Variation in the Effect of Corvid Predation on Songbird Populations

Total Page:16

File Type:pdf, Size:1020Kb

Variation in the Effect of Corvid Predation on Songbird Populations Variation in the effect of corvid predation on songbird populations Submitted by Lucy Capstick to the University of Exeter as a thesis for the degree of Doctor of Philosophy in Psychology in May 2017 This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University. Signature: 1 2 TABLE OF CONTENTS TABLE OF CONTENTS ............................................................................................. 3 ABSTRACT ................................................................................................................ 8 LIST OF FIGURES ................................................................................................... 10 LIST OF TABLES ..................................................................................................... 12 ACKNOWLEDGEMENTS ........................................................................................ 14 DECLARATION ........................................................................................................ 16 Chapter One Variation in the effect of predators on bird prey species ……….. 19 1.1 INTRODUCTON .......................................................................................... 21 1.2 THE EFFECT OF DIFFERENCES IN PREDATOR AND PREY ECOLOGY AND BEHAVIOUR ON THE PREDATOR-PREY RELATIONSHIP .......................... 27 1.2.1 Differences in prey breeding ecology and behaviour ................................... 27 1.2.2 Differences in prey species’ demography .................................................... 29 1.2.3 Differences in predator ecology and behaviour ........................................... 31 1.3 THE EFFECT OF VARIATION IN HABITAT ON THE PREDATOR-PREY RELATIONSHIP ....................................................................................................... 34 1.3.1 Habitat variation and prey species’ vulnerability to predation ...................... 35 1.3.2 Habitat variation and predator species’ impact on prey ............................... 36 1.3.2.1 Landscape scale habitat variation ............................................................... 37 1.3.2.2 Local scale habitat variation ........................................................................ 38 1.3.2.3 Individual scale variation in habitat use ....................................................... 39 1.4 CONCLUSIONS .......................................................................................... 40 Chapter Two Factors predicting the susceptibility of songbirds to nest predation by corvids .............................................................................................. 43 ABSTRACT .............................................................................................................. 45 2.1 INTRODUCTION ......................................................................................... 46 2.2 METHODS ................................................................................................... 49 2.2.1 Literature search .......................................................................................... 49 2.2.2 Analysis of papers ....................................................................................... 49 2.2.3 Predation figures ......................................................................................... 50 2.2.4 Predator identification .................................................................................. 50 2.2.5 Prey species breeding biology parameters .................................................. 51 2.2.6 Study type.................................................................................................... 52 2.2.7 Statistical analysis ....................................................................................... 52 3 2.3 RESULTS .................................................................................................... 55 2.3.1 Factors affecting rates of predation ............................................................. 55 2.3.2 Model predictions ........................................................................................ 58 2.4 DISCUSSION .............................................................................................. 61 2.4.1 Factors influencing nest predation by corvids .............................................. 61 2.4.2 Implications of findings ................................................................................ 65 2.5 APPENDICES ............................................................................................. 68 2.5.1 Literature search method ............................................................................. 68 2.5.2 Inclusion criteria ........................................................................................... 70 Chapter Three Variation in the impact of corvid predation on songbird population numbers ............................................................................................. 85 ABSTRACT .............................................................................................................. 87 3.1 INTRODUCTION ......................................................................................... 88 3.2 METHODS ................................................................................................... 91 3.2.1 Literature search .......................................................................................... 91 3.2.2 Susceptibility to corvid predation ................................................................. 92 3.2.3 Response to corvid removal ........................................................................ 92 3.2.4 Long-term population trends ........................................................................ 93 3.2.5 Statistical analysis ....................................................................................... 93 3.3 RESULTS .................................................................................................... 94 3.3.1 Nesting mortality and susceptibility to corvid predation ............................... 95 3.3.2 Nesting mortality and response to corvid removal ....................................... 95 3.3.3 Mortality at different life history stages and long-term population trends ..... 95 3.4 DISCUSSION .............................................................................................. 96 3.4.1 Nesting mortality and susceptibility to corvid predation ............................... 97 3.4.2 Nesting mortality and response to corvid removal ....................................... 97 3.4.3 Mortality at different life history stages and long-term population trends ..... 98 3.4.4 Conclusions ............................................................................................... 100 Chapter Four Variation in magpie predation of artificial nests ........................ 101 ABSTRACT ............................................................................................................ 103 4.1 INTRODUCTION ....................................................................................... 104 4.2 METHODS ................................................................................................. 107 4 4.2.1 Field site .................................................................................................... 107 4.2.2 Identification of nest predators ................................................................... 107 4.2.3 Determining magpie territories ................................................................... 108 4.2.4 Measurement of nest predation ................................................................. 109 4.2.5 Measurement of habitat variation .............................................................. 111 4.2.6 Measurement of variation in magpie behaviour ......................................... 111 4.2.7 Statistical analysis ..................................................................................... 111 4.3 ETHICAL STATEMENT ............................................................................. 113 4.4 RESULTS .................................................................................................. 114 4.4.1 Predator identity ........................................................................................ 114 4.4.2 Factors affecting artificial nest predation ................................................... 115 4.5 DISCUSSION ............................................................................................ 120 4.5.1 Predators of artificial nests ........................................................................ 121 4.5.2 Effect of magpie presence on nest predation ............................................ 122 4.5.3 Effect of location on artificial nest predation .............................................. 124 4.5.4 Conclusions ............................................................................................... 127 Chapter Five Effect of magpie ecology and habitat variation on farmland songbird nest site choice and nest success ..................................................... 129 ABSTRACT ...........................................................................................................
