Step 5: Planform Changes and Aggradation/Degradation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
PRELUDE to SEVEN SLOTS: FILLING and SUBSEQUENT MODIFICATION of SEVEN BROAD CANYONS in the NAVAJO SANDSTONE, SOUTH-CENTRAL UTAH by David B
PRELUDE TO SEVEN SLOTS: FILLING AND SUBSEQUENT MODIFICATION OF SEVEN BROAD CANYONS IN THE NAVAJO SANDSTONE, SOUTH-CENTRAL UTAH by David B. Loope1, Ronald J. Goble1, and Joel P. L. Johnson2 ABSTRACT Within a four square kilometer portion of Grand Staircase-Escalante National Monument, seven distinct slot canyons cut the Jurassic Navajo Sandstone. Four of the slots developed along separate reaches of a trunk stream (Dry Fork of Coyote Gulch), and three (including canyons locally known as “Peekaboo” and “Spooky”) are at the distal ends of south-flowing tributary drainages. All these slot canyons are examples of epigenetic gorges—bedrock channel reaches shifted laterally from previous reach locations. The previous channels became filled with alluvium, allowing active channels to shift laterally in places and to subsequently re-incise through bedrock elsewhere. New evidence, based on optically stimulated luminescence (OSL) ages, indicates that this thick alluvium started to fill broad, pre-existing, bedrock canyons before 55,000 years ago, and that filling continued until at least 48,000 years ago. Streams start to fill their channels when sediment supply increases relative to stream power. The following conditions favored alluviation in the study area: (1) a cooler, wetter climate increased the rate of mass wasting along the Straight Cliffs (the headwaters of Dry Fork) and the rate of weathering of the broad outcrops of Navajo and Entrada Sandstone; (2) windier conditions increased the amount of eolian sand transport, perhaps destabilizing dunes and moving their stored sediment into stream channels; and (3) southward migration of the jet stream dimin- ished the frequency and severity of convective storms. -
Geomorphic Classification of Rivers
9.36 Geomorphic Classification of Rivers JM Buffington, U.S. Forest Service, Boise, ID, USA DR Montgomery, University of Washington, Seattle, WA, USA Published by Elsevier Inc. 9.36.1 Introduction 730 9.36.2 Purpose of Classification 730 9.36.3 Types of Channel Classification 731 9.36.3.1 Stream Order 731 9.36.3.2 Process Domains 732 9.36.3.3 Channel Pattern 732 9.36.3.4 Channel–Floodplain Interactions 735 9.36.3.5 Bed Material and Mobility 737 9.36.3.6 Channel Units 739 9.36.3.7 Hierarchical Classifications 739 9.36.3.8 Statistical Classifications 745 9.36.4 Use and Compatibility of Channel Classifications 745 9.36.5 The Rise and Fall of Classifications: Why Are Some Channel Classifications More Used Than Others? 747 9.36.6 Future Needs and Directions 753 9.36.6.1 Standardization and Sample Size 753 9.36.6.2 Remote Sensing 754 9.36.7 Conclusion 755 Acknowledgements 756 References 756 Appendix 762 9.36.1 Introduction 9.36.2 Purpose of Classification Over the last several decades, environmental legislation and a A basic tenet in geomorphology is that ‘form implies process.’As growing awareness of historical human disturbance to rivers such, numerous geomorphic classifications have been de- worldwide (Schumm, 1977; Collins et al., 2003; Surian and veloped for landscapes (Davis, 1899), hillslopes (Varnes, 1958), Rinaldi, 2003; Nilsson et al., 2005; Chin, 2006; Walter and and rivers (Section 9.36.3). The form–process paradigm is a Merritts, 2008) have fostered unprecedented collaboration potentially powerful tool for conducting quantitative geo- among scientists, land managers, and stakeholders to better morphic investigations. -
Seasonal Flooding Affects Habitat and Landscape Dynamics of a Gravel
Seasonal flooding affects habitat and landscape dynamics of a gravel-bed river floodplain Katelyn P. Driscoll1,2,5 and F. Richard Hauer1,3,4,6 1Systems Ecology Graduate Program, University of Montana, Missoula, Montana 59812 USA 2Rocky Mountain Research Station, Albuquerque, New Mexico 87102 USA 3Flathead Lake Biological Station, University of Montana, Polson, Montana 59806 USA 4Montana Institute on Ecosystems, University of Montana, Missoula, Montana 59812 USA Abstract: Floodplains are comprised of aquatic and terrestrial habitats that are reshaped frequently by hydrologic processes that operate at multiple spatial and temporal scales. It is well established that hydrologic and geomorphic dynamics are the primary drivers of habitat change in river floodplains over extended time periods. However, the effect of fluctuating discharge on floodplain habitat structure during seasonal flooding is less well understood. We collected ultra-high resolution digital multispectral imagery of a gravel-bed river floodplain in western Montana on 6 dates during a typical seasonal flood pulse and used it to quantify changes in habitat abundance and diversity as- sociated with annual flooding. We observed significant changes in areal abundance of many habitat types, such as riffles, runs, shallow shorelines, and overbank flow. However, the relative abundance of some habitats, such as back- waters, springbrooks, pools, and ponds, changed very little. We also examined habitat transition patterns through- out the flood pulse. Few habitat transitions occurred in the main channel, which was dominated by riffle and run habitat. In contrast, in the near-channel, scoured habitats of the floodplain were dominated by cobble bars at low flows but transitioned to isolated flood channels at moderate discharge. -
