Natural Philosophy and the Development of Mechanics and Engineering from the 5 Th Century B.C
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Parallelogram Law Objective: to Take Students Through the Process
The Parallelogram Law Objective: To take students through the process of discovery, making a conjecture, further exploration, and finally proof. I. Introduction: Use one of the following… • Geometer’s Sketchpad demonstration • Geogebra demonstration • The introductory handout from this lesson Using one of the introductory activities, allow students to explore and make a conjecture about the relationship between the sum of the squares of the sides of a parallelogram and the sum of the squares of the diagonals. Conjecture: The sum of the squares of the sides of a parallelogram equals the sum of the squares of the diagonals. Ask the question: Can we prove this is always true? II. Activity: Have students look at one more example. Follow the instructions on the exploration handouts, “Demonstrating the Parallelogram Law.” • Give each student a copy of the student handouts, scissors, a glue stick, and two different colored highlighters. Have students follow the instructions. When they get toward the end, they will need to cut very small pieces to fit in the uncovered space. Most likely there will be a very small amount of space left uncovered, or a small amount will extend outside the figure. • After the activity, discuss the results. Did the squares along the two diagonals fit into the squares along all four sides? Since it is unlikely that it will fit exactly, students might question if the relationship is always true. At this point, talk about how we will need to find a convincing proof. III. Go through one or more of the proofs below: Page 1 of 10 MCC@WCCUSD 02/26/13 A. -
The Evolution of Diesel Engines
GENERAL ARTICLE The Evolution of Diesel Engines U Shrinivasa Rudolf Diesel thought of an engine which is inherently more efficient than the steam engines of the end-nineteenth century, for providing motive power in a distributed way. His intense perseverance, spread over a decade, led to the engines of today which bear his name. U Shrinivasa teaches Steam Engines: History vibrations and dynamics of machinery at the Department The origin of diesel engines is intimately related to the history of of Mechanical Engineering, steam engines. The Greeks and the Romans knew that steam IISc. His other interests include the use of straight could somehow be harnessed to do useful work. The device vegetable oils in diesel aeolipile (Figure 1) known to Hero of Alexandria was a primitive engines for sustainable reaction turbine apparently used to open temple doors! However development and working this aspect of obtaining power from steam was soon forgotten and with CAE applications in the industries. millennia later when there was a requirement for lifting water from coal mines, steam was introduced into a large vessel and quenched to create a low pressure for sucking the water to be pumped. Newcomen in 1710 introduced a cylinder piston ar- rangement and a hinged beam (Figure 2) such that water could be pumped from greater depths. The condensing steam in the cylin- der pulled the piston down to create the pumping action. Another half a century later, in 1765, James Watt avoided the cooling of the hot chamber containing steam by adding a separate condensing chamber (Figure 3). This successful steam engine pump found investors to manufacture it but the coal mines already had horses to lift the water to be pumped. -
CHAPTER 3. VECTOR ALGEBRA Part 1: Addition and Scalar
CHAPTER 3. VECTOR ALGEBRA Part 1: Addition and Scalar Multiplication for Vectors. §1. Basics. Geometric or physical quantities such as length, area, volume, tempera- ture, pressure, speed, energy, capacity etc. are given by specifying a single numbers. Such quantities are called scalars, because many of them can be measured by tools with scales. Simply put, a scalar is just a number. Quantities such as force, velocity, acceleration, momentum, angular velocity, electric or magnetic field at a point etc are vector quantities, which are represented by an arrow. If the ‘base’ and the ‘head’ of this arrow are B and H repectively, then we denote this vector by −−→BH: Figure 1. Often we use a single block letter in lower case, such as u, v, w, p, q, r etc. to denote a vector. Thus, if we also use v to denote the above vector −−→BH, then v = −−→BH.A vector v has two ingradients: magnitude and direction. The magnitude is the length of the arrow representing v, and is denoted by v . In case v = −−→BH, certainly we | | have v = −−→BH for the magnitude of v. The meaning of the direction of a vector is | | | | self–evident. Two vectors are considered to be equal if they have the same magnitude and direction. You recognize two equal vectors in drawing, if their representing arrows are parallel to each other, pointing in the same way, and have the same length 1 Figure 2. For example, if A, B, C, D are vertices of a parallelogram, followed in that order, then −→AB = −−→DC and −−→AD = −−→BC: Figure 3. -
