Vol. 1 No. 5 September-October 2005
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Habitat Modelling and the Ecology of the Marsh Tit (Poecile Palustris)
HABITAT MODELLING AND THE ECOLOGY OF THE MARSH TIT (POECILE PALUSTRIS) RICHARD K BROUGHTON A thesis submitted in partial fulfilment of the requirements of Bournemouth University for the degree of Doctor of Philosophy August 2012 Bournemouth University in collaboration with the Centre for Ecology & Hydrology This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with its author and due acknowledgement must always be made of the use of any material contained in, or derived from, this thesis. 2 ABSTRACT Richard K Broughton Habitat modelling and the ecology of the Marsh Tit (Poecile palustris) Among British birds, a number of woodland specialists have undergone a serious population decline in recent decades, for reasons that are poorly understood. The Marsh Tit is one such species, experiencing a 71% decline in abundance between 1967 and 2009, and a 17% range contraction between 1968 and 1991. The factors driving this decline are uncertain, but hypotheses include a reduction in breeding success and annual survival, increased inter-specific competition, and deteriorating habitat quality. Despite recent work investigating some of these elements, knowledge of the Marsh Tit’s behaviour, landscape ecology and habitat selection remains incomplete, limiting the understanding of the species’ decline. This thesis provides additional key information on the ecology of the Marsh Tit with which to test and review leading hypotheses for the species’ decline. Using novel analytical methods, comprehensive high-resolution models of woodland habitat derived from airborne remote sensing were combined with extensive datasets of Marsh Tit territory and nest-site locations to describe habitat selection in unprecedented detail. -
Sparrow Swap: Testing Management Strategies for House Sparrows and Exploring the Use of Their Eggshells for Monitoring Heavy Metal Pollution
ABSTRACT HARTLEY, SUZANNE MARIE. Sparrow Swap: Testing Management Strategies for House Sparrows and Exploring the Use of their Eggshells for Monitoring Heavy Metal Pollution. (Under the direction of Dr. Caren Cooper). Human movement across the globe, particularly through colonialism throughout the last 500 years, has led to the introduction of species into novel environments where they threaten the biodiversity and ecosystem functioning of those novel environments. In the Anthropocene where other threats such as climate change, pollution, and habitat destruction already occur, invasive species are just one more threat facing ecosystems. But what if we can find a way to use an invasive species to help monitor those other threats while at the same time managing them? In the following thesis I explore the strategies by which volunteers manage House Sparrows to minimize their negative impact as an invasive species, but also the potential to use their eggs as indicators of heavy metals in the environment. House Sparrows compete with native birds for nesting spaces. They are also commensal with humans, utilizing buildings as nesting spaces and split grains and forgotten French fries as food sources. In order to 1) find effective management strategies for House Sparrows and 2) evaluate their use as indicators of environmental contaminants, a citizen science project Sparrow Swap was created. Sparrow Swaps takes advantage of the ubiquity of House Sparrows and the expertise of volunteer nestbox monitors to gather data about House Sparrow nesting behaviors and eggs across the United States. In Chapter 1, I address the first research goal of Sparrow Swap by comparing the outcomes of two different strategies by which volunteers manage House Sparrows. -
Egg Recognition in Cinereous Tits (Parus Cinereus): Eggshell Spots Matter Jianping Liu1 , Canchao Yang1 , Jiangping Yu2,3 , Haitao Wang2,4 and Wei Liang1*
