Clinical Use of Β2-Adrenergic Receptor Agonists

Total Page:16

File Type:pdf, Size:1020Kb

Clinical Use of Β2-Adrenergic Receptor Agonists Allergology International. 2005;54:89-97 REVIEW ARTICLE Clinical Use of !2-adrenergic Receptor Agonists Based on Their Intrinsic Efficacy Hiroaki Kume1 ABSTRACT Clinical choice of β2-adrenergic receptor agonists (β2-agonists) is based on the parameter of receptor selectiv- ity, potency, and duration of action. The guidelines for asthma management describe nothing about intrinsic ef- ficacy concerning the use of β2-agonists. Since intrinsic efficacy refers to the ability to activate β2-adrenergic re- ceptors independent of agonist concentration, β2-adrenergic desensitization may be associated with intrinsic efficacy. However, little is currently known whether chronic administration of high intrinsic efficacy drugs inter- feres with the effects of β2-agonists as a reliever medication. In this review, the causal relationship between in- trinsic efficacy and desensitization to β2-agonists is examined in tracheal smooth muscle using isometric ten- sion records. Reasonable clinical use of these agonists based on these observations is discussed. When β2- agonists intrinsic efficacy was measured as relaxation response (the maximum inhibitory effects against 1 µM methacholine-induced contraction), their rank order was : isoproterenol = procaterol = formoterol > salbutamol > salmeterol >> tulobuterol. Next, the subsequent response to short-acting β2-agonists (procaterol, salbutamol) was examined after continuous exposure to long-acting β2-agonists (formoterol, salmeterol, tulobuterol). β2- adrenergic desensitization induced by these long-acting β2-agonists was enhanced in proportion to their intrin- sic efficacies. On the other hand, under the conditions of impairment of β2-adrenergic receptors, reduced re- sponsiveness to these short-acting β2-agonists was enhanced in inverse proportion to the intrinsic efficacy. Al- though the clinical relevance of these results is still unclear, our data may provide evidence that weak partial agonists are useful as a controller medication, whereas full or strong agonists are useful as a reliever medica- tion. KEY WORDS airway smooth muscle, bronchial asthma, desensitization, Gs, long-acting β2-agonists, Rho, β2-adrenergic receptors referred to as desensitization.2,3 Moreover, a decline INTRODUCTION in β2-agonist activity is observed after prolonged ex- β2-Adrenergic receptor agonists ( β2-agonists ) are posure to pro-inflammatory cytokines4-6 and lysophos- widely used clinically to relax airway smooth muscle pholipid7 that participate in the airway inflammation and are the principal bronchodilator agents used to of bronchial asthma. A postmortem study also has treat bronchial asthma . Regular administration of shown that the response to β2-agonists in vitro is at- short-acting β2-agonists may cause not only a deterio- tenuated in airway smooth muscle harvested from pa- ration of asthma control and an exacerbation of air- tients with fatal asthma.8 The impaired β2-adrenergic way hyperreactivity, but also an accelerative decline action is a characteristic feature of patients with this in lung function in patients with this disease.1 These disease , and is an important problem in both the undesirable dysfunctions may be due to reduced re- pathogenesis and therapy. sponsiveness to short-acting β2-agonists elicited by Rapid- and short-acting β2-agonists suppress bron- excessive exposure to these agents, a phenomenon choconstriction and related sympotoms of acute 1Division of Respiratory Medicine, Department of Medicine, Na- −8550, Japan. goya University Graduate School of Medicine, Nagoya, Japan. Email: [email protected]−u.ac.jp Correspondence: Hiroaki Kume, M.D., Ph.D., Division of Respira- Received 11 March 2004. tory Medicine, Department of Medicine, Nagoya University Gradu- !2005 Japanese Society of Allergology ate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466 Allergology International Vol 54, No1, 2005 www.js-allergol.gr.jp! 89 Kume H asthma exacerbations, but do not inhibit airway in- receptor phosphorylation, i.e., 1) second messenger- flammation and airway hyperreactivity . Treatment activated kinases such as the adenosine 3’, 5’-cyclic with anti-inflammatory agents is more effective than monophosphate ( cAMP ) -dependent kinase ( PKA ) that with bronchodilator agents for long-term man- and 2) the second messenger-independent G protein- agement of bronchial asthma . Although the anti- coupled receptor kinases such as the β2-adrenergic inflammatory effects of long-acting β2-agonists are receptor kinase (βARK) and G protein-coupled recep- still unclear in clinical use, the guidelines for asthma tor kinases ( GRKs ) . 