Shea New Thinking Innateness

Total Page:16

File Type:pdf, Size:1020Kb

Shea New Thinking Innateness King’s Research Portal DOI: 10.1098/rstb.2012.0125 Document Version Publisher's PDF, also known as Version of record Link to publication record in King's Research Portal Citation for published version (APA): Shea, N. (2012). New thinking, innateness and inherited representation. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 367(1599), 2234-2244. https://doi.org/10.1098/rstb.2012.0125 Citing this paper Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination, volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are again advised to check the publisher's website for any subsequent corrections. General rights Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights. •Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research. •You may not further distribute the material or use it for any profit-making activity or commercial gain •You may freely distribute the URL identifying the publication in the Research Portal Take down policy If you believe that this document breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 23. Sep. 2021 Downloaded from rstb.royalsocietypublishing.org on June 25, 2012 New thinking, innateness and inherited representation Nicholas Shea Phil. Trans. R. Soc. B 2012 367, 2234-2244 doi: 10.1098/rstb.2012.0125 References This article cites 45 articles, 15 of which can be accessed free http://rstb.royalsocietypublishing.org/content/367/1599/2234.full.html#ref-list-1 Article cited in: http://rstb.royalsocietypublishing.org/content/367/1599/2234.full.html#related-urls This article is free to access Subject collections Articles on similar topics can be found in the following collections cognition (237 articles) Receive free email alerts when new articles cite this article - sign up in the box at the top Email alerting service right-hand corner of the article or click here To subscribe to Phil. Trans. R. Soc. B go to: http://rstb.royalsocietypublishing.org/subscriptions Downloaded from rstb.royalsocietypublishing.org on June 25, 2012 Phil. Trans. R. Soc. B (2012) 367, 2234–2244 doi:10.1098/rstb.2012.0125 Review New thinking, innateness and inherited representation Nicholas Shea* Faculty of Philosophy, University of Oxford, 10 Merton Street, Oxford OX1 4JJ, UK The New Thinking contained in this volume rejects an Evolutionary Psychology that is committed to innate domain-specific psychological mechanisms: gene-based adaptations that are unlearnt, developmentally fixed and culturally universal. But the New Thinking does not simply deny the importance of innate psychological traits. The problem runs deeper: the concept of innateness is not suited to distinguishing between the New Thinking and Evolutionary Psychology. That points to a more serious problem with the concept of innateness as it is applied to human psycho- logical phenotypes. This paper argues that the features of recent human evolution highlighted by the New Thinking imply that the concept of inherited representation, set out here, is a better tool for theorizing about human cognitive evolution. Keywords: evolutionary psychology; innateness; inherited representation; genetic information; cognitive evolution; cultural inheritance 1 INTRODUCTION of interdependent adaptive changes, but it is not (a) New Thinking versus Evolutionary Psychology adapted to any one particular task or outcome. It It is standardly assumed that innate psychological mech- appears to have been selected instead for its facility anisms should be the central focus of an evolutionary as a generalist: to perform an open-ended range of account of human cognition. One version of this tasks with great skill, where the concrete outcomes approach is the ‘Evolutionary Psychology’ (capitalized) that contribute to fitness vary widely. of Tooby and Cosmides with its series of special-purpose Two domain-general changes in hominin evolution modules, each evolved to solve a particular problem in are central here. The first is a marked increase in plas- the Pleistocene [1]. Even outside high church Evolution- ticity: in how quickly human individuals and social ary Psychology, for example among those who point to groups adapt to different ways of life in different more general-purpose evolved human faculties like the ecological niches [6]. These developmentally plastic capacity for fine-grained visuomotor control, an evol- innovations depend for their development on rich utionary approach to human cognition is usually allied support from the environment: information about with a commitment to innate capacities. particular variable features of the developmental A strong theme emerging from the papers in this environment, including resources and information volume puts pressure on the idea that there