Liu et al. Avian Res (2019) 10:37 https://doi.org/10.1186/s40657-019-0178-1 Avian Research RESEARCH Open Access Egg recognition in Cinereous Tits (Parus cinereus): eggshell spots matter Jianping Liu1 , Canchao Yang1 , Jiangping Yu2,3 , Haitao Wang2,4 and Wei Liang1* Abstract Background: Brood parasitic birds such as cuckoos (Cuculus spp.) can reduce their host’s reproductive success. Such selection pressure on the hosts has driven the evolution of defense behaviors such as egg rejection against cuckoo parasitism. Studies have shown that Cinereous Tits (Parus cinereus) in China have a good ability for recognizing foreign eggs. However, it is unclear whether egg spots play a role in egg recognition. The aims of our study were to inves- tigate the egg recognition ability of two Cinereous Tit populations in China and to explore the role of spots in egg recognition. Methods: To test the efect of eggshell spots on egg recognition, pure white eggs of the White-rumped Munia (Lon- chura striata) and eggs of White-rumped Munia painted with red brown spots were used to simulate experimental parasitism. Results: Egg experiments showed that Cinereous Tits rejected 51.5% of pure white eggs of the White-rumped Munia, but only 14.3% of spotted eggs of the White-rumped Munia. There was a signifcant diference in egg recognition and rejection rate between the two egg types. Conclusions: We conclude that eggshell spots on Cinereous Tit eggs had a signaling function and may be essential to tits for recognizing and rejecting parasitic eggs. Keywords: Brood parasitism, Egg recognition, Egg rejection, Eggshell spots, Parus cinereus Background egg rejection by hosts, many parasitic birds evolve coun- Te mutual adaptations and counter-defense strategies ter-adaptations to overcome the hosts’ defenses by laying between brood parasitic birds such as cuckoos (Cuculus mimicking (Brooke and Davies 1988; Avilés et al. -
High Level of Self-Control Ability in a Small Passerine Bird
Behavioral Ecology and Sociobiology (2018) 72: 118 https://doi.org/10.1007/s00265-018-2529-z ORIGINAL ARTICLE High level of self-control ability in a small passerine bird Emil Isaksson1 & A. Utku Urhan1 & Anders Brodin1 Received: 27 October 2017 /Revised: 8 June 2018 /Accepted: 14 June 2018 /Published online: 26 June 2018 # The Author(s) 2018 Abstract Cognitively advanced animals are usually assumed to possess better self-control, or ability to decline immediate rewards in favour of delayed ones, than less cognitively advanced animals. It has been claimed that the best predictor of high such ability is absolute brain volume meaning that large-brained animals should perform better than small-brained ones. We tested self-control ability in the great tit, a small passerine. In the common test of this ability, the animal is presented with a transparent cylinder that contains a piece of food. If the animal tries to take the reward through the transparent wall of the cylinder, this is considered an impulsive act and it fails the test. If it moves to an opening and takes the reward this way, it passes the test. The average performance of our great tits was 80%, higher than most animals that have been tested and almost in level with the performance in corvids and apes. This is remarkable considering that the brain volume of a great tit is 3% of that of a raven and 0.1% of that of a chimpanzee. Significance statement The transparent cylinder test is the most common way to test the ability of self-control in animals. -
Historical Biogeography of Tits (Aves: Paridae, Remizidae)
Org Divers Evol (2012) 12:433–444 DOI 10.1007/s13127-012-0101-7 ORIGINAL ARTICLE Historical biogeography of tits (Aves: Paridae, Remizidae) Dieter Thomas Tietze & Udayan Borthakur Received: 29 March 2011 /Accepted: 7 June 2012 /Published online: 14 July 2012 # Gesellschaft für Biologische Systematik 2012 Abstract Tits (Aves: Paroidea) are distributed all over the reconstruction methods produced similar results, but those northern hemisphere and tropical Africa, with highest spe- which consider the likelihood of the transition from one cies numbers in China and the Afrotropic. In order to find area to another should be preferred. out if these areas are also the centers of origin, ancestral areas were reconstructed based on a molecular phylogeny. Keywords Lagrange . S-DIVA . Weighted ancestral area The Bayesian phylogenetic reconstruction was based on analysis . Mesquite ancestral states reconstruction package . sequences for three mitochondrial genes and one nuclear Passeriformes gene. This phylogeny confirmed most of the results of previous studies, but also indicated that the Remizidae are not monophyletic and that, in particular, Cephalopyrus Introduction flammiceps is sister to the Paridae. Four approaches, parsimony- and likelihood-based ones, were applied to How to determine where a given taxon originated has long derive the areas occupied by ancestors of 75 % of the extant been a problem. Darwin (1859) and his followers (e.g., species for which sequence data were available. The Matthew 1915) considered the center of origin to simulta- common ancestor of the Paridae and the Remizidae neously be the diversity hotspot and had the concept of mere inhabited tropical Africa and China. The Paridae, as well dispersal of species out of this area—even if long distances as most of its (sub)genera, originated in China, but had to be covered. -