Recommended publications
  • 444 Yellowhammer Put Your Logo Here
    Javier Blasco-Zumeta & Gerd-Michael Heinze Sponsor is needed. Write your name here 444 Yellowhammer Put your logo here Yellowhammer. Winter. Adult. Male (04-XI) Yellowhammer. Spring. Pattern of upperparts and YELLOWHAMMER (Emberiza citri- head: top male (Photo: nella) Ottenby Bird Observa- tory); bottom female IDENTIFICATION (Photo: Ottenby Bird Observatory). 14-18 cm. Breeding male with yellow head; reddish upperparts, brown streaked; chestnut- reddish rump and uppertail coverts, unstreaked; bluish bill; in winter similar to female. Female more brownish and streaked than male. Yellowhammer. Juvenile. Pattern of head (Photo: Ondrej Kauzal) and up- perparts (Photo: Alejan- dro Corregidor). SIMILAR SPECIES Male in breeding plumage unmistakable. Fe- Yellowhammer. Win- male similar to female Cirl Bunting which ter. Pattern of upper- has grey-olive rump and lacks pale patch on parts and head: top nape. Female Ortolan Bunting has brown rump male; bottom female. and grey-buff underparts. Juveniles Yellowham- mer are unmistakable due to their chestnut rump. http://blascozumeta.com Write your website here Page 1 Javier Blasco-Zumeta & Gerd-Michael Heinze Sponsor is needed. Write your name here 444 Yellowhammer Put your logo here Yellowham- mer. Spring. Sexing. Pat- tern of head: top male (Photo: Ot- tenby Bird Observa- tory); bot- tom female (Photo: Ot- tenby Bird Observa- Cirl Bunting. Female tory). Yellowhammer. Spring. Sexing. Pattern of breast: Ortolan Bunting. 1st year. left male (Photo: Reinhard Vohwinkel); right female (Photo: Reinhard Vohwinkel). SEXING In breeding plumage, male with head and under- parts deep yellow. Female with head and under- parts brownish. After postbreeding/postjuvenile moults, adult male with crown feathers yellow on more than half length without a dark shaft streak.
    [Show full text]
  • Four Year Study Involving Wildlife Monitoring of Commercial SRC Plantations Planted on Arable Land and Arable Control Plots
    Four year study involving wildlife monitoring of commercial SRC plantations planted on arable land and arable control plots DTI TECHNOLOGY PROGRAMME: NEW AND RENEWABLE ENERGY CONTRACT NUMBER B/U1/00627/00/00 URN NUMBER 04/961 PROJECT REPORT The DTI drives our ambition of ’prosperity for all' by working to create the best environment for business success in the UK. We help people and companies become more productive by promoting enterprise, innovation and creativity. We champion UK business at home and abroad. We invest heavily in world-class science and technology. We protect the rights of working people and consumers. And we stand up for fair and open markets in the UK, Europe and the world. ii ARBRE MONITORING - ECOLOGY OF SHORT ROTATION COPPICE B/U1/00627/REP DTI/PUB URN 04/961 Contractor The Game Conservancy Trust (GCT) Sub-Contractor The Central Science Laboratory (CSL) Prepared by M.D.Cunningham (GCT) J.D. Bishop (CSL) H.V.McKay (CSL) R.B.Sage (GCT) The work described in this report was carried out under contract as part of the DTI Technology Programme: New and Renewable Energy. The views and judgements expressed in this report are those of the contractor and do not necessarily reflect those of the DTI. First published 2004 © Crown Copyright 2004 ii i EXECUTIVE SUMMARY Introduction This project, funded by the Department of Trade and Industry (DTI) through Future Energy Solutions, was conducted over a four-year period starting in 2000. The project involved wildlife monitoring within Short Rotation Coppice (SRC) plots managed commercially for the project ARBRE (Arable Biomass Renewable Energy) throughout Yorkshire.
