Culvert Design Transportation & the Environment Conference December 3, 2014 Chris Freiburger – Fisheries Division - DNR Perched Piping

Total Page:16

File Type:pdf, Size:1020Kb

Culvert Design Transportation & the Environment Conference December 3, 2014 Chris Freiburger – Fisheries Division - DNR Perched Piping Culvert Design Transportation & the Environment Conference December 3, 2014 Chris Freiburger – Fisheries Division - DNR Perched Piping Blockage Sediment What are we after? •Natural and dynamic stream channel •Passage of all aquatic organisms •Low maintenance, flood-resilient road Sizing & Placement of Stream Culverts The Stream Will Tell You! •Match Culvert Width to Bankfull Stream Width •Extend Culvert Length through side slope toe •Set Culvert Slope same as Stream Slope •Bury Culvert 1/6th Bankfull Stream Width •Offset Multiple Culverts (floodplain ~ splits lower buried one) (higher one ~ 1 ft. higher) •Align Culvert with Stream (or dig with stream sinuosity) •Consider Headcuts and Cut-Offs Dr. Sandy Verry Chief Research Hydrologist Forest Service Mesboac Culvert Design – 0’ • Match 3’ Bankfull width 6’ • Extend Culvert to side slope toe • Set on Channel Slope Set Slope Failure to set culverts on the same slope th as the stream (and bury them 1/6 widthBKF) is the single reason that many culverts do not allow for fish passage! Slope can be measured as: Slope along the bank (wider variation, than thalweg) Slope of the water surface (big errors at low flow or in flooded channels, good at moderate to bankfull flows) Slope of the thalweg (this, by far, is the best one) Measure a longitudinal profile to allow the precise placement of culverts. Precision Setting is the key to a fully functional riffle culvert installation At each point riffle 1. Bankfull riffle 2. Water surface Setting the elevation 3. Thalweg of the culvert invert True North Backsight upstream & riffle Benchmark downstream assures success! riffle riffle Measure Bankfull elevation, water surface elevation, and major thalweg topographic breaks (riffle top, riffle bottom, pool bottom), at each station, on the longitudinal profile 1997 LITTLE POKEGAMA CREEK PLOT 7 LONGITUDINAL 1003 1002 1001 1000 FT - 999 998 Bankfull elevation 997 ELEVATION 996 Slope = 0.0191 Water Surface elevation 995 Thalweg elevation 994 993 0 50 100 150 200 250 300 350 400 THALWEG DISTANCE-FT 1. A line connecting the thalweg riffle points from above and below the crossing site is the most accurate estimate of stream bottom 1997 LITTLE POKEGAMA CREEK PLOT 7 LONGITUDINAL 1003 2. Subtract burying depth from 1002 these elevations to find the 1001 elevation of the inverts 1000 FT - 999 998 Bankfull elevation 997 ELEVATION 996 Slope = 0.0191 Water Surface elevation 995 Thalweg elevation 994 993 0 50 100 150 200 250 300 350 400 THALWEG DISTANCE-FT 1. A line connecting the thalweg riffle points from above and below the crossing site is the most accurate estimate of stream bottom Measuring points needed to define the longitudinal profile for a (A) pool-riffle channel (B) step-pool channel (C) and cascade channel Mesboac Culvert Design – 0’ 1’ 2’ 3’ • Consider headcut Qualitatively evaluate bank stability by observing: • Bank materials and their layering • Rooting depth, density and root sizes • Large, stable woody structure on banks • Live trees and shrubs that may overhang banks • Evidence of active bank erosion No culvert Improperly set culvert Aggradation Scour pool Culvert replaced properly Note gradient increase Stream Thalweg Stream Slope Culvert If you don’t address grade! Deciding how to handle any expected headcutting requires answers to questions such as the following: • How much headcutting is likely if no controls are implemented? How far upstream might it go? • What effects will the expected headcut have on streambed and banks? How long will they last? • Should headcutting be prevented? • Should headcutting be allowed to occur at an uncontrolled rate? • Should the rate of headcutting be slowed by temporary grade controls? Stream: Location: Station: Observers: Date: Stream Type: Valley Type: BEHI Score Study Bank Height / Bankfull Height ( C ) (Fig. 5-19) Study Bankfull