Niche Analysis and Conservation of Bird Species Using Urban Core Areas
sustainability Article Niche Analysis and Conservation of Bird Species Using Urban Core Areas Vasilios Liordos 1,* , Jukka Jokimäki 2 , Marja-Liisa Kaisanlahti-Jokimäki 2, Evangelos Valsamidis 1 and Vasileios J. Kontsiotis 1 1 Department of Forest and Natural Environment Sciences, International Hellenic University, 66100 Drama, Greece; [email protected] (E.V.); [email protected] (V.J.K.) 2 Arctic Centre, University of Lapland, 96101 Rovaniemi, Finland; jukka.jokimaki@ulapland.fi (J.J.); marja-liisa.kaisanlahti@ulapland.fi (M.-L.K.-J.) * Correspondence: [email protected] Abstract: Knowing the ecological requirements of bird species is essential for their successful con- servation. We studied the niche characteristics of birds in managed small-sized green spaces in the urban core areas of southern (Kavala, Greece) and northern Europe (Rovaniemi, Finland), during the breeding season, based on a set of 16 environmental variables and using Outlying Mean Index, a multivariate ordination technique. Overall, 26 bird species in Kavala and 15 in Rovaniemi were recorded in more than 5% of the green spaces and were used in detailed analyses. In both areas, bird species occupied different niches of varying marginality and breadth, indicating varying responses to urban environmental conditions. Birds showed high specialization in niche position, with 12 species in Kavala (46.2%) and six species in Rovaniemi (40.0%) having marginal niches. Niche breadth was narrower in Rovaniemi than in Kavala. Species in both communities were more strongly associated either with large green spaces located further away from the city center and having a high vegetation cover (urban adapters; e.g., Common Chaffinch (Fringilla coelebs), European Greenfinch (Chloris Citation: Liordos, V.; Jokimäki, J.; chloris Cyanistes caeruleus Kaisanlahti-Jokimäki, M.-L.; ), Eurasian Blue Tit ( )) or with green spaces located closer to the city center Valsamidis, E.; Kontsiotis, V.J. -
A Checklist of the Birds of Goa, India
BAIDYA & BHAGAT: Goa checklist 1 A checklist of the birds of Goa, India Pronoy Baidya & Mandar Bhagat Baidya, P., & Bhagat, M., 2018. A checklist of the birds of Goa, India. Indian BIRDS 14 (1): 1–31. Pronoy Baidya, TB-03, Center for Ecological Sciences, Indian Institute of Science, Bengaluru 560012, Karnataka, India. And, Foundation for Environment Research and Conservation, C/o 407, III-A, Susheela Seawinds, Alto-Vaddem, Vasco-da-Gama 403802, Goa, India. E-mail: [email protected] [Corresponding author] [PB] Mandar Bhagat, ‘Madhumangal’, New Vaddem,Vasco-da-Gama 403802, Goa, India. E-mail: [email protected] [MB] Manuscript received on 15 November 2017. We dedicate this paper to Heinz Lainer, for his commitment to Goa’s Ornithology. Abstract An updated checklist of the birds of Goa, India, is presented below based upon a collation of supporting information from museum specimens, photographs, audio recordings of calls, and sight records with sufficient field notes. Goa has 473 species of birds of which 11 are endemic to the Western Ghats, 19 fall under various categories of the IUCN Red List of Threatened Species, and 48 are listed in Schedule I Part (III) of The Indian Wild Life (Protection) Act, 1972. 451 species have been accepted into the checklist based on specimens in various museums or on photographs, while 22 have been accepted based on sight record. A secondary list of unconfirmed records is also discussed in detail. Introduction that is about 125 km long. The southern portion of these ghats, Goa, India’s smallest state, sandwiched between the Arabian within Goa, juts out towards the Arabian Sea, at Cabo de Rama, Sea in the west and the Western Ghats in the east, is home to and then curves inland. -
Divergent and Parallel Routes of Biochemical Adaptation in High-Altitude Passerine Birds from the Qinghai-Tibet Plateau
