Egyptian and Greek Water Cultures and Hydro-Technologies in Ancient Times
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Evolution of Diesel Engines
GENERAL ARTICLE The Evolution of Diesel Engines U Shrinivasa Rudolf Diesel thought of an engine which is inherently more efficient than the steam engines of the end-nineteenth century, for providing motive power in a distributed way. His intense perseverance, spread over a decade, led to the engines of today which bear his name. U Shrinivasa teaches Steam Engines: History vibrations and dynamics of machinery at the Department The origin of diesel engines is intimately related to the history of of Mechanical Engineering, steam engines. The Greeks and the Romans knew that steam IISc. His other interests include the use of straight could somehow be harnessed to do useful work. The device vegetable oils in diesel aeolipile (Figure 1) known to Hero of Alexandria was a primitive engines for sustainable reaction turbine apparently used to open temple doors! However development and working this aspect of obtaining power from steam was soon forgotten and with CAE applications in the industries. millennia later when there was a requirement for lifting water from coal mines, steam was introduced into a large vessel and quenched to create a low pressure for sucking the water to be pumped. Newcomen in 1710 introduced a cylinder piston ar- rangement and a hinged beam (Figure 2) such that water could be pumped from greater depths. The condensing steam in the cylin- der pulled the piston down to create the pumping action. Another half a century later, in 1765, James Watt avoided the cooling of the hot chamber containing steam by adding a separate condensing chamber (Figure 3). This successful steam engine pump found investors to manufacture it but the coal mines already had horses to lift the water to be pumped. -
Egyptian Quiz
Glasgow Museums Resource Centre Ancient Egypt Quiz Notes Round 1 - Life in Ancient Egypt Question 1 The Nile is the longest river in the world at over 4000 miles long Question 2 Khemet - The Black Land, named after the black tar-like silt that was dredged up when the Nile flooded every year, bringing nutrients to the soil and allowing crops to grow Interesting point - the word ‘Deshret’ is where we get our word for ‘desert’ from Question 3 There are different ways of measuring it, but most scholars will say around 760 hieroglyphs Hieroglyphs can be read up, down, left and right - you look at which way the figures are looking to guide you. The figures will always be looking towards the beginning of the ‘sentence’. Object notes This limestone stela fragment was given to Glasgow Museums by Miss J. May Buchanan in 1912.It preserves parts of six columns of a hieroglyphic inscription separated by vertical lines. The surviving text is part of a hymn to the sun in the form of the god Ra-Horakhty, a combination of the sun-god, Ra, with the falcon god, Horus-of-the-Two-Horizons. The inscription reads: '[Giving praise to Ra]-Hor-akhty, when he goes to his rest in life in this his great mountain […] he says, ‘Hail to you, great one of the Ennead, who comes into being […] in peace to the land of the Western mountain […]' '[… when] he rises in the eastern horizon of the sky, by the servant / deputy […] praise […]' Hymns invoking Amun-Ra-Horakhty do not appear before the 20th Dynasty, suggesting a date of the 20th Dynasty for this fragment. -
Political Crisis in Rhetorical Exercises of the Early Roman Empire Shunichiro Yoshida the University of Tokyo
