Tic Antarctic Journal of the Ostracodes, Sponge Spicules, and Pollen
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bacterial Diversity Is Strongly Associated with Historical Penguin Activity in an Antarctic Lake Sediment Profile
www.nature.com/scientificreports OPEN Bacterial diversity is strongly associated with historical penguin activity in an Antarctic lake Received: 27 July 2015 Accepted: 27 October 2015 sediment profile Published: 25 November 2015 Renbin Zhu1, Yu Shi2, Dawei Ma1, Can Wang1, Hua Xu2 & Haiyan Chu2 Current penguin activity in Antarctica affects the geochemistry of sediments and their microbial communities; the effects of historical penguin activity are less well understood. Here, bacterial diversity in ornithogenic sediment was investigated using high-throughput pyrosequencing. The relative abundances of dominant phyla were controlled by the amount of historical penguin guano deposition. Significant positive correlations were found between both the bacterial richness and diversity, and the relative penguin number (p < 0.01); this indicated that historical penguin activity drove the vertical distribution of the bacterial communities. The lowest relative abundances of individual phyla corresponded to lowest number of penguin population at 1,800–2,300 yr BP during a drier and colder period; the opposite was observed during a moister and warmer climate (1,400–1,800 yr BP). This study shows that changes in the climate over millennia affected penguin populations and the outcomes of these changes affect the sediment bacterial community today. Antarctic freshwater lakes are relatively simple aquatic ecosystems, with low species richness and diversity, low biomass, short food chains and limited trophic complexity1,2. However, benthic sediments represent one of the most complex microbial habitats on Earth3. Microorganisms in sediments play a significant role in biogeochemical cycles and the remineralisation of organic matter within aquatic ecosystems. For example, bacterial populations are major contributors in the transformation of organic carbon, sulphur, nitrogenous compounds, and metals, and have an important role in ecosystem food webs and nutrient cycling2,4. -
Groundwater Characteristics at Seabee Hook, Cape Hallett, Antarctica ERICA H
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Research Commons@Waikato Antarctic Science 18 (4), 487–495 (2006) © Antarctic Science Ltd Printed in the UK DOI: 10.1017/S0954102006000538 Groundwater characteristics at Seabee Hook, Cape Hallett, Antarctica ERICA H. HOFSTEE1, DAVE I. CAMPBELL1*, MEGAN R. BALKS1 and JACKIE AISLABIE2 1Department of Earth and Ocean Sciences, The University of Waikato, Private Bag 3105, Hamilton, New Zealand 2Landcare Research, Private Bag 3127, Hamilton, New Zealand *corresponding author: [email protected] Abstract: Seabee Hook is a low lying gravel spit adjacent to Cape Hallett, northern Victoria Land, in the Ross Sea region of Antarctica and hosts an Adélie penguin (Pygoscelis adeliae) rookery. Dipwells were inserted to monitor changes in depth to, and volume of, groundwater and tracer tests were conducted to estimate aquifer hydraulic conductivity and groundwater velocity. During summer (November–February), meltwater forms a shallow, unconfined, aquifer perched on impermeable ice cemented soil. Groundwater extent and volume depends on the amount of snowfall as meltwater is primarily sourced from melting snow drifts. Groundwater velocity through the permeable gravel and sand was up to 7.8 m day-1, and hydraulic conductivities of 4.7 × 10-4 m s-1 to 3.7 × 10-5 m s-1 were measured. The presence of the penguin rookery, and the proximity of the sea, affects groundwater chemistry with elevated concentrations of salts (1205 mg L-1 sodium, 332 mg L-1 potassium) and nutrients (193 mg L-1 nitrate, 833 mg L-1 ammonia, 10 mg L-1 total phosphorus) compared with groundwater sourced away from the rookery, and with other terrestrial waters in Antarctica. -
Fln.Tflrcit.IC
