Giant Planet Formation, Evolution, and Internal Structure
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Jovian Planets (Gas Giants) Discoveries
The Jovian Planets (Gas Giants) Discoveries Saturn Jupiter Jupiter and Saturn known to ancient astronomers. Uranus discovered in 1781 by Sir William Herschel (England). Neptune discovered in 1845 by Johann Galle (Germany). Predicted to exist by John Adams and Urbain Leverrier because of irregularities in Uranus' orbit. Almost discovered by Galileo in 1613 Uranus Neptune (roughly to scale) Remember that compared to Terrestrial planets, Jovian planets: Orbital Properties: Distance from Sun Orbital Period are massive (AU) (years) are less dense (0.7 – 1.3 g/cm3) Jupiter 5.2 11.9 are mostly gas (and liquid) Saturn 9.5 29.4 rotate fast (9 - 17 hours rotation periods) Uranus 19.2 84 have rings and many moons Neptune 30.1 164 Known Moons Mass (MEarth) Radius (REarth) Major Missions: Launch Planets visited Jupiter 318 11 63 Voyager 1 1977 Jupiter, Saturn (0.001 MSun) Saturn 95 9.5 50 Voyager 2 1979 Jupiter, Saturn, Uranus, Neptune Uranus 15 4 27 Galileo 1989 Jupiter Neptune 17 3.9 13 Cassini 1997 Jupiter, Saturn Jupiter's Atmosphere Composition: mostly H, some He, traces of other elements (true for all Jovians). Gravity strong enough to retain even light elements. Mostly molecular. Altitude 0 km defined as top of troposphere (cloud layer) Ammonia (NH3) ice gives white colors. Ammonium hydrosulfide Optical – colors dictated Infrared - traces heat in (NH4SH) ice should form by how molecules atmosphere. here, somehow giving red, reflect sunlight yellow, brown colors. Water ice layer not seen due to higher layers. So white colors from cooler, higher clouds, brown and red from warmer, lower clouds. -
Exomoon Habitability Constrained by Illumination and Tidal Heating
submitted to Astrobiology: April 6, 2012 accepted by Astrobiology: September 8, 2012 published in Astrobiology: January 24, 2013 this updated draft: October 30, 2013 doi:10.1089/ast.2012.0859 Exomoon habitability constrained by illumination and tidal heating René HellerI , Rory BarnesII,III I Leibniz-Institute for Astrophysics Potsdam (AIP), An der Sternwarte 16, 14482 Potsdam, Germany, [email protected] II Astronomy Department, University of Washington, Box 951580, Seattle, WA 98195, [email protected] III NASA Astrobiology Institute – Virtual Planetary Laboratory Lead Team, USA Abstract The detection of moons orbiting extrasolar planets (“exomoons”) has now become feasible. Once they are discovered in the circumstellar habitable zone, questions about their habitability will emerge. Exomoons are likely to be tidally locked to their planet and hence experience days much shorter than their orbital period around the star and have seasons, all of which works in favor of habitability. These satellites can receive more illumination per area than their host planets, as the planet reflects stellar light and emits thermal photons. On the contrary, eclipses can significantly alter local climates on exomoons by reducing stellar illumination. In addition to radiative heating, tidal heating can be very large on exomoons, possibly even large enough for sterilization. We identify combinations of physical and orbital parameters for which radiative and tidal heating are strong enough to trigger a runaway greenhouse. By analogy with the circumstellar habitable zone, these constraints define a circumplanetary “habitable edge”. We apply our model to hypothetical moons around the recently discovered exoplanet Kepler-22b and the giant planet candidate KOI211.01 and describe, for the first time, the orbits of habitable exomoons. -
