Decadal-Scale Variations of Thalweg Morphology and Riffle–Pool

Total Page:16

File Type:pdf, Size:1020Kb

Decadal-Scale Variations of Thalweg Morphology and Riffle–Pool water Article Decadal-Scale Variations of Thalweg Morphology and Riffle–Pool Sequences in Response to Flow Regulation in the Lowermost Mississippi River Chia-Yu Wu * and Joann Mossa Department of Geography, University of Florida, Gainesville, FL 32611, USA; mossa@ufl.edu * Correspondence: wuchiayu@ufl.edu Received: 10 May 2019; Accepted: 3 June 2019; Published: 5 June 2019 Abstract: The lowermost Mississippi River (LMR) is one of the largest deltaic systems in North America and one of the heavily human-manipulated fluvial river systems. Historic hydrographic surveys from the mid-1900s to the early 2010s were used to document the thalweg morphology adjustments, as well as the riffle–pool sequences. Extensive aggradation was observed during 1950s to 1960s, as the Atchafalaya River was enlarging before the completion of the Old River Control Structure (ORCS). Following the completion of the ORCS, reductions in sediment input to the LMR resulted in net degradation of the thalweg profile patterns since the mid-1960s except for the 1992–2004 period. Different flood events that supplied sediment might be the cause of upstream aggradation from 1963–1975 and net aggradation along the entire reach from 1992–2004. Furthermore, the change pattern of thalweg profiles appear to be controlled by backwater effects, as well as the Bonnet Carré spillway opening. Results from riffle–pool sequences reveal that the averaging Ws ratios (length to channel width) are 6–7, similar to numerous previous studies. Temporal variations of the same riffles and pools reveal that aggradation and degradation might be heavily controlled by similar factors to the thalweg variations (i.e., sediment supply, backwater effects). In sum, this study examines decadal-scale geomorphic responses in a low-lying large river system subject to different human interventions, as well as natural flood events. Future management strategies of this and similar river systems should consider recent riverbed changes in dredging, sediment management, and river engineering. Keywords: thalweg; riffle–pool sequence; lowermost Mississippi River 1. Introduction 1.1. Study Aims Large alluvial rivers in the world usually have immense socio-economic importance. Different human activities, such as channelization, flood control, or dredging for navigation affected several large drainage systems such as the Nile, Mississippi, Indus, Yangtze, and Euphrates rivers [1,2]. Fluvial geomorphological responses to human impacts are highly dynamic and complex, and the lowermost Mississippi River (LMR) is a notable example (Figure1). Due to preventing the main channel of Mississippi River from suddenly changing its course (avulsion) into the Atchafalaya River [3], the first phase of the Old River Control Structure (ORCS) was completed in 1963 by the United States Army Corps of Engineers (USACE). After the completion of these structures, different studies discussed whether the ORCS blocked sediments and resulted in sediment deficiency, or stabilized the channel gradient and caused riverbed aggradation [4–16]. In a recent modeling study, Wang and Xu [17] found that, proportionally, more riverbed materials were carried downstream in the Mississippi mainstem Water 2019, 11, 1175; doi:10.3390/w11061175 www.mdpi.com/journal/water Water 2019, 11, 1175 2 of 25 Water 2019, 11, x FOR PEER REVIEW 2 of 26 thanMississippi to the outflow mainstem channel. than However,to the outflow they also channel. cautioned However, that a solid they conclusion also cautioned could notthat be a drawn solid becauseconclusion the comparisoncould not be of drawn the modeling because results the comparis is based onon aof very the limited modeling number results of fieldis based measurements. on a very Therefore,limited number given theof field complex measurements. morphodynamic Therefore, behavior given in the the complex LMR region, morphodynamic understanding behavior long-term in (decadalthe LMR scale) region, variations understanding regarding long-term to river thalweg (decadal morphology scale) variations due to anthropogenicregarding to disturbanceriver thalweg is anmorphology important task.due to With anthropogenic hydrographic disturbance data exceeding is an a century important in timespan task. With recorded hydrographic by the USACE data (fromexceeding the 1870s a century to 2013), in timespan the LMR recorded