flN.TflRCiT.IC A NEWS BULLETIN published quarterly by the NEW ZEALAND ANTARCTIC SOCIETY (INC) A New Zealand Ministry of Works and Development surveyor, Steven Currie, carries out a triangulation survey on the main crater rim of Mt Erebus, the active volcano on Ross Island. Some of the hazards of last season's programme were average temperatures of minus 30deg Celsius and 23 eruptions which hurled lava bombs from the inner crater up to 200m in the air. - Antarctic Division photo , , _, ., -. ,, p- Registered at Post Office Headquarters, Marrh 1 QRd VOL 1U, NO. O Wellington, New Zealand, as a magazine. ivlaluii, I30t SOUTH GEORGIA •. SOUTH SANDWICH It SOUTH ORKNEY It / \ S^i^j^voiMarevskaya7 6SignyloK ,'' / / o O r c a d a s a r g SOUTHTH AMERICAAMERICA ' /''' / .\ J'Borgal ^7^]Syowa japan \ Kr( SOUTH , .* /WEDDELL \ U S* I / ^ST^Moiodwhnaya \^' SHETLAND U / x Ha|| J^tf ORONN NG MAUD LAND ^D£RBY \\US*> \ / " W ' \ / S f A u k y C O A T S L d / l a n d J ^ ^ \ Lw*M#^ ^te^B.«,ranoW >dMawson \ /PENINSUtA'^SX^^^Rpnnep^J "<v MAC ROKRTSON LAND^ \ aust \ |s« map below) 1^=^ A <ce W?dSobralARG \/^ ^7 '• Davis Aust /_ Siple _ USA ! ELLSWORTH ^ Amundsen-Scon / queen MARY LAND {MimV ') LAND °VosloJc ussr MARIE BYRD^S^ »« She/f\'r - ..... 1 y * \ WIL KES U N O Y' ROSS|N'l?SEA I J«>ryVICTORIA \VandaN' .TERRE / gf ,f 7.W ^oV IAN0 y/ADEliu/ /» I ( GEORGE V l4_,„-/'r^ •^^Sa^/^r .uumont d'Urville iranc i L e n i n g r a d j k a Y a V > ussr.-' \ / - - - - " ' " ' " B A I L E N Y l t \ / ANTARCTIC PENINSULA 1 Teniente Matien?o arc 2 Esp*ran:a arc 3 Almiranie Brown arg 4 Petrel arg 5 Decepcion arg 6 V i c e c o m o d o r o M a r a m b i o a r g ' ANTARCTICA 7 AMuro Prat chili 8 Bernardo O'Higgins chile 500 1000 Milts 9 Presidente Frei chili WOO K.kxnnna 10 Stonington I. -
100 Million Years of Antarctic Climate Evolution: Evidence from Fossil Plants 19 J
Antarctica: A Keystone in a Changing World Proceedings of the 10th International Symposium on Antarctic Earth Sciences, Santa Barbara, California, August 26 to September 1, 2007, Alan K. Cooper, Peter Barrett, Howard Stagg, Bryan Storey, Edmund Stump, Woody Wise, and the 10th ISAES editorial team, Polar Research Board, National Research Council, U.S. Geological Survey ISBN: 0-309-11855-7, 164 pages, 8 1/2 x 11, (2008) This free PDF was downloaded from: http://www.nap.edu/catalog/12168.html Visit the National Academies Press online, the authoritative source for all books from the National Academy of Sciences, the National Academy of Engineering, the Institute of Medicine, and the National Research Council: • Download hundreds of free books in PDF • Read thousands of books online, free • Sign up to be notified when new books are published • Purchase printed books • Purchase PDFs • Explore with our innovative research tools Thank you for downloading this free PDF. If you have comments, questions or just want more information about the books published by the National Academies Press, you may contact our customer service department toll-free at 888-624-8373, visit us online, or send an email to [email protected]. This free book plus thousands more books are available at http://www.nap.edu. Copyright © National Academy of Sciences. Permission is granted for this material to be shared for noncommercial, educational purposes, provided that this notice appears on the reproduced materials, the Web address of the online, full authoritative version is retained, and copies are not altered. To disseminate otherwise or to republish requires written permission from the National Academies Press. -
Mineral Resources of Antarctica