are derived from the ecological niche, from parents and innate psychological capacities at all. These are not from the wider culture [7]. blank slate empiricists or cultural determinists who The second change is a much greater reliance on deny the importance of evolution for explaining why culturally transmitted information. Among the we are as we are. If the New Thinking is on the right adaptively-significant information on which develop- track, however, then innateness is not a useful concept ment depends, some concerns facts that individuals for theorizing about recent human cognition. could not learn for themselves in their own lifetime. Many papers in the volume emphasize domain- In these circumstances individuals do not test and con- general adaptations: improved physical/causal under- firm for themselves that the developmental path they standing, increased visuomotor skill, and an extended are adopting is adaptive; they rely on the information childhood coupled with increased parental investment in their culture being a reasonably reliable guide to [2,3]. At a recent conference on the new thinking, Eva adaptive outcomes. So human behavioural develop- Jablonka argued that the hand is a much better meta- ment is extremely plastic, and some of that plasticity phor than the Swiss-army knife for the special features involves sensitivity to culturally transmitted infor- of recent human cognition [4,5]. The hand is exqui- mation [7,8]. More strongly still, it is plausible that sitely complex and highly adapted, involving a suite humans have adaptations for the cultural transmission of information, including through teaching and learn- ing [9]. So, if cognition has evolved to be like the hand, *[email protected] it is a hand that was partly shaped by a culture of other One contribution of 15 to a Theme Issue ‘New thinking: the hands, and which in turn plays a role in shaping other evolution of human cognition’. hands, being itself partly adapted to passing on the 2234 This journal is q 2012 The Royal Society Downloaded from rstb.royalsocietypublishing.org on June 25, 2012 Review. New thinking and innateness N. Shea 2235 kind of cultural resources on which it depended on for (b) Deeper troubles with innateness its own development. Inutility is bad enough, but the troubles with the innate- An evolutionary approach is often coupled with the ness concept run deeper. As philosophers, we want to thought that adaptive traits are innate. An innate trait is know what property the concept of innateness refers prototypically1 an adaptation that has evolved by gene- to. That is, we want a theoretical reconstruction of the based natural selection, and is thereby coded in the claim that a trait X is innate—we want to know what genes. Its development does not depend on learning, it is about a trait that determines whether the innateness and it would develop even if experience were impover- claim is true or false. This exercise is not merely of phi- ished in certain ways. Correlatively, it is relatively losophical interest. It is continuous with the scientific developmentally fixed in the face of environmental project of trying better to understand the properties variations, and perhaps canalized against such vari- that are appealed to in a scientific theory. To do so, ations. Indeed, on some views an innate trait is we can observe the pattern of inferences in which a genetically determined from birth. And it is universal theoretical concept such as innateness is deployed, and in the species, either in the sense that all members seek to understand what the property is that underpins have it apart from non-typical cases in which there is those inferences: that makes them defeasible but an explanation of their exceptional status or, if there reasonably reliable ways of reaching true conclusions is typical variation in how the trait is manifested, then from true premises. The deeper problem with the con- some shared basis for that variation is universal. cept of innateness is that there is no good account of Evolutionary Psychology aims to account for the what the property of being innate could be, so as to distinctive features of human life by appealing to underpin the ways that the concept is used in relation special-purpose psychological capacities that have to human psychological capacities. exactly those features: they are prototypically the The concept of innateness is used to make inferences result of gene-based natural selection, do not depend between various properties like those mentioned ear- upon learning for their acquisition (and so admit of a lier: developmental fixity, lack of learning and genetic poverty of the stimulus argument), are relatively coding—‘i-properties’ (adapting the terminology of developmentally fixed and hence culturally universal.