    [Show full text]
  • To Download the Creamer's Field Student Activity Book
    Creamer's Field Student Activity Book Creamer's Field Migratory Waterfowl Refuge Fairbanks, Alaska Page 2 Alaska Songbird Institute Table of Contents Introduction Waterfowl (Geese & Ducks) Welcome to the new Creamer's Field Greater White-fronted Goose...........4 Student Activity Book! This book Canada Goose...................................5 includes a coloring guide to many Mallard.............................................6 of the common birds you can see at Northern Pintail................................7 Creamer's Field. It also includes some Birds of Prey (Raptors) pages to use in school and at home. Bald Eagle........................................8 Peregrine Falcon...............................9 We hope that you will remember to Cranes bring it with you every time you visit Sandhill Crane.................................10 Creamer's Field and to share what you Flycatchers have learned with others! Alder Flycatcher...............................11 Chickadees If you have feedback or questions, Black-capped Chickadee..................12 please contact the Alaska Songbird Kinglets Institute. This book and other Ruby-crowned Kinglet.....................13 educational materials are available Thrushes on our website at: Swainson’s Thrush...........................14 http://aksongbird.org. American Robin...............................15 Warblers This book was provided for you by Orange-crowned Warbler.................16 the Alaska Songbird Institute with support from Yellow-rumped Warbler...................17 the Alaska Department
    [Show full text]
  • Breeding Farmland Birds and the Role of Habitats Created Under Agri-Environment Schemes
    Breeding farmland birds and the role of habitats created under agri-environment schemes Niamh M. McHugh Department of Life Sciences Imperial College London A thesis submitted for the degree of Doctor of Philosophy rd 23 of April, 2015 Abstract In this thesis, I aim to assess how farmland birds use insect-rich agri-environment scheme (AES) foraging habitats during the breeding season and how such birds might benefit from them. It is particularly focused on how the coverage and quality (measured by insect food levels and food accessibility) of AES habitats influence territory selection, foraging activities and breeding success. The thesis begins by explaining why farmland birds have declined, reviewing how AES may help reverse these trends, along with outlining why AES may fail to benefit breeding birds (Chapter one). I then investigated whether the addition of wildflowers to AES margins, boundary type, crop type, chick food availability or accessibility influenced the foraging activity of insectivores, mixed diet species and the passerine community in general (Chapter two). Next, I wanted to find out if territory selection by a declining farmland bird the yellowhammer Emberiza citronella related to the quantity of AES habitat available; models also accounted for chick food abundance, landscape diversity and nest site features (Chapter three). Subsequently I investigated how the availability of AES can affect chick diet and survival using the Eurasian tree sparrow Passer monatus as a focus species. I compared the abundance and diversity of tree sparrow chick food items between nest boxes with and without access to AES habitats aimed at foraging birds (Chapter four).