is an ideal by the site US toACE study (from geomorphological the 1870s to 2013 response), the LMR over is decadalan ideal scales.site to study In addition, geomorphological the riffle–pool response undulation over decad on thalwegal scales. profiles In addition, is also the likely riffle–pool to be indicative undulation of longer-termon thalweg morphologicalprofiles is also adjustment likely to be and indicative enables an of analysis longer-term of downstream morphological trends adjustment in the riverbed and formenables resistance an analysis [18– 20of ].downstream trends in the riverbed form resistance [18–20]. Figure 1. The geographical map of the lowermost Mississippi River (LMR) with different locations. Figure 1. The geographical map of the lowermost Mississippi River (LMR) with different locations. Artificial levees along the channel (red lines) are also marked in this map. Our study reach (river Artificial levees along the channel (red lines) are also marked in this map. Our study reach (river kilometer (RK) 490 to RK 0) is located from downstream of Tarbert Landing (TBL, RK 493) to the Head kilometer (RK) 490 to RK 0) is located from downstream of Tarbert Landing (TBL, RK 493) to the Head of Passes (HOP, RK 0). Some important structures are also labeled on the map, such as Old River of Passes (HOP, RK 0). Some important structures are also labeled on the map, such as Old River Control Structure (ORCS, RK 500), Morganza Spillway (MS, near RK 451), and Bonnet Carré spillway Control Structure (ORCS, RK 500), Morganza Spillway (MS, near RK 451), and Bonnet Carré spillway (BCS, near RK 205), as well as the two cities of Baton Rouge (RK 370) and New Orleans (RK 164). (BCS, near RK 205), as well as the two cities of Baton Rouge (RK 370) and New Orleans (RK 164). The The yellow square indicates the location for Figure4B. yellow square indicates the location for Figure 4B. Alluvial river channels commonly exhibit a dynamic, three-dimensional variation in the planform, cross-sectional,Alluvial river and longitudinalchannels commo aspectsnly [ 21exhibit,22]. At a thedynamic, reach scale, three-dimensional the channel thalweg variation is modified in the intoplanform, a series cross-sectional, of bathymetric and lowslongitudinal and highs. aspects These [21,22]. vertical At the undulationsreach scale, the in channel bed elevation thalweg are is generallymodified into referred a series to as of ribathymetricffle–pool sequences. lows and Rihighffless. These represent vertical the topographicallyundulations in bed shallow elevation section are ofgenerally an undulating referred channel to as riffle–pool bed, while sequences. pools are Riffles the topographically represent the topographically deep areas of the shallow channel section bed (Figureof an undulating2A). The ri fflchannele–pool sequencesbed, while are pools commonly are the placed topographically in both straight deep and areas meandering of the channel rivers withbed coarse-grained(Figure 2A). The channels riffle–pool of <2% sequences slope [21 are,23 –commonly25]. The morphology placed in both of riffl straighte–pool sequencesand meandering is considered rivers aswith a fundamental coarse-grained process channels of channel of <2% adjustments slope [21,23–25]. in both The vertical morphology and planform of riffle–pool dimensions sequences [26–30 is]. Furthermore,considered as ri ffla e–poolfundamental morphology process is alsoof channel important adjustments in terms of in mesoscale both vertical habitats, and as planform different physicaldimensions conditions [26–30]. wouldFurthermore, determine riffle–pool different morphology habitat type is also [31 ,32important]. Human in terms activities, of mesoscale such as habitats, as different physical conditions would determine different habitat type [31,32]. Human activities, such as channelization or dredging, could modify the riffle–pool forms [33]. Therefore, to Water 2019, 11, 1175 3 of 25 Water 2019, 11, x FOR PEER REVIEW 3 of 26 channelizationexamine the variation or dredging, of the could riffle–pool modify morphology the riffle–pool after forms massive [33]. human Therefore, alterations to examine is another the variation major ofgoal the for riffl thise–pool study. morphology after massive human alterations is another major goal for this study. In sum, this study aims to examine the variations of thalweg profiles, profiles, as well as the ririffle–poolffle–pool sequences, fromfrom pre-constructionpre-construction of of the the ORCS ORCS (pre-1963) (pre-1963) to to