18,19 Receptor phosphorylation prevention and management recommend daily ad- mediated by PKA occurs with low concentrations of β ministration of long-acting β2-agonists as a controller 2-agonists, leading to heterologous desensitization.20 medication . The regular use of long-acting β2- On the other hand, high concentrations of β2-agonists agonists in combination with inhaled glucocorti- are required for activaton of βARK and GRKs, leading costeroid is considered to be beneficial to these pa- to homologous desensitization.20 The former refers to tients according to the cross-talk between these two a reduced response to not only β2-agonists but also receptors. 9,10 However, a few reports have demon- other agents that elevate concentration of intracellu- strated that regular use of inhaled long-acting β2- lar cAMP bypassing β-adrenergic receptors, such as agonists results in desensitization of β2-adrenergic re- forskolin, theophylline, db-cAMP, and prostaglandin ceptors even though these agonists are added to in- (PG) E2. The latter refers to a specific reduced re- haled glucocorticosteroid therapy.11,12 Little is essen- sponse to β2-agonists while response to these other tially known whether prolonged activation of β2- agents remain intact. adrenergic receptors is not harmful. In airway smooth muscle cells, intracellular cAMP There are several parameters in characterizing the formation in response to isoproterenol is attenuated interaction of an agent with receptors, such as affin- after incubation with not only β2-agonists but also ity, potency, and efficacy. However, β2-agonists are other agents involving cAMP such as forskolin and just classified by onset and duration of action in the PGE2.21 An inhibition in cAMP formation is mediated guideline for asthma management. This current clas- by heterologous desensitization. However, in airway sification may be insufficient to establish safe admini- smooth muscle, relaxation induced by β2-agonists is stration of β2-agonists. Previously statistical correla- impaired after excessive exposure to these agonists, tion between regular use of β2-agonists and asthma whereas the reduced relaxation by β2-agonists does mortality or morbidity has been reported.13 This dete- not occur after excessive exposure to these cAMP in- rioration is considered to be due to desensitization of volving agents independent of β2-adrenergic recep- β2-adrenergic receptors mediated by excessive ad- tors.14,15 When desensitization of β-adrenergic recep- ministration of β2-agonists of higher intrinsic effica- tors is examined by measuring a biochemical re- cies, such as isoproterenol and fenoterol. We should sponse (cAMP formulation), heterologous desensiti- carefully reconsider how to use these agonists. In zation is observed. In contrast, when β2-adrenergic this review, the relationship between intrinsic efficacy desensitization is examined by measurering a physi- and desensitization to β2-agonists is examined in de- ologic response (smooth muscle relaxation in vitro), tail using airway smooth muscle, and in addition, rea- heterologous desensitization is not observed . sonable clinical use of these agents based on this ob- Interferon-γ inhibits the reduced relaxation by het- servation is discussed. erologous β2-adrenergic desensitization after expo- β β sure to TGF- 1, but does not recover the reduced MECHANISMS OF DESENSITIZATION OF 2- cAMP formation by TGF-β1.6 There is a discrepancy ADRENERGIC RECEPTORS IN AIRWAY between cAMP formulation and relaxation concern- SMOOTH MUSCLE ing the impairment of β2-adrenergic action. Hence, in It is well known that response to β2-agonists is mark- airway smooth muscle measurement of relaxation edly attenuated after continuous and repeated expo- needs to estimate accurately desensitization to β2- sure to the agonists in airway smooth muscle of hu- agonists. mans 14 and other animals. 