Divergent and parallel routes of biochemical adaptation in high-altitude passerine birds from the Qinghai-Tibet Plateau Xiaojia Zhua,b,1, Yuyan Guana,b,1, Anthony V. Signorec, Chandrasekhar Natarajanc, Shane G. DuBayd,e, Yalin Chenga,b, Naijian Hana, Gang Songa, Yanhua Qua, Hideaki Moriyamac, Federico G. Hoffmannf,g, Angela Fagoh, Fumin Leia,b,2, and Jay F. Storzc,2 aKey Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China; bUniversity of Chinese Academy of Sciences, 100049 Beijing, China; cSchool of Biological Sciences, University of Nebraska, Lincoln, NE 68588; dCommittee on Evolutionary Biology, University of Chicago, Chicago, IL 60637; eLife Sciences Section, Integrative Research Center, Field Museum of Natural History, Chicago, IL 60605; fDepartment of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, MS 39762; gInstitute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762; and hDepartment of Bioscience, Aarhus University, DK-8000 Aarhus, Denmark Edited by Cynthia M. Beall, Case Western Reserve University, Cleveland, OH, and approved January 17, 2018 (received for review November 25, 2017) When different species experience similar selection pressures, the native species have followed similar or different routes of high- probability of evolving similar adaptive solutions may be influenced altitude adaptation (2). The two highest elevation plateaus in the by legacies of evolutionary history, such as lineage-specific changes world, the Andean Altiplano in South America and the Qinghai- in genetic background. Here we test for adaptive convergence in Tibet Plateau in Asia, have very different physiographic and hemoglobin (Hb) function among high-altitude passerine birds that biogeographic histories and are inhabited by members of phy- are native to the Qinghai-Tibet Plateau, and we examine whether logenetically distinct faunas. -
Checklist of Birds at Bhatye Estuary and Adjacent Areas, Maharashtra Shital S
Checklist of birds at Bhatye estuary and adjacent areas, Maharashtra Shital S. Taware1, Vishwajeet M. Lagade2, Deepak V. Muley3 and Kashinath B. Koli4 Abstract This study presents avian diversity of Bhatye estuary and adjacent areas where surveys have been conducted for two years (2009-2010) in five different localities, which were categorized on the basis of habitat differences. Total 113 bird species belonging to 14 orders and 41 families were observed at five different localities. Out of these 113 species, 80 species were residential, 17 species were residential (local) migratory and 16 species were migratory. Most of the residential and migratory species belonged to aquatic bird group. Some incidences were noticed regarding human interference, especially mangrove cutting for firewood, salting and drying of fishes under net and fencing commercial trees by nets to Fig.1 Site map of Bhatye Estuary and adjacent area avoid roosting by birds, which directly I- Mouth of the Bhatye estuary and Bhatye open coast, II- Mangrove Island, III- influenced avifauna. Two near Kerla back water, IV- Regional coconut Research Station, V- Fansop hilly area with threatened and three vulnerable Mango plantation species were observed during the surveys. Measures should be taken to management actions for waterbirds made with a binocular. The protect diverse habitat and avifauna and their habitats (Wetlands Int. 2002; identification and status of the species around Bhatye estuary without Arun kumar et al. 2003). were made with the help of standard disturbing fishery and mango literature (Salim Ali 2002; Grimmett et cultivation practices. Ratnagiri is located close to open coast al. 2007). -
Remarks on Prof. Huxley's Proposed Classification of Birds
Remarks on Prof. Huxley’s proposed ClassiJication of Birds. 85 green ” extending only along the back. The outer primaries are l1 white-edged ” on their outer webs only, which outer webs in the secondaries become bluish- or pearl-grey. This is also the colour of the middle pair of rectrices, and the outer webs of all the rest except the exterior pair, which, as stated previously, have them white. Both tail- and wing-feathers have black shafts. The cheeks, including the ear-coverts, sides of the neck and breast, are bright yellow ; abdomen and under tail-coverts yellowish-white. Irides dark brown; lip and claws light ver- diter-blue; soles of the feet yellowish; bill jet-black. Di- mensions :- Length. Wing. Tail. Tarsus. Bill. Gape. Extent. June 2,1866, A. 5.5 3 2.25 *6875 .4375 . 8.75 June 29, 1866, B. 5,375 2.875 2.2 6875 .375 -5 8.5 This last specimen I shot in a walnut-tree at Annandale. The species is not nearly so common as Parus monticolus. 649. MACHL~LOPHUSSPILONOTUS. Black-spotted Yellow Tit. Darjeeling collection, 1862. One specimen. 650. MELANOCHLORASULTANEA. Sultan Yellow Tit. Obtained at Kyodan, Salween River, Burmah, August 14th, 1865. Length 7 ; wing 3.875 ; tail 3 ; bill at front barely -25 ; tarsus 8.75, nearly; extent 11. Irides dark brown; bill greenish- black. It occurs in small parties in heavy tree-jungle, and is very noisy. (Cf. P. Z. S. 1866, pp. 551, 552.) [To be continued.] IX .-Remarks on Prof. Huxley’s proposed Classification of Birds. By THEEDITOR. -