recent recent time time (2010s) (2010s) in thein the LMR LMR by usingby using the hydrographicalthe hydrographical datasets. datasets. This paperThis paper focuses focuses on the on lowermost the lowermost reach of reach the LMR of the (Figure LMR1), (Figure extending 1), fromextending the ORCS from juncturethe ORCS to thejuncture Head to of the Passes Head (HOP), of Passes which (HOP), extends which from extends river kilometer from river (RK) kilometer 490 to 0. In(RK) general, 490 to this 0. In study general, serves this as study an important serves as extension an important/comparison extension/comparison to both studies of to Joshi both and studies Jun [34 of], asJoshi well and
Recommended publications
  • Measurement of Bedload Transport in Sand-Bed Rivers: a Look at Two Indirect Sampling Methods
    Published online in 2010 as part of U.S. Geological Survey Scientific Investigations Report 2010-5091. Measurement of Bedload Transport in Sand-Bed Rivers: A Look at Two Indirect Sampling Methods Robert R. Holmes, Jr. U.S. Geological Survey, Rolla, Missouri, United States. Abstract Sand-bed rivers present unique challenges to accurate measurement of the bedload transport rate using the traditional direct sampling methods of direct traps (for example the Helley-Smith bedload sampler). The two major issues are: 1) over sampling of sand transport caused by “mining” of sand due to the flow disturbance induced by the presence of the sampler and 2) clogging of the mesh bag with sand particles reducing the hydraulic efficiency of the sampler. Indirect measurement methods hold promise in that unlike direct methods, no transport-altering flow disturbance near the bed occurs. The bedform velocimetry method utilizes a measure of the bedform geometry and the speed of bedform translation to estimate the bedload transport through mass balance. The bedform velocimetry method is readily applied for the estimation of bedload transport in large sand-bed rivers so long as prominent bedforms are present and the streamflow discharge is steady for long enough to provide sufficient bedform translation between the successive bathymetric data sets. Bedform velocimetry in small sand- bed rivers is often problematic due to rapid variation within the hydrograph. The bottom-track bias feature of the acoustic Doppler current profiler (ADCP) has been utilized to accurately estimate the virtual velocities of sand-bed rivers. Coupling measurement of the virtual velocity with an accurate determination of the active depth of the streambed sediment movement is another method to measure bedload transport, which will be termed the “virtual velocity” method.
    [Show full text]
  • PRELUDE to SEVEN SLOTS: FILLING and SUBSEQUENT MODIFICATION of SEVEN BROAD CANYONS in the NAVAJO SANDSTONE, SOUTH-CENTRAL UTAH by David B
    PRELUDE TO SEVEN SLOTS: FILLING AND SUBSEQUENT MODIFICATION OF SEVEN BROAD CANYONS IN THE NAVAJO SANDSTONE, SOUTH-CENTRAL UTAH by David B. Loope1, Ronald J. Goble1, and Joel P. L. Johnson2 ABSTRACT Within a four square kilometer portion of Grand Staircase-Escalante National Monument, seven distinct slot canyons cut the Jurassic Navajo Sandstone. Four of the slots developed along separate reaches of a trunk stream (Dry Fork of Coyote Gulch), and three (including canyons locally known as “Peekaboo” and “Spooky”) are at the distal ends of south-flowing tributary drainages. All these slot canyons are examples of epigenetic gorges—bedrock channel reaches shifted laterally from previous reach locations. The previous channels became filled with alluvium, allowing active channels to shift laterally in places and to subsequently re-incise through bedrock elsewhere. New evidence, based on optically stimulated luminescence (OSL) ages, indicates that this thick alluvium started to fill broad, pre-existing, bedrock canyons before 55,000 years ago, and that filling continued until at least 48,000 years ago. Streams start to fill their channels when sediment supply increases relative to stream power. The following conditions favored alluviation in the study area: (1) a cooler, wetter climate increased the rate of mass wasting along the Straight Cliffs (the headwaters of Dry Fork) and the rate of weathering of the broad outcrops of Navajo and Entrada Sandstone; (2) windier conditions increased the amount of eolian sand transport, perhaps destabilizing dunes and moving their stored sediment into stream channels; and (3) southward migration of the jet stream dimin- ished the frequency and severity of convective storms.