15 Previous reports have Forskolin needs to produce a large amount of demonstrated the molecular mechanisms of desensi- cAMP to cause an equivalent relaxation that is tization of β2-adrenergic receptors in various tis- achieved with isoproterenol by producing a small sues. 16,17 After exposure to β2-agonists for a short amount of cAMP in airway smooth muscle.22 cAMP term (less than 30 min), the β2-agonist activity is formation in response to β2-agonists is not always as- markedly attenuated via the phosphorylation of β2- sociated with relaxation. Recently, it is generally con- adrenergic receptors, resulting in an uncoupling from sidered that β2-agonists have the effects mediated by the stimulatory GTP-binding (G) protein of adenylyl not only cAMP-dependent but also cAMP- cyclase, Gs. A longer-term exposure leads to down- independent processes. The discrepancy in causing regulation of surface receptor number via internaliza- heterologous desensitization may be due to these tion of the receptor and its subsequent degradation. cAMP-independent
Recommended publications
  • Dosing Time Matters
    bioRxiv preprint doi: https://doi.org/10.1101/570119; this version posted March 21, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Dosing Time Matters 1 2,3 4,5,6 1* Marc D. Ruben ,​ David F. Smith ,​ Garret A. FitzGerald ,​ and John B. Hogenesch ​ ​ ​ ​ 1 Division​ of Human Genetics, Center for Chronobiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, 240 Albert Sabin Way, Cincinnati, OH, 45229 2 Divisions​ of Pediatric Otolaryngology and Pulmonary and Sleep Medicine, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229 3 Department​ of Otolaryngology-Head and Neck Surgery, University of Cincinnati School of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267 4 Department​ of Systems Pharmacology and Translational Therapeutics, at the University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 USA 5 Department​ of Medicine, at the University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 USA 6 ​ Institute for Translational Medicine and Therapeutics (ITMAT), at the University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 USA *Corresponding Author. Email: [email protected] Abstract Trainees in medicine are taught to diagnose and administer treatment as needed; time-of-day is rarely considered. Yet accumulating evidence shows that ~half of human genes and physiologic functions follow daily rhythms. Circadian medicine aims to incorporate knowledge of these rhythms to enhance diagnosis and treatment.
    [Show full text]
  • Nystatin Ofloxacin Orciprenaline Sulfate
    JP XV Ultraviolet-visible Reference Spectra 1619 Nystatin A solution prepared as follows: To 10 mg add 50.25 mL of a mixture of diluted methanol (4 in 5) and sodium hydroxide TS (200:1), dissolve by warming at not exceeding 509C,andadddilutedmethanol(4in5)tomake500 mL. Ofloxacin Asolutionin0.1mol/LhydrochloricacidTS(1in150,000) Orciprenaline Sulfate A solution in 0.01 mol/L hydrochloric acid TS (1 in 10,000) 1620 Ultraviolet-visible Reference Spectra JP XV Oxazolam A solution in ethanol (95) (1 in 100,000) Oxethazaine A solution in ethanol (95) (1 in 2500) Oxybuprocaine Hydrochloride An aqueous solution (1 in 100,000) JP XV Ultraviolet-visible Reference Spectra 1621 Oxycodone Hydrochloride Hydrate An aqueous solution (1 in 10,000) Oxymetholone A solution prepared as follows: To 5 mL of a solution in methanol (1 in 5000) add 5 mL of sodium hydroxide-methanol TS and methanol to make 50 mL. Oxytetracycline Hydrochloride Asolutionin0.1mol/LhydrochloricacidTS(1in50,000) 1622 Ultraviolet-visible Reference Spectra JP XV Oxytocin An aqueous solution (1 in 2000) Penbutolol Sulfate A solution in methanol (1 in 10,000) Pentazocine A solution in 0.01 mol/L hydrochloric acid TS (1 in 10,000) JP XV Ultraviolet-visible Reference Spectra 1623 Peplomycin Sulfate Asolutionpreparedasfollows:To4mgadd5mL of copper (II) sulfate TS, and dissolve in water to make 100 mL. Perphenazine 1 Asolutionin0.1mol/LhydrochloricacidTS(1in200,000) Perphenazine 2 A solution obtained by adding 10 mL of water to 10 mL of the solution for Perphenazine 1 1624 Ultraviolet-visible