Bank Height ( A ) / ( B ) = Height (ft) = (A) (ft) = (B) (C) Root Depth / Study Bank Height ( E ) Root Study Depth Bank ( D ) / ( A ) = (ft) = (D) Height (ft) = (A) (E) Weighted Root Density ( G ) Root Density ( F ) x ( E ) = as % = (F) (G) Bank Angle ( H ) Bank Angle as Degrees = (H) Surface Protection ( I ) Surface Protection as % = ( I ) Bank Material Adjustment: Bedrock (Overall Very Low BEHI) Bank Material Boulders (Overall Low BEHI) Adjustment Cobble (Subtract 10 points if uniform medium to large cobble) Gravel or Composite Matrix (Add 5–10 points depending on Stratification Adjustment percentage of bank material that is composed of sand) Add 5–10 points, depending on position of unstable layers in (Add 10 points) Sand relation to bankfull stage Silt/Clay (no adjustment) Very Low Low Moderate High Very High Extreme Adjective Rating and 5 – 9.5 10 – 19.5 20 – 29.5 30 – 39.5 40 – 45 46 – 50 Total Score Bank Sketch 1 Root Depth (D) Bank (A) Angle (H) Bankfull Height BANK STUDY Surface Height (B) Height Protection (I) BANKFULL Vertical distance (ft) Start of 0 Bank 0 1 Horizontal distance (ft) Use cross vanes as grade control to permanently set a channel invert Range of Crossing Ecological Objectives With fish passage as the overall goal, economics, site logistics, regulatory requirements and roadway characteristics may dictate a particular design procedure. • Geomorphic Simulation recreate or maintain natural stream reach geomorphic elements including slope, channel-bed width, bed materials and bedform by using the reference reach. • Hydraulic Simulation techniques utilize embedded culverts, natural or synthetic bed mixes and natural roughness elements such as oversized rock to provide hydraulic conditions conducive to fish passage. • Hydraulic Design techniques create water depths and velocities that meet the swimming abilities of target fish populations and life stages during specific periods of fish movement. Infrastructure Safety and Service Life Culverts “must” be built with consideration of safety and service life. Larger span culverts will have a greater cross-sectional area for passing flood events. Smaller culverts will have a smaller initial cost, but require additional maintenance and monitoring to avoid debris accumulation (Bates et al. 2003). Total roadway-stream crossing cost includes several other capital and recurring items such as installation and long-term maintenance. Perched Culvert Longitudinal Profile Culvert Outlet THE BAD…… Drop Structure Downstream Upstream THE BEST ….. Bridge Tributary to Kraft Creek Step Pool 8.5% slope Functioning culvert means transporting not only water but……..SEDIMENT! It may also be necessary to raise the tailwater elevation in order to backwater the culvert and provide minimum flow depths. Sometimes this is all that's required to retrofit. Many methods are available including: • Weirs • Baffles • Constructed tailwater pools • Full or partial channel restoration • Riffle grade control structure/Roughened Channel Flow over weirs can create velocity and depth barriers, and it may be necessary to design a series of weirs to provide fish passage and backwatering the culvert. Ole’ Bitty Creek, Berrien County Garfield Lake Drain Culvert Outlet boulder weirs Looking Downstream Looking Upstream Navarro River, California Concrete Weirs 2.4% slope Peacock Creek, California In Culvert and Downstream Grade Control 6.5% slope John Hatt Creek Photo Courtesy of Washington Dept of Fish and Wildlife Smith River, California In Culvert and Downstream Grade Control 4.3% slope Upper Pack River, Northern Idaho Stream Simulation Step-Pool System 3.5% slope Mynot Creek, California Stream Simulation 1% slope UnNamed Tributary to the Pacific Ocean In Culvert Grade Control Roughened Channel with Banks 1.2% slope Roughened Channel Roughened Channel Two possible project profiles www.mcgi.state.mi.us/miculverts/ Future Steps • Data Collection – Coarse Level – Road Soft – Tablet – Access • Sorting and Prioritizing • Modeling • Project Implementation Patrick Ertel Michigan Department of Natural Resources Fisheries Division – Habitat Management Unit 989.732.3541 x5047 [email protected].