    [Show full text]
  • Lesson 4: Sediment Deposition and River Structures
    LESSON 4: SEDIMENT DEPOSITION AND RIVER STRUCTURES ESSENTIAL QUESTION: What combination of factors both natural and manmade is necessary for healthy river restoration and how does this enhance the sustainability of natural and human communities? GUIDING QUESTION: As rivers age and slow they deposit sediment and form sediment structures, how are sediments and sediment structures important to the river ecosystem? OVERVIEW: The focus of this lesson is the deposition and erosional effects of slow-moving water in low gradient areas. These “mature rivers” with decreasing gradient result in the settling and deposition of sediments and the formation sediment structures. The river’s fast-flowing zone, the thalweg, causes erosion of the river banks forming cliffs called cut-banks. On slower inside turns, sediment is deposited as point-bars. Where the gradient is particularly level, the river will branch into many separate channels that weave in and out, leaving gravel bar islands. Where two meanders meet, the river will straighten, leaving oxbow lakes in the former meander bends. TIME: One class period MATERIALS: . Lesson 4- Sediment Deposition and River Structures.pptx . Lesson 4a- Sediment Deposition and River Structures.pdf . StreamTable.pptx . StreamTable.pdf . Mass Wasting and Flash Floods.pptx . Mass Wasting and Flash Floods.pdf . Stream Table . Sand . Reflection Journal Pages (printable handout) . Vocabulary Notes (printable handout) PROCEDURE: 1. Review Essential Question and introduce Guiding Question. 2. Hand out first Reflection Journal page and have students take a minute to consider and respond to the questions then discuss responses and questions generated. 3. Handout and go over the Vocabulary Notes. Students will define the vocabulary words as they watch the PowerPoint Lesson.
    [Show full text]
  • Geomorphic Classification of Rivers
    9.36 Geomorphic Classification of Rivers JM Buffington, U.S. Forest Service, Boise, ID, USA DR Montgomery, University of Washington, Seattle, WA, USA Published by Elsevier Inc. 9.36.1 Introduction 730 9.36.2 Purpose of Classification 730 9.36.3 Types of Channel Classification 731 9.36.3.1 Stream Order 731 9.36.3.2 Process Domains 732 9.36.3.3 Channel Pattern 732 9.36.3.4 Channel–Floodplain Interactions 735 9.36.3.5 Bed Material and Mobility 737 9.36.3.6 Channel Units 739 9.36.3.7 Hierarchical Classifications 739 9.36.3.8 Statistical Classifications 745 9.36.4 Use and Compatibility of Channel Classifications 745 9.36.5 The Rise and Fall of Classifications: Why Are Some Channel Classifications More Used Than Others? 747 9.36.6 Future Needs and Directions 753 9.36.6.1 Standardization and Sample Size 753 9.36.6.2 Remote Sensing 754 9.36.7 Conclusion 755 Acknowledgements 756 References 756 Appendix 762 9.36.1 Introduction 9.36.2 Purpose of Classification Over the last several decades, environmental legislation and a A basic tenet in geomorphology is that ‘form implies process.’As growing awareness of historical human disturbance to rivers such, numerous geomorphic classifications have been de- worldwide (Schumm, 1977; Collins et al., 2003; Surian and veloped for landscapes (Davis, 1899), hillslopes (Varnes, 1958), Rinaldi, 2003; Nilsson et al., 2005; Chin, 2006; Walter and and rivers (Section 9.36.3). The form–process paradigm is a Merritts, 2008) have fostered unprecedented collaboration potentially powerful tool for conducting quantitative geo- among scientists, land managers, and stakeholders to better morphic investigations.
    [Show full text]
  • Seasonal Flooding Affects Habitat and Landscape Dynamics of a Gravel
    Seasonal flooding affects habitat and landscape dynamics of a gravel-bed river floodplain Katelyn P. Driscoll1,2,5 and F. Richard Hauer1,3,4,6 1Systems Ecology Graduate Program, University of Montana, Missoula, Montana 59812 USA 2Rocky Mountain Research Station, Albuquerque, New Mexico 87102 USA 3Flathead Lake Biological Station, University of Montana, Polson, Montana 59806 USA 4Montana Institute on Ecosystems, University of Montana, Missoula, Montana 59812 USA Abstract: Floodplains are comprised of aquatic and terrestrial habitats that are reshaped frequently by hydrologic processes that operate at multiple spatial and temporal scales. It is well established that hydrologic and geomorphic dynamics are the primary drivers of habitat change in river floodplains over extended time periods. However, the effect of fluctuating discharge on floodplain habitat structure during seasonal flooding is less well understood. We collected ultra-high resolution digital multispectral imagery of a gravel-bed river floodplain in western Montana on 6 dates during a typical seasonal flood pulse and used it to quantify changes in habitat abundance and diversity as- sociated with annual flooding. We observed significant changes in areal abundance of many habitat types, such as riffles, runs, shallow shorelines, and overbank flow. However, the relative abundance of some habitats, such as back- waters, springbrooks, pools, and ponds, changed very little. We also examined habitat transition patterns through- out the flood pulse. Few habitat transitions occurred in the main channel, which was dominated by riffle and run habitat. In contrast, in the near-channel, scoured habitats of the floodplain were dominated by cobble bars at low flows but transitioned to isolated flood channels at moderate discharge.
