Probing the Giant Planets

Total Page:16

File Type:pdf, Size:1020Kb

Probing the Giant Planets illion :l as- erial !r, in nical time final simi- fther and mto Probingthe GiantPlanets rtion f 106 have very eccentric orbits while our and own giant planets orbit the Sun in se- date circles. Could it be that "otdi- nary" circular orbits are in fact quite extraordinary by Galactic standards? Is our solar system an unlikely out- come of the general mechanism of TristanGuillot planet formation? Or perhaps, might extrasolar planets be formed by a dif- ferent mechanism? llefore 1995, most astronomers expected giant extra- These are but a few ofthe questions that confront us. lJsolar planets to orbit their stars in quasicircular or- There's no shortage of suggested answers, but none thus bits at a distance of more than a few astionomical units. far has given satisfaction. A large part ofthe problem is (1AU is the mean b distance between Earth and the Sun.) that the so-calledradiovelocimetry method used until now qr tt our Solar System, the orbits of the four giant planets- to discover extrasolar planets provides only a lower limit Jupiter, Saturn, IJranus, and Neptune-have semimajor on the planetary mass M. Relying on the tiny Doppler mod- axes ranging from 5.2 to 30 AU and eccentricities no ulation as the star is tugged to and fro by its orbiting la larger than 5.6Vo. planet, the method determines the orbit's diameter and ec- Since then, more than 100 extrasolar planets have centricity. But the inclination angle i between the normal been discovered, all ofthem giants with at least 107othe to the orbital plane and the line of sight is unknown, and mass of Jupiter (0.1 M,, about twice the mass of Uranus radiovelocimetry only determines the product M sini. r-a or Neptune). Much smaller Earthlike ("terrestrial") extra- Of course, we do have interesting additional meas- ral solar planets would not be massive enough to be detected urements. For example, it is becomingclear that h6 stars with by current methods. planets tend to be enriched in heavy elements-meaning, Ein The newly found planets are strange-not at all what loq in astronomers'jargon, anything other than hydrogen and we expected.A signifrcant fraction ofthe extrasolar giants rcm helium. That tells us something about planetary forma- tDr, detected thus far orbit extremely close to their star, that tion, namely that planets probibly grew more rapidly in is, at less than 0.1AU. Some semimajor axes are as small environments rich in dust. (Most heavy elements form n,K as 0.04AU, implying a period of revolution around the star chemical speciesthat condenseat low temperatures.) But ofonly about three Earth days. The archetype ofthese so- "hot we do not know two crucial properties ofthe extrasolar gi- called Pegasi planets (also called Jupiters") is the first ants: their exact masses and their sizes. Except for one M7 one to have been discovered: 51 Pegasi b, a roughly serendipitous casea-the planet HD209458b. flx, Jupiter-mass giant orbiting at only 0.05 AU from a sun- like star in the constellation Pegasus.l A planet in transit ,219 The other fraction of extrasolar planets discovered HD209458 is a faint star in Pegasus,barely visible to the since 1995 may be even stranger. As shown in frgure 1, naked eye. Like 51 Pegasi, its planet has a mass close to many of them exhibit very eccentric orbits,2 quite unlike that of Jupiter, and a tiny semimajor axis, a mere 0.045AU. 54if our own giant planets. It may be, however, that Solar Sys- The particularity of the HD209458 system is that, as seen tem analogs are common rigin but hard to discover.After all, from Earth, the planet passesin front ofthe star every 3.5 Jupiter and Saturn U. of are so far from the Sun that they take days. Therefore, we can measure the time it takes for the 12 and 29 years, respectively, to complete an orbit. A few planet to transit the stellar surface and the consequent :M. planets in frgure t have large orbits with low eccentricity. dimming of the star (about 2Vo).Thus we can also calcu- Discovering more objects like these will require patience late the planet's size, the inclination ofits orbit, and there- and improved observational techniques. fore its mass.5 Ithasbeen very dillicult to 'the). construct a coherent sce- The radius measured for the giant planet HD20g4b8b nario that would explain the formation of giant planets as is about SSVolargerthan that ofJupiter, although its mass \riz. we seethem both within and beyond our solar system. The is 30Voless than Jupiter's. This apparent contradiction is presenceofclose-in planets is generally thought to be due understood by realizing that gaseousgiant planets ;, P. tend to to early migration of planets forming in a disk of gas and cool slowly by infrared emission and