ISSN: 2519-1268 Issue 2 (Spring 2017), pp. 39-50 DOI: 10.6667/interface.2.2017.34 Political Crisis in Rhetorical Exercises of the Early Roman Empire SHUNICHIRO YOSHIDA The University of Tokyo Abstract The ancient Romans experienced a great political crisis in the first century B. C. They fought many civil wars, which ended the republic and led to the establishment of the empire. The nature of these civil wars and the new regime was a politically very sensitive question for the next generation and could not be treated in a direct manner. In this paper I shall examine how literature in this age dealt with this sensitive problem. Special attention will be paid on declamations (rhetorical exercises on fictitious themes), which discussed repeatedly themes concerned with political crises such as domestic discord or rule of a tyrant. Keywords: Latin Oratory, Rhetorical Training, Early Roman Empire, Roman Politics © 2017 Shunichiro Yoshida This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. http://interface.ntu.edu.tw/ 39 Political Crisis in Rhetorical Exercises of the Early Roman Empire 1. Politics in Rome in the 1st Century B.C. Rome experienced its greatest political change in the 1st century B.C. Since the latter half of the previous century, its Republican system, which was established in the late 6th century B.C. according to the tradition, proved to contain serious problems. This led to repeated fierce civil wars in Rome. In the middle of the 1st century B.C., Caesar fought against Pompey and other members of the senatorial nobility who tried to defend the traditional system and defeated them completely. -
Atomic Desktop Alarm Clock
MODEL: T-045 (FRONT) INSTRUCTION MANUAL SCALE: 480W x 174H mm DATE: June 3, 2009 COLOR: WHITE BACKGROUND PRINTING BLACK 2. When the correct hour appears press the MODE button once to start the Minute digits Activating The Alarm Limited 90-Day Warranty Information Model T045 flashing, then press either the UP () or DOWN () buttons to set the display to the To turn the alarm ‘On’ slide the ALARM switch on the back panel to the ‘On’ position. The correct minute. Alarm On indicator appears in the display. Timex Audio Products, a division of SDI Technologies Inc. (hereafter referred to as SDI Technologies), warrants this product to be free from defects in workmanship and materials, under normal use Atomic Desktop 3. When the correct minutes appear press the MODE button once to start the Seconds At the selected wake-up time the alarm turns on automatically. The alarm begins with a single and conditions, for a period of 90 days from the date of original purchase. digits flashing. If you want to set the seconds counter to “00” press either the UP () or ‘beep’ and then the frequency of the ‘beeps’ increases. The alarm continues for two minutes, Alarm Clock DOWN () button once. If you do not wish to ‘zero’ the seconds, proceed to step 4. then shuts off automatically and resets itself for the same time on the following day. Should service be required by reason of any defect or malfunction during the warranty period, SDI Technologies will repair or, at its discretion, replace this product without charge (except for a 4. -
New and Complete Clock and Watchmakers' Manual
i 381 1 'fva, 1 II m^^P I I i1 mI Hg m I K9ffl us' BB KiKfu I • 1 AHnSnuS ^H . Hi 30 4 CLOCK AND WATCHMAKERS' MANUAL. NEW AND COMPLETE CLOCK AND WATCHMAKERS' MANUAL. COMPRISING DESCRIPTIONS OP THE VAKIOUS GEARINGS, ESCAPEMENTS, AND COMPENSATIONS NOW IN USE IN FRENCH, SWISS, AND ENGLISH CLOCKS AND WATCHES, PATENTS, TOOLS, ETC. WITH DIRECTIONS FOR CLEANING AND REPAIRING. :ttf) Numerous BBrtjjrab in^H, Compile from tf)* jFretuf). WITH AN APPENDIX CONTAINING A HISTORY OF CLOCK AND WATCHMAKING IN AMERICA. By M. L. BOOTH, TRANSLATOR OF THE MARBLE WORKERS' MANUAL, ETC, NEW YORK: JOHN "WILEY, 56 WALKER STREET. I860. fs \ Entered, according to Act of Congress, in the year 1860, by JOHN WILEY, in the Clerk's Office of the District Court of the United States for the Southern District of New York. ifi ' ^ <\ £ i R. CRAIGHEAD, Stereoiyper and Elecirotyper, CCai'ton iSuiDQinc[t 81, 83, and 85 Centre Street. TO HENRY FITZ, ESQ., OP NEW YORK CITY, AS A TOKEN OF APPRECIATION OF HIS KINDLY INTEREST AND AID, GENERAL INDEX. PAGE Preface, ix Explanation of Plates, . xv Introduction, 1 Watches, 4 Balance Wheel or Verge and Crown Wheel, . • . 6 Common Seconds Hand, ........ 14 Breguet, 16 Independent Seconds Hand, 24 Repeating, 28 Alarm, 36 Clocks, 41 Regulators, 42 Ordinary Pendulum, 42 Striking Hours and Quarters, 43 Belfry, 48 Pusee, the, . 53 Barrel, the, . 62 Stop works, the, j . 63 Workmanship in General, .......... 65 Gearings, 67 Cycloid, the, . 68 Epicycloid, the, 69 Escapements, 74 Balance Wheel, *75 Cylinder or Horizontal, . .15 Duplex, .80 M. -
