Bryophytes Were Not Always Grass

Total Page:16

File Type:pdf, Size:1020Kb

Bryophytes Were Not Always Grass The Green Beneath O he green beneath our feet is Mosses are part of a section of the Bryophytes were not always grass. plant world called bryophytes. Num - As we hike through the bering about 16,000 species, the first plants to woods, stroll through a park bryophytes comprise three groups or or, to the dismay of some phyla of the Kingdom Plantae and are occupy terrestrial homeowners, walk through second only to flowering plants (about our yard, we may be step- 250,000 species) in the number of habitats. ping on green clumps, mats plant species known to exist. Mosses or even springy carpets of (Phylum Bryophyta) are the most Tmoss. Because of their small stature, abundant of the three bryophyte cate - Story By Ray Stotler and these plants, even though ubiquitous, gories worldwide, with nearly 10,000 Barbara Crandall-Stotler tend to be an inconspicuous part of the species. Liverworts (Phylum Marchan - landscape and typically go unnoticed tiophyta) account for approximately Photos By Li Zhang and by most. Every patch is made up of 6,000 species, and hornwort (Phylum Barbara Crandall-Stotler hundreds or thousands of individual Anthocerotophyta) species number plants, each with a stem and spirally about 200. Liverworts are the most 16 / Outdoor Illinois December 2007 arranged leaves. ancient group of land plants, with Pear-shaped urn moss Physcomitrium pyriforme The spore-bearing capsules of the worts are bilaterally symmetric (mirror pear-shaped urn moss look like images halves), with distinctly different dorsal and ventral surfaces. In mosses, upside-down pears. When ripe, they the insertion of the leaves on the stem become urn-shaped cups. is transverse and the leaves are undivid - ed, long and often tapered to a pointed known as microhabitats, exist. Most tip. The leaves of liverworts lie flat bryophyte species are found in only one against the substrate and can be divided microhabitat, although some species are into two or more parts, or if undivided adapted to a broad range of habitats. are generally a rounded shape. In moss - The three groups of bryophytes can es, all of the leaves of a shoot are simi - be distinguished if examined with care. lar. But in liverworts, the two rows of This can easily be done by using a mag - leaves that can be seen from the upper nifying lens and, once a person has side are larger and different from the observed the structural differences, it smaller, hidden leaves on the underside becomes fairly straightforward. All surface. Overall, liverworts are much mosses and most liverworts are made smaller than mosses. up of cylindrical stems with either spi - ur Feet rally arranged leaves (mosses) or leaves Carolina hornwort their fossils dating back to more than Phaeoceros carolinianus 475 million years ago. arranged in two or three rows (liver - Illinois’ rich flora includes an out - worts). Some mosses grow erect, form - standing array of bryophytes, with ing turfs or tight cushions, while other approximately 350 species of mosses, species form compacted mats or loose 140 species of liverworts and four wefts. Liverworts and hornworts typi - species of hornworts. These plants cally grow prostrate and appressed to occupy an assortment of habitats, their substrates. With rare exception, including disturbed ones, like plowed the leaves of mosses are evenly spaced fields and roadside banks, as well as all around the stem, while leafy liver - native woodlands and grasslands. They commonly grow on trees, logs, rocks Look for Carolina hornwort in the and soil, and some may even be sub - spring, growing on the compact soil merged in or floating on water. The greatest diversity of our state’s bryoflora along trails in Illinois woodlands. In occurs in woodlands and canyons, the fall it can be found on river banks where small, specialized environments, exposed by receding water. December 2007 Outdoor Illinois / 17 Great scented liverwort Conocephalum conicum Common feather liverwort Plagiochila porelloides Liverworts are the most ancient The spore-producing phase remains family of green plants. Scientists have attached to the plant by embedded tis - sue; it is through this tissue that nutri - examined chemical compounds ents move from the green plant to nur - produced by liverworts and found that ture the spore-developing process. they can inhibit the growth of certain Spore-producing structures are fre - Rivulet liverwort quently seen emerging from mosses Pellia epiphylla bacteria and tumor cells. and hornworts. In mosses this consists that produce sex cells or gametes, i.e., of a leafless stalk that