Culvert Design Transportation & the Environment Conference December 3, 2014 Chris Freiburger – Fisheries Division - DNR Perched Piping
Culvert Design Transportation & the Environment Conference December 3, 2014 Chris Freiburger – Fisheries Division - DNR Perched Piping Blockage Sediment What are we after? •Natural and dynamic stream channel •Passage of all aquatic organisms •Low maintenance, flood-resilient road Sizing & Placement of Stream Culverts The Stream Will Tell You! •Match Culvert Width to Bankfull Stream Width •Extend Culvert Length through side slope toe •Set Culvert Slope same as Stream Slope •Bury Culvert 1/6th Bankfull Stream Width •Offset Multiple Culverts (floodplain ~ splits lower buried one) (higher one ~ 1 ft. higher) •Align Culvert with Stream (or dig with stream sinuosity) •Consider Headcuts and Cut-Offs Dr. Sandy Verry Chief Research Hydrologist Forest Service Mesboac Culvert Design – 0’ • Match 3’ Bankfull width 6’ • Extend Culvert to side slope toe • Set on Channel Slope Set Slope Failure to set culverts on the same slope th as the stream (and bury them 1/6 widthBKF) is the single reason that many culverts do not allow for fish passage! Slope can be measured as: Slope along the bank (wider variation, than thalweg) Slope of the water surface (big errors at low flow or in flooded channels, good at moderate to bankfull flows) Slope of the thalweg (this, by far, is the best one) Measure a longitudinal profile to allow the precise placement of culverts. Precision Setting is the key to a fully functional riffle culvert installation At each point riffle 1. Bankfull riffle 2. Water surface Setting the elevation 3. Thalweg of the culvert invert True North Backsight upstream & riffle Benchmark downstream assures success! riffle riffle Measure Bankfull elevation, water surface elevation, and major thalweg topographic breaks (riffle top, riffle bottom, pool bottom), at each station, on the longitudinal profile 1997 LITTLE POKEGAMA CREEK PLOT 7 LONGITUDINAL 1003 1002 1001 1000 FT - 999 998 Bankfull elevation 997 ELEVATION 996 Slope = 0.0191 Water Surface elevation 995 Thalweg elevation 994 993 0 50 100 150 200 250 300 350 400 THALWEG DISTANCE-FT 1. -
River Dynamics 101 - Fact Sheet River Management Program Vermont Agency of Natural Resources
River Dynamics 101 - Fact Sheet River Management Program Vermont Agency of Natural Resources Overview In the discussion of river, or fluvial systems, and the strategies that may be used in the management of fluvial systems, it is important to have a basic understanding of the fundamental principals of how river systems work. This fact sheet will illustrate how sediment moves in the river, and the general response of the fluvial system when changes are imposed on or occur in the watershed, river channel, and the sediment supply. The Working River The complex river network that is an integral component of Vermont’s landscape is created as water flows from higher to lower elevations. There is an inherent supply of potential energy in the river systems created by the change in elevation between the beginning and ending points of the river or within any discrete stream reach. This potential energy is expressed in a variety of ways as the river moves through and shapes the landscape, developing a complex fluvial network, with a variety of channel and valley forms and associated aquatic and riparian habitats. Excess energy is dissipated in many ways: contact with vegetation along the banks, in turbulence at steps and riffles in the river profiles, in erosion at meander bends, in irregularities, or roughness of the channel bed and banks, and in sediment, ice and debris transport (Kondolf, 2002). Sediment Production, Transport, and Storage in the Working River Sediment production is influenced by many factors, including soil type, vegetation type and coverage, land use, climate, and weathering/erosion rates. -
Federal Agency Functional Activities
Appendix B – Federal Agency Functional Activities Bureau of Indian Affairs (BIA) Point of Contact: Wyeth (Chad) Wallace, (720) 407-0638 The mission of the Bureau of Indian Affairs (BIA) is to enhance the quality of life, to promote economic opportunity, and to carry out the responsibility to protect and improve the trust assets of American Indians, Indian tribes, and Alaska Natives. Divided into regions (see map), the BIA is responsible for the administration and management of 55 million surface acres and 57 million acres of subsurface minerals estates held in trust by the United States for approximately 1.9 million American Indians and Alaska Natives, and 565 federally recognized American Indian tribes. The primary public policy of the Federal government in regards to Native Americans is the return of trust lands management responsibilities to those most affected by