    [Show full text]
  • Rejection Behavior by Common Cuckoo Hosts Towards Artificial Brood Parasite Eggs
    REJECTION BEHAVIOR BY COMMON CUCKOO HOSTS TOWARDS ARTIFICIAL BROOD PARASITE EGGS ARNE MOKSNES, EIVIN ROSKAFT, AND ANDERS T. BRAA Departmentof Zoology,University of Trondheim,N-7055 Dragvoll,Norway ABSTRACT.--Westudied the rejectionbehavior shown by differentNorwegian cuckoo hosts towardsartificial CommonCuckoo (Cuculus canorus) eggs. The hostswith the largestbills were graspejectors, those with medium-sizedbills were mostlypuncture ejectors, while those with the smallestbills generally desertedtheir nestswhen parasitizedexperimentally with an artificial egg. There were a few exceptionsto this general rule. Becausethe Common Cuckooand Brown-headedCowbird (Molothrus ater) lay eggsthat aresimilar in shape,volume, and eggshellthickness, and they parasitizenests of similarly sizedhost species,we support the punctureresistance hypothesis proposed to explain the adaptivevalue (or evolution)of strengthin cowbirdeggs. The primary assumptionand predictionof this hypothesisare that somehosts have bills too small to graspparasitic eggs and thereforemust puncture-eject them,and that smallerhosts do notadopt ejection behavior because of the heavycost involved in puncture-ejectingthe thick-shelledparasitic egg. We comparedour resultswith thosefor North AmericanBrown-headed Cowbird hosts and we found a significantlyhigher propor- tion of rejectersamong CommonCuckoo hosts with graspindices (i.e. bill length x bill breadth)of <200 mm2. Cuckoo hosts ejected parasitic eggs rather than acceptthem as cowbird hostsdid. Amongthe CommonCuckoo hosts, the costof acceptinga parasiticegg probably alwaysexceeds that of rejectionbecause cuckoo nestlings typically eject all hosteggs or nestlingsshortly after they hatch.Received 25 February1990, accepted 23 October1990. THEEGGS of many brood parasiteshave thick- nestseither by grasping the eggs or by punc- er shells than the eggs of other bird speciesof turing the eggs before removal. Rohwer and similar size (Lack 1968,Spaw and Rohwer 1987).
    [Show full text]
  • Weight and Size Variation in the Gray Catbird
    WEIGHT AND SIZE VARIATION IN THE GRAY CATBIRD BY GILBERT S. RAYNOR INTRODUCTION Weights of wild birds fluctuate becauseof various activity patterns governed by either internal or external stimuli. Important short time- scaleactivities include locomotion,feeding, and defecation;those on a longer time-scaleinclude migration, reproduction, and molt. Stimuli controllingthese activitiesinclude day length, temperature, hunger, fright, and many others, someoperating directly and others indirectly. Weight changesin living birds provide cluesto other aspectsof their biology,to environmentalstresses, and to the longer-periodactivities in which the speciesor individualis engaged. Becauseof the many variablesdetermining the instantaneousweight of a bird and the limited number of times a wild bird can be captured and weighed(particularly without inadvertently influencing the weight), usefulinformation on cyclicalor systematicchanges can best be obtained from statisticalanalyses of large numbersof weightstaken throughout the duration of the cycleof interest.This paper presentsan analysisof weightvariation in the Gray Catbird (Dumetellacarolinensis) and relates thesevariations to time of day and year, activitypatterns, age, and sex. In contrastto weight, linear measurementsof individual birds are relativelyconstant after full growth is attained.Some change takes place in wing and tail length by wear betweenmolts but this is typicallyslow and gradual (Blake, 1971). Thus, sizeof the Catbird is documentedby age and sex but related only to season. Many authorshave reported bird weightsand several(Baldwin and Kendeigh, 1938; Becker and Stack, 1944; Wiseman, 1975) have ana- lyzedtheir data by age, sex,time of day or season.Most data were taken from living birds but somefrom tower kills (Graber and Graber, 1962; Tordoff and Mengel, 1956). Causesof weight changesand their signif- icance have been discussedpreviously (Nice, 1938; Blake, 1956).