    [Show full text]
  • Β2 Adrenergic Agonist Suppresses Eosinophil-Induced Epithelial-To- Mesenchymal Transition of Bronchial Epithelial Cells Keigo Kainuma1,2, Tetsu Kobayashi3, Corina N
    Kainuma et al. Respiratory Research (2017) 18:79 DOI 10.1186/s12931-017-0563-4 RESEARCH Open Access β2 adrenergic agonist suppresses eosinophil-induced epithelial-to- mesenchymal transition of bronchial epithelial cells Keigo Kainuma1,2, Tetsu Kobayashi3, Corina N. D’Alessandro-Gabazza2, Masaaki Toda2, Taro Yasuma2, Kota Nishihama2, Hajime Fujimoto3, Yu Kuwabara1,2, Koa Hosoki1,2, Mizuho Nagao1, Takao Fujisawa1 and Esteban C. Gabazza2* Abstract Background: Epithelial-mesenchymal transition is currently recognized as an important mechanism for the increased number of myofibroblasts in cancer and fibrotic diseases. We have already reported that epithelial- mesenchymal transition is involved in airway remodeling induced by eosinophils. Procaterol is a selective and full β2 adrenergic agonist that is used as a rescue of asthmatic attack inhaler form and orally as a controller. In this study, we evaluated whether procaterol can suppress epithelial-mesenchymal transition of airway epithelial cells induced by eosinophils. Methods: Epithelial-mesenchymal transition was assessed using a co-culture system of human bronchial epithelial cells and primary human eosinophils or an eosinophilic leukemia cell line. Results: Procaterol significantly inhibited co-culture associated morphological changes of bronchial epithelial cells, decreased the expression of vimentin, and increased the expression of E-cadherin compared to control. Butoxamine, a specific β2-adrenergic antagonist, significantly blocked changes induced by procaterol. In addition, procaterol inhibited the expression of adhesion molecules induced during the interaction between eosinophils and bronchial epithelial cells, suggesting the involvement of adhesion molecules in the process of epithelial-mesenchymal transition. Forskolin, a cyclic adenosine monophosphate-promoting agent, exhibits similar inhibitory activity of procaterol. Conclusions: Overall, these observations support the beneficial effect of procaterol on airway remodeling frequently associated with chronic obstructive pulmonary diseases.
    [Show full text]
  • Ep 2626065 A1
    (19) TZZ Z_T (11) EP 2 626 065 A1 (12) EUROPEAN PATENT APPLICATION published in accordance with Art. 153(4) EPC (43) Date of publication: (51) Int Cl.: A61K 31/137 (2006.01) A61K 31/135 (2006.01) 14.08.2013 Bulletin 2013/33 A61K 31/4704 (2006.01) A61K 31/58 (2006.01) A61K 31/56 (2006.01) A61K 9/12 (2006.01) (2006.01) (2006.01) (21) Application number: 11827927.2 A61K 9/14 A61P 11/06 (86) International application number: Date of filing: 01.02.2011 (22) PCT/CN2011/070883 (87) International publication number: WO 2012/041031 (05.04.2012 Gazette 2012/14) (84) Designated Contracting States: (72) Inventor: WU, Wei-hsiu AL AT BE BG CH CY CZ DE DK EE ES FI FR GB Taipei GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO Taiwan (TW) PL PT RO RS SE SI SK SM TR (74) Representative: Patentanwaltskanzlei WILHELM (30) Priority: 28.09.2010 CN 201010502339 & BECK Prinzenstrasse 13 (71) Applicant: Intech Biopharm Ltd. 80639 München (DE) Taipei (TW) (54) COMPOUND COMPOSITION FOR INHALATION USED FOR TREATING ASTHMA (57) An inhaled pharmaceutical composition con- tric way as a controller. The eccentric way control therapy tains primary active ingredients of beta2- agonist and cor- could create a low blood concentration period during the ticosteroids.The pharmaceuticalcompositions disclosed day and minimize the acute tolerance phenomenon (or in the present invention are to be inhaled by a patient so called tachyphylaxis) for bronchodilator - beta2-ago- when needed as a reliever, or administrated in an eccen- nists in treating asthma or other obstructive respiratory disorders.