bears an enlarged Although all mosses and most liver - sperm or eggs. A male sperm will fertil - spore-producing capsule at its tip. worts are leafy plants, in some liver - ize a female egg and the spore-generat - Hornworts produce elongate, often worts and all hornworts the plant is a ing period of the life-cycle has begun. green, horn-like capsules. The liverwort flattened, ribbon-like thallus. The thal - lus in complex liverworts is differentiat - Hairy Grimmia moss Grimmia laevigata ed into a ventral zone of storage tissue and an upper zone of air chambers that open to the outside by elevated pores. These chambers impart a patterned appearance on the thallus surface. In contrast, in simple thalloid liverworts and all hornworts the air chambers and pores are lacking so that the thallus has a very smooth texture. Bryophytes reproduce by means of microscopic, one-celled spores. These spores germinate and grow into popula - tions of sexually mature plants. Each bryophyte population consists of count - less gametophytes, individual plants A pioneer species, hairy Grimmia moss grows on rocks. The species can be identified by the long, white, hair-like tips on each leaf. 18 / Outdoor Illinois December 2007 This species of Sphagnum moss grows in “hanging bogs,” found draped over the tops of southern Illinois canyons. Because so few biologists study these plants, few data have been collected regarding the need for bryophyte con - servation in Illinois. As of 2007, no bryophytes have been listed as either endangered or threatened in our state. To conserve the diversity of bryophytes, as well as associated organisms, it is essential to preserve the diversity of nat - ural habitats that they occupy. Compact peat moss Sphagnum compactum Drs. Ray Stotler and Barbara spore phase is rarely seen, but can be They flourish particularly well in moist, Crandall-Stotler are Emeriti Professors recognized by their fragile, white stalks humid forests like the fog forests of the of Plant Biology at Southern Illinois tipped with shiny black capsules. Pacific northwest or the rain forests of University-Carbondale. Dr. Li Zhang When the capsules are mature they the southern hemisphere. Their ecolog - was a Post-Doctoral Fellow at SIU-C and has returned to his native China dry and open, dispersing the spores in ical roles are many. They provide as a research scientist at the Fairylake breezy weather, and the cycle then seedbeds for the larger plants of the Botanical Garden in Guangdong. repeats. In most of our bryophytes, community, they capture and recycle spore release occurs in February to nutrients that are washed with rainwa - April in southern Illinois on into May or ter from the canopy and they bind the Juniper moss June in the northern parts of the state. soil to keep it from eroding. Polytrichum juniperinum Bryophytes grow in practically every In Illinois the greatest diversity of kind of habitat with the exception of mosses is found in woodlands, especial - hot springs and salty ocean waters. ly mid-slope to upland sites where they occur on exposed soil, rocks, logs and tree trunks. Most liverworts, in con - Teaching About trast, require a more mesic habitat and Bryophytes? so are found on shaded soil, rocks, logs and tree bases in bottomland woods, he DNR Division of Education pro - ravines, and in canyons where water T duced an Illinois Bryophytes poster seeps through the rocks. The horn - to assist teachers with their lessons worts that occur in Illinois are most about these unique organisms. Along with images of 25 bryophyte species commonly found growing on disturbed, indigenous to the state, life history compacted soil. This habitat may be information and other items of interest found in farm fields before they are are included. Order the poster at plowed in the spring or along the edge Spoon-leaved moss Bryoandersonia illecebra www.idnrteachkids.com. of dirt paths in forests. In the fall, look On March 28, 2008, Ray Stotler and for hornworts and liverworts in draw- Barbara Crandall-Stotler will lead an Illi - nois Bryophytes workshop for teachers down areas where the water has reced - at Giant City State Park in Makanda as ed along river banks, lake shores and part of the DNR ENTICE (Environment streams banks. and Nature Training Institute for Con - servation Education) program. Registra - tion is required. For the workshop Mosses and liverworts grow on all description and to register, visit www. ilcf.org/Workshop/Courses.asp. Con - continents—including Antarctica. Most tinuing Professional Development Illinois species grow throughout the Units are available. year, even during harsh winter months. December 2007 Outdoor Illinois / 19.