Geological Timeline
Geological Timeline In this pack you will find information and activities to help your class grasp the concept of geological time, just how old our planet is, and just how young we, as a species, are. Planet Earth is 4,600 million years old. We all know this is very old indeed, but big numbers like this are always difficult to get your head around. The activities in this pack will help your class to make visual representations of the age of the Earth to help them get to grips with the timescales involved. Important EvEnts In thE Earth’s hIstory 4600 mya (million years ago) – Planet Earth formed. Dust left over from the birth of the sun clumped together to form planet Earth. The other planets in our solar system were also formed in this way at about the same time. 4500 mya – Earth’s core and crust formed. Dense metals sank to the centre of the Earth and formed the core, while the outside layer cooled and solidified to form the Earth’s crust. 4400 mya – The Earth’s first oceans formed. Water vapour was released into the Earth’s atmosphere by volcanism. It then cooled, fell back down as rain, and formed the Earth’s first oceans. Some water may also have been brought to Earth by comets and asteroids. 3850 mya – The first life appeared on Earth. It was very simple single-celled organisms. Exactly how life first arose is a mystery. 1500 mya – Oxygen began to accumulate in the Earth’s atmosphere. Oxygen is made by cyanobacteria (blue-green algae) as a product of photosynthesis. -
JUICE Red Book
ESA/SRE(2014)1 September 2014 JUICE JUpiter ICy moons Explorer Exploring the emergence of habitable worlds around gas giants Definition Study Report European Space Agency 1 This page left intentionally blank 2 Mission Description Jupiter Icy Moons Explorer Key science goals The emergence of habitable worlds around gas giants Characterise Ganymede, Europa and Callisto as planetary objects and potential habitats Explore the Jupiter system as an archetype for gas giants Payload Ten instruments Laser Altimeter Radio Science Experiment Ice Penetrating Radar Visible-Infrared Hyperspectral Imaging Spectrometer Ultraviolet Imaging Spectrograph Imaging System Magnetometer Particle Package Submillimetre Wave Instrument Radio and Plasma Wave Instrument Overall mission profile 06/2022 - Launch by Ariane-5 ECA + EVEE Cruise 01/2030 - Jupiter orbit insertion Jupiter tour Transfer to Callisto (11 months) Europa phase: 2 Europa and 3 Callisto flybys (1 month) Jupiter High Latitude Phase: 9 Callisto flybys (9 months) Transfer to Ganymede (11 months) 09/2032 – Ganymede orbit insertion Ganymede tour Elliptical and high altitude circular phases (5 months) Low altitude (500 km) circular orbit (4 months) 06/2033 – End of nominal mission Spacecraft 3-axis stabilised Power: solar panels: ~900 W HGA: ~3 m, body fixed X and Ka bands Downlink ≥ 1.4 Gbit/day High Δv capability (2700 m/s) Radiation tolerance: 50 krad at equipment level Dry mass: ~1800 kg Ground TM stations ESTRAC network Key mission drivers Radiation tolerance and technology Power budget and solar arrays challenges Mass budget Responsibilities ESA: manufacturing, launch, operations of the spacecraft and data archiving PI Teams: science payload provision, operations, and data analysis 3 Foreword The JUICE (JUpiter ICy moon Explorer) mission, selected by ESA in May 2012 to be the first large mission within the Cosmic Vision Program 2015–2025, will provide the most comprehensive exploration to date of the Jovian system in all its complexity, with particular emphasis on Ganymede as a planetary body and potential habitat. -