Recommended publications
  • Seasonal Flooding Affects Habitat and Landscape Dynamics of a Gravel
    Seasonal flooding affects habitat and landscape dynamics of a gravel-bed river floodplain Katelyn P. Driscoll1,2,5 and F. Richard Hauer1,3,4,6 1Systems Ecology Graduate Program, University of Montana, Missoula, Montana 59812 USA 2Rocky Mountain Research Station, Albuquerque, New Mexico 87102 USA 3Flathead Lake Biological Station, University of Montana, Polson, Montana 59806 USA 4Montana Institute on Ecosystems, University of Montana, Missoula, Montana 59812 USA Abstract: Floodplains are comprised of aquatic and terrestrial habitats that are reshaped frequently by hydrologic processes that operate at multiple spatial and temporal scales. It is well established that hydrologic and geomorphic dynamics are the primary drivers of habitat change in river floodplains over extended time periods. However, the effect of fluctuating discharge on floodplain habitat structure during seasonal flooding is less well understood. We collected ultra-high resolution digital multispectral imagery of a gravel-bed river floodplain in western Montana on 6 dates during a typical seasonal flood pulse and used it to quantify changes in habitat abundance and diversity as- sociated with annual flooding. We observed significant changes in areal abundance of many habitat types, such as riffles, runs, shallow shorelines, and overbank flow. However, the relative abundance of some habitats, such as back- waters, springbrooks, pools, and ponds, changed very little. We also examined habitat transition patterns through- out the flood pulse. Few habitat transitions occurred in the main channel, which was dominated by riffle and run habitat. In contrast, in the near-channel, scoured habitats of the floodplain were dominated by cobble bars at low flows but transitioned to isolated flood channels at moderate discharge.
    [Show full text]
  • Stream Restoration, a Natural Channel Design
    Stream Restoration Prep8AICI by the North Carolina Stream Restonltlon Institute and North Carolina Sea Grant INC STATE UNIVERSITY I North Carolina State University and North Carolina A&T State University commit themselves to positive action to secure equal opportunity regardless of race, color, creed, national origin, religion, sex, age or disability. In addition, the two Universities welcome all persons without regard to sexual orientation. Contents Introduction to Fluvial Processes 1 Stream Assessment and Survey Procedures 2 Rosgen Stream-Classification Systems/ Channel Assessment and Validation Procedures 3 Bankfull Verification and Gage Station Analyses 4 Priority Options for Restoring Incised Streams 5 Reference Reach Survey 6 Design Procedures 7 Structures 8 Vegetation Stabilization and Riparian-Buffer Re-establishment 9 Erosion and Sediment-Control Plan 10 Flood Studies 11 Restoration Evaluation and Monitoring 12 References and Resources 13 Appendices Preface Streams and rivers serve many purposes, including water supply, The authors would like to thank the following people for reviewing wildlife habitat, energy generation, transportation and recreation. the document: A stream is a dynamic, complex system that includes not only Micky Clemmons the active channel but also the floodplain and the vegetation Rockie English, Ph.D. along its edges. A natural stream system remains stable while Chris Estes transporting a wide range of flows and sediment produced in its Angela Jessup, P.E. watershed, maintaining a state of "dynamic equilibrium." When Joseph Mickey changes to the channel, floodplain, vegetation, flow or sediment David Penrose supply significantly affect this equilibrium, the stream may Todd St. John become unstable and start adjusting toward a new equilibrium state.
    [Show full text]
  • 5.1 Coarse Bed Load Sampling
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 1997 The initiation of coarse bed load transport in gravel bed streams Andrew C. Whitaker The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Whitaker, Andrew C., "The initiation of coarse bed load transport in gravel bed streams" (1997). Graduate Student Theses, Dissertations, & Professional Papers. 10498. https://scholarworks.umt.edu/etd/10498 This Dissertation is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter free, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps.
    [Show full text]
  • Objective Identification of Pools and Riffles in a Human-Modified Stream System
    Middle States Geographer, 2002, 35:52-60 OBJECTIVE IDENTIFICATION OF POOLS AND RIFFLES IN A HUMAN-MODIFIED STREAM SYSTEM Kelly M. Frothingham and Natalie Brown Department of Geography & Planning, Buffalo State College 1300 Elmwood Avenue Buffalo, NY 14222 ABSTRACT: Pools have been defined as topographic lows along a longitudinal stream profile and riffles are topographic highs. Past research has shown pools and riffles are the fundamental bedforms in meandering streams and that channel cross sections in meandering channels exhibit varying degrees of asymmetry that coincide with these bed form features. Two indices that identify pool and riffle bed forms are the bed differencing technique (bdt) developed by O'Neill and Abrahams (1984) and the areal difference asymmetry index (A') (Knighton. 1981). The purpose of this research was to use these indices to objectively identify pools and riffles in three reaches of a human-modified stream. Geomorphological data were collected in two meandering reaches and one straight reach ofthe East Branch ofCazenovia Creek, NY. Between 16 and 19 cross sections were surveyed in each reach during summer low flow conditions. The bdt identified more bed forms in the meandering reaches versus the straight channelized reach (six and two bed forms, respectively). Results from the asymmetry' analysis indicated that more cross sections in the two meandering reaches were asymmetrical (71 and 73% ofthe cross sections) versus 47% of the cross sections being asymmetrical in the straight reach. Moreover, asymmetrical cross sections generally corresponded with pool bed forms identified by the bdt and symmetrical cross sections corresponded with riffle bed forms identified hy the bdt.