Recommended publications
  • Flora of New Zealand Mosses
    FLORA OF NEW ZEALAND MOSSES FUNARIACEAE A.J. FIFE Fascicle 45 – APRIL 2019 © Landcare Research New Zealand Limited 2019. Unless indicated otherwise for specific items, this copyright work is licensed under the Creative Commons Attribution 4.0 International licence Attribution if redistributing to the public without adaptation: “Source: Manaaki Whenua – Landcare Research” Attribution if making an adaptation or derivative work: “Sourced from Manaaki Whenua – Landcare Research” See Image Information for copyright and licence details for images. CATALOGUING IN PUBLICATION Fife, Allan J. (Allan James), 1951– Flora of New Zealand : mosses. Fascicle 45, Funariaceae / Allan J. Fife. -- Lincoln, N.Z. : Manaaki Whenua Press, 2019. 1 online resource ISBN 978-0-947525-58-3 (pdf) ISBN 978-0-478-34747-0 (set) 1.Mosses -- New Zealand -- Identification. I. Title. II. Manaaki Whenua – Landcare Research New Zealand Ltd. UDC 582.344.55(931) DC 588.20993 DOI: 10.7931/B15MZ6 This work should be cited as: Fife, A.J. 2019: Funariaceae. In: Smissen, R.; Wilton, A.D. Flora of New Zealand – Mosses. Fascicle 45. Manaaki Whenua Press, Lincoln. http://dx.doi.org/10.7931/B15MZ6 Date submitted: 25 Oct 2017; Date accepted: 2 Jul 2018 Cover image: Entosthodon radians, habit with capsule, moist. Drawn by Rebecca Wagstaff from A.J. Fife 5882, CHR 104422. Contents Introduction..............................................................................................................................................1 Typification...............................................................................................................................................1
    [Show full text]
  • Economic and Ethnic Uses of Bryophytes
    Economic and Ethnic Uses of Bryophytes Janice M. Glime Introduction Several attempts have been made to persuade geologists to use bryophytes for mineral prospecting. A general lack of commercial value, small size, and R. R. Brooks (1972) recommended bryophytes as guides inconspicuous place in the ecosystem have made the to mineralization, and D. C. Smith (1976) subsequently bryophytes appear to be of no use to most people. found good correlation between metal distribution in However, Stone Age people living in what is now mosses and that of stream sediments. Smith felt that Germany once collected the moss Neckera crispa bryophytes could solve three difficulties that are often (G. Grosse-Brauckmann 1979). Other scattered bits of associated with stream sediment sampling: shortage of evidence suggest a variety of uses by various cultures sediments, shortage of water for wet sieving, and shortage around the world (J. M. Glime and D. Saxena 1991). of time for adequate sampling of areas with difficult Now, contemporary plant scientists are considering access. By using bryophytes as mineral concentrators, bryophytes as sources of genes for modifying crop plants samples from numerous small streams in an area could to withstand the physiological stresses of the modern be pooled to provide sufficient material for analysis. world. This is ironic since numerous secondary compounds Subsequently, H. T. Shacklette (1984) suggested using make bryophytes unpalatable to most discriminating tastes, bryophytes for aquatic prospecting. With the exception and their nutritional value is questionable. of copper mosses (K. G. Limpricht [1885–]1890–1903, vol. 3), there is little evidence of there being good species to serve as indicators for specific minerals.
    [Show full text]
  • Prescribed Fire Decreases Lichen and Bryophyte Biomass and Alters Functional Group Composition in Pacific Northwest Prairies Author(S): Lalita M
    Prescribed Fire Decreases Lichen and Bryophyte Biomass and Alters Functional Group Composition in Pacific Northwest Prairies Author(s): Lalita M. Calabria, Kate Petersen, Sarah T. Hamman and Robert J. Smith Source: Northwest Science, 90(4):470-483. Published By: Northwest Scientific Association DOI: http://dx.doi.org/10.3955/046.090.0407 URL: http://www.bioone.org/doi/full/10.3955/046.090.0407 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Lalita M. Calabria1, Kate Petersen,The Evergreen State College, 2700 Evergreen Parkway NW, Olympia, Washington 98505 Sarah T. Hamman, The Center for Natural Lands Management, 120 Union Ave SE #215, Olympia, Washington 98501 and Robert J. Smith, Department of Botany and Plant Pathology, 2082 Cordley Hall, Oregon State University, Corvallis, Oregon 97331 Prescribed Fire Decreases Lichen and Bryophyte Biomass and Alters Functional Group Composition in Pacific Northwest Prairies Abstract The reintroduction of fire to Pacific Northwest prairies has been useful for removing non-native shrubs and supporting habitat for fire-adapted plant and animal species.