thus contract. and dust surrounding the young central star.3 But that's not that planets 952 heavily irradiated by their stars contract the only possibility, and it doesn't explain why Jupiter and more slowly. Jupiter itself is estimated to be contracting its sisters didn't share such a fate. at a rate ofabout 3 mm per year. nof Similarly, it is not clear why extrasolar planets often The observations of HD209458b, a hundred times TX closerto its star than is Jupiter, confrrmed the general the- oretical picture and showed that the planet, discoveredin tuf,, 200O,is made mostly of hydrogen and helium.6 The study I of this transiting Jovian giant was the first confirmation @ 2004 American Instituteof Physics,S-003i-9229-0404-040-2 April 2004 PhysicsToday 63 and coworkers,s in 200L, detected the presence of sodium in the atmosphere of HD209458b. The sodium, it turned out, was less abun- dant than expected. But be- cause we know so little about the atmospheres of these ex- otic planets, it's not yet clear what that means. The sodium shortfall could, for example, be due to colder atmgspheric temperatures than expected. Or it might result from at- mospheric dynamics or non- equilibrium effects. In any case, the observation was a milestone in the study of ex- trasolar planets, .because it showed that we can detect constituents in the atmos- pheres of planets millions of times further from us than Jupiter. Another crucial recent discovery is that HD209458b is slowly losing mass. Last year,Alfred Vidal-Madj ar and coworkers found that when one observes the transiting planet at the LIV wavelength of the Lyman-a absorption line of hydrogen, it appears three times larger than at other wavelengths.eThis suggests the presence of an ex- tended, tenuous, envelope ofhydrogen escaping from the planet as a result ofheating ofthe upper atmosphere and bombardment by ionized stellar wind. The magnitude of this mass loss appears to be consistent with estimates based on Jupiter, but scaled up by a factor 10 000 because the star is 100 times closer to the planet than the Sun is to Jupiter.GThe Lyman-a measurements give us the first possibility of quantiffing such processes more precisely planet that our models of formation were not completely and examining how gaseousplanets manage to suryive so off-track. Had HD209458b been found to have a smaller close to their stars. diameter than Jupiter, it would have meant that the new Impressive as they are, the HD209458b measure- planet consists mostly of heavy material, which would ments tell us only about the upper atmospheres of giant patently contradict our formation models. gas planets. How can we better constrain their interior However, the hope that we would be able to learn more compositions?To do so,we have to learn how surface meas- precisely the composition of HD209458b has dwindled rap- urements relate to interior compositions.And to that end, idly. The planet's radius turned out to be slightly larger we must look more carefully to the gas giants closestto us. than expected. So we're probably missing some enerry source that prevents the planet from cooling faster.TIt ap- Our own giant planets pears that tides may be dissipating heat into the planet's We can, of course, measure very accurately the masses, interior and thus slowing its contraction. The energ'y sizes, and hence the mean densities'of Jupiter, Saturn, source might be the orbital enerry of an unseen eccentric IJranus, and Neptune. The densities turn out to be quite giant companion planet, or it might be winds generated in low-ranging from 0.7 glcml for Saturn to 1.6 g/cm3 for the planet's atmosphere by the strong stellar irradiation. Neptune. For comparison, the four inner terrestrial plan- Alternatively, the atmosphere may be hotter than most ets have mean densities near 5 glcml. One might have at- models predict (seefigure 2). We know little about meteor- tributed the difference to the conjecture that the giant ology and tides on gaseousplanets. Tens ofEarth masses planets have the same composition as Earth but very much of heavy elqments could be mixed in with the hydrogen and hotter. Alternatively, one could supposethat they are very helium without our being able to tell. Better understand- much colder but made of light material. Of course, we've ing the giant planets will require more examples of tran- known for a hundred years that only the second explana- siting extrasolar planets, with different massesand orbital tion is valid. distances. That's an important goal of spacemissions such Indeed, a look at the atmospheres ofthe giant planets as COROT, Kepler and, we hope, Eddingtoa (seebox 1). shows that they are made mostly of hydrogen and helium, In the meantime, the power of transit observations with only traces of heavier elements.