The Inner Solar System Is the Name of the Terrestrial Planets and Asteroid
!"#$%&'''''''''''''''''''''''''''''''''' !"#$%&&#'$()*+'$(,-.#/ !"#$%&'(%#)*+,('% ()$&*++$,&-./",&-0-1$#&*-&1)$&+"#$&.2&1)$& 1$,,$-1,*"/&3/"+$1-&"+4&"-1$,.*4&5$/16&($,,$-1,*"/&*-& 78-1&"&2"+90&:"0&.2&-"0*+;&,.9<06&=*<$&1)$&>",1)?& 1$,,$-1,*"/&3/"+$1-&)"@$&"&9.,$&.2&*,.+&"+4&,.9<6 A1&1)$&9$+1$,&.2&1)$&-./",&-0-1$#&*-&1)$&B8+6& ()$&B8+&*-&"&5*;&5"//&.2&)04,.;$+&3.:$,$4&50& +89/$",&,$"91*.+-6&C"--*@$&$D3/.-*.+-&",$&;.*+;& .+&"//&.2&1)$&1*#$&*+-*4$&1)$&B8+6&E1F-&:)"1&#"<$-& 1)$&/*;)1&$@$,0&4"0&"+4&<$$3-&.8,&3/"+$1&:",#6& J.8&<+.:&:)"1&3/"+$1&*-&+$D16&J.8&/*@$&.+& =*;)1&G*3-&2,.#&1)$&B8+&1.&8-&*+&"5.81&$*;)1& *1H&J83?&1)$&>",1)&*-&+8#5$,&1),$$6&Q$&)"@$&"& #*+81$-6&()$&B8+&*-&1)$&#.-1&#"--*@$&1)*+;&*+&.8,& ,.9<0&*,.+&9.,$&"1&1)$&9$+1$,&.2&.8,&3/"+$16&Q$& -./",&-0-1$#6&E1&*-&-.&5*;&0.8&9.8/4&2*1&"5.81&"& )"@$&/*K8*4&:"1$,?&"+4&.8,&"*,&*-&#"4$&.2&#.-1/0& #*//*.+&>",1)-&*+-*4$&.2&*1H& +*1,.;$+&"+4&.D0;$+6&E1&1"<$-&1),$$&)8+4,$4&"+4& -*D10L2*@$&4"0-&2.,&8-&1.&9*,9/$&1)$&-8+6&Q$&.+/0& I/.-$-1&1.&1)$&B8+&*-&1)$&3/"+$1&C$,98,06& )"@$&.+$&#..+6 J.8&9.8/4&-K8$$G$&"5.81&$*;)1$$+&C$,98,0F-& *+-*4$&.2&>",1)6&E1&*-&#"4$&.2&#.-1/0&,.9<?&581&*1&)"-& !$D1&1.&8-&*+&*-&C",-6&C",-&"/-.&)"-&"&9.,$& "&)8;$&*,.+&9.,$&"+4&*1&;$+$,"1$-&"&5*;& .2&,.9<&"+4&*,.+6&E1&*-&"&/*11/$&#.,$&1)"+&)"/2&1)$& #";+$1*9&2*$/46&B3$$40&/*11/$&C$,98,0&-"*/-&",.8+4& -*G$&.2&>",1)6&()$&#.-1&4*-1*+91&2$"18,$&"5.81&C",-& 1)$&-8+&*+&.+/0&$*;)10L$*;)1&4"0-6&C$,98,0&:"-& *-&*1-&,$4&9./.,6&R8-1&,*9)&*+&*,.+&.D*4$&9.@$,-&1)$& 1)$&#$--$+;$,&.2&1)$&;.4-&*+&M.#"+)./.;0?& 3/"+$16&E1F-&-.,1&.2&/*<$&1)$&3/"+$1&*-&,8-1*+;6&Q)*1$& -
Giant Planet Effects on Terrestrial Planet Formation and System Architecture
MNRAS 485, 541–549 (2019) doi:10.1093/mnras/stz385 Advance Access publication 2019 February 8 Giant planet effects on terrestrial planet formation and system architecture 1‹ 2 2,3 1 Anna C. Childs, Elisa Quintana, Thomas Barclay and Jason H. Steffen Downloaded from https://academic.oup.com/mnras/article-abstract/485/1/541/5309996 by NASA Goddard Space Flight Ctr user on 15 April 2020 1Department of Physics and Astronomy, University of Nevada, Las Vegas, NV 89154, USA 2NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771, USA 3University of Maryland, Baltimore County, 1000 Hilltop Cir, Baltimore, MD 21250, USA Accepted 2019 February 4. Received 2019 January 16; in original form 2018 July 6 ABSTRACT Using an updated collision model, we conduct a suite of high-resolution N-body integrations to probe the relationship between giant planet mass and terrestrial planet formation and system architecture. We vary the mass of the planets that reside at Jupiter’s and Saturn’s orbit and examine the effects on the interior terrestrial system. We find that massive giant planets are more likely to eject material from the outer edge of the terrestrial disc and produce terrestrial planets that are on smaller, more circular orbits. We do not find a strong correlation between exterior giant planet mass and the number of Earth analogues (analogous in mass and semimajor axis) produced in the system. These results allow us to make predictions on the nature of terrestrial planets orbiting distant Sun-like star systems that harbour giant planet companions on long orbits – systems that will be a priority for NASA’s upcoming Wide-Field Infrared Survey Telescope (WFIRST) mission. -