    [Show full text]
  • Re-Creating Meander Geometry Photo(S)
    Practice Title Re-creating meander geometry Photo(s) Greene County streams after their meander geometry was restored to the extent necessary to move sediment and flow without excess erosion or deposition (bottom photos). The proper meander geometry is determined through detailed stream assessment. Also, a diagram showing the typical position of pools and riffles within a meandering stream, and a few other stream meander geometry patterns (top). Summary of Practice The winding pattern of a river or stream is called its meander pattern. These meanders result in a longer channel with a lower slope. These curves slow down the water and absorb energy, which helps to reduce the potential for erosion. The velocity of a stream is typically greatest on the outside of a meander bend. The increased force of this water often results in erosion along this bank, extending a short distance downstream. On the inside of the bend, the stream velocity typically decreases, which often results in the deposition of sediment, usually sand and gravel. If you could look at the long-term history of a valley over hundreds or thousands of years, you would see that the stream has moved back and forth across the valley bottom. In fact, this lateral migration of the channel, accompanied by down cutting, is what has formed the valley. Success in stream management is based on working with the stream, not against it. If a reach of channel is suffering unusual bank erosion, down cutting of the bed, aggradation, change of channel pattern, or other evidence of instability, a realistic approach to addressing these problems should be based on restoring the system’s equilibrium.
    [Show full text]
  • Water Life: Riffles and Pools Stream Ecosystems Provide a Habitat Or
    Water Life: Riffles and Pools Stream ecosystems provide a habitat or natural environment for many diverse aquatic organisms and plants. A deeper look indicates each stream has a distinctive anatomy as each is composed of a series of pools, riffles and runs. Pools: An area of the stream characterized by deep depths and slow current. Pools are typically created by the vertical force of water falling down over logs or boulders. The movement of the water carves a deeper indentation in the stream bed. Pools are important because they can provide depth and still water. Riffles: An area of stream characterized by shallow depths with fast, turbulent water. The riffles are short segments of the stream where water flow is agitated by rocks. The rocky Adapted from: bottom provides protection from predators, food http://share3.esd105.wednet.edu/rsandelin/ees/Resources/Flowing%20water%20concepts.htm deposition and shelter. Riffle depths vary depending upon stream size, but can be as shallow as 1 inch or deep as 1 meter. The turbulence and stream flow results in high dissolved oxygen concentration. Run: An area of stream characterized by moderate current, continuous surface and depths greater than riffles. Runs are stretches of the stream downstream of pools and riffles where stream flow and current are moderate. The smooth surface allows for light to penetrate. Microhabitats: Habitats are the natural environment in which an organism lives. The distinguishing abiotic conditions of riffles, pools and runs result in specialized environments that are known as microhabitats. The abiotic conditions (dissolved oxygen, turbidity, light and temperature) of these microhabitats can influence which aquatic species can survive and reproduce at that given location and time.
    [Show full text]
  • Modeling Forced Pool–Riffle Hydraulics in a Boulder-Bed Stream, Southern California ⁎ Lee R
    Geomorphology 83 (2007) 232–248 www.elsevier.com/locate/geomorph Modeling forced pool–riffle hydraulics in a boulder-bed stream, southern California ⁎ Lee R. Harrison , Edward A. Keller Department of Earth Science, University of California, Santa Barbara, Santa Barbara, CA 93106, USA Received 2 May 2005; received in revised form 13 February 2006; accepted 13 February 2006 Available online 11 July 2006 Abstract The mechanisms which control the formation and maintenance of pool–riffles are fundamental aspects of channel form and process. Most of the previous investigations on pool–riffle sequences have focused on alluvial rivers, and relatively few exist on the maintenance of these bedforms in boulder-bed channels. Here, we use a high-resolution two-dimensional flow model to investigate the interactions among large roughness elements, channel hydraulics, and the maintenance of a forced pool–riffle sequence in a boulder-bed stream. Model output indicates that at low discharge, a peak zone of shear stress and velocity occurs over the riffle. At or near bankfull discharge, the peak in velocity and shear stress is found at the pool head because of strong flow convergence created by large roughness elements. The strength of flow convergence is enhanced during model simulations of bankfull flow, resulting in a narrow, high velocity core that is translated through the pool head and pool center. The jet is strengthened by a backwater effect upstream of the constriction and the development of an eddy zone on the lee side of the boulder. The extent of flow convergence and divergence is quantified by identifying the effective width, defined here as the width which conveys 90% of the highest modeled velocities.