decisions on how these American Indian Trust (AIT) lands are to be used and developed. Enhanced elevation data, orthoimagery, and GIS technology are needed to enable tribal organizations to wholly manage significant, profitable and sustainable enterprises as diverse as forestry, water resources, mining, oil and gas, transportation, tourism, agriculture and range land leasing and management, while preserving and protecting natural and cultural resources on AIT lands. Accurate and current elevation data are especially mission-critical for management of forest and water resources. It is the mission of BIA’s Irrigation, Power and Safety of Dams (IPSOD) program to promote self-determination, economic opportunities and public safety through the sound management of irrigation, dam and power facilities owned by the BIA. This program generates revenues for the irrigation and power projects of $80M to $90M annually. -
Stream Restoration, a Natural Channel Design
Stream Restoration Prep8AICI by the North Carolina Stream Restonltlon Institute and North Carolina Sea Grant INC STATE UNIVERSITY I North Carolina State University and North Carolina A&T State University commit themselves to positive action to secure equal opportunity regardless of race, color, creed, national origin, religion, sex, age or disability. In addition, the two Universities welcome all persons without regard to sexual orientation. Contents Introduction to Fluvial Processes 1 Stream Assessment and Survey Procedures 2 Rosgen Stream-Classification Systems/ Channel Assessment and Validation Procedures 3 Bankfull Verification and Gage Station Analyses 4 Priority Options for Restoring Incised Streams 5 Reference Reach Survey 6 Design Procedures 7 Structures 8 Vegetation Stabilization and Riparian-Buffer Re-establishment 9 Erosion and Sediment-Control Plan 10 Flood Studies 11 Restoration Evaluation and Monitoring 12 References and Resources 13 Appendices Preface Streams and rivers serve many purposes, including water supply, The authors would like to thank the following people for reviewing wildlife habitat, energy generation, transportation and recreation. the document: A stream is a dynamic, complex system that includes not only Micky Clemmons the active channel but also the floodplain and the vegetation Rockie English, Ph.D. along its edges. A natural stream system remains stable while Chris Estes transporting a wide range of flows and sediment produced in its Angela Jessup, P.E. watershed, maintaining a state of "dynamic equilibrium." When Joseph Mickey changes to the channel, floodplain, vegetation, flow or sediment David Penrose supply significantly affect this equilibrium, the stream may Todd St. John become unstable and start adjusting toward a new equilibrium state. -
5.1 Coarse Bed Load Sampling
University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 1997 The initiation of coarse bed load transport in gravel bed streams Andrew C. Whitaker The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Whitaker, Andrew C., "The initiation of coarse bed load transport in gravel bed streams" (1997). Graduate Student Theses, Dissertations, & Professional Papers. 10498. https://scholarworks.umt.edu/etd/10498 This Dissertation is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter free, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. -
Channel Aggradation by Beaver Dams on a Small Agricultural Stream in Eastern Nebraska
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln U.S. Department of Agriculture: Agricultural Publications from USDA-ARS / UNL Faculty Research Service, Lincoln, Nebraska 9-12-2004 Channel Aggradation by Beaver Dams on a Small Agricultural Stream in Eastern Nebraska M. C. McCullough University of Nebraska-Lincoln J. L. Harper University of Nebraska-Lincoln D. E. Eisenhauer University of Nebraska-Lincoln, [email protected] M. G. Dosskey USDA National Agroforestry Center, Lincoln, Nebraska, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/usdaarsfacpub Part of the Agricultural Science Commons McCullough, M. C.; Harper, J. L.; Eisenhauer, D. E.; and Dosskey, M. G., "Channel Aggradation by Beaver Dams on a Small Agricultural Stream in Eastern Nebraska" (2004). Publications from USDA-ARS / UNL Faculty. 147. https://digitalcommons.unl.edu/usdaarsfacpub/147 This Article is brought to you for free and open access by the U.S. Department of Agriculture: Agricultural Research Service, Lincoln, Nebraska at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Publications from USDA-ARS / UNL Faculty by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. This is not a peer-reviewed article. Self-Sustaining Solutions for Streams, Wetlands, and Watersheds, Proceedings of the 12-15 September 2004 Conference (St. Paul, Minnesota USA) Publication Date 12 September 2004 ASAE Publication Number 701P0904. Ed. J. L. D'Ambrosio Channel Aggradation by Beaver Dams on a Small Agricultural Stream in Eastern Nebraska M. C. McCullough1, J. L. Harper2, D.E. Eisenhauer3, M. G. Dosskey4 ABSTRACT We assessed the effect of beaver dams on channel gradation of an incised stream in an agricultural area of eastern Nebraska. -
How to Make a Meandering River