Outer Planets: the Ice Giants
Outer Planets: The Ice Giants A. P. Ingersoll, H. B. Hammel, T. R. Spilker, R. E. Young Exploring Uranus and Neptune satisfies NASA’s objectives, “investigation of the Earth, Moon, Mars and beyond with emphasis on understanding the history of the solar system” and “conduct robotic exploration across the solar system for scientific purposes.” The giant planet story is the story of the solar system (*). Earth and the other small objects are leftovers from the feast of giant planet formation. As they formed, the giant planets may have migrated inward or outward, ejecting some objects from the solar system and swallowing others. The giant planets most likely delivered water and other volatiles, in the form of icy planetesimals, to the inner solar system from the region around Neptune. The “gas giants” Jupiter and Saturn are mostly hydrogen and helium. These planets must have swallowed a portion of the solar nebula intact. The “ice giants” Uranus and Neptune are made primarily of heavier stuff, probably the next most abundant elements in the Sun – oxygen, carbon, nitrogen, and sulfur. For each giant planet the core is the “seed” around which it accreted nebular gas. The ice giants may be more seed than gas. Giant planets are laboratories in which to test our theories about geophysics, plasma physics, meteorology, and even oceanography in a larger context. Their bottomless atmospheres, with 1000 mph winds and 100 year-old storms, teach us about weather on Earth. The giant planets’ enormous magnetic fields and intense radiation belts test our theories of terrestrial and solar electromagnetic phenomena. -
Activity 16: Planets and Their Features Mercury Mercury Is an Extreme Planet
Activity 16: Planets And Their Features Mercury Mercury.is.an.extreme.planet..It.is.the.fastest.of.all.the.planets..It.is.one.of.the.hottest. planets,.and.it.is.also.one.of.the.coldest!.It.may.be.the.site.of.the.largest.crash.in.the. history.of.the.solar.system..Mercury.may.also.have.the.strangest.view.of.the.sun.in.the. whole.universe! Mercury.zooms.around.the.sun.at.a.speed.of.48.kilometres.per.second,.or.half.as.fast. again.as.the.Earth.travels. At.certain.times.and.places,.Mercury’s.surface.temperature.can.rise.to.twice.the. temperature.inside.an.oven.when.you.are.baking.a.cake..On.the.other.hand,.in.the. shadow.of.its.North.Pole.craters,.Mercury.has.ice.like.our.North.Pole.does. Since.Mercury.is.so.close.to.the.sun,.we.have.never.been.able.to.see.it.in.any.detail..Even. with.the.most.powerful.telescope,.Mercury.looks.like.a.blurry.white.ball..It.wasn’t.until.1974. that.we.really.began.to.learn.about.Mercury..In.1974.and.1975,.Mariner.10.flew.by.Mercury.three.times.and.sent.back. about.12,000.images. These.pictures.combined.to.give.a.map.of.about.45%.of.Mercury’s.surface,.and.what.they.show.us.is.a.planet.covered. with.craters,.much.like.our.moon..Mercury’s.largest.land.feature.is.the.Caloris.Basin,.a.crater.formed.by.a.collision.with.a. meteorite.long.ago..The.size.of.the.Caloris.Basin,.about.1350.kilometres.in.diameter,.suggests.that.this.may.have.been. -