GEOLOGICAL SURVEY CIRCULAR 705 Mineral Resources of Antarctica Mineral Resources of Antarctica Compiled ancl eclitecl &y N. A. Wright ancl P. L. Williams GEOLOGICAL SURVEY CIRCULAR 705 1974 United States Department of the Interior ROGERS C. B. MORTON, Secretary Geological Survey V. E. McKelvey, Director Free on application to the U.S. Geological Survey, National Center, Reston, Va. 22092 CONTENTS Page )Lbstract ---------------------------------------------------------------- 1 Introduction ------------------------------------------------------------ 1 ldineral occurrences ------------------------------------------------------ 3 Sand and gravel ---------------------------------------------------- 3 Other nonmetals ---------------------------------------------------- 3 Iron ---------------------------------------------------------------- 10 Copper --------_____ -.- ____ - __ - _________ - ___ - ___ - --__ ----------------- 11 Gold and silver ------------------------------------------------------ 11 ldolybdenum ___________________________________ ---_ -~- --------------- 11 Other metals -------------------------------------------------------- 11 Potential resources _--- _-_________ - ________ - ____ ---_----__ ---------------- 11 ldanganese nodules _____________________________ ---____ --------------- 11 Geothermal energy --------------------------------------------------- 12 VVater (as ice) ------------------------------------------------------ 15 Coal ---------------------------------------------------------------- 15 Oil and natural gas -
November 1960 I Believe That the Major Exports of Antarctica Are Scientific Data
JIET L S. Antarctic Projects OfficerI November 1960 I believe that the major exports of Antarctica are scientific data. Certainly that is true now and I think it will be true for a long time and I think these data may turn out to be of vastly, more value to all mankind than all of the mineral riches of the continent and the life of the seas that surround it. The Polar Regions in Their Relation to Human Affairs, by Laurence M. Gould (Bow- man Memorial Lectures, Series Four), The American Geographiql Society, New York, 1958 page 29.. I ITOJ TJM II IU1viBEt 3 IToveber 1960 CONTENTS 1 The First Month 1 Air Operations 2 Ship Oper&tions 3 Project MAGNET NAF McMurdo Sounds October Weather 4 4 DEEP FREEZE 62 Volunteers Solicited A DAY AT TEE SOUTH POLE STATION, by Paul A Siple 5 in Antarctica 8 International Cooperation 8 Foreign Observer Exchange Program 9 Scientific Exchange Program NavyPrograrn 9 Argentine Navy-U.S. Station Cooperation 9 10 Other Programs 10 Worlds Largest Aircraft in Antarctic Operation 11 ANTARCTICA, by Emil Schulthess The Antarctic Treaty 11 11 USNS PRIVATE FRANIC 3. FETRARCA (TAK-250) 1961 Scientific Leaders 12 NAAF Little Rockford Reopened 13 13 First Flight to Hallett Station 14 Simmer Operations Begin at South Pole First DEEP FREEZE 61 Airdrop 14 15 DEEP FREEZE 61 Cargo Antarctic Real Estate 15 Antarctic Chronology,. 1960-61 16 The 'AuuOiA vises to t):iank Di * ?a]. A, Siple for his artj.ole Wh.4b begins n page 5 Matera1 for other sections of bhis issue was drawn from radio messages and fran information provided bY the DepBr1nozrt of State the Nat0na1 Academy , of Soienoes the NatgnA1 Science Fouxidation the Office 6f NAval Re- search, and the U, 3, Navy Hydziograpbio Offioe, Tiis, issue of tie 3n oovers: i16, aótivitiès o events 11 Novóiber The of the Uxitéd States. -
Late Holocene Adйlie Penguin Population Dynamics at Zolotov
J Paleolimnol (2011) 45:273–285 DOI 10.1007/s10933-011-9497-x ORIGINAL PAPER Late Holocene Ade´lie penguin population dynamics at Zolotov Island, Vestfold Hills, Antarctica Tao Huang • Liguang Sun • Yuhong Wang • Deming Kong Received: 24 December 2009 / Accepted: 9 October 2010 / Published online: 14 January 2011 Ó Springer Science+Business Media B.V. 2011 Abstract We inferred late Holocene Ade´lie pen- ago, which we interpret as a response to the Little Ice guin occupation history and population dynamics on Age, or a neoglacial cooling event. Zolotov Island, Vestfold Hills, Antarctica, using geochemical data from a dated ornithogenic sediment Keywords Ade´lie penguin Á Antarctic climates Á Ice core (ZOL4). Radiocarbon dates on fossil penguin core Á Ornithogenic sediments Á Western Antarctic bones in the core indicate that Ade´lie penguins Peninsula Á Little Ice Age occupied the island as early as 1,800 years before present (yr BP), following the retreat of the SØrsdal glacier. This occupation began *1,200 years later than that observed at Ardley Island