Recommended publications
  • Exomoon Habitability Constrained by Illumination and Tidal Heating
    submitted to Astrobiology: April 6, 2012 accepted by Astrobiology: September 8, 2012 published in Astrobiology: January 24, 2013 this updated draft: October 30, 2013 doi:10.1089/ast.2012.0859 Exomoon habitability constrained by illumination and tidal heating René HellerI , Rory BarnesII,III I Leibniz-Institute for Astrophysics Potsdam (AIP), An der Sternwarte 16, 14482 Potsdam, Germany, [email protected] II Astronomy Department, University of Washington, Box 951580, Seattle, WA 98195, [email protected] III NASA Astrobiology Institute – Virtual Planetary Laboratory Lead Team, USA Abstract The detection of moons orbiting extrasolar planets (“exomoons”) has now become feasible. Once they are discovered in the circumstellar habitable zone, questions about their habitability will emerge. Exomoons are likely to be tidally locked to their planet and hence experience days much shorter than their orbital period around the star and have seasons, all of which works in favor of habitability. These satellites can receive more illumination per area than their host planets, as the planet reflects stellar light and emits thermal photons. On the contrary, eclipses can significantly alter local climates on exomoons by reducing stellar illumination. In addition to radiative heating, tidal heating can be very large on exomoons, possibly even large enough for sterilization. We identify combinations of physical and orbital parameters for which radiative and tidal heating are strong enough to trigger a runaway greenhouse. By analogy with the circumstellar habitable zone, these constraints define a circumplanetary “habitable edge”. We apply our model to hypothetical moons around the recently discovered exoplanet Kepler-22b and the giant planet candidate KOI211.01 and describe, for the first time, the orbits of habitable exomoons.
    [Show full text]
  • Giant Planet Effects on Terrestrial Planet Formation and System Architecture
    MNRAS 485, 541–549 (2019) doi:10.1093/mnras/stz385 Advance Access publication 2019 February 8 Giant planet effects on terrestrial planet formation and system architecture 1‹ 2 2,3 1 Anna C. Childs, Elisa Quintana, Thomas Barclay and Jason H. Steffen Downloaded from https://academic.oup.com/mnras/article-abstract/485/1/541/5309996 by NASA Goddard Space Flight Ctr user on 15 April 2020 1Department of Physics and Astronomy, University of Nevada, Las Vegas, NV 89154, USA 2NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771, USA 3University of Maryland, Baltimore County, 1000 Hilltop Cir, Baltimore, MD 21250, USA Accepted 2019 February 4. Received 2019 January 16; in original form 2018 July 6 ABSTRACT Using an updated collision model, we conduct a suite of high-resolution N-body integrations to probe the relationship between giant planet mass and terrestrial planet formation and system architecture. We vary the mass of the planets that reside at Jupiter’s and Saturn’s orbit and examine the effects on the interior terrestrial system. We find that massive giant planets are more likely to eject material from the outer edge of the terrestrial disc and produce terrestrial planets that are on smaller, more circular orbits. We do not find a strong correlation between exterior giant planet mass and the number of Earth analogues (analogous in mass and semimajor axis) produced in the system. These results allow us to make predictions on the nature of terrestrial planets orbiting distant Sun-like star systems that harbour giant planet companions on long orbits – systems that will be a priority for NASA’s upcoming Wide-Field Infrared Survey Telescope (WFIRST) mission.