13. Palette of King Narmer Predynatic Egypt. C. 3000 – 2920 B. C. E
13. Palette of King Narmer Predynatic Egypt. C. 3000 – 2920 B. C. E. Greywacke (2 images) Video at YouTube Article at Khan Academy Discovered (1898) among a group of sacred implements ritually buried in a deposit within an early temple of the falcon god Horus at the site of Hierakonpolis (the capital of Egypt during the pre-dynastic period), this large ceremonial object is one of the most important artifacts from the dawn of Egyptian civilization o Temple caches of this type are not uncommon. There was a great deal of focus on ritual and votive objects (offerings to the God) in temples. Every ruler, elite individual, and anyone else who could afford it, donated items to the temple to show their piety and increase their connection to the deity. After a period of time, the temple would be full of these objects and space would need to be cleared for new votive donations. However, since they had been dedicated to a temple and sanctified, the old items that needed to be cleared out could not simply be thrown away or sold. Instead, the general practice was to bury them in a pit under the temple floor o The "Main Deposit" at Hierakonpolis, where the Narmer Palette was discovered, contained many hundreds of objects, including a number of large relief-covered ceremonial mace-heads, ivory statuettes, carved knife handles, figurines of scorpions and other animals, stone vessels, and a second elaborately decorated palette 63.5 cm (more than 2 feet) in height and made of smooth greyish-green siltstone, is decorated on both faces with detailed low relief. -
235 Ams Radiocarbon Dates of Kurgans Located on the Ust
AMS Radiocarbon Dates of Kurgans Located On the Ust'-Yurt Plateau, Uzbekistan Item Type Article; text Authors Blau, Soren; Yagodin, Vadim Citation Blau, S., & Yagodin, V. (2005). AMS radiocarbon dates of kurgans located on the Ust'-Yurt Plateau, Uzbekistan. Radiocarbon, 47(2), 235-241. DOI 10.1017/S0033822200019743 Publisher Department of Geosciences, The University of Arizona Journal Radiocarbon Rights Copyright © by the Arizona Board of Regents on behalf of the University of Arizona. All rights reserved. Download date 28/09/2021 13:36:35 Item License http://rightsstatements.org/vocab/InC/1.0/ Version Final published version Link to Item http://hdl.handle.net/10150/653525 RADIOCARBON, Vol 47, Nr 2, 2005, p 235–241 © 2005 by the Arizona Board of Regents on behalf of the University of Arizona AMS RADIOCARBON DATES OF KURGANS LOCATED ON THE UST’-YURT PLATEAU, UZBEKISTAN Soren Blau Department of Archaeology, Flinders University. Also: The Victorian Institute of Forensic Medicine, 57-83 Kavanagh St, Southbank, Victoria 3006, Australia. Corresponding author. Email: [email protected]. Vadim Yagodin Institute of History, Archaeology and Ethnography, Nukus, Uzbekistan. ABSTRACT. Recent osteological analyses of archaeological human skeletal remains from the Ust’-Yurt Plateau, Uzbeki- stan, provided the opportunity to obtain samples for radiocarbon dating. The results of 18 accelerator mass spectrometry (AMS) dates are presented in this paper and provide the first absolute dates for late prehistoric and early historic archaeolog- ical sites in Uzbekistan. The AMS dates suggest that most sites are earlier than have been traditionally thought based on relative dating using artifact typologies. INTRODUCTION Russian scholarship in Central Asia has traditionally concentrated on the examination of archaeo- logically defined domestic areas and material culture as a means of interpreting whether remains belonged to nomadic or sedentary peoples (e.g. -
Water, Air and Fire at Work in Hero's Machines