    [Show full text]
  • New Zealand Passerines Help Clarify the Diversification of Major Songbird Lineages During the Oligocene
    GBE New Zealand Passerines Help Clarify the Diversification of Major Songbird Lineages during the Oligocene Gillian C. Gibb1,*,y, Ryan England2,4,y, Gerrit Hartig2,5, Patricia A. (Trish) McLenachan2, Briar L. Taylor Smith1, Bennet J. McComish2,6, Alan Cooper3, and David Penny2 1Ecology Group, Institute of Agriculture and Environment, Massey University, Palmerston North, New Zealand 2Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand 3Australian Centre for Ancient DNA, School of Earth and Environmental Sciences, University of Adelaide, South Australia, Australia 4Present address: Forensic Business Group, Institute of Environmental Science and Research (ESR Ltd.), Mt Albert Science Centre, Auckland, New Zealand 5Present address: Starlims Germany GmbH An Abbott Company, Witten, Germany 6Present address: School of Physical Sciences, University of Tasmania, Hobart, Australia *Corresponding author: E-mail: [email protected]. yThese authors contributed equally to this work. Accepted: October 7, 2015 Data deposition: This project has been deposited at GenBank under the accession numbers KC545397-KC545409, KT894672. Abstract Passerines are the largest avian order, and the 6,000 species comprise more than half of all extant bird species. This successful radiation probably had its origin in the Australasian region, but dating this origin has been difficult due to a scarce fossil record and poor biogeographic assumptions. Many of New Zealand’s endemic passerines fall within the deeper branches of the passerine radiation, and a well resolved phylogeny for the modern New Zealand element in the deeper branches of the oscine lineage will help us understand both oscine and passerine biogeography. To this end we present complete mitochondrial genomes representing all families of New Zealand passerines in a phylogenetic framework of over 100 passerine species.
    [Show full text]
  • Habitat Modelling and the Ecology of the Marsh Tit (Poecile Palustris)
    HABITAT MODELLING AND THE ECOLOGY OF THE MARSH TIT (POECILE PALUSTRIS) RICHARD K BROUGHTON A thesis submitted in partial fulfilment of the requirements of Bournemouth University for the degree of Doctor of Philosophy August 2012 Bournemouth University in collaboration with the Centre for Ecology & Hydrology This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with its author and due acknowledgement must always be made of the use of any material contained in, or derived from, this thesis. 2 ABSTRACT Richard K Broughton Habitat modelling and the ecology of the Marsh Tit (Poecile palustris) Among British birds, a number of woodland specialists have undergone a serious population decline in recent decades, for reasons that are poorly understood. The Marsh Tit is one such species, experiencing a 71% decline in abundance between 1967 and 2009, and a 17% range contraction between 1968 and 1991. The factors driving this decline are uncertain, but hypotheses include a reduction in breeding success and annual survival, increased inter-specific competition, and deteriorating habitat quality. Despite recent work investigating some of these elements, knowledge of the Marsh Tit’s behaviour, landscape ecology and habitat selection remains incomplete, limiting the understanding of the species’ decline. This thesis provides additional key information on the ecology of the Marsh Tit with which to test and review leading hypotheses for the species’ decline. Using novel analytical methods, comprehensive high-resolution models of woodland habitat derived from airborne remote sensing were combined with extensive datasets of Marsh Tit territory and nest-site locations to describe habitat selection in unprecedented detail.
    [Show full text]
  • Sparrow Swap: Testing Management Strategies for House Sparrows and Exploring the Use of Their Eggshells for Monitoring Heavy Metal Pollution
    ABSTRACT HARTLEY, SUZANNE MARIE. Sparrow Swap: Testing Management Strategies for House Sparrows and Exploring the Use of their Eggshells for Monitoring Heavy Metal Pollution. (Under the direction of Dr. Caren Cooper). Human movement across the globe, particularly through colonialism throughout the last 500 years, has led to the introduction of species into novel environments where they threaten the biodiversity and ecosystem functioning of those novel environments. In the Anthropocene where other threats such as climate change, pollution, and habitat destruction already occur, invasive species are just one more threat facing ecosystems. But what if we can find a way to use an invasive species to help monitor those other threats while at the same time managing them? In the following thesis I explore the strategies by which volunteers manage House Sparrows to minimize their negative impact as an invasive species, but also the potential to use their eggs as indicators of heavy metals in the environment. House Sparrows compete with native birds for nesting spaces. They are also commensal with humans, utilizing buildings as nesting spaces and split grains and forgotten French fries as food sources. In order to 1) find effective management strategies for House Sparrows and 2) evaluate their use as indicators of environmental contaminants, a citizen science project Sparrow Swap was created. Sparrow Swaps takes advantage of the ubiquity of House Sparrows and the expertise of volunteer nestbox monitors to gather data about House Sparrow nesting behaviors and eggs across the United States. In Chapter 1, I address the first research goal of Sparrow Swap by comparing the outcomes of two different strategies by which volunteers manage House Sparrows.