    [Show full text]
  • Clenbuterol Elisa Kit Instructions Product #101219 & 101216 Forensic Use Only
    Neogen Corporation 944 Nandino Blvd., Lexington KY 40511 USA 800/477-8201 USA/Canada | 859/254-1221 Fax: 859/255-5532 | E-mail: [email protected] | Web: www.neogen.com/Toxicology CLENBUTEROL ELISA KIT INSTRUCTIONS PRODUCT #101219 & 101216 FORENSIC USE ONLY INTENDED USE: For the determination of trace quantities of Clenbuterol and/or other metabolites in human urine, blood, oral fluid. DESCRIPTION Neogen Corporation’s Clenbuterol ELISA (Enzyme-Linked ImmunoSorbent Assay) test kit is a qualitative one-step kit designed for use as a screening device for the detection of drugs and/or their metabolites. The kit was designed for screening purposes and is intended for forensic use only. It is recommended that all suspect samples be confirmed by a quantitative method such as gas chromatography/mass spectrometry (GC/MS). ASSAY PRINCIPLES Neogen Corporation’s test kit operates on the basis of competition between the drug or its metabolite in the sample and the drug- enzyme conjugate for a limited number of antibody binding sites. First, the sample or control is added to the microplate. Next, the diluted drug-enzyme conjugate is added and the mixture is incubated at room temperature. During this incubation, the drug in the sample or the drug-enzyme conjugate binds to antibody immobilized in the microplate wells. After incubation, the plate is washed 3 times to remove any unbound sample or drug-enzyme conjugate. The presence of bound drug-enzyme conjugate is recognized by the addition of K-Blue® Substrate (TMB). After a 30 minute substrate incubation, the reaction is halted with the addition of Red Stop Solution.
    [Show full text]
  • Diamandis Thesis
    !"!#$ CHEMICAL GENETIC INTERROGATION OF NEURAL STEM CELLS: PHENOTYPE AND FUNCTION OF NEUROTRANSMITTER PATHWAYS IN NORMAL AND BRAIN TUMOUR INITIATING NEURAL PRECUSOR CELLS by Phedias Diamandis A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy. Department of Molecular Genetics University of Toronto © Copyright by Phedias Diamandis 2010 Phenotype and Function of Neurotransmitter Pathways in Normal and Brain Tumor Initiating Neural Precursor Cells Phedias Diamandis Doctor of Philosophy Department of Molecular Genetics University of Toronto 2010 &'(!)&*!% The identification of self-renewing and multipotent neural stem cells (NSCs) in the mammalian brain brings promise for the treatment of neurological diseases and has yielded new insight into brain cancer. The complete repertoire of signaling pathways that governs these cells however remains largely uncharacterized. This thesis describes how chemical genetic approaches can be used to probe and better define the operational circuitry of the NSC. I describe the development of a small molecule chemical genetic screen of NSCs that uncovered an unappreciated precursor role of a number of neurotransmitter pathways commonly thought to operate primarily in the mature central nervous system (CNS). Given the similarities between stem cells and cancer, I then translated this knowledge to demonstrate that these neurotransmitter regulatory effects are also conserved within cultures of cancer stem cells. I then provide experimental and epidemiologically support for this hypothesis and suggest that neurotransmitter signals may also regulate the expansion of precursor cells that drive tumor growth in the brain. Specifically, I first evaluate the effects of neurochemicals in mouse models of brain tumors. I then outline a retrospective meta-analysis of brain tumor incidence rates in psychiatric patients presumed to be chronically taking neuromodulators similar to those identified in the initial screen.