    [Show full text]
  • Outer Planets: the Ice Giants
    Outer Planets: The Ice Giants A. P. Ingersoll, H. B. Hammel, T. R. Spilker, R. E. Young Exploring Uranus and Neptune satisfies NASA’s objectives, “investigation of the Earth, Moon, Mars and beyond with emphasis on understanding the history of the solar system” and “conduct robotic exploration across the solar system for scientific purposes.” The giant planet story is the story of the solar system (*). Earth and the other small objects are leftovers from the feast of giant planet formation. As they formed, the giant planets may have migrated inward or outward, ejecting some objects from the solar system and swallowing others. The giant planets most likely delivered water and other volatiles, in the form of icy planetesimals, to the inner solar system from the region around Neptune. The “gas giants” Jupiter and Saturn are mostly hydrogen and helium. These planets must have swallowed a portion of the solar nebula intact. The “ice giants” Uranus and Neptune are made primarily of heavier stuff, probably the next most abundant elements in the Sun – oxygen, carbon, nitrogen, and sulfur. For each giant planet the core is the “seed” around which it accreted nebular gas. The ice giants may be more seed than gas. Giant planets are laboratories in which to test our theories about geophysics, plasma physics, meteorology, and even oceanography in a larger context. Their bottomless atmospheres, with 1000 mph winds and 100 year-old storms, teach us about weather on Earth. The giant planets’ enormous magnetic fields and intense radiation belts test our theories of terrestrial and solar electromagnetic phenomena.
    [Show full text]
  • Activity 16: Planets and Their Features Mercury Mercury Is an Extreme Planet
    Activity 16: Planets And Their Features Mercury Mercury.is.an.extreme.planet..It.is.the.fastest.of.all.the.planets..It.is.one.of.the.hottest. planets,.and.it.is.also.one.of.the.coldest!.It.may.be.the.site.of.the.largest.crash.in.the. history.of.the.solar.system..Mercury.may.also.have.the.strangest.view.of.the.sun.in.the. whole.universe! Mercury.zooms.around.the.sun.at.a.speed.of.48.kilometres.per.second,.or.half.as.fast. again.as.the.Earth.travels. At.certain.times.and.places,.Mercury’s.surface.temperature.can.rise.to.twice.the. temperature.inside.an.oven.when.you.are.baking.a.cake..On.the.other.hand,.in.the. shadow.of.its.North.Pole.craters,.Mercury.has.ice.like.our.North.Pole.does. Since.Mercury.is.so.close.to.the.sun,.we.have.never.been.able.to.see.it.in.any.detail..Even. with.the.most.powerful.telescope,.Mercury.looks.like.a.blurry.white.ball..It.wasn’t.until.1974. that.we.really.began.to.learn.about.Mercury..In.1974.and.1975,.Mariner.10.flew.by.Mercury.three.times.and.sent.back. about.12,000.images. These.pictures.combined.to.give.a.map.of.about.45%.of.Mercury’s.surface,.and.what.they.show.us.is.a.planet.covered. with.craters,.much.like.our.moon..Mercury’s.largest.land.feature.is.the.Caloris.Basin,.a.crater.formed.by.a.collision.with.a. meteorite.long.ago..The.size.of.the.Caloris.Basin,.about.1350.kilometres.in.diameter,.suggests.that.this.may.have.been.
    [Show full text]
  • Simon Porter , Will Grundy
    Post-Capture Evolution of Potentially Habitable Exomoons Simon Porter1,2, Will Grundy1 1Lowell Observatory, Flagstaff, Arizona 2School of Earth and Space Exploration, Arizona State University [email protected] and spin vector were initially pointed at random di- Table 1: Relative fraction of end states for fully Abstract !"# $%& " '(" !"# $%& # '(# rections on the sky. The exoplanets had a ran- evolved exomoon systems dom obliquity < 5 deg and was at a stellarcentric The satellites of extrasolar planets (exomoons) Star Planet Moon Survived Retrograde Separated Impacted distance such that the equilibrium temperature was have been recently proposed as astrobiological tar- Earth 43% 52% 21% 35% equal to Earth. The simulations were run until they Jupiter Mars 44% 45% 18% 37% gets. Triton has been proposed to have been cap- 5 either reached an eccentricity below 10 or the pe- Titan 42% 47% 21% 36% tured through a momentum-exchange reaction [1], − Sun Earth 52% 44% 17% 30% riapse went below the Roche limit (impact) or the and it is possible that a similar event could allow Neptune Mars 44% 45% 18% 36% apoapse exceeded the Hill radius. Stars used were Titan 45% 47% 19% 35% a giant planet to capture a formerly binary terres- Earth 65% 47% 3% 31% the Sun (G2), a main-sequence F0 (1.7 MSun), trial planet or planetesimal. We therefore attempt to Jupiter Mars 59% 46% 4% 35% and a main-sequence M0 (0.47 MSun). Exoplan- Titan 61% 48% 3% 34% model the dynamical evolution of a terrestrial planet !"# $%& " !"# $%& " ' F0 ets used had the mass of either Jupiter or Neptune, Earth 77% 44% 4% 18% captured into orbit around a giant planet in the hab- and exomoons with the mass of Earth, Mars, and Neptune Mars 67% 44% 4% 28% itable zone of a star.