    [Show full text]
  • Culvert Design Transportation & the Environment Conference December 3, 2014 Chris Freiburger – Fisheries Division - DNR Perched Piping
    Culvert Design Transportation & the Environment Conference December 3, 2014 Chris Freiburger – Fisheries Division - DNR Perched Piping Blockage Sediment What are we after? •Natural and dynamic stream channel •Passage of all aquatic organisms •Low maintenance, flood-resilient road Sizing & Placement of Stream Culverts The Stream Will Tell You! •Match Culvert Width to Bankfull Stream Width •Extend Culvert Length through side slope toe •Set Culvert Slope same as Stream Slope •Bury Culvert 1/6th Bankfull Stream Width •Offset Multiple Culverts (floodplain ~ splits lower buried one) (higher one ~ 1 ft. higher) •Align Culvert with Stream (or dig with stream sinuosity) •Consider Headcuts and Cut-Offs Dr. Sandy Verry Chief Research Hydrologist Forest Service Mesboac Culvert Design – 0’ • Match 3’ Bankfull width 6’ • Extend Culvert to side slope toe • Set on Channel Slope Set Slope Failure to set culverts on the same slope th as the stream (and bury them 1/6 widthBKF) is the single reason that many culverts do not allow for fish passage! Slope can be measured as: Slope along the bank (wider variation, than thalweg) Slope of the water surface (big errors at low flow or in flooded channels, good at moderate to bankfull flows) Slope of the thalweg (this, by far, is the best one) Measure a longitudinal profile to allow the precise placement of culverts. Precision Setting is the key to a fully functional riffle culvert installation At each point riffle 1. Bankfull riffle 2. Water surface Setting the elevation 3. Thalweg of the culvert invert True North Backsight upstream & riffle Benchmark downstream assures success! riffle riffle Measure Bankfull elevation, water surface elevation, and major thalweg topographic breaks (riffle top, riffle bottom, pool bottom), at each station, on the longitudinal profile 1997 LITTLE POKEGAMA CREEK PLOT 7 LONGITUDINAL 1003 1002 1001 1000 FT - 999 998 Bankfull elevation 997 ELEVATION 996 Slope = 0.0191 Water Surface elevation 995 Thalweg elevation 994 993 0 50 100 150 200 250 300 350 400 THALWEG DISTANCE-FT 1.
    [Show full text]
  • Missouri River Floodplain from River Mile (RM) 670 South of Decatur, Nebraska to RM 0 at St
    Hydrogeomorphic Evaluation of Ecosystem Restoration Options For The Missouri River Floodplain From River Mile (RM) 670 South of Decatur, Nebraska to RM 0 at St. Louis, Missouri Prepared For: U. S. Fish and Wildlife Service Region 3 Minneapolis, Minnesota Greenbrier Wetland Services Report 15-02 Mickey E. Heitmeyer Joseph L. Bartletti Josh D. Eash December 2015 HYDROGEOMORPHIC EVALUATION OF ECOSYSTEM RESTORATION OPTIONS FOR THE MISSOURI RIVER FLOODPLAIN FROM RIVER MILE (RM) 670 SOUTH OF DECATUR, NEBRASKA TO RM 0 AT ST. LOUIS, MISSOURI Prepared For: U. S. Fish and Wildlife Service Region 3 Refuges and Wildlife Minneapolis, Minnesota By: Mickey E. Heitmeyer Greenbrier Wetland Services Advance, MO 63730 Joseph L. Bartletti Prairie Engineers of Illinois, P.C. Springfield, IL 62703 And Josh D. Eash U.S. Fish and Wildlife Service, Region 3 Water Resources Branch Bloomington, MN 55437 Greenbrier Wetland Services Report No. 15-02 December 2015 Mickey E. Heitmeyer, PhD Greenbrier Wetland Services Route 2, Box 2735 Advance, MO 63730 www.GreenbrierWetland.com Publication No. 15-02 Suggested citation: Heitmeyer, M. E., J. L. Bartletti, and J. D. Eash. 2015. Hydrogeomorphic evaluation of ecosystem restoration options for the Missouri River Flood- plain from River Mile (RM) 670 south of Decatur, Nebraska to RM 0 at St. Louis, Missouri. Prepared for U. S. Fish and Wildlife Service Region 3, Min- neapolis, MN. Greenbrier Wetland Services Report 15-02, Blue Heron Conservation Design and Print- ing LLC, Bloomfield, MO. Photo credits: USACE; http://statehistoricalsocietyofmissouri.org/; Karen Kyle; USFWS http://digitalmedia.fws.gov/cdm/; Cary Aloia This publication printed on recycled paper by ii Contents EXECUTIVE SUMMARY ....................................................................................