The History of Egypt Under the Ptolemies
UC-NRLF $C lb EbE THE HISTORY OF EGYPT THE PTOLEMIES. BY SAMUEL SHARPE. LONDON: EDWARD MOXON, DOVER STREET. 1838. 65 Printed by Arthur Taylor, Coleman Street. TO THE READER. The Author has given neither the arguments nor the whole of the authorities on which the sketch of the earlier history in the Introduction rests, as it would have had too much of the dryness of an antiquarian enquiry, and as he has already published them in his Early History of Egypt. In the rest of the book he has in every case pointed out in the margin the sources from which he has drawn his information. » Canonbury, 12th November, 1838. Works published by the same Author. The EARLY HISTORY of EGYPT, from the Old Testament, Herodotus, Manetho, and the Hieroglyphieal Inscriptions. EGYPTIAN INSCRIPTIONS, from the British Museum and other sources. Sixty Plates in folio. Rudiments of a VOCABULARY of EGYPTIAN HIEROGLYPHICS. M451 42 ERRATA. Page 103, line 23, for Syria read Macedonia. Page 104, line 4, for Syrians read Macedonians. CONTENTS. Introduction. Abraham : shepherd kings : Joseph : kings of Thebes : era ofMenophres, exodus of the Jews, Rameses the Great, buildings, conquests, popu- lation, mines: Shishank, B.C. 970: Solomon: kings of Tanis : Bocchoris of Sais : kings of Ethiopia, B. c. 730 .- kings ofSais : Africa is sailed round, Greek mercenaries and settlers, Solon and Pythagoras : Persian conquest, B.C. 525 .- Inarus rebels : Herodotus and Hellanicus : Amyrtaus, Nectanebo : Eudoxus, Chrysippus, and Plato : Alexander the Great : oasis of Ammon, native judges, -
Mathematicians
MATHEMATICIANS [MATHEMATICIANS] Authors: Oliver Knill: 2000 Literature: Started from a list of names with birthdates grabbed from mactutor in 2000. Abbe [Abbe] Abbe Ernst (1840-1909) Abel [Abel] Abel Niels Henrik (1802-1829) Norwegian mathematician. Significant contributions to algebra and anal- ysis, in particular the study of groups and series. Famous for proving the insolubility of the quintic equation at the age of 19. AbrahamMax [AbrahamMax] Abraham Max (1875-1922) Ackermann [Ackermann] Ackermann Wilhelm (1896-1962) AdamsFrank [AdamsFrank] Adams J Frank (1930-1989) Adams [Adams] Adams John Couch (1819-1892) Adelard [Adelard] Adelard of Bath (1075-1160) Adler [Adler] Adler August (1863-1923) Adrain [Adrain] Adrain Robert (1775-1843) Aepinus [Aepinus] Aepinus Franz (1724-1802) Agnesi [Agnesi] Agnesi Maria (1718-1799) Ahlfors [Ahlfors] Ahlfors Lars (1907-1996) Finnish mathematician working in complex analysis, was also professor at Harvard from 1946, retiring in 1977. Ahlfors won both the Fields medal in 1936 and the Wolf prize in 1981. Ahmes [Ahmes] Ahmes (1680BC-1620BC) Aida [Aida] Aida Yasuaki (1747-1817) Aiken [Aiken] Aiken Howard (1900-1973) Airy [Airy] Airy George (1801-1892) Aitken [Aitken] Aitken Alec (1895-1967) Ajima [Ajima] Ajima Naonobu (1732-1798) Akhiezer [Akhiezer] Akhiezer Naum Ilich (1901-1980) Albanese [Albanese] Albanese Giacomo (1890-1948) Albert [Albert] Albert of Saxony (1316-1390) AlbertAbraham [AlbertAbraham] Albert A Adrian (1905-1972) Alberti [Alberti] Alberti Leone (1404-1472) Albertus [Albertus] Albertus Magnus -
Water, Air and Fire at Work in Hero's Machines
Water, air and fire at work in Hero’s machines Amelia Carolina Sparavigna Dipartimento di Fisica, Politecnico di Torino Corso Duca degli Abruzzi 24, Torino, Italy Known as the Michanikos, Hero of Alexandria is considered the inventor of the world's first steam engine and of many other sophisticated devices. Here we discuss three of them as described in his book “Pneumatica”. These machines, working with water, air and fire, are clear examples of the deep knowledge of fluid dynamics reached by the Hellenistic scientists. Hero of Alexandria, known as the Mechanicos, lived during the first century in the Roman Egypt [1]. He was probably a Greek mathematician and engineer who resided in the city of Alexandria. We know his work from some of writings and designs that have been arrived nowadays in their Greek original or in Arabic translations. From his own writings, it is possible to gather that he knew the works of Archimedes and of Philo the Byzantian, who was a contemporary of Ctesibius [2]. It is almost certain that Heron taught at the Museum, a college for combined philosophy and literary studies and a religious place of cult of Muses, that included the famous Library. For this reason, Hero claimed himself a pupil of Ctesibius, who was probably the first head of the Museum of Alexandria. Most of Hero’s writings appear as lecture notes for courses in mathematics, mechanics, physics and pneumatics [2]. In optics, Hero formulated the Principle of the Shortest Path of Light, principle telling that if a ray of light propagates from a point to another one within the same medium, the followed path is the shortest possible. -