and King George Introduction Island, in the South Shetland Islands. Phosphorus was identified as the most indicative bio-element for Polar seabirds provide important linkages between penguin guano in core ZOL4, and was used to infer marine ecosystems and terrestrial environments. past penguin population dynamics. Around They transport marine-derived nutrients and contam- 1,800 years ago, the Ade´lie penguin populations at inants onto land via their guano and physical remains both Zolotov Island and Ardley Island increased (Sun and Xie 2001a; Blais et al. 2005, 2007; Xie and rapidly and reached their highest levels *1,000 yr Sun 2008; Yin et al. -
Operational Information 2003/2004 Pre-Season New Zealand
Operational Information 2003/2004 Pre-Season New Zealand NATIONAL EXPEDITIONS Year Round Facility Scott Base • Region: Ross Island, McMurdo Sound • Latitude: 77°51'00"S • Longitude: 166°45'46"E • Date opened: 25 January 1957. • Maximum population: 85 person (summer), average 10 person (winter) • Medical support: Scott Base has a first aid facility. Advanced medical care is available at McMurdo Station (United States Antarctic Program). Summer Field Camp LGP • Region: Cape Hallett, Northern Victoria Land, Ross Sea Region • Latitude: 72°19'13"S • Longitude: 170°13'34"E • Period of operations: November 2003 – February 2004 • Maximum population: 15 person • Medical support: Advanced first aider on-site and emergency cache. Refuge Huts Cape Royds Hut • Region: Cape Royds, Ross Island • Latitude: 77°33'S • Longitude: 166°10'E • Medical facilities: Survival box • Accommodation capacity: 2 person Cape Evans Hut • Region: Cape Evans on the west coast of Ross Island at northern entrance to Erebus Bay • Latitude: 77°38'S • Longitude: 166°24'E • Survival box • Accommodation capacity: 4 person Lower Wright Hut • Region: South side of Wright Valley (approximately 1 mile west of Wright Lower Glacier) • Latitude: 77°26'S • Longitude: 162°37'E • Survival box • Accommodation capacity: 2 person Bratina Island Hut • Region: Near northern tip of Brown Peninsula • Latitude: 78°01'S • Longitude: 165°32'E • Survival box • Accommodation capacity: 12 person Cape Bird Hut • Region: Adjacent to Adelie penguin rookeries at northern tip of Macdonalds Beach • Latitude: -
Transport of Nutrients and Contaminants from Ocean to Island by Emperor Penguins from Amanda Bay, East Antarctic
Science of the Total Environment 468–469 (2014) 578–583 Contents lists available at ScienceDirect Science of the Total Environment journal homepage: www.elsevier.com/locate/scitotenv Transport of nutrients and contaminants from ocean to island by emperor penguins from Amanda Bay, East Antarctic Tao Huang, Liguang Sun ⁎, Yuhong Wang, Zhuding Chu, Xianyan Qin, Lianjiao Yang Institute of Polar Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China HIGHLIGHTS • Emperor penguins transfer nutrients and contaminants from ocean to island and lake or pond system. • Stable carbon and nitrogen isotopes in determining sources of organic matters in lake sediments • Differences in biotransfer efficiency between emperor and Pygoscelis penguins article info abstract Article history: Penguins play important roles in the biogeochemical cycle between Antarctic Ocean and land ecosystems. The Received 13 June 2013 roles of emperor penguin Aptenodytes forsteri, however, are usually ignored because emperor penguin breeds Received in revised form 26 August 2013 in fast sea ice. In this study, we collected two sediment profiles (EPI and PI) from the N island near a large emper- Accepted 26 August 2013 or penguin colony at Amanda Bay, East Antarctic and performed stable isotope and element analyses. The organic Available online xxxx C/N ratios and carbon and nitrogen isotopes suggested an autochthonous source of organic materials for the sed- δ13 − ‰ δ15 ‰ Editor: Frank Riget iments of EPI (C/N = 10.21 ± 0.28, n =17; C= 13.48 ± 0.50 , N = 8.35 ± 0.55 , n =4)andan allochthonous source of marine-derived organic materials for the sediments of PI (C/N = 6.15 ± 0.08, 13 15 Keywords: δ C=−26.85 ± 0.11‰, δ N = 21.21 ± 2.02‰, n = 20). -