The Solar System Cause Impact Craters
ASTRONOMY 161 Introduction to Solar System Astronomy Class 12 Solar System Survey Monday, February 5 Key Concepts (1) The terrestrial planets are made primarily of rock and metal. (2) The Jovian planets are made primarily of hydrogen and helium. (3) Moons (a.k.a. satellites) orbit the planets; some moons are large. (4) Asteroids, meteoroids, comets, and Kuiper Belt objects orbit the Sun. (5) Collision between objects in the Solar System cause impact craters. Family portrait of the Solar System: Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, (Eris, Ceres, Pluto): My Very Excellent Mother Just Served Us Nine (Extra Cheese Pizzas). The Solar System: List of Ingredients Ingredient Percent of total mass Sun 99.8% Jupiter 0.1% other planets 0.05% everything else 0.05% The Sun dominates the Solar System Jupiter dominates the planets Object Mass Object Mass 1) Sun 330,000 2) Jupiter 320 10) Ganymede 0.025 3) Saturn 95 11) Titan 0.023 4) Neptune 17 12) Callisto 0.018 5) Uranus 15 13) Io 0.015 6) Earth 1.0 14) Moon 0.012 7) Venus 0.82 15) Europa 0.008 8) Mars 0.11 16) Triton 0.004 9) Mercury 0.055 17) Pluto 0.002 A few words about the Sun. The Sun is a large sphere of gas (mostly H, He – hydrogen and helium). The Sun shines because it is hot (T = 5,800 K). The Sun remains hot because it is powered by fusion of hydrogen to helium (H-bomb). (1) The terrestrial planets are made primarily of rock and metal. -
Heavy Element Enrichment of the Gas Giant Planets By
Heavy Element Enrichment of the Gas Giant Planets by Jaime Lee Coffey Hon.B.Sc., The University of Toronto, 2006 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science in The Faculty of Graduate Studies (Astronomy) The University Of British Columbia Vancouver, Canada August 2008 © Jaime Lee Coffey 2008 Abstract According to both spectroscopic measurements and interior models, Jupiter, Saturn, Uranus and Neptune possess gaseous envelopes that are enriched in heavy elements compared to the Sun. Straightforward application of the dominant theories of gas giant formation - core accretion and gravitational instability - fail to provide the observed enrichment, suggesting that the surplus heavy elements were somehow dumped onto the planets after the envelopes were already in existence. Previous work has shown that if giant planets rapidly reached their cur rent configuration and radii, they do not accrete the remaining planetesimals efficiently enough to explain their observed heavy-element surplus. We ex plore the likely scenario that the effective accretion cross-sections of the giants were enhanced by the presence of the massive circumplanetary disks out of which their regular satellite systems formed. Perhaps surprisingly, we find that a simple model with protosatellite disks around Jupiter and Saturn can meet known constraints without tuning any parameters. Fur thermore, we show that the heavy-element budgets in Jupiter and Saturn can be matched slightly better if Saturn’s envelope (and disk) are formed roughly 0.1 — 10 Myr after that of Jupiter. We also show that giant planets forming in an initially-compact con figuration can acquire the observed enrichments if they are surrounded by similar protosatellite disks. -