    [Show full text]
  • The Nature of the Giant Exomoon Candidate Kepler-1625 B-I René Heller
    A&A 610, A39 (2018) https://doi.org/10.1051/0004-6361/201731760 Astronomy & © ESO 2018 Astrophysics The nature of the giant exomoon candidate Kepler-1625 b-i René Heller Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany e-mail: [email protected] Received 11 August 2017 / Accepted 21 November 2017 ABSTRACT The recent announcement of a Neptune-sized exomoon candidate around the transiting Jupiter-sized object Kepler-1625 b could indi- cate the presence of a hitherto unknown kind of gas giant moon, if confirmed. Three transits of Kepler-1625 b have been observed, allowing estimates of the radii of both objects. Mass estimates, however, have not been backed up by radial velocity measurements of the host star. Here we investigate possible mass regimes of the transiting system that could produce the observed signatures and study them in the context of moon formation in the solar system, i.e., via impacts, capture, or in-situ accretion. The radius of Kepler-1625 b suggests it could be anything from a gas giant planet somewhat more massive than Saturn (0:4 MJup) to a brown dwarf (BD; up to 75 MJup) or even a very-low-mass star (VLMS; 112 MJup ≈ 0:11 M ). The proposed companion would certainly have a planetary mass. Possible extreme scenarios range from a highly inflated Earth-mass gas satellite to an atmosphere-free water–rock companion of about +19:2 180 M⊕. Furthermore, the planet–moon dynamics during the transits suggest a total system mass of 17:6−12:6 MJup.
    [Show full text]
  • On the Detection of Exomoons in Photometric Time Series
    On the Detection of Exomoons in Photometric Time Series Dissertation zur Erlangung des mathematisch-naturwissenschaftlichen Doktorgrades “Doctor rerum naturalium” der Georg-August-Universität Göttingen im Promotionsprogramm PROPHYS der Georg-August University School of Science (GAUSS) vorgelegt von Kai Oliver Rodenbeck aus Göttingen, Deutschland Göttingen, 2019 Betreuungsausschuss Prof. Dr. Laurent Gizon Max-Planck-Institut für Sonnensystemforschung, Göttingen, Deutschland und Institut für Astrophysik, Georg-August-Universität, Göttingen, Deutschland Prof. Dr. Stefan Dreizler Institut für Astrophysik, Georg-August-Universität, Göttingen, Deutschland Dr. Warrick H. Ball School of Physics and Astronomy, University of Birmingham, UK vormals Institut für Astrophysik, Georg-August-Universität, Göttingen, Deutschland Mitglieder der Prüfungskommision Referent: Prof. Dr. Laurent Gizon Max-Planck-Institut für Sonnensystemforschung, Göttingen, Deutschland und Institut für Astrophysik, Georg-August-Universität, Göttingen, Deutschland Korreferent: Prof. Dr. Stefan Dreizler Institut für Astrophysik, Georg-August-Universität, Göttingen, Deutschland Weitere Mitglieder der Prüfungskommission: Prof. Dr. Ulrich Christensen Max-Planck-Institut für Sonnensystemforschung, Göttingen, Deutschland Dr.ir. Saskia Hekker Max-Planck-Institut für Sonnensystemforschung, Göttingen, Deutschland Dr. René Heller Max-Planck-Institut für Sonnensystemforschung, Göttingen, Deutschland Prof. Dr. Wolfram Kollatschny Institut für Astrophysik, Georg-August-Universität, Göttingen,
    [Show full text]
  • Fifth Giant Ex-Planet of the Solar System: Characteristics and Remnants