Recommended publications
  • Cultural Group Selection Plays an Essential Role in Explaining Human Cooperation: a Sketch of the Evidence
    BEHAVIORAL AND BRAIN SCIENCES (2016), Page 1 of 68 doi:10.1017/S0140525X1400106X, e30 Cultural group selection plays an essential role in explaining human cooperation: A sketch of the evidence Peter Richerson Emily K. Newton Department of Environmental Science and Policy, University of California– Department of Psychology, Dominican University of California, San Rafael, CA Davis, Davis, CA 95616 94901 [email protected] [email protected] http://emilyknewton.weebly.com/ www.des.ucdavis.edu/faculty/richerson/richerson.htm Nicole Naar Ryan Baldini Department of Anthropology, University of California–Davis, Graduate Group in Ecology, University of California–Davis, Davis, CA 95616 Davis, CA 95616 [email protected] https://sites.google.com/site/ryanbaldini/ [email protected] Adrian V. Bell Lesley Newson Department of Anthropology, University of Utah, Salt Lake City, UT 84112 Department of Environmental Science and Policy, University of California– [email protected] http://adrianbell.wordpress.com/ Davis, Davis, CA 95616 [email protected] [email protected] Kathryn Demps https://www.researchgate.net/profile/Lesley_Newson/ Department of Anthropology, Boise State University, Boise, ID 83725 [email protected] Cody Ross http://sspa.boisestate.edu/anthropology/faculty-and-staff/kathryn- Santa Fe Institute, Santa Fe, NM 87501 demps/ [email protected] http://scholar.google.com/citations?user=xSugEskAAAAJ Karl Frost Graduate Group in Ecology, University of California–Davis, Davis, CA 95616 Paul E. Smaldino [email protected] https://sites.google.com/site/karljosephfrost/ Department of Anthropology, University of California–Davis, Davis, CA 95616 [email protected] http://www.smaldino.com/ Vicken Hillis Department of Environmental Science and Policy, University of California– Timothy M.
    [Show full text]
  • A Group Selection Perspective on Economic Behavior, Institutions and Organizations Jeroen C.J.M
    A Group Selection Perspective on Economic Behavior, Institutions and Organizations Jeroen C.J.M. van den Bergh, John M. Gowdy To cite this version: Jeroen C.J.M. van den Bergh, John M. Gowdy. A Group Selection Perspective on Economic Behavior, Institutions and Organizations. Journal of Economic Behavior and Organization, Elsevier, 2009, 72 (1), pp.1. 10.1016/j.jebo.2009.04.017. hal-00695532 HAL Id: hal-00695532 https://hal.archives-ouvertes.fr/hal-00695532 Submitted on 9 May 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Accepted Manuscript Title: A Group Selection Perspective on Economic Behavior, Institutions and Organizations Authors: Jeroen C.J.M. van den Bergh, John M. Gowdy PII: S0167-2681(09)00125-5 DOI: doi:10.1016/j.jebo.2009.04.017 Reference: JEBO 2384 To appear in: Journal of Economic Behavior & Organization Received date: 8-4-2008 Revised date: 30-4-2009 Accepted date: 30-4-2009 Please cite this article as: van den Bergh, J.C.J.M., Gowdy, J.M., A Group Selection Perspective on Economic Behavior, Institutions and Organizations, Journal of Economic Behavior and Organization (2008), doi:10.1016/j.jebo.2009.04.017 This is a PDF file of an unedited manuscript that has been accepted for publication.
    [Show full text]
  • Persistent Misunderstandings of Inclusive Fitness and Kin Selection Park, Justin H
    University of Groningen Persistent misunderstandings of inclusive fitness and kin selection Park, Justin H. Published in: Evolutionary Psychology DOI: 10.1177/147470490700500414 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2007 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Park, J. H. (2007). Persistent misunderstandings of inclusive fitness and kin selection: Their ubiquitous appearance in social psychology textbooks. Evolutionary Psychology, 5(4), 860 - 873. https://doi.org/10.1177/147470490700500414 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
    [Show full text]
  • Kin Selection, Group Selection, and the Varieties of Population Structure
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PhilSci Archive Kin Selection, Group Selection, and the Varieties of Population Structure Jonathan Birch Abstract: Various results show the ‘formal equivalence’ of kin and group selec- tionist methodologies, but this does not preclude there being a real and useful distinction between kin and group selection processes. I distinguish individual- and population-centred approaches to drawing such a distinction, and I proceed to develop the latter. On the account I advance, the differences between kin and group selection are differences of degree in the structural properties of popula- tions. A spatial metaphor (‘K-G space’) provides a useful framework for thinking about these differences: kin and group selection may be conceptualized as large, overlapping regions of K-G space. I then consider some implications of the ac- count, defend it from possible objections, and further argue that the structural features characteristic of both kin and group selection may recur at multiple levels of biological organization. 1 Introduction 2 2 Equivalence Results and Their Limitations 3 2.1 An example of an equivalence result . 3 2.2 Limitations . 6 3 Individual- and Population-Centred Approaches 8 4 Two Influences: Hamilton and Godfrey-Smith 11 5 K and G 14 5.1 K ..................................... 15 5.2 G ..................................... 16 5.3 K-G space . 18 6 The rb , 0 Requirement 20 1 7 Levels of Organization 23 8 The Key Substantive Questions 24 1 Introduction The relationship between kin selection and group (or multi-level) selection is a longstanding source of controversy in the social evolution literature.