DISCOVERY of XO-6B: a HOT JUPITER TRANSITING a FAST ROTATING F5 STAR on an OBLIQUE ORBIT N Crouzet 1, P
Draft version November 18, 2016 Preprint typeset using LATEX style emulateapj v. 01/23/15 DISCOVERY OF XO-6b: A HOT JUPITER TRANSITING A FAST ROTATING F5 STAR ON AN OBLIQUE ORBIT N Crouzet 1, P. R. McCullough 2, D. Long 3, P. Montanes Rodriguez 4, A. Lecavelier des Etangs 5, I. Ribas 6, V. Bourrier 7, G. Hebrard´ 5, F. Vilardell 8, M. Deleuil 9, E. Herrero 6,8, E. Garcia-Melendo 10,11, L. Akhenak 5, J. Foote 12, B. Gary 13, P. Benni 14, T. Guillot 15, M. Conjat 15, D. Mekarnia´ 15, J. Garlitz 16, C. J. Burke 17, B. Courcol 9, and O. Demangeon 9 1 Dunlap Institute for Astronomy & Astrophysics, University of Toronto, 50 St. George Street, Toronto, Ontario, Canada M5S 3H4 2 Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA 3 Space Telescope Science Institute, 3700 San Martin Dr, Baltimore, MD 21218, USA 4 Instituto de Astrof´ısicade Canarias, C/V´ıaL´acteas/n, E-38200 La Laguna, Spain 5 Institut d'Astrophysique de Paris, UMR7095 CNRS, Universit´ePierre & Marie Curie, 98bis boulevard Arago, 75014 Paris, France 6 Institut de Ci`enciesde l'Espai (CSIC-IEEC), Campus UAB, Carrer de Can Magrans s/n, 08193 Bellaterra, Spain 7 Observatoire de l'Universit´ede Gen`eve, 51 chemin des Maillettes, 1290 Sauverny, Switzerland 8 Observatori del Montsec (OAdM), Institut d'Estudis Espacials de Catalunya (IEEC), Gran Capit`a,2-4, Edif. Nexus, 08034 Barcelona, Spain 9 Aix Marseille Universit´e,CNRS, LAM (Laboratoire d'Astrophysique de Marseille) UMR 7326, 13388 Marseille, France 10 Departamento de F´ısicaAplicada I, Escuela T´ecnica Superior de Ingenier´ıa,Universidad del Pa´ısVasco UPV/EHU, Alameda Urquijo s/n, 48013 Bilbao, Spain 11 Fundacio Observatori Esteve Duran, Avda. -
Discovery of a Low-Mass Companion to a Metal-Rich F Star with the Marvels Pilot Project
The Astrophysical Journal, 718:1186–1199, 2010 August 1 doi:10.1088/0004-637X/718/2/1186 C 2010. The American Astronomical Society. All rights reserved. Printed in the U.S.A. DISCOVERY OF A LOW-MASS COMPANION TO A METAL-RICH F STAR WITH THE MARVELS PILOT PROJECT Scott W. Fleming1,JianGe1, Suvrath Mahadevan1,2,3, Brian Lee1, Jason D. Eastman4, Robert J. Siverd4, B. Scott Gaudi4, Andrzej Niedzielski5, Thirupathi Sivarani6, Keivan G. Stassun7,8, Alex Wolszczan2,3, Rory Barnes9, Bruce Gary7, Duy Cuong Nguyen1, Robert C. Morehead1, Xiaoke Wan1, Bo Zhao1, Jian Liu1, Pengcheng Guo1, Stephen R. Kane1,10, Julian C. van Eyken1,10, Nathan M. De Lee1, Justin R. Crepp1,11, Alaina C. Shelden1,12, Chris Laws9, John P. Wisniewski9, Donald P. Schneider2,3, Joshua Pepper7, Stephanie A. Snedden12, Kaike Pan12, Dmitry Bizyaev12, Howard Brewington12, Olena Malanushenko12, Viktor Malanushenko12, Daniel Oravetz12, Audrey Simmons12, and Shannon Watters12,13 1 Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL 326711-2055, USA; scfl[email protected]fl.edu 2 Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802, USA 3 Center for Exoplanets and Habitable Worlds, The Pennsylvania State University, University Park, PA 16802, USA 4 Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210, USA 5 Torun´ Center for Astronomy, Nicolaus Copernicus University, ul. Gagarina 11, 87-100, Torun,´ Poland 6 Indian Institute of Astrophysics, Bangalore 560034, India 7 Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235, USA 8 Department of Physics, Fisk University, 1000 17th Ave.