the Annex I Expert Group on the United Nations Framework Convention on Climate Change. The Annex I Expert Group oversees development of analytical papers for the purpose of providing useful and timely input to the climate change negotiations. These papers may also be useful to national policy makers and other decision-makers. In a collaborative effort, authors work with the Annex I Expert Group to develop these papers. However, the papers do not necessarily represent the views of the OECD or the IEA, nor are they intended to prejudge the views of countries participating in the Annex I Expert Group. Rather, they are Secretariat information papers intended to inform Member countries, as well as the UNFCCC audience. The Annex I Parties or countries referred to in this document refer to those listed in Annex I to the UNFCCC (as amended at the 3rd Conference of the Parties in December 1997): Australia, Austria, Belarus, Belgium, Bulgaria, Canada, Croatia, Czech Republic, Denmark, the European Community, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Japan, Latvia, Liechtenstein, Lithuania, Luxembourg, Monaco, Netherlands, New Zealand, Norway, Poland, Portugal, Romania, Russian Federation, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey, Ukraine, United Kingdom of Great Britain and Northern Ireland, and United States of America.
    [Show full text]
  • Policy Options to Reduce Emissions from the Road Transport Sector in Turkey
    JULY 2016 IPC–MERCATOR POLICY BRIEF POLICY OPTIONS TO REDUCE EMISSIONS FROM THE ROAD TRANSPORT SECTOR IN TURKEY Peter Mock* Executive Summary Vehicle sales and emissions are steeply rising in Turkey. It is important not only from an environmental and health protection perspective but also from an economic and international competitiveness point of view that new vehicles coming into the market in Turkey in future years are equipped with the best available technology and have the lowest possible emissions. A set of distinct policy measures can help increase the efficiency and reduce the emissions levels of the vehicle fleet in Turkey. Mandatory CO2 emission standards for new vehicles have been successfully applied in other markets but at this point have not yet been introduced in Turkey. At an annual reduction rate of 4% and 6%, an average new car fleet CO2 level of 84 g/km and 69 g/km, respectively, would be achievable by 2023 while maintaining a consumer payback period as short as four to five years thanks to the fuel cost savings associated with lower CO2 emission levels. Revising the current vehicle taxation scheme in Turkey to be partly based on vehicle CO2 emissions would provide a strong financial incentive for customers to choose more efficient cars that emit less CO2. By introducing the new Worldwide Harmonized Light Vehicles Test Procedure (WLTP), mandatory on-road emissions tests for new vehicle models and regular retesting of in-use vehicles by the authorities or independent third parties, Turkey would significantly improve the reliability of vehicle emissions data, which is seen as the basis for all policy measures.
    [Show full text]
  • An Overview of WLTP for Passenger Cars and Light Commercial Vehicles Editorial
    A New Standard An overview of WLTP for passenger cars and light commercial vehicles Editorial Ladies and Gentlemen, “Transformation” is the topic of the hour: the automotive industry is undergoing a process of fundamental upheaval – and not just in terms of drive technologies and digitalization. From autumn this year the entire industry will face another important change: the successive introduction of the WLTP test cycle for passenger cars and light commercial vehicles. What does this term refer to? Put simply: a new standardised procedure for measuring consumption and emissions that was agreed by the EU member states in the summer of 2016. It is intended to provide customers with a more realistic image of a vehicle’s fuel consumption and emissions. The WLTP includes many more acceleration and braking processes than the “old” NEDC; at the same time the requirements for the test rig test have been made even more stringent. For you as a fleet customer the WLTP means more transparency. This is the first time that a measuring procedure also includes certain optional equipment that can affect consump- tion and emissions. These values will be displayed in future while the vehicle is configured – and this can provide additional assistance when you are setting up your fleet. The important thing is that the WLTP does not affect vehicles that have already been regis- tered. The procedure will be introduced step by step and is currently relevant to new type approvals for carmakers. Only in the autumn of 2018 will all vehicles made in the EU have to be certified according to the WLTP.