    [Show full text]
  • An Introduction to Sociobiology: Inclusive Fitness and the Core Genome Herbert Gintis
    An Introduction to Sociobiology: Inclusive Fitness and the Core Genome Herbert Gintis June 29, 2013 The besetting danger is ...mistaking part of the truth for the whole...in every one of the leading controversies...both sides were in the right in what they affirmed, though wrong in what they denied John Stuart Mill, On Coleridge, 1867 A Mendelian populationhas a common gene pool, whichis itscollective or corporate genotype. Theodosius Dobzhansky, Cold Springs Harbor Symposium, 1953. The interaction between regulator and structural genes... [reinforces] the concept that the genotype of the individual is a whole. Ernst Mayr, Populations, Species and Evolution, 1970 Abstract This paper develops inclusive fitness theory with the aim of clarifying its appropriate place in sociobiological theory and specifying the associated principles that render it powerful. The paper introduces one new concept, that of the core genome. Treating the core genome as a unit of selection solves problems concerning levels of selection in evolution. 1 Summary Sociobiology is the study of biological interaction, both intragenomic, among loci in the genome, and intergenomic, among individuals in a reproductive popula- tion (Gardner et al. 2007). William Hamilton (1964) extended the theory of gene frequencies developed in the first half of the Twentieth century (Crow and I would like to thank Samuel Bowles, Eric Charnov, Steven Frank, Michael Ghiselin, Peter Godfrey-Smith, David Haig, David Queller, Laurent Lehmann, Samir Okasha, Peter Richerson, Joan Roughgarden, Elliot Sober, David Van Dyken, Mattijs van Veelen and Edward O. Wilson for advice in preparing this paper. 1 Kimura 1970, B¨urger 2000, Provine 2001) to deal with such behavior.
    [Show full text]
  • The Evolution of Extreme Cooperation Via Shared Dysphoric Experiences
    The Evolution of Extreme Cooperation via Shared Dysphoric Experiences Whitehouse, H., Jong, J., Buhrmester, M. D., Gomez, A., Bastian, B., Kavanagh, C. M., Newson, M., Matthews, M., Lanman, J. A., McKay, R., & Gavrilets, S. (2017). The Evolution of Extreme Cooperation via Shared Dysphoric Experiences. Nature Scientific Reports, 7, 1-10. [44292]. https://doi.org/10.1038/srep44292 Published in: Nature Scientific Reports Document Version: Publisher's PDF, also known as Version of record Queen's University Belfast - Research Portal: Link to publication record in Queen's University Belfast Research Portal Publisher rights © The Author(s) 2017 This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ General rights Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws.
    [Show full text]
  • Hamilton's Model of Kin Selection*
    Heredity (1982), 49(2), 163—169 0018-067X/82/05140163$02.OO 1982. The Genetical Society of Great Britain ADDITIVEPOLYGENIC FORMULATION OF HAMILTON'S MODEL OF KIN SELECTION* KENICHI AOKI National Institute of Genetics, Mishima, Shizuoka -ken 411, Japan Received16.iii.82 SUMMARY Hamilton's condition for the evolution of altruism by kin selection is rederived on an additive polygenic model. The approach uses intraclass correlation. It is then shown that the mean inclusive fitness is non-decreasing. The differences between and the relative efficacy of kin and group selection are discussed. 1. INTRODUCTION HAMILTON (1964) generalized Fisher's (1930) and Haldane's (1955) seminal argument to show heuristically that altruism between same-gener- ation kin would evolve if the following approximate inequality were satisfied: br>c. (1) Here, r is the correlation between the additive genotypic values of the interacting kin as evaluated from the pedigree. In Hamilton's model of benefit dispensation, an altruist suffers a cost in fitness c while donating a total benefit b, which is distributed evenly among the recipients. A recipient experiences its share of the benefit as an increment to its fitness; the total benefit to a recipient is the sum of increments received from all sources. Inequality (1) was first proposed to hold in a random mating population with discrete non-overlapping generations (Hamilton, 1964), and then extended to accommodate inbreeding (Hamilton, 1971, 1972). For sym- metrical relationships, which we alone consider in this paper, r is equal to 2f/(1 +fo), where fo is the inbreeding coefficient, and fi is the coefficient of consanguinity of the interacting kin (Wright, 1922).