    [Show full text]
  • The Arkansas River Flood of June 3-5, 1921
    DEPARTMENT OF THE INTERIOR ALBERT B. FALL, Secretary UNITED STATES GEOLOGICAL SURVEY GEORGE 0ns SMITH, Director Water-Supply Paper 4$7 THE ARKANSAS RIVER FLOOD OF JUNE 3-5, 1921 BY ROBERT FOLLANS^EE AND EDWARD E. JON^S WASHINGTON GOVERNMENT PRINTING OFFICE 1922 i> CONTENTS. .Page. Introduction________________ ___ 5 Acknowledgments ___ __________ 6 Summary of flood losses-__________ _ 6 Progress of flood crest through Arkansas Valley _____________ 8 Topography of Arkansas basin_______________ _________ 9 Cause of flood______________1___________ ______ 11 Principal areas of intense rainfall____ ___ _ 15 Effect of reservoirs on the flood__________________________ 16 Flood flows_______________________________________ 19 Method of determination________________ ______ _ 19 The flood between Canon City and Pueblo_________________ 23 The flood at Pueblo________________________________ 23 General features_____________________________ 23 Arrival of tributary flood crests _______________ 25 Maximum discharge__________________________ 26 Total discharge_____________________________ 27 The flood below Pueblo_____________________________ 30 General features _________ _______________ 30 Tributary streams_____________________________ 31 Fountain Creek____________________________ 31 St. Charles River___________________________ 33 Chico Creek_______________________________ 34 Previous floods i____________________________________ 35 Flood of Indian legend_____________________________ 35 Floods of authentic record__________________________ 36 Maximum discharges
    [Show full text]
  • River Dynamics 101 - Fact Sheet River Management Program Vermont Agency of Natural Resources
    River Dynamics 101 - Fact Sheet River Management Program Vermont Agency of Natural Resources Overview In the discussion of river, or fluvial systems, and the strategies that may be used in the management of fluvial systems, it is important to have a basic understanding of the fundamental principals of how river systems work. This fact sheet will illustrate how sediment moves in the river, and the general response of the fluvial system when changes are imposed on or occur in the watershed, river channel, and the sediment supply. The Working River The complex river network that is an integral component of Vermont’s landscape is created as water flows from higher to lower elevations. There is an inherent supply of potential energy in the river systems created by the change in elevation between the beginning and ending points of the river or within any discrete stream reach. This potential energy is expressed in a variety of ways as the river moves through and shapes the landscape, developing a complex fluvial network, with a variety of channel and valley forms and associated aquatic and riparian habitats. Excess energy is dissipated in many ways: contact with vegetation along the banks, in turbulence at steps and riffles in the river profiles, in erosion at meander bends, in irregularities, or roughness of the channel bed and banks, and in sediment, ice and debris transport (Kondolf, 2002). Sediment Production, Transport, and Storage in the Working River Sediment production is influenced by many factors, including soil type, vegetation type and coverage, land use, climate, and weathering/erosion rates.