    [Show full text]
  • Emea/666243/2009
    European Medicines Agency London, 29 October 2009 EMEA/666243/2009 ISSUE NUMBER: 0910 MONTHLY REPORT PHARMACOVIGILANCE WORKING PARTY (PHVWP) OCTOBER 2009 PLENARY MEETING The CHMP Pharmacovigilance Working Party (PhVWP) held its October 2009 plenary meeting on 19-21 October 2009. PhVWP DISCUSSIONS ON SAFETY CONCERNS Below is a summary of the discussions regarding non-centrally authorised medicinal products in accordance with the PhVWP publication policy (see under http://www.emea.europa.eu/htms/human/phv/reports.htm). Positions agreed by the PhVWP for non- centrally authorised products are recommendations to Member States. For safety updates concerning centrally authorised products and products subject to ongoing CHMP procedures, readers are referred to the CHMP Monthly Report (see under http://www.emea.europa.eu/pressoffice/presshome.htm). The PhVWP provides advice on these products to the Committee of Medicinal Products for Human Use (CHMP) upon its request. Antipsychotics - risk of venous thromboembolism (VTE) Identify risk factors for VTE for preventive action before and during treatment with antipsychotics The PhVWP completed their review on the risk of VTE of antipsychotics1. The review was triggered by and based on data from the UK spontaneous adverse drug reactions reporting system and the published literature. The PhVWP carefully considered the data, including the limitations of both information sources, such as the lack of randomised controlled trial data, the heterogeneity of published studies and the potential confounding factors such as sedation and weight gain, commonly present in antipsychotic users. The PhVWP concluded that an association between VTE and antipsychotics cannot be excluded. Distinguishing different risk levels between the various active substances was not possible.
    [Show full text]
  • Lamas for COPD Systematic Review
    Comparative safety and effectiveness of inhaled long -acting agents (corticosteroids, beta agonists, anticholinergics) for chronic obstructive pulmonary disease Comprehensive Research Plan: Systematic Review Unit April 4th, 2014 Andrea C. Tricco, PhD1 and Sharon E. Straus, MD, MSc1,2 30 Bond Street, Toronto ON, M5B 1W8 www.odprn.ca [email protected] Background Chronic obstructive pulmonary disease (COPD) is characterized by airflow limitation in the lungs [1]. COPD is commonly assessed by clinical examination and spirometry. Important indicators considered in the diagnosis of COPD include age over 40 years and any of the following: 1) progressive and persistent dyspnea that worsens with exercise, 2) chronic cough, 3) chronic sputum production, 4) history of exposure to smoke from tobacco or cooking, occupational dusts and chemicals, and 5) family history of COPD [1]. COPD causes significant burden of illness, reduced quality of life, and premature death [2]. Symptoms include chronic cough, sputum production, and dyspnea [3]. The global prevalence of COPD has been estimated at 7.6% using data from a systematic review including 28 countries [4]. However, this is likely a conservative estimate, due to under-reporting and under-diagnosis. The prevalence and burden of COPD is rising due the greater proportion of elderly people in the population [1]. It is estimated that COPD will be the third-leading cause of death by 2020 [5]. The treatment of COPD usually involves reducing exposure (e.g., smoking cessation, occupation modifications), increasing exercise, and implementing appropriate pharmacologic therapy [1]. The most common drug classes are beta2-agonists, anticholinergics, and methylxanthines. Inhaled corticosteroids (ICS) and systemic corticosteroids are often useful for acute exacerbations.