    [Show full text]
  • Group Selection
    Group Selection A Gardner, University of Oxford, Oxford, UK © 2013 Elsevier Inc. All rights reserved. This article is a revision of the previous edition article by MJ Wade, volume 2, pp 894–899, © 2001, Elsevier Inc. Glossary individual’s character on her own fitness) and indirect ’ Adaptation The appearance of design in the living world, (impact of an individual s character on the fitness of her originally attributed to deities and now known to be due genetic relations) components. to natural selection. Levels of selection An approach to group selection Between-group selection The part of natural selection theory that defines group selection as that component that owes either to the impact of the group character upon of natural selection that owes to fitness differences individual fitness (contextual-analysis approach) or to the between groups. differential fitness of groups (levels-of-selection Natural selection The component of evolutionary change approach). in heritable characters that owes to fitness differences Contextual analysis An approach to group selection between individuals (within and between groups, and theory that defines group selection as that component of mediated by their own characters and those of their social natural selection ascribable to the impact of the group groups). character upon individual fitness. Superorganism The idea that a social group can be Group adaptation The appearance of design at the group considered an adapted organism in its own right, which is level, driven by between-group selection, that obtains only valid only in the absence of conflicts of interest within the when within-group selection is negligible. group.
    [Show full text]
  • Coevolution: a Pattern of Reciprocal Adaptation, Caused by Two Species Evolving in Close Association
    Coevolution: a pattern of reciprocal adaptation, caused by two species evolving in close association. coevolution is a change in the genetic composition of one species (or group) in response to a genetic change in another. More generally, the idea of some reciprocal evolutionary change in interacting species is a requisite for coevolution – Host-parasite – Plant- herbivore – Predator-Prey – Mutualisms Parasites may evolve rapidly due to: Short generation times High fecundity Founder effects and drift High mutation rates Consider plants and insects: it is sometimes difficult to determine whether plants' secondary compounds arose for the purpose of preventing herbivores from eating plant tissue. Certain plants may have produced certain compounds as waste products and herbivores attacked those plants that they could digest. Parasites and hosts: when a parasite invades a host, it will successfully invade those hosts whose defence traits it can circumvent because of the abilities it carries at that time. Thus presence of a parasite on a host does not constitute evidence for coevolution. These criticisms are quite distinct from the opportunity for coevolution once a parasite has established itself on a host. The main point is that any old interaction, symbiosis, mutualism, etc. is not synonymous with coevolution. In one sense there has definitely been "evolution together" but whether this fits our strict definition of coevolution needs to be determined by careful 1) observation, 2) experimentation and 3) phylogenetic analysis The classic analogy is the coevolutionary arms race: a plant has chemical defenses, an insect evolves the biochemistry to detoxify these compounds, the plant in turn evolves new defenses that the insect in turn "needs" to further detoxify.