    [Show full text]
  • Songbird Use of Native and Invasive Fruit in the Northeastern USA
    Wildlife Society Bulletin 44(3):570–578; 2020; DOI: 10.1002/wsb.1113 Original Article Songbird Use of Native and Invasive Fruit in the Northeastern USA MICHELLE A. LABBÉ, Department of Environmental Conservation, University of Massachusetts, Amherst, MA 01003, USA DAVID I. KING,1 U.S. Department of Agriculture Forest Service Northern Research Station, University of Massachusetts, Amherst, MA 01003, USA ABSTRACT Fruit is consumed by songbirds, yet whether or not it comprises an important component of habitat quality depends on the extent to which it is used by birds. In addition, there is evidence fruits of exotic invasive species may be nutritionally inferior to fruits of native species, so the influence of plant invasion on bird body condition is of interest to managers. Birds that consume invasive fruits may also serve as seed vectors, and consumption of fruits of invasive species may exacerbate invasion. Thus, the extent to which songbirds consume fruits of native versus invasive plant species, influence of plant invasion on bird body condition, and extent to which birds exhibit foraging behaviors that elevate their potential to act as dispersers of invasive species have important implications for habitat management. To understand bird use of native and invasive fruits and the potential role of birds in dispersing invasive plants, we observed bird foraging, measured body condition indices of birds captured in mist nets, measured available fruits of native and invasive plants, and calculated indices of seed dispersal for bird species based on fruit handling and consumption, within 16 shrubland sites in western Massachusetts, USA. Our findings indicate that birds use fruit extensively (57% of foraging events), use varied among species, and frugivorous species at our sites generally chose the fruit of native species, especially Prunus, over fruits of invasive species.
    [Show full text]
  • Bird-Friendly Building Guide
    Bird-Friendly Building Design Vassar’s Bridge for Laboratory Sciences, shown here under construction in October 2015. The building is scheduled to open in January 2016. Cover rendering and photos courtesy of Ennead Architects Cover rendering and photo this page: The new Bridge for Laboratory Sciences building at Vassar College, designed by Richard Olcott/Ennead Architects, redefines the identity of the sciences on the College’s historic campus and provides technologically advanced facilities for students, faculty, and researchers. Fundamental to the building’s design is its seamless integration with the natural landscape, scale, and campus aesthetic of the College. In this natural wooded setting, the need for strategies to reduce bird collisions with the building was apparent. In response, the building was designed to comply with LEED Pilot Credit 55: Bird Collision Deterrence. Ennead managing partner Guy Maxwell is a nationally recognized champion of bird-friendly design and has led Ennead’s innovative approach to make the building’s glazing safer for birds, employing patterned glass, screens and sunshades, and Ornilux glass, a specialty glass product that uses a UV coating visible to birds but not humans. By framing and showcasing views of the landscape, the building celebrates and connects students with the surrounding environment, while the overall development of the precinct repurposes an Exterior glass detail Glass detail, showing frit pattern underutilized sector of campus. Table of Contents Executive Summary ...........................................................4
    [Show full text]
  • High Level of Self-Control Ability in a Small Passerine Bird
    Behavioral Ecology and Sociobiology (2018) 72: 118 https://doi.org/10.1007/s00265-018-2529-z ORIGINAL ARTICLE High level of self-control ability in a small passerine bird Emil Isaksson1 & A. Utku Urhan1 & Anders Brodin1 Received: 27 October 2017 /Revised: 8 June 2018 /Accepted: 14 June 2018 /Published online: 26 June 2018 # The Author(s) 2018 Abstract Cognitively advanced animals are usually assumed to possess better self-control, or ability to decline immediate rewards in favour of delayed ones, than less cognitively advanced animals. It has been claimed that the best predictor of high such ability is absolute brain volume meaning that large-brained animals should perform better than small-brained ones. We tested self-control ability in the great tit, a small passerine. In the common test of this ability, the animal is presented with a transparent cylinder that contains a piece of food. If the animal tries to take the reward through the transparent wall of the cylinder, this is considered an impulsive act and it fails the test. If it moves to an opening and takes the reward this way, it passes the test. The average performance of our great tits was 80%, higher than most animals that have been tested and almost in level with the performance in corvids and apes. This is remarkable considering that the brain volume of a great tit is 3% of that of a raven and 0.1% of that of a chimpanzee. Significance statement The transparent cylinder test is the most common way to test the ability of self-control in animals.
    [Show full text]