Observations on the Globally Threatened Pied Tit Parus Nuchalis at Jessore Sanctuary, Gujarat Pranav Trivedi
Observations on the globally threatened Pied Tit Parus nuchalis at Jessore Sanctuary, Gujarat Pranav Trivedi Trivedi, P. 2009. Observations on the globally threatened Pied Tit Parus nuchalis at Jessore Sanctuary, Gujarat. Indian Birds 5 (1): 7–10. Pranav Trivedi, Nature Conservation Foundation, 3076/5, 4th Cross, Gokulam, Mysore 560002, Karnataka, India. Email: pranav@ ncf-india.org Mss received on 25th February 2009 Abstract I discuss observations made on the globally threatened Indian endemic Pied Tit Parus nuchalis during a study conducted between July 2003 and February 2005 at Jessore Sanctuary, northern Gujarat. Twelve sightings of the species (18 individuals) were obtained chiefly in thorn-scrub habitats dominated byAcacia senegal. Several avian co-habitants were listed from the area and its overlap with Great Tit P. major explored. Pied Tit appears to be an intrinsically rare species with a mean encounter rate of 0.18 individuals/km and a relative abundance of 0.0034 at Jessore. This rarity combined with a patchy distribution, disjunct range, limited availability of nesting sites and human pressures on its thorn-scrub habitat point at the need to review its conservation status at the global and national levels. Introduction tortilis (planted), Butea monosperma, Zizyphus mauritiana, Wrightia Pied or White-naped Tit Parus nuchalis, a globally threatened tinctoria and occassional A. nilotica and Prosopis chilensis, while species endemic to India, is patchily distributed over two disjunct shrubs and bushes include Balanites aegyptiaca, Dichrostachys regions. The northern part of its range lies in the states of Gujarat cinerea, Zizyphus nummularia, A. auriculiformis, Capparis aphylla, and Rajasthan, while the southern portion, is in the dry lands of Crotolaria spp., Calotropis procera, and Tephrosia spp. -
Systematic Notes on Asian Birds. 49 a Preliminary Review of the Aegithalidae, Remizidae and Paridae1
Systematic notes on Asian birds. 49 A preliminary review of the Aegithalidae, Remizidae and Paridae1 S. Eck † & J. Martens Eck, S. & J. Martens. Systematic notes on Asian birds. 49. A preliminary review of the Aegithalidae, Remi- zidae and Paridae. Zool. Med. Leiden 80-5 (1), 21.xii.2006: 1-63, fi gs. 1-6, Plates I-III.— ISSN 0024-0672. Siegfried Eck †, formerly Staatliche Sammlungen für Naturkunde Dresden, Museum für Tierkunde, Königsbrücker Landstrasse 159, D-01109 Dresden, Germany. Jochen Martens, Institut für Zoologie, Johannes Gutenberg-Universität, D-55099 Mainz, Germany (e-mail: [email protected]). Key words: Paridae; Aegithalidae; Remizidae; species limits; systematics; taxonomy; eastern Palaearctic region; Indo-Malayan region; morphology; bioacoustics; molecular genetics; secondary contacts; hy- bridisation; introgression. Proposed recent taxonomic changes in Paridae, Aegithalidae, and Remizidae are reviewed within the geographic scope of this series and their reliability is discussed in terms of the Biological Species Concept with respect to secondary contacts, hybridization, introgression, bioacoustics, and molecular genetics. Certain previously unpublished data are added to support the taxonomic decisions. Introduction This review benefi ts from the excellent treatment of these three passerine families in the monograph by Harrap (1996) 2, preceded by detailed work by Vaurie (1957a, b) on the Palearctic species set upon which Snow (1967) based his treatment for Peters’s Checklist of the Birds of the World. Only after the publication of Harrap (op. cit.) has molecular ge- netics begun to furnish information on parid systematics and taxonomy. This has not only given insights into population structure and population genetics of various taxa, but also helped understanding of species evolution and species limits.