    [Show full text]
  • Group Selection, Kin Selection, Altruism and Cooperation: When Inclusive Fitness Is Right and When It Can Be Wrong Matthijs Van Veelen
    Group selection, kin selection, altruism and cooperation: When inclusive fitness is right and when it can be wrong Matthijs van Veelen To cite this version: Matthijs van Veelen. Group selection, kin selection, altruism and cooperation: When inclusive fitness is right and when it can be wrong. Journal of Theoretical Biology, Elsevier, 2009, 259 (3), pp.589. 10.1016/j.jtbi.2009.04.019. hal-00554605 HAL Id: hal-00554605 https://hal.archives-ouvertes.fr/hal-00554605 Submitted on 11 Jan 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Author’s Accepted Manuscript Group selection, kin selection, altruism and cooperation: When inclusive fitness is right and when it can be wrong Matthijs van Veelen PII: S0022-5193(09)00189-1 DOI: doi:10.1016/j.jtbi.2009.04.019 Reference: YJTBI5543 www.elsevier.com/locate/yjtbi To appear in: Journal of Theoretical Biology Received date: 12 January 2009 Revised date: 19 March 2009 Accepted date: 21 April 2009 Cite this article as: Matthijs van Veelen, Group selection, kin selection, altruism and coop- eration: When inclusive fitness is right and when it can be wrong, Journal of Theoretical Biology, doi:10.1016/j.jtbi.2009.04.019 This is a PDF file of an unedited manuscript that has been accepted for publication.
    [Show full text]
  • Group Selection As Behavioral Adaptation to Systematic Risk
    Group Selection as Behavioral Adaptation to Systematic Risk Ruixun Zhang1, Thomas J. Brennan2, Andrew W. Lo3,4* 1 MIT Department of Mathematics, Cambridge, Massachusetts, United States of America, 2 Northwestern University School of Law, Chicago, Illinois, United States of America, 3 MIT Sloan School of Management, CSAIL, and EECS, Cambridge, Massachusetts, United States of America, 4 AlphaSimplex Group, LLC, Cambridge, Massachusetts, United States of America Abstract Despite many compelling applications in economics, sociobiology, and evolutionary psychology, group selection is still one of the most hotly contested ideas in evolutionary biology. Here we propose a simple evolutionary model of behavior and show that what appears to be group selection may, in fact, simply be the consequence of natural selection occurring in stochastic environments with reproductive risks that are correlated across individuals. Those individuals with highly correlated risks will appear to form ‘‘groups’’, even if their actions are, in fact, totally autonomous, mindless, and, prior to selection, uniformly randomly distributed in the population. This framework implies that a separate theory of group selection is not strictly necessary to explain observed phenomena such as altruism and cooperation. At the same time, it shows that the notion of group selection does captures a unique aspect of evolution—selection with correlated reproductive risk–that may be sufficiently widespread to warrant a separate term for the phenomenon. Citation: Zhang R, Brennan TJ, Lo AW (2014) Group Selection as Behavioral Adaptation to Systematic Risk. PLoS ONE 9(10): e110848. doi:10.1371/journal.pone. 0110848 Editor: Claude Wicker-Thomas, CNRS, France Received July 15, 2014; Accepted September 25, 2014; Published October 29, 2014 Copyright: ß 2014 Zhang et al.
    [Show full text]
  • Group Selection and Kin Selection: Formally Equivalent Approaches
    Opinion Group selection and kin selection: formally equivalent approaches James A.R. Marshall Department of Computer Science/Kroto Research Institute, University of Sheffield, Sheffield, S3 7HQ, UK Inclusive fitness theory, summarised in Hamilton’s Historical roots rule, is a dominant explanation for the evolution of The roots of the theories of social evolution discussed here social behaviour. A parallel thread of evolutionary the- extend back into at least the mid-19th century. Over these ory holds that selection between groups is also a many years, concepts and terminology have shifted, even candidate explanation for social evolution. The mathe- when used by the same authors. This section summarises matical equivalence of these two approaches has long these roots, which are discussed at greater length else- been known. Several recent papers, however, have objected that inclusive fitness theory is unable to deal with strong selection or with non-additive fitness effects, and concluded that the group selection frame- Glossary work is more general, or even that the two are not Altruism: donation of aid to another individual or individuals, such that their equivalent after all. Yet, these same problems have lifetime individual fitness is increased while the lifetime individual fitness of already been identified and resolved in the literature. the donor is decreased (see ‘Benefit’ and ‘Cost’). Benefit: the lifetime individual fitness increment resulting from receipt of aid Here, I survey these contemporary objections, and (see ‘Altruism’). examine them in the light of current understanding Cost: the lifetime individual fitness decrement resulting from donation of aid of inclusive fitness theory. (see ‘Altruism’).
    [Show full text]