    [Show full text]
  • Bryophyte Life Cycle
    MARCH 2016LEARNING | VELD & FLORA ABOUT BIODIVERSITY Veld & Flora MARCHFACTSHEET: 2016 | VELD MOSS & FLORA 24 25 3. BRYOPHYTE LIFE CYCLE Gametophyte (n) UNDERSTANDING THE GERMINATION MALE ALTERNATION OF GENERATIONS The way that almost all land plants reproduce is by means of two distinct, alternating life forms, a sexual phase that produces and releases gametes or sex cells and allows fertilisation, and a dispersal phase – both of which are adaptations to an essentially waterless environment. The sexual phase is known as the GAMETOPHYTE or haploid spores (n) generation and the dispersal phase is the SPOROPHYTE or diploid (2n) generation. Mature gametophyte plants produce haploid sex cells (egg and sperm) in sex organs (the male antheridia and female archegonia). These sex cells (also called gametes) fuse during fertilisation to form a diploid (2n) zygote which COPING OUT OF WATER grows, by means of mitosis (that results in two daughter cells each having Sperm (n) the same number and kind of chromosomes as the parent cell), into a new released Bryophytes, which include moss, are primitive plants that give us some idea sporophyte plant. The diploid sporophyte produces haploid (n) spores (i.e. from male of how the first plants that ventured onto land coped with their new waterless FEMALE each spore has a single set of chromosomes) by means of the process environment. They share many features with other plants, but differ in some of cell division called meiosis. Meiosis results in four daughter cells each ways – such as the lack of an effective vascular system (specialised tissue for with half the number of chromosomes of the parent cell.
    [Show full text]
  • Evolutionary Implications of a Peroxidase with High Affinity For
    plants Article Evolutionary Implications of a Peroxidase with High Affinity for Cinnamyl Alcohols from Physcomitrium patens, a Non-Vascular Plant Teresa Martínez-Cortés 1 , Federico Pomar 1 and Esther Novo-Uzal 2,* 1 Grupo de Investigación en Biología Evolutiva, Centro de Investigaciones Científicas Avanzadas, Universidade da Coruña, 15071 A Coruña, Spain; [email protected] (T.M.-C.); [email protected] (F.P.) 2 Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal * Correspondence: [email protected] Abstract: Physcomitrium (Physcomitrella) patens is a bryophyte highly tolerant to different stresses, allowing survival when water supply is a limiting factor. This moss lacks a true vascular system, but it has evolved a primitive water-conducting system that contains lignin-like polyphenols. By means of a three-step protocol, including ammonium sulfate precipitation, adsorption chromatography on phenyl Sepharose and cationic exchange chromatography on SP Sepharose, we were able to purify and further characterize a novel class III peroxidase, PpaPrx19, upregulated upon salt and H2O2 treatments. This peroxidase, of a strongly basic nature, shows surprising homology to angiosperm peroxidases related to lignification, despite the lack of true lignins in P. patens cell walls. Moreover, PpaPrx19 shows catalytic and kinetic properties typical of angiosperm peroxidases involved in Citation: Martínez-Cortés, T.; Pomar, F.; Novo-Uzal, E. Evolutionary oxidation of monolignols, being able to efficiently use hydroxycinnamyl alcohols as substrates. Our Implications of a Peroxidase with results pinpoint the presence in P. patens of peroxidases that fulfill the requirements to be involved in High Affinity for Cinnamyl Alcohols the last step of lignin biosynthesis, predating the appearance of true lignin.