Water, air and fire at work in Hero’s machines Amelia Carolina Sparavigna Dipartimento di Fisica, Politecnico di Torino Corso Duca degli Abruzzi 24, Torino, Italy Known as the Michanikos, Hero of Alexandria is considered the inventor of the world's first steam engine and of many other sophisticated devices. Here we discuss three of them as described in his book “Pneumatica”. These machines, working with water, air and fire, are clear examples of the deep knowledge of fluid dynamics reached by the Hellenistic scientists. Hero of Alexandria, known as the Mechanicos, lived during the first century in the Roman Egypt [1]. He was probably a Greek mathematician and engineer who resided in the city of Alexandria. We know his work from some of writings and designs that have been arrived nowadays in their Greek original or in Arabic translations. From his own writings, it is possible to gather that he knew the works of Archimedes and of Philo the Byzantian, who was a contemporary of Ctesibius [2]. It is almost certain that Heron taught at the Museum, a college for combined philosophy and literary studies and a religious place of cult of Muses, that included the famous Library. For this reason, Hero claimed himself a pupil of Ctesibius, who was probably the first head of the Museum of Alexandria. Most of Hero’s writings appear as lecture notes for courses in mathematics, mechanics, physics and pneumatics [2]. In optics, Hero formulated the Principle of the Shortest Path of Light, principle telling that if a ray of light propagates from a point to another one within the same medium, the followed path is the shortest possible. -
Ancient History Sourcebook: 11Th Brittanica: Sparta SPARTA an Ancient City in Greece, the Capital of Laconia and the Most Powerful State of the Peloponnese
Ancient History Sourcebook: 11th Brittanica: Sparta SPARTA AN ancient city in Greece, the capital of Laconia and the most powerful state of the Peloponnese. The city lay at the northern end of the central Laconian plain, on the right bank of the river Eurotas, a little south of the point where it is joined by its largest tributary, the Oenus (mount Kelefina). The site is admirably fitted by nature to guard the only routes by which an army can penetrate Laconia from the land side, the Oenus and Eurotas valleys leading from Arcadia, its northern neighbour, and the Langada Pass over Mt Taygetus connecting Laconia and Messenia. At the same time its distance from the sea-Sparta is 27 m. from its seaport, Gythium, made it invulnerable to a maritime attack. I.-HISTORY Prehistoric Period.-Tradition relates that Sparta was founded by Lacedaemon, son of Zeus and Taygete, who called the city after the name of his wife, the daughter of Eurotas. But Amyclae and Therapne (Therapnae) seem to have been in early times of greater importance than Sparta, the former a Minyan foundation a few miles to the south of Sparta, the latter probably the Achaean capital of Laconia and the seat of Menelaus, Agamemnon's younger brother. Eighty years after the Trojan War, according to the traditional chronology, the Dorian migration took place. A band of Dorians united with a body of Aetolians to cross the Corinthian Gulf and invade the Peloponnese from the northwest. The Aetolians settled in Elis, the Dorians pushed up to the headwaters of the Alpheus, where they divided into two forces, one of which under Cresphontes invaded and later subdued Messenia, while the other, led by Aristodemus or, according to another version, by his twin sons Eurysthenes and Procles, made its way down the Eurotas were new settlements were formed and gained Sparta, which became the Dorian capital of Laconia. -
Hero's Engine Build Instructions
OMAHA MAKER GROUP Explore Technology, Science, & Art 8410 K Street, #5 – Omaha, NE 68127 [email protected] www.omahamakergroup.org How to Make a Hero’s Steam Engine Description: An easy steam engine (Hero's engine) is constructed from a soda can, some thread, and a heat source. Burning fuel heats the engine to produce steam. The chemical energy in the fuel is converted to a rotation of the can, illustrating the conversion of chemical energy to thermal energy to mechanical energy. Materials: Unopened soda can, thread, a small nail or pin, thread, something to hang the can over the fuel, candle or “Sterno” fuel, lighter, gloves Step 1 Do this outside or over a sink. Use a pin or small nail to make a hole in the side of a soda can. The can must still be unopened. When you pull the pin out there will likely be some spray. Step 2 Empty the can through the pinhole. Depending on the soda in the can, shaking it will increase the pressure in the can causing the soda to come out faster. Don't worry if there's a little soda left when you're done. Step 3 Make another hole in the other side of the can. Step 4 Put the pin back in one of the holes and pull it down as shown in the photos below. This modifies the hole enough for the steam to later come out at an angle with respect to the can. Step 5 Do the same for the other hole, pulling the pin in the same direction with respect to the can. -