    Fifth giant ex-planet of the Solar System: characteristics and remnants Yury I. Rogozin* Abstract In recent years it has coming to light that the early outer Solar System likely might have somewhat more planets than today. However, to date there is unknown what a former giant planet might in fact have represented and where its orbit may certainly have located. Using the originally suggested relations, we have found the reasonable orbital and physical characteristics of the icy giant ex-planet, which in the past may have orbited the Sun about in the halfway between Saturn and Uranus. Validity of the results obtained here is supported by a feasibility of these relations to other objects of the outer Solar System. A possible linkage between the fifth giant ex-planet and the puzzling objects of the outer Solar System such as the Saturn’s rings and the irregular moons Triton and Phoebe existing today is briefly discussed. Keywords: planets and satellites; individuals: fifth giant ex-planet, Saturn´s rings, Triton, Phoebe 1 Introduction According to the existing ideas of the formation of the Solar System its planetary structure is held unchanged during about 4.5 billion years. Such a static situation of the things had been embodied, particularly, in offered in 1766 Titius-Bode’s rule of the orbital distances for known at that time the seven planets from Mercury to Uranus. As it is known, the conformity to this rule for planets Neptune and Pluto discovered subsequently has appeared much worse than for before known seven planets. However, the essential departures of the real orbital distances from this rule for these two planets so far have not obtained any explained justifying within the framework of such conservative insights into a structure of the Solar System.
    [Show full text]
  • Exploration of the Ice Giant Systems
    Exploration of the Ice Giant Systems A White Paper for NASA's Planetary Science and Astrobiology Decadal Survey 2023-2032 Uranus (left) [1] and Neptune (right) (NASA) Lead Authors: Chloe B. Beddingfield1,2 1The SETI Institute 2NASA Ames Research Center [email protected] (972) 415-7604 Cheng Li3 3University of California, Berkeley [email protected] Primary Co-Authors: Sushil Atreya4 Patricia Beauchamp5 Ian Cohen6 Jonathan Fortney7 Heidi Hammel8 Matthew Hedman9 Mark Hofstadter5 Abigail Rymer6 Paul Schenk10 Mark Showalter1 4University of Michigan, Ann Arbor, 5Jet Propulsion Laboratory, 6Johns Hopkins University Applied Physics Laboratory, 7University of California, Santa Cruz, 8Association of Universities for Research in Astronomy, 9University of Idaho, 10Lunar and Planetary Institute Additional Coauthors and Endorsers: For a full list of the 145 authors and endorsers, see the following link: https://docs.google.com/document/d/158h8ZK0HXp- DSQqVhV7gcGzjHqhUJ_2MzQAsRg3sxXw/edit?usp=sharing Motivation Ice giants are the only unexplored class of planet in our Solar System. Much that we currently know about these systems challenges our understanding of how planets, rings, satellites, and magnetospheres form and evolve. We assert that an ice giant Flagship mission with an atmospheric probe should be a priority for the decade 2023-2032. Investigation of Uranus or Neptune would advance fundamental understanding of many key issues in Solar System formation: 1) how ice giants formed and migrated through the Solar System; 2) what processes control the current conditions of this class of planet, its rings, satellites, and magnetospheres; 3) how the rings and satellites formed and evolved, and how Triton was captured from the Kuiper Belt; 4) whether the large satellites of the ice giants are ocean worlds that may harbor life now or in the past; and 5) the range of possible characteristics for exoplanets.
    [Show full text]
  • Was Jupiter Born Beyond the Current Orbits of Neptune and Pluto?