    [Show full text]
  • Distribution and Phylogenetic Significance of the 71-Kb Inversion
    Annals of Botany 99: 747–753, 2007 doi:10.1093/aob/mcm010, available online at www.aob.oxfordjournals.org Distribution and Phylogenetic Significance of the 71-kb Inversion in the Plastid Genome in Funariidae (Bryophyta) BERNARD GOFFINET1,*, NORMAN J. WICKETT1 , OLAF WERNER2 , ROSA MARIA ROS2 , A. JONATHAN SHAW3 and CYMON J. COX3,† 1Department of Ecology and Evolutionary Biology, 75 North Eagleville Road, University of Connecticut, Storrs, CT 06269-3043, USA, 2Universidad de Murcia, Facultad de Biologı´a, Departamento de Biologı´a Vegetal, Campus de Espinardo, 30100-Murcia, Spain and 3Department of Biology, Duke University, Durham, NC 27708, USA Received: 31 October 2006 Revision requested: 21 November 2006 Accepted: 21 December 2006 Published electronically: 2 March 2007 † Background and Aims The recent assembly of the complete sequence of the plastid genome of the model taxon Physcomitrella patens (Funariaceae, Bryophyta) revealed that a 71-kb fragment, encompassing much of the large single copy region, is inverted. This inversion of 57% of the genome is the largest rearrangement detected in the plastid genomes of plants to date. Although initially considered diagnostic of Physcomitrella patens, the inversion was recently shown to characterize the plastid genome of two species from related genera within Funariaceae, but was lacking in another member of Funariidae. The phylogenetic significance of the inversion has remained ambiguous. † Methods Exemplars of all families included in Funariidae were surveyed. DNA sequences spanning the inversion break ends were amplified, using primers that anneal to genes on either side of the putative end points of the inver- sion. Primer combinations were designed to yield a product for either the inverted or the non-inverted architecture.
    [Show full text]
  • The Origin of Alternation of Generations in Land Plants
    Theoriginof alternation of generations inlandplants: afocuson matrotrophy andhexose transport Linda K.E.Graham and LeeW .Wilcox Department of Botany,University of Wisconsin, 430Lincoln Drive, Madison,WI 53706, USA (lkgraham@facsta¡.wisc .edu ) Alifehistory involving alternation of two developmentally associated, multicellular generations (sporophyteand gametophyte) is anautapomorphy of embryophytes (bryophytes + vascularplants) . Microfossil dataindicate that Mid ^Late Ordovicianland plants possessed such alifecycle, and that the originof alternationof generationspreceded this date.Molecular phylogenetic data unambiguously relate charophyceangreen algae to the ancestryof monophyletic embryophytes, and identify bryophytes as early-divergentland plants. Comparison of reproduction in charophyceans and bryophytes suggests that the followingstages occurredduring evolutionary origin of embryophytic alternation of generations: (i) originof oogamy;(ii) retention ofeggsand zygotes on the parentalthallus; (iii) originof matrotrophy (regulatedtransfer ofnutritional and morphogenetic solutes fromparental cells tothe nextgeneration); (iv)origin of a multicellularsporophyte generation ;and(v) origin of non-£ agellate, walled spores. Oogamy,egg/zygoteretention andmatrotrophy characterize at least some moderncharophyceans, and arepostulated to represent pre-adaptativefeatures inherited byembryophytes from ancestral charophyceans.Matrotrophy is hypothesizedto have preceded originof the multicellularsporophytes of plants,and to represent acritical innovation.Molecular
    [Show full text]
  • Volume 1, Chapter 2-7: Bryophyta
    Glime, J. M. 2017. Bryophyta – Bryopsida. Chapt. 2-7. In: Glime, J. M. Bryophyte Ecology. Volume 1. Physiological Ecology. Ebook 2-7-1 sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 10 January 2019 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology/>. CHAPTER 2-7 BRYOPHYTA – BRYOPSIDA TABLE OF CONTENTS Bryopsida Definition........................................................................................................................................... 2-7-2 Chromosome Numbers........................................................................................................................................ 2-7-3 Spore Production and Protonemata ..................................................................................................................... 2-7-3 Gametophyte Buds.............................................................................................................................................. 2-7-4 Gametophores ..................................................................................................................................................... 2-7-4 Location of Sex Organs....................................................................................................................................... 2-7-6 Sperm Dispersal .................................................................................................................................................. 2-7-7 Release of Sperm from the Antheridium.....................................................................................................