    [Show full text]
  • Federal Agency Functional Activities
    Appendix B – Federal Agency Functional Activities Bureau of Indian Affairs (BIA) Point of Contact: Wyeth (Chad) Wallace, (720) 407-0638 The mission of the Bureau of Indian Affairs (BIA) is to enhance the quality of life, to promote economic opportunity, and to carry out the responsibility to protect and improve the trust assets of American Indians, Indian tribes, and Alaska Natives. Divided into regions (see map), the BIA is responsible for the administration and management of 55 million surface acres and 57 million acres of subsurface minerals estates held in trust by the United States for approximately 1.9 million American Indians and Alaska Natives, and 565 federally recognized American Indian tribes. The primary public policy of the Federal government in regards to Native Americans is the return of trust lands management responsibilities to those most affected by decisions on how these American Indian Trust (AIT) lands are to be used and developed. Enhanced elevation data, orthoimagery, and GIS technology are needed to enable tribal organizations to wholly manage significant, profitable and sustainable enterprises as diverse as forestry, water resources, mining, oil and gas, transportation, tourism, agriculture and range land leasing and management, while preserving and protecting natural and cultural resources on AIT lands. Accurate and current elevation data are especially mission-critical for management of forest and water resources. It is the mission of BIA’s Irrigation, Power and Safety of Dams (IPSOD) program to promote self-determination, economic opportunities and public safety through the sound management of irrigation, dam and power facilities owned by the BIA. This program generates revenues for the irrigation and power projects of $80M to $90M annually.
    [Show full text]
  • Stream Restoration, a Natural Channel Design
    Stream Restoration Prep8AICI by the North Carolina Stream Restonltlon Institute and North Carolina Sea Grant INC STATE UNIVERSITY I North Carolina State University and North Carolina A&T State University commit themselves to positive action to secure equal opportunity regardless of race, color, creed, national origin, religion, sex, age or disability. In addition, the two Universities welcome all persons without regard to sexual orientation. Contents Introduction to Fluvial Processes 1 Stream Assessment and Survey Procedures 2 Rosgen Stream-Classification Systems/ Channel Assessment and Validation Procedures 3 Bankfull Verification and Gage Station Analyses 4 Priority Options for Restoring Incised Streams 5 Reference Reach Survey 6 Design Procedures 7 Structures 8 Vegetation Stabilization and Riparian-Buffer Re-establishment 9 Erosion and Sediment-Control Plan 10 Flood Studies 11 Restoration Evaluation and Monitoring 12 References and Resources 13 Appendices Preface Streams and rivers serve many purposes, including water supply, The authors would like to thank the following people for reviewing wildlife habitat, energy generation, transportation and recreation. the document: A stream is a dynamic, complex system that includes not only Micky Clemmons the active channel but also the floodplain and the vegetation Rockie English, Ph.D. along its edges. A natural stream system remains stable while Chris Estes transporting a wide range of flows and sediment produced in its Angela Jessup, P.E. watershed, maintaining a state of "dynamic equilibrium." When Joseph Mickey changes to the channel, floodplain, vegetation, flow or sediment David Penrose supply significantly affect this equilibrium, the stream may Todd St. John become unstable and start adjusting toward a new equilibrium state.
    [Show full text]
  • Variable Hydrologic and Geomorphic Responses to Intentional Levee Breaches Along the Lower Cosumnes River, California
    Received: 21 April 2016 Revised: 29 March 2017 Accepted: 30 March 2017 DOI: 10.1002/rra.3159 RESEARCH ARTICLE Not all breaks are equal: Variable hydrologic and geomorphic responses to intentional levee breaches along the lower Cosumnes River, California A. L. Nichols1 | J. H. Viers1,2 1 Center for Watershed Sciences, University of California, Davis, California, USA Abstract 2 School of Engineering, University of The transport of water and sediment from rivers to adjacent floodplains helps generate complex California, Merced, California, USA floodplain, wetland, and riparian ecosystems. However, riverside levees restrict lateral connectiv- Correspondence ity of water and sediment during flood pulses, making the re‐introduction of floodplain hydrogeo- A. L. Nichols, Center for Watershed Sciences, morphic processes through intentional levee breaching and removal an emerging floodplain University of California, Davis, California, USA. restoration practice. Repeated topographic observations from levee breach sites along the lower Email: [email protected] Cosumnes River (USA) indicated that breach architecture influences floodplain and channel hydrogeomorphic processes. Where narrow breaches (<75 m) open onto graded floodplains, Funding information California Department of Fish and Wildlife archetypal crevasse splays developed along a single dominant flowpath, with floodplain erosion (CDFW) Ecosystem Restoration Program in near‐bank areas and lobate splay deposition in distal floodplain regions. Narrow breaches (ERP), Grant/Award Number: E1120001; The opening into excavated floodplain channels promoted both transverse advection and turbulent Nature Concervancy (TNC); Consumnes River Preserve diffusion of sediment into the floodplain channel, facilitating near‐bank deposition and potential breach closure. Wide breaches (>250 m) enabled multiple modes of water and sediment transport onto graded floodplains.
    [Show full text]