    [Show full text]
  • 100 Storage Condition=50 C/Ambrh
    USOO595.5058A United States Patent (19) 11 Patent Number: S.9SS,0589 9 Jager et al. (45) Date of Patent: Sep. 21,9 1999 54). STABILIZED MEDICINAL AEROSOL 56) References Cited SOLUTION FORMULATIONS CONTAINING U.S. PATENT DOCUMENTS IPRATROPIUM BROMIDE a 5,118,494 6/1992 Schultz et al. ............................ 424/45 75 Inventors: Paul Donald Jager, Waterbury; Mark 5,190,029 3/1993 Byron et al. ... ... 128/200.14 James Kontny, New Milford, both of 5,225,183 7/1993 Purewal et al. ........................... 424/45 Conn.; Jurgen Hubert Nagel 5.439,670 8/1995 Purewal et al. ... 424/45 Ingelheim/Rhein, Germany s 5,605,674 2/1997 Purewal et al. ........................... 424/45 FOREIGN PATENT DOCUMENTS 73 Assignee: Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, 0372 777 6/1990 European Pat. Off.. Conn. Primary Examiner Raj Bawa Attorney, Agent, or Firm Morgan & Finnegan, LLP 21 Appl.pp No.: 08/843,180 57 ABSTRACT 22 Filed: Apr. 14, 1997 Stabilized medicinal aeroSol Solution formulations compris O O ing medicaments that degrade or decompose by interaction Related U.S. Application Data with solvents or water, an HFC propellant, a cosolvent and an acid are described. Further, Specific medicinal aeroSol 63 Staggypt.NE "A iGs Solution formulations comprising ipratropium bromide or No. 08/153.549, Nov. 22, 1993, abandoned E. is a fenoterol, ethyl alcohol, 1,1,1,2-tetrafluoroethane or 1,1,1, continuation-in-part of application No. 07/987,852, Dec. 9, 2,3,3,3-heptafluoropropane, and either an inorganic acid or 1992, abandoned. an organic acid are described. The acids are present in 51 Int.
    [Show full text]
  • Vr Meds Ex01 3B 0825S Coding Manual Supplement Page 1
    vr_meds_ex01_3b_0825s Coding Manual Supplement MEDNAME OTHER_CODE ATC_CODE SYSTEM THER_GP PHRM_GP CHEM_GP SODIUM FLUORIDE A12CD01 A01AA01 A A01 A01A A01AA SODIUM MONOFLUOROPHOSPHATE A12CD02 A01AA02 A A01 A01A A01AA HYDROGEN PEROXIDE D08AX01 A01AB02 A A01 A01A A01AB HYDROGEN PEROXIDE S02AA06 A01AB02 A A01 A01A A01AB CHLORHEXIDINE B05CA02 A01AB03 A A01 A01A A01AB CHLORHEXIDINE D08AC02 A01AB03 A A01 A01A A01AB CHLORHEXIDINE D09AA12 A01AB03 A A01 A01A A01AB CHLORHEXIDINE R02AA05 A01AB03 A A01 A01A A01AB CHLORHEXIDINE S01AX09 A01AB03 A A01 A01A A01AB CHLORHEXIDINE S02AA09 A01AB03 A A01 A01A A01AB CHLORHEXIDINE S03AA04 A01AB03 A A01 A01A A01AB AMPHOTERICIN B A07AA07 A01AB04 A A01 A01A A01AB AMPHOTERICIN B G01AA03 A01AB04 A A01 A01A A01AB AMPHOTERICIN B J02AA01 A01AB04 A A01 A01A A01AB POLYNOXYLIN D01AE05 A01AB05 A A01 A01A A01AB OXYQUINOLINE D08AH03 A01AB07 A A01 A01A A01AB OXYQUINOLINE G01AC30 A01AB07 A A01 A01A A01AB OXYQUINOLINE R02AA14 A01AB07 A A01 A01A A01AB NEOMYCIN A07AA01 A01AB08 A A01 A01A A01AB NEOMYCIN B05CA09 A01AB08 A A01 A01A A01AB NEOMYCIN D06AX04 A01AB08 A A01 A01A A01AB NEOMYCIN J01GB05 A01AB08 A A01 A01A A01AB NEOMYCIN R02AB01 A01AB08 A A01 A01A A01AB NEOMYCIN S01AA03 A01AB08 A A01 A01A A01AB NEOMYCIN S02AA07 A01AB08 A A01 A01A A01AB NEOMYCIN S03AA01 A01AB08 A A01 A01A A01AB MICONAZOLE A07AC01 A01AB09 A A01 A01A A01AB MICONAZOLE D01AC02 A01AB09 A A01 A01A A01AB MICONAZOLE G01AF04 A01AB09 A A01 A01A A01AB MICONAZOLE J02AB01 A01AB09 A A01 A01A A01AB MICONAZOLE S02AA13 A01AB09 A A01 A01A A01AB NATAMYCIN A07AA03 A01AB10 A A01
    [Show full text]
  • Pharmacology and Therapeutics of Bronchodilators