    [Show full text]
  • Does the River Continuum Concept Work in Small Island Streams? Functional Feeding Group Variation Along a Longitudinal Gradient
    UC Berkeley Student Research Papers, Fall 2006 Title Does the River Continuum Concept Work in Small Island Streams? Functional Feeding Group Variation Along a Longitudinal Gradient Permalink https://escholarship.org/uc/item/6db9m25g Author Groff, Margaret H. Publication Date 2006-12-01 eScholarship.org Powered by the California Digital Library University of California DOES THE RIVER CONTINUUM CONCEPT WORK IN SMALL ISLAND STREAMS? FUNCTIONAL FEEDING GROUP VARIATION ALONG A LONGITUDINAL GRADIENT MARGARET H. GROFF Department of Integrative Biology, University of California, Berkeley, California 94720 USA Abstract. The River Continuum Concept (RCC) predicts that as the form of particulate organic matter available in streams and rivers varies longitudinally, so will the functional feeding groups (FFGs) of benthic macroinvertebrates. The RCC was developed based on data from continental streams; therefore, its applicability to the unique ecology of island streams is virtually untested. The purpose of this study was to discover if the RCC works in the small streams of Moorea, French Polynesia. Three sites along an elevational gradient were sampled for benthic macroinvertebrates in five streams of similar catchment size. Each sample was sorted and all taxa were assigned to a FFG. Species richness and FFG variation along a longitudinal gradient were compared to RCC predictions. Patterns in the longitudinal variation of crustacean/mollusc species richness and shredder, grazer, and predator percent composition were found to match RCC predictions.
    [Show full text]
  • Stream Ecology: Concepts and Case Study of Macroinvertebrates in the Skeena River Watershed, British Columbia
    Stream ecology: concepts and case study of macroinvertebrates in the Skeena River Watershed, British Columbia by Alexander K. Fremier INTRODUCTION When hiking, it’s hard for me not to ponder the abundance of species and their apparent organization over the landscape. So, when swimming in a stream would one see similar patterns of species diversity? Species distributions are seemingly as well organized in flowing water as on land; yet, the processes controlling the patterns are quite unique to the aquatic environment. It is not hard to imagine that ecological patterns are dynamic in four dimensions, the usual three spatial ones and time. The spatial distribution of terrestrial plant species is limited by large physical processes such as temperature and precipitation as well as small factors, say proximity to a stream or topographic position. Time also plays a key role in distributions from seasonal to geologic time scales. This seems like a rather straight forward summary, however researchers have not always found linking pattern to process to be this simple. Physical processes driving species distributions in space and time tend to vary in importance from place to place and vary with the scale of inquiry; and, species respond to these factors in a range of ways. Stream systems provide a particularly complex web to untangle considering the dynamic ways in which it flows over and alters the landscape. Flow characteristics (such as velocity) change over small spatial scales, e.g. from the side of a channel to the main channel; they can change upstream to downstream and over many scales of time including seasonal flooding and glacial periods.