General Disclaimer One Or More of the Following Statements May Affect
https://ntrs.nasa.gov/search.jsp?R=19710025504 2020-03-11T22:36:49+00:00Z View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by NASA Technical Reports Server General Disclaimer One or more of the Following Statements may affect this Document This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible. This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available. This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white. This document is paginated as submitted by the original source. Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission. Produced by the NASA Center for Aerospace Information (CASI) 6 X t B ICC"m date: July 16, 1971 955 L'Enfant Plaza North, S. W Washington, D. C. 20024 to Distribution B71 07023 from. J. W. Head suhiecf Derivation of Topographic Feature Names in the Apollo 15 Landing Region - Case 340 ABSTRACT The topographic features in the region of the Apollo 15 landing site (Figure 1) are named for a number of philosophers, explorers and scientists (astronomers in particular) representing periods throughout recorded history. It is of particular interest that several of the individuals were responsible for specific discoveries, observations, or inventions which considerably advanced the study and under- standing of the moon (for instance, Hadley designed the first large reflecting telescope; Beer published classic maps and explanations of the moon's surface). -
Hero's Engine Build Instructions
OMAHA MAKER GROUP Explore Technology, Science, & Art 8410 K Street, #5 – Omaha, NE 68127 [email protected] www.omahamakergroup.org How to Make a Hero’s Steam Engine Description: An easy steam engine (Hero's engine) is constructed from a soda can, some thread, and a heat source. Burning fuel heats the engine to produce steam. The chemical energy in the fuel is converted to a rotation of the can, illustrating the conversion of chemical energy to thermal energy to mechanical energy. Materials: Unopened soda can, thread, a small nail or pin, thread, something to hang the can over the fuel, candle or “Sterno” fuel, lighter, gloves Step 1 Do this outside or over a sink. Use a pin or small nail to make a hole in the side of a soda can. The can must still be unopened. When you pull the pin out there will likely be some spray. Step 2 Empty the can through the pinhole. Depending on the soda in the can, shaking it will increase the pressure in the can causing the soda to come out faster. Don't worry if there's a little soda left when you're done. Step 3 Make another hole in the other side of the can. Step 4 Put the pin back in one of the holes and pull it down as shown in the photos below. This modifies the hole enough for the steam to later come out at an angle with respect to the can. Step 5 Do the same for the other hole, pulling the pin in the same direction with respect to the can. -
The Mechanical Problems in the Corpus of Aristotle
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications, Classics and Religious Studies Department Classics and Religious Studies July 2007 The Mechanical Problems in the Corpus of Aristotle Thomas Nelson Winter University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/classicsfacpub Part of the Classics Commons Winter, Thomas Nelson, "The Mechanical Problems in the Corpus of Aristotle" (2007). Faculty Publications, Classics and Religious Studies Department. 68. https://digitalcommons.unl.edu/classicsfacpub/68 This Article is brought to you for free and open access by the Classics and Religious Studies at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications, Classics and Religious Studies Department by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Th e Mechanical Problems in the Corpus of Aristotle Th omas N. Winter Lincoln, Nebraska • 2007 Translator’s Preface. Who Wrote the Mechanical Problems in the Aristotelian Corpus? When I was translating the Mechanical Problems, which I did from the TLG Greek text, I was still in the fundamentalist authorship mode: that it survives in the corpus of Aristotle was then for me prima facie Th is paper will: evidence that Aristotle was the author. And at many places I found in- 1) off er the plainest evidence yet that it is not Aristotle, and — 1 dications that the date of the work was apt for Aristotle. But eventually, 2) name an author. I saw a join in Vitruvius, as in the brief summary below, “Who Wrote Th at it is not Aristotle does not, so far, rest on evidence. -
The Geodetic Sciences in Byzantium