    [Show full text]
  • Reducing Vehicle Emissions in Turkey
    WHITE PAPER AUGUST 2016 REDUCING VEHICLE EMISSIONS IN TURKEY POLICY MEASURES TO ADDRESS GREENHOUSE GAS AND AIR POLLUTANT EMISSIONS FROM THE ROAD TRANSPORT SECTOR Peter Mock www.theicct.org [email protected] BEIJING | BERLIN | BRUSSELS | SAN FRANCISCO | WASHINGTON ACKNOWLEDGEMENTS Peter Mock is managing director of ICCT Europe and a 2015/16 fellow at the Istanbul Policy Center (IPC). IPC is an independent policy research institute with global outreach and the mission to foster academic research in social sciences and its application to policy making. The Mercator-IPC Fellowship Program is a joint initiative among IPC, Sabancı University, and Stiftung Mercator. Funding for this work was generously provided through the Mercator-IPC Fellowship Program (http://ipc.sabanciuniv.edu/en/ about_fellowship/). The author thanks the reviewers of this report for their constructive comments, as well as the following individuals for their particular contribution to the development of this report: Gülcihan Çiğdem (IPC), Egemen Can Erçelik (IPC), Megan Gisclon (IPC), Daniel Grütjen (Stiftung Mercator), Fuat Keyman (IPC), Wolfram Knörr (IFEU), Pınar Köse (EMBARQ Turkiye), Joshua Miller (ICCT), Doruk Özdemir (DLR), Ümit Şahin (IPC), Jan Taşçı (Stiftung Mercator), Uwe Tietge (ICCT), Çiğdem Tongal (IPC), Ethemcan Turhan (IPC), Alper Ünal (Istanbul Technical University), Zifei Yang (ICCT). International Council on Clean Transportation Europe Neue Promenade 6, 10178 Berlin +49 (30) 847129-102 [email protected] | www.theicct.org | @TheICCT © 2016 International Council on Clean Transportation EXECUTIVE SUMMARY Vehicle sales and vehicle emissions are steeply rising in Turkey. This rise is important not only from an environmental and health protection perspective, but also from an economic and international competitiveness point of view that new vehicles coming into the market in Turkey in future years should be equipped with the best available technology and have the lowest possible emissions.
    [Show full text]
  • The Rise of Real Drive Emission to Mitigate Difference of Lab Tests and On-Road Emission
    The rise of real drive emission to mitigate difference of lab tests and on-road emission S M Ashrafur Rahman1,*, I M Rizwan Fattah2,*, TM Indra Mahlia2, Fajle Rabbi Ashik3, Mahmudul Hassan4, Tausif Murshed5, Md Ashraful Imran5, Md Hamidur Rahman6, Md Akibur Rahman7, Mohammad Al Mahdi Hasan8 1Biofuel Engine Research Facility, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia. Email- [email protected] Corresponding Author 2School of Information Systems and Modelling, Faculty of Engineering and Information Technology, University of Technology Sydney, NSW 2007, Australia. Email- [email protected]; [email protected] 3BUET-Japan Institute of Disaster Prevention and Urban Safety, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh. Email- [email protected] 4International Training Network (ITN), Bangladesh University of Engineering and Technology, Dhaka, Bangladesh. [email protected] 5Department of Civil, Environmental, and Geomatics Engineering, Florida Atlantic University, 777 Glades Rd Bldg 36 Boca Raton, FL 33431. Email- [email protected], [email protected] 6Asian Disaster Preparedness Center (ADPC), Rajshahi, Bangladesh. Email- [email protected] 7Department of Chemical Engineering, Bangladesh University of Engineering and Technology. Email- [email protected] 8Griffith University, Brisbane, Australia. Email- [email protected] Abstract Air pollution caused by vehicle emissions has drawn serious concern about public health. Vehicle emissions generally depend on many factors viz. nature of the vehicle, driving style, traffic conditions, emission control technologies, and operational conditions. There is an increasing concern about the certification cycles used by various regulatory authorities. This is due to the fact that exhaust emission certification procedure is carried out in chassis dynamometer for light-duty vehicles and in engine dynamometer for heavy-duty vehicles under laboratory conditions.
    [Show full text]