    [Show full text]
  • Appendix G Fisheries Resources of the Lower Pajaro River and Its Tributaries
    APPENDIX G FISHERIES RESOURCES OF THE LOWER PAJARO RIVER AND ITS TRIBUTARIES Pajaro Valley Water Management Agency G-1 Revised BMP Draft EIS APPENDIX G FISHERIES RESOURCES OF THE LOWER PAJARO RIVER AND ITS TRIBUTARIES FISHERIES RESOURCES OF THE LOWER PAJARO RIVER AND ITS TRIBUTARIES Prepared for Environmental Science Associates 225 Bush St., Suite 1700 San Francisco, CA 94104 by The Habitat Restoration Group P.O. 4006 Felton, CA 95018 September, 1997 INTRODUCTION This report is an assessment of existing conditions for fisheries resources, particularly for Central Coast steelhead (Onchorhynchus mykiss) and the tidewater goby (Eucyclogobius newberryi), in the lower Pajaro River and its tributary watershed of Salsipuedes Creek. Tidewater gobies are found only in the lowest one mile of the Pajaro River and in Watsonville Slough, while the steelhead migrates to the upper portions of these watersheds to spawn. The purpose of this report is to present sufficient information to assess the potential effects of development of the Pajaro Valley Water Management Agency's proposed import and local distribution pipeline projects on fishery resources. Inventories of riffle conditions were carried out in two areas critical for steelhead passage, the Pajaro River at Murphy Crossing, and Corralitos and Salsipuedes creeks near College Lake. Recommendations to reduce adverse impacts to steelhead are included as well. EXISTING CONDITIONS: FISHERIES Pajaro River and the Eastern Watershed The Pajaro River serves as a migration pathway for adult steelhead (Oncorhynchus mykiss) migrating to spawning and nursery habitat in the upper watershed and for steelhead smolts (1-2 year old juveniles) migrating from that habitat to the ocean.
    [Show full text]
  • Sediment Transport Appendix
    SEDIMENT TRANSPORT APPENDIX 1 SEDIMENT TRANSPORT PROCESSES 1.1 General The sediment cycle begins with the erosion of soil and rock in a watershed and transport of that material by surface runoff or by mass wasting. The transport of sediment through a river system consists of multiple erosional and depositional cycles, as well as progressive physical breakdown of the material. Many sediment particles are intermittently stored in alluvial deposits along the channel margin or floodplain, and ultimately re-entrained via bank and bed erosion. Total sediment loads consist of suspended load (the fine-grained fraction transported in the water column) and bedload (the coarse-grained fraction transported along the channel bed). The transport of sediment through the stream system depends on the sediment supply (size and quantity) and the ability of the stream to transport that sediment supply. 1.2 Sediment Transport Processes and Aquatic Habitat The caliber, volume, and transport dynamics of sediment exert considerable control on channel form and geomorphic processes that create and sustain aquatic habitat in all river systems. Sediment caliber dictates what geomorphic features and associated habitat types (e.g., sand bed vs. gravel bed) will be characteristic of a given channel. Sediment volume can affect the stability of a channel, causing channel aggradation if the volume delivered is in excess of the transport energy available, and causing channel degradation if the volume delivered is less than the transport energy available. Sediment volume may also affect channel pattern and slope, with high volumes of coarse sediment resulting in relatively steep slopes, high width/depth ratios, and braided channel patterns1.
    [Show full text]
  • Valley Segments, Stream Reaches, and Channel Units
    Elsevier US 0mse02 24-2-2006 6:21p.m. Page No: 23 CHAPTER 2 Valley Segments, Stream Reaches, and Channel Units Peter A. Bisson∗, John M. Buffington†, and David R. Montgomery‡ ∗Pacific Northwest Research Station USDA Forest Service †Rocky Mountain Research Station USDA Forest Service ‡Department of Earth and Space Sciences University of Washington I. INTRODUCTION Valley segments, stream reaches, and channel units are three hierarchically nested sub- divisions of the drainage network (Frissell et al. 1986), falling in size between landscapes and watersheds (see Chapter 1) and individual point measurements made along the stream network (Table 2.1; also see Chapters 3 and 4). These three subdivisions compose the habitat for large, mobile aquatic organisms such as fishes. Within the hierarchy of spatial scales (Figure 2.1), valley segments, stream reaches, and channel units represent the largest physical subdivisions that can be directly altered by human activities. As such, it is useful to understand how they respond to anthropogenic disturbance, but to do so requires classification systems and quantitative assessment procedures that facilitate accurate, repeatable descriptions and convey information about biophysical processes that create, maintain, and destroy channel structure. The location of different types of valley segments, stream reaches, and channel units within a watershed exerts a powerful influence on the distribution and abundance of aquatic plants and animals by governing the characteristics of water flow and the capacity of streams to store sediment and transform organic matter (Hynes 1970, O’Neill et al. 1986, Pennak 1979, Statzner et al. 1988, Vannote et al. 1980). The first biologically based classification Copyright © 2006 by Elsevier Methods in Stream Ecology 23 All rights reserved Elsevier US 0mse02 24-2-2006 6:21p.m.
    [Show full text]