The geodetic sciences in Byzantium Dimitrios A. Rossikopoulos Department of Geodesy and Surveying, Aristotle University of Thessaloniki [email protected] Abstract: Many historians of science consider that geodeasia, a term used by Aristotle meaning "surveying", was not particularly flourishing in Byzantium. However, like “lo- gistiki” (practical arithmetic), it has never ceased to be taught, not only at public universi- ties and ecclesiastical schools, as well as by private tutors. Besides that these two fields had to do with problems of daily life, Byzantines considered them necessary prerequisite for someone who wished to study philosophy. So, they did not only confine themselves to copying and saving the ancient texts, but they also wrote new ones, where they were ana- lyzing their empirical discoveries and their technological achievements. This is the subject of this paper, a retrospect of the numerous manuscripts of the Byzantine period that refer to the development of geodesy both in teaching and practices of surveying, as well as to mat- ters relating to the views about the shape of the earth, the cartography, the positioning in travels and generally the sciences of mapping. Keywords: Geodesy, geodesy in Byzantium, history of geodesy, history of surveying, history of mathematics. Περίληψη: Πολλοί ιστορικοί των επιστημών θεωρούν ότι η γεωδαισία, όρος που χρησι- μοποίησε ο Αριστοτέλης για να ορίσει την πρακτική γεωμετρία, την τοπογραφία, δεν είχε ιδιαίτερη άνθιση στο Βυζάντιο. Ωστόσο, όπως και η “λογιστική”, δεν έπαψε ποτέ να διδά- σκεται όχι μόνο στα κοσμικά πανεπιστήμια, αλλά και στις εκκλησιαστικές σχολές, καθώς επίσης και από ιδιώτες δασκάλους. Πέρα από το ότι οι δύο αυτοί κλάδοι είχαν να κάνουν με προβλήματα της καθημερινής ζωής των ανθρώπων, οι βυζαντινοί θεωρούσαν την διδα- σκαλία τους απαραίτητη προϋπόθεση ώστε να μπορεί κανείς να παρακολουθήσει μαθήμα- τα φιλοσοφίας. -
Thales of Miletus Sources and Interpretations Miletli Thales Kaynaklar Ve Yorumlar
Thales of Miletus Sources and Interpretations Miletli Thales Kaynaklar ve Yorumlar David Pierce October , Matematics Department Mimar Sinan Fine Arts University Istanbul http://mat.msgsu.edu.tr/~dpierce/ Preface Here are notes of what I have been able to find or figure out about Thales of Miletus. They may be useful for anybody interested in Thales. They are not an essay, though they may lead to one. I focus mainly on the ancient sources that we have, and on the mathematics of Thales. I began this work in preparation to give one of several - minute talks at the Thales Meeting (Thales Buluşması) at the ruins of Miletus, now Milet, September , . The talks were in Turkish; the audience were from the general popu- lation. I chose for my title “Thales as the originator of the concept of proof” (Kanıt kavramının öncüsü olarak Thales). An English draft is in an appendix. The Thales Meeting was arranged by the Tourism Research Society (Turizm Araştırmaları Derneği, TURAD) and the office of the mayor of Didim. Part of Aydın province, the district of Didim encompasses the ancient cities of Priene and Miletus, along with the temple of Didyma. The temple was linked to Miletus, and Herodotus refers to it under the name of the family of priests, the Branchidae. I first visited Priene, Didyma, and Miletus in , when teaching at the Nesin Mathematics Village in Şirince, Selçuk, İzmir. The district of Selçuk contains also the ruins of Eph- esus, home town of Heraclitus. In , I drafted my Miletus talk in the Math Village. Since then, I have edited and added to these notes. -
Some Curves and the Lengths of Their Arcs Amelia Carolina Sparavigna
Some Curves and the Lengths of their Arcs Amelia Carolina Sparavigna To cite this version: Amelia Carolina Sparavigna. Some Curves and the Lengths of their Arcs. 2021. hal-03236909 HAL Id: hal-03236909 https://hal.archives-ouvertes.fr/hal-03236909 Preprint submitted on 26 May 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Some Curves and the Lengths of their Arcs Amelia Carolina Sparavigna Department of Applied Science and Technology Politecnico di Torino Here we consider some problems from the Finkel's solution book, concerning the length of curves. The curves are Cissoid of Diocles, Conchoid of Nicomedes, Lemniscate of Bernoulli, Versiera of Agnesi, Limaçon, Quadratrix, Spiral of Archimedes, Reciprocal or Hyperbolic spiral, the Lituus, Logarithmic spiral, Curve of Pursuit, a curve on the cone and the Loxodrome. The Versiera will be discussed in detail and the link of its name to the Versine function. Torino, 2 May 2021, DOI: 10.5281/zenodo.4732881 Here we consider some of the problems propose in the Finkel's solution book, having the full title: A mathematical solution book containing systematic solutions of many of the most difficult problems, Taken from the Leading Authors on Arithmetic and Algebra, Many Problems and Solutions from Geometry, Trigonometry and Calculus, Many Problems and Solutions from the Leading Mathematical Journals of the United States, and Many Original Problems and Solutions.