    [Show full text]
  • Bryophytes Sl
    à Enzo et à Lino 1 Bryophytes sl. Mousses, hépatiques et anthocérotes Mosses, liverworts and hornworts Glossaire illustré Illustrated glossary septembre 2016 Leica Chavoutier 2 …il faut aussi, condition requise abso- lument pour quiconque veut entrer ou plutôt se glisser dans l’univers des mousses, se pencher vers le sol pour y diriger ses yeux, se baisser… » Véronique Brindeau 3 Introduction Planches Glossaire : français/english Glossary : english/français Bibliographie Index des photographies 4 « …elles sont d’avant le temps des hommes, bien avant celui des arbres et des fleurs… » Véronique Brindeau Introduction Ce glossaire traite des mousses, hépatiques et anthocérotes, trois phylums proches par certaines parties de leurs structures et surtout par leur cycle de vie qui sont actuellement regroupés pour former les Bryophytes sl. Ce glossaire se veut une aide à la reconnaissance des termes courants utili- sés en bryologie mais aussi un complément donné à tous les utilisateurs des flores et autres publications rédigées en anglais qui ne maîtrisent pas par- faitement la langue et qui sont vite confrontés à des interprétations dou- teuses en consultant l’habituel dictionnaire bilingue. Il se veut pratique d’utilisation et pour ce fait est largement illustré. Ce glossaire ne peut être que partiel : il était impossible d’inclure dans les définitions tous les cas de figures. L’utilisation la plus courante a été privi- légiée. Chaque terme est associé à un thème d’utilisation et c’est dans ce contexte que la définition est donnée. Les thèmes retenus concernent : la morphologie, l’anatomie, les supports, le port ou habitus, la chorologie, la nomenclature, la taxonomie, la systématique, les stratégies de vie, les abré- viations, les écosystèmes (critères géologiques, pédologiques, hydrolo- giques, édaphiques, climatiques …) Pour des descriptions plus détaillées le lecteur pourra se reporter aux ou- vrages cités dans la « Bibliographie ».
    [Show full text]
  • Physcomitrium Patens Infection by Colletotrichum Gloeosporioides: Understanding the Fungal–Bryophyte Interaction by Microscopy, Phenomics and RNA Sequencing
    Journal of Fungi Article Physcomitrium patens Infection by Colletotrichum gloeosporioides: Understanding the Fungal–Bryophyte Interaction by Microscopy, Phenomics and RNA Sequencing Adriana Otero-Blanca 1 , Yordanis Pérez-Llano 1 , Guillermo Reboledo-Blanco 2, Verónica Lira-Ruan 1 , Daniel Padilla-Chacon 3, Jorge Luis Folch-Mallol 4 , María del Rayo Sánchez-Carbente 4 , Inés Ponce De León 2 and Ramón Alberto Batista-García 1,* 1 Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico; [email protected] (A.O.-B.); [email protected] (Y.P.-L.); [email protected] (V.L.-R.) 2 Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay; [email protected] (G.R.-B.); [email protected] (I.P.D.L.) 3 Consejo Nacional de Ciencia y Tecnología (CONACyT), Colegio de Postgraduados de México, Campus Montecillo, Texcoco 56230, Mexico; [email protected] 4 Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico; [email protected] (J.L.F.-M.); [email protected] (M.d.R.S.-C.) Citation: Otero-Blanca, A.; * Correspondence: [email protected] or [email protected]; Tel.: +52-777-3297020 Pérez-Llano, Y.; Reboledo-Blanco, G.; Lira-Ruan, V.; Padilla-Chacon, D.; Abstract: Anthracnose caused by the hemibiotroph fungus Colletotrichum gloeosporioides is a dev- Folch-Mallol, J.L.; Sánchez-Carbente, astating plant disease with an extensive impact on plant productivity. The process of colonization M.d.R.; Ponce De León, I.; and disease progression of C.