Minimizing Tourist Impact on the Argentine Islands Ecosystem, Antarctic Peninsula, Using Visitor Site Guidelines Approach
Yevchun, H., Dykyi, E., Kozeretska, I., Fedchuk, A., Karamushka, V., Parnikoza, I. (2021). Minimizing tourist impact on the Argentine Islands ecosystem, Antarctic Peninsula, using visitor site guidelines approach. Ukrainian Antarctic Journal, 1, 98—116. https://doi.org/10.33275/1727-7485.1.2021.669 H. Yevchun1, 2, *, E. Dykyi1, I. Kozeretska1, A. Fedchuk1, V. Karamushka2, I. Parnikoza1, 2, 3 1 State Institution National Antarctic Scientific Center, Ministry of Education and Science of Ukraine, Kyiv, 01601, Ukraine 2 National University of Kyiv-Mohyla Academy, Kyiv, 04655, Ukraine 3 Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, 03680, Ukraine * Corresponding author: [email protected] Minimizing tourist impact on the Argentine Islands ecosystem, Antarctic Peninsula, using visitor site guidelines approach Abstract. There has been an ongoing increase in tourist visits to the Antarctic since 2010. These visits primarily concentrate on a small number of sites, increasing the possible environmental impact. One of the tourism hotspots is the central Argentine Is- lands in Wilhelm Archipelago. These islands, being one of the top 20 most visited Antarctic sites, consist of Galindez Island, Winter Island, and Skua Island. They are known for wildlife, rich vegetation (old moss banks, rich bryophyte and lichen com- munities, Antarctic pearlwort Colobanthus quitensis and hairgrass Deschampsia antarctica populations), spectacular views. They include one of the oldest Antarctic research stations: the Ukrainian Antarctic Akademik Vernadsky station. Previously no mea- sures have been developed to minimize the impact of tourism on this region. Thus, the Visitor Site Guidelines (VSG) approach and the numerous studies in the region were used to determine the central values of this site and to identify those key features that can be opened for tourists. -
Entomological Investigations in Antarctica
Pacific Insects 5 (1) : 287-304 April 30, 1963 ENTOMOLOGICAL INVESTIGATIONS IN ANTARCTICA By J. L. Gressitt, R. E. Leech and K. A. J. Wise BERNICE P. BISHOP MUSEUM, HONOLULU Abstract: During the Antarctic summer seasons of 1959-60, 1960-61, 61-62 entomolo gical studies have been carried out on the Antarctic continent and some neighboring islands by teams from Bishop Museum, on the U. S. Antarctic Research Program. Work was done in Victoria Land, Beardmore area, Ross I., Little America, Thurston I., Antarctic Peninsula, South Shetland Is., Macquarie I., Campbell I. and elsewhere. About 20 free-living and about 18 ectoparasitic species of arthropods were found in Antarctica proper, and larger numbers on subantarctic islands and in the air-borne trapping program, largely at sea. INTRODUCTION This report concerns work done on the Antarctic continent and nearby islands during the 1959-60, 1960-61, and 1961-62 southern summer seasons. Work in progress during the 1962-63 season will be reported upon later. Also, work done by Dr. H. Janetschek will be reported separately. One of the major objectives of work to date has been the study of natural dispersal of arthropods by air currents. Preliminary reports on this work have al ready been published (Gressitt, Leech & O'Brien, 1960; Gressitt, Sedlacek, Wise & Yoshi moto, 1961 ; Gressitt, R. E. Leech, T. S. Leech, Sedlacek & Wise, 1961 ; Yoshimoto, Gressitt & Mitchell, 1962). Also, some general treatments of antarctic and subantarctic zoogeogra phy, bibliography and ecology have been prepared (Gressitt & Weber, 1960; Gressitt & Pryor, 1961; Gressitt & Leech, 1961; Gressitt, 1960, 1961a, 1961b, in press; Gressitt & Yoshimoto, in press). -
Coastal-Change and Glaciological Map of the Palmer Land Area, Antarctica: 1947–2009
Prepared in cooperation with the British Antarctic Survey, the Scott Polar Research Institute, and the Bundesamt für Kartographie und Geodäsie Coastal-Change and Glaciological Map of the Palmer