    INNER WORKINGS INNER WORKINGS Was Jupiter born beyond the current orbits of Neptune and Pluto? Ken Croswell, Science Writer Ancient people named the planet Jupiter well. Both gravity stunted the growth of newborn Mars, sculpts its brilliance and its slow, regal movement across the the asteroid belt today, and may even help protect sky evoked a king among gods. Today we know much Earth from catastrophic comet impacts. more about the influence of Jupiter, a planet boasting But how did such a behemoth arise? Conventional more than twice as much mass as the solar system’s theory says that Jupiter formed more or less where it other planets put together. Jupiter’s tremendous is now, about five times farther from the Sun than A new theory suggests that Jupiter formed its core far from the Sun, then moved inward. Image credit: Hubble Space Telescope – NASA, ESA, and Amy Simon (NASA Goddard). Published under the PNAS license. First published July 1, 2020. 16716–16719 | PNAS | July 21, 2020 | vol. 117 | no. 29 www.pnas.org/cgi/doi/10.1073/pnas.2011609117 Downloaded by guest on September 29, 2021 Earth is. At that distance, the disk of gas and dust that swirled around the young Sun was dense enough to give birth to the planetary goliath. In 2019, however, two groups of researchers un- aware of each other’s work—one in America (1), the other in Europe (2)—proposed a literally far-out alter- native: Jupiter got its start in the solar system’s hinter- lands, probably beyond the current orbits of Neptune and Pluto, and then moved inward.
    [Show full text]
  • Characterizing Habitable Exo-Moons
    Characterizing Habitable Exo-Moons L. Kaltenegger Harvard University, 60 Garden Street, 02138 MA, Cambridge USA Email: [email protected] Abstract We discuss the possibility of screening the atmosphere of exomoons for habitability. We concentrate on Earth-like satellites of extrasolar giant planets (EGP) which orbit in the Habitable Zone (HZ) of their host stars. The detectability of exomoons for EGP in the HZ has recently been shown to be feasible with the Kepler Mission or equivalent photometry using transit duration observations. Transmission spectroscopy of exomoons is a unique potential tool to screen them for habitability in the near future, especially around low mass stars. Using the Earth itself as a proxy we show the potential and limits of spectroscopy to detect biomarkers on an Earth-like exomoon and discuss effects of tidal locking for such potential habitats. Subject key words: occultation, Earth, astrobiology, eclipse, atmospheric effects, techniques: spectroscopic INTRODUCTION the question of whether we could screen Transiting planets are present-day "Rosetta such Earth-mass exomoons remotely for Stones" for understanding extrasolar planets habitability. because they offer the possibility of If the viewing geometry is optimal, i.e. the characterizing giant planet atmospheres (see. exomoon is close to the projected maximum e.g. Tinetti et al. 2007, Swain et al. 2008) and separation, the transit of an exomoon is should provide an access to biomarkers in the comparable to the transit of a planet the atmospheres of Earth-like bodies (Kaltenegger same size around the star (Kaltenegger & & Traub 2009, Deming et al. 2009, Ehrenreich Traub 2009), if the projected semimajor axis et al.
    [Show full text]
  • Extrasolar Planet Detection and Characterization with the KELT-North Transit Survey
    Extrasolar Planet Detection and Characterization With the KELT-North Transit Survey DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Thomas G. Beatty Graduate Program in Astronomy The Ohio State University 2014 Dissertation Committee: Professor B. Scott Gaudi, Advisor Professor Andrew P. Gould Professor Marc H. Pinsonneault Copyright by Thomas G. Beatty 2014 Abstract My dissertation focuses on the detection and characterization of new transiting extrasolar planets from the KELT-North survey, along with a examination of the processes underlying the astrophysical errors in the type of radial velocity measurements necessary to measure exoplanetary masses. Since 2006, the KELT- North transit survey has been collecting wide-angle precision photometry for 20% of the sky using a set of target selection, lightcurve processing, and candidate identification protocols I developed over the winter of 2010-2011. Since our initial set of planet candidates were generated in April 2011, KELT-North has discovered seven new transiting planets, two of which are among the five brightest transiting hot Jupiter systems discovered via a ground-based photometric survey. This highlights one of the main goals of the KELT-North survey: to discover new transiting systems orbiting bright, V< 10, host stars. These systems offer us the best targets for the precision ground- and space-based follow-up observations necessary to measure exoplanetary atmospheres. In September 2012 I demonstrated the atmospheric science enabled by the new KELT planets by observing the secondary eclipses of the brown dwarf KELT-1b with the Spitzer Space Telescope.
    [Show full text]