The Ptolemies: an Unloved and Unknown Dynasty. Contributions to a Different Perspective and Approach
THE PTOLEMIES: AN UNLOVED AND UNKNOWN DYNASTY. CONTRIBUTIONS TO A DIFFERENT PERSPECTIVE AND APPROACH JOSÉ DAS CANDEIAS SALES Universidade Aberta. Centro de História (University of Lisbon). Abstract: The fifteen Ptolemies that sat on the throne of Egypt between 305 B.C. (the date of assumption of basileia by Ptolemy I) and 30 B.C. (death of Cleopatra VII) are in most cases little known and, even in its most recognised bibliography, their work has been somewhat overlooked, unappreciated. Although boisterous and sometimes unloved, with the tumultuous and dissolute lives, their unbridled and unrepressed ambitions, the intrigues, the betrayals, the fratricides and the crimes that the members of this dynasty encouraged and practiced, the Ptolemies changed the Egyptian life in some aspects and were responsible for the last Pharaonic monuments which were left us, some of them still considered true masterpieces of Egyptian greatness. The Ptolemaic Period was indeed a paradoxical moment in the History of ancient Egypt, as it was with a genetically foreign dynasty (traditions, language, religion and culture) that the country, with its capital in Alexandria, met a considerable economic prosperity, a significant political and military power and an intense intellectual activity, and finally became part of the world and Mediterranean culture. The fifteen Ptolemies that succeeded to the throne of Egypt between 305 B.C. (date of assumption of basileia by Ptolemy I) and 30 B.C. (death of Cleopatra VII), after Alexander’s death and the division of his empire, are, in most cases, very poorly understood by the public and even in the literature on the topic. -
The Contribution of the Segovia Mint Factory to the History of Manufacturing As an Example of Mass Production in the 16Th Century
applied sciences Article The Contribution of the Segovia Mint Factory to the History of Manufacturing as an Example of Mass Production in the 16th Century Francisco García-Ahumada * and Cristina Gonzalez-Gaya * Department of Construction and Manufacturing Engineering, ETSII-Universidad Nacional de Educación a Distancia (UNED), C/Juan del Rosal 12, 28040 Madrid, Spain * Correspondence: [email protected] (F.G.-A.); [email protected] (C.G.-G.); Tel.: +34-629-67-27-37 (C.G.-G.) Received: 1 October 2019; Accepted: 26 November 2019; Published: 7 December 2019 Abstract: A new means of minting currency was first used at the Hall Mint in Tyrol in 1567. This new minting process employed a roller instead of a hammer and used hydropower to fuel the laminating and coining mills, as well as ancillary equipment, such as the forge or the lathe. In 1577, Philip II of Spain expressed his interest in the new technology and, after a successful technology transfer negotiation with the County of Tyrol, Juan de Herrera was commissioned to design a factory to accommodate this new minting process. The resulting design seamlessly integrated this new technology. The architectural layout of the factory was derived from the integration of different trades related to the manufacturing workflow, and their effective distribution within a more effective workplace allowed for better use of the hydraulic resources available, and, thus, improvements in the productivity and reliability of the manufacturing process, as well as in the quality of the finished product. Juan de Herrera’s design led to the creation of a ground-breaking manufacturing process, unparalleled in the mint industry in Europe at the time.