    [Show full text]
  • Species List For: Labarque Creek CA 750 Species Jefferson County Date Participants Location 4/19/2006 Nels Holmberg Plant Survey
    Species List for: LaBarque Creek CA 750 Species Jefferson County Date Participants Location 4/19/2006 Nels Holmberg Plant Survey 5/15/2006 Nels Holmberg Plant Survey 5/16/2006 Nels Holmberg, George Yatskievych, and Rex Plant Survey Hill 5/22/2006 Nels Holmberg and WGNSS Botany Group Plant Survey 5/6/2006 Nels Holmberg Plant Survey Multiple Visits Nels Holmberg, John Atwood and Others LaBarque Creek Watershed - Bryophytes Bryophte List compiled by Nels Holmberg Multiple Visits Nels Holmberg and Many WGNSS and MONPS LaBarque Creek Watershed - Vascular Plants visits from 2005 to 2016 Vascular Plant List compiled by Nels Holmberg Species Name (Synonym) Common Name Family COFC COFW Acalypha monococca (A. gracilescens var. monococca) one-seeded mercury Euphorbiaceae 3 5 Acalypha rhomboidea rhombic copperleaf Euphorbiaceae 1 3 Acalypha virginica Virginia copperleaf Euphorbiaceae 2 3 Acer negundo var. undetermined box elder Sapindaceae 1 0 Acer rubrum var. undetermined red maple Sapindaceae 5 0 Acer saccharinum silver maple Sapindaceae 2 -3 Acer saccharum var. undetermined sugar maple Sapindaceae 5 3 Achillea millefolium yarrow Asteraceae/Anthemideae 1 3 Actaea pachypoda white baneberry Ranunculaceae 8 5 Adiantum pedatum var. pedatum northern maidenhair fern Pteridaceae Fern/Ally 6 1 Agalinis gattingeri (Gerardia) rough-stemmed gerardia Orobanchaceae 7 5 Agalinis tenuifolia (Gerardia, A. tenuifolia var. common gerardia Orobanchaceae 4 -3 macrophylla) Ageratina altissima var. altissima (Eupatorium rugosum) white snakeroot Asteraceae/Eupatorieae 2 3 Agrimonia parviflora swamp agrimony Rosaceae 5 -1 Agrimonia pubescens downy agrimony Rosaceae 4 5 Agrimonia rostellata woodland agrimony Rosaceae 4 3 Agrostis elliottiana awned bent grass Poaceae/Aveneae 3 5 * Agrostis gigantea redtop Poaceae/Aveneae 0 -3 Agrostis perennans upland bent Poaceae/Aveneae 3 1 Allium canadense var.
    [Show full text]
  • Extant Diversity of Bryophytes Emerged from Successive Post-Mesozoic Diversification Bursts
    ARTICLE Received 20 Mar 2014 | Accepted 3 Sep 2014 | Published 27 Oct 2014 DOI: 10.1038/ncomms6134 Extant diversity of bryophytes emerged from successive post-Mesozoic diversification bursts B. Laenen1,2, B. Shaw3, H. Schneider4, B. Goffinet5, E. Paradis6,A.De´samore´1,2, J. Heinrichs7, J.C. Villarreal7, S.R. Gradstein8, S.F. McDaniel9, D.G. Long10, L.L. Forrest10, M.L. Hollingsworth10, B. Crandall-Stotler11, E.C. Davis9, J. Engel12, M. Von Konrat12, E.D. Cooper13, J. Patin˜o1, C.J. Cox14, A. Vanderpoorten1,* & A.J. Shaw3,* Unraveling the macroevolutionary history of bryophytes, which arose soon after the origin of land plants but exhibit substantially lower species richness than the more recently derived angiosperms, has been challenged by the scarce fossil record. Here we demonstrate that overall estimates of net species diversification are approximately half those reported in ferns and B30% those described for angiosperms. Nevertheless, statistical rate analyses on time- calibrated large-scale phylogenies reveal that mosses and liverworts underwent bursts of diversification since the mid-Mesozoic. The diversification rates further increase in specific lineages towards the Cenozoic to reach, in the most recently derived lineages, values that are comparable to those reported in angiosperms. This suggests that low diversification rates do not fully account for current patterns of bryophyte species richness, and we hypothesize that, as in gymnosperms, the low extant bryophyte species richness also results from massive extinctions. 1 Department of Conservation Biology and Evolution, Institute of Botany, University of Lie`ge, Lie`ge 4000, Belgium. 2 Institut fu¨r Systematische Botanik, University of Zu¨rich, Zu¨rich 8008, Switzerland.
    [Show full text]