    1521-0081/12/6403-450–504$25.00 PHARMACOLOGICAL REVIEWS Vol. 64, No. 3 Copyright © 2012 by The American Society for Pharmacology and Experimental Therapeutics 4580/3762238 Pharmacol Rev 64:450–504, 2012 ASSOCIATE EDITOR: DAVID R. SIBLEY Pharmacology and Therapeutics of Bronchodilators Mario Cazzola, Clive P. Page, Luigino Calzetta, and M. Gabriella Matera Department of Internal Medicine, Unit of Respiratory Clinical Pharmacology, University of Rome ‘Tor Vergata,’ Rome, Italy (M.C., L.C.); Department of Pulmonary Rehabilitation, San Raffaele Pisana Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy (M.C., L.C.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King’s College London, London, UK (C.P.P., L.C.); and Department of Experimental Medicine, Unit of Pharmacology, Second University of Naples, Naples, Italy (M.G.M.) Abstract............................................................................... 451 I. Introduction: the physiological rationale for using bronchodilators .......................... 452 II. ␤-Adrenergic receptor agonists .......................................................... 455 A. A history of the development of ␤-adrenergic receptor agonists: from nonselective ␤ Downloaded from adrenergic receptor agonists to 2-adrenergic receptor-selective drugs.................... 455 ␤ B. Short-acting 2-adrenergic receptor agonists........................................... 457 1. Albuterol........................................................................ 457
    [Show full text]
  • Data Reproducibility and Effectiveness of Bronchodilators for Improving Physical Activity in COPD Patients
    Journal of Clinical Medicine Review Data Reproducibility and Effectiveness of Bronchodilators for Improving Physical Activity in COPD Patients Yoshiaki Minakata * and Seigo Sasaki Department of Respiratory Medicine, National Hospital Organization Wakayama Hospital, Wakayama 644-0044, Japan; [email protected] * Correspondence: [email protected]; Tel.: +81-738-22-3256 Received: 7 September 2020; Accepted: 27 October 2020; Published: 29 October 2020 Abstract: Increasing physical activity (PA) in patients with chronic obstructive pulmonary disease (COPD) is an important issue, however, the effect of bronchodilators on PA is still controversial. The indicators of PA, as measured by an accelerometer, can easily fluctuate based on several factors, which might cause inconsistent results. In this review, we listed the indicators of PA and the factors influencing the reproducibility of indicators of PA, and reviewed reports in which the effects of bronchodilators on PA were evaluated by an accelerometer. Then, we investigated the association between the processing of influencing factors and the effectiveness of bronchodilators for improving the PA of COPD patients. Fifteen reports were extracted using the PubMed database. In all seven reports in which adjustment was performed for at least two of four influencing factors (non-wear time, data from days with special behavior, environmental factors, and number of valid days required to obtain reproducible data), bronchodilators showed beneficial effects on PA. No adjustment was made for any of these factors in any of the four bronchodilator-ineffective reports. This suggests that the processing of influencing factors to secure reproducibility might affect the results regarding the effectiveness of bronchodilators for improving PA in COPD patients.
    [Show full text]