COMMENTARY How to make a meandering river Alan D. Howard1 Department of Environmental Sciences, P.O. Box 400123, University of Virginia, Charlottesville, VA 22904-4123 espite the ubiquity of mean- dering rivers in nature, only recently have appropriate ex- perimental conditions been Dproduced to replicate a stably meander- ing stream in the laboratory, as de- scribed in a recent issue of PNAS (1). Meandering channels occur in a wide variety of sedimentary environments, including on deep sea fans formed by turbidity currents (2), as relict meanders on Mars (3) (Fig. 1), and as channels formed by flowing alkenes on Titan. The mechanics of formation of mean- ders is reasonably well understood (4). When flow enters a channel bed, a heli- cal secondary current is set up that in- creases flow velocity and channel depth along the outer bank in proportion to bed curvature, which encourages bank erosion. The secondary current has an intrinsic downstream scale related to flow velocity and depth; this results in gradual increase in bend amplitude and propagation of the meandering pattern upstream and downstream. Linear the- ory of flow in bends (5) has permitted construction of simulation models that replicate many aspects of meandering Fig. 1. Fossil highly sinuous meandering channel and floodplain on Mars. Red arrows point to repre- behavior, including meander cutoffs, sentative locations along channel. The channel bed is now a ridge (in inverted relief) because wind erosion creation of oxbow lakes, and patterns of has removed finer sediment from the floodplain and surrounding terrain. The low curvilinear ridges floodplain sedimentation (6, 7). -
Objective Identification of Pools and Riffles in a Human-Modified Stream System
Middle States Geographer, 2002, 35:52-60 OBJECTIVE IDENTIFICATION OF POOLS AND RIFFLES IN A HUMAN-MODIFIED STREAM SYSTEM Kelly M. Frothingham and Natalie Brown Department of Geography & Planning, Buffalo State College 1300 Elmwood Avenue Buffalo, NY 14222 ABSTRACT: Pools have been defined as topographic lows along a longitudinal stream profile and riffles are topographic highs. Past research has shown pools and riffles are the fundamental bedforms in meandering streams and that channel cross sections in meandering channels exhibit varying degrees of asymmetry that coincide with these bed form features. Two indices that identify pool and riffle bed forms are the bed differencing technique (bdt) developed by O'Neill and Abrahams (1984) and the areal difference asymmetry index (A') (Knighton. 1981). The purpose of this research was to use these indices to objectively identify pools and riffles in three reaches of a human-modified stream. Geomorphological data were collected in two meandering reaches and one straight reach ofthe East Branch ofCazenovia Creek, NY. Between 16 and 19 cross sections were surveyed in each reach during summer low flow conditions. The bdt identified more bed forms in the meandering reaches versus the straight channelized reach (six and two bed forms, respectively). Results from the asymmetry' analysis indicated that more cross sections in the two meandering reaches were asymmetrical (71 and 73% ofthe cross sections) versus 47% of the cross sections being asymmetrical in the straight reach. Moreover, asymmetrical cross sections generally corresponded with pool bed forms identified by the bdt and symmetrical cross sections corresponded with riffle bed forms identified hy the bdt. -
Re-Creating Meander Geometry Photo(S)
Practice Title Re-creating meander geometry Photo(s) Greene County streams after their meander geometry was restored to the extent necessary to move sediment and flow without excess erosion or deposition (bottom photos). The proper meander geometry is determined through detailed stream assessment. Also, a diagram showing the typical position of pools and riffles within a meandering stream, and a few other stream meander geometry patterns (top). Summary of Practice The winding pattern of a river or stream is called its meander pattern. These meanders result in a longer channel with a lower slope. These curves slow down the water and absorb energy, which helps to reduce the potential for erosion. The velocity of a stream is typically greatest on the outside of a meander bend. The increased force of this water often results in erosion along this bank, extending a short distance downstream. On the inside of the bend, the stream velocity typically decreases, which often results in the deposition of sediment, usually sand and gravel. If you could look at the long-term history of a valley over hundreds or thousands of years, you would see that the stream has moved back and forth across the valley bottom. In fact, this lateral migration of the channel, accompanied by down cutting, is what has formed the valley. Success in stream management is based on working with the stream, not against it. If a reach of channel is suffering unusual bank erosion, down cutting of the bed, aggradation, change of channel pattern, or other evidence of instability, a realistic approach to addressing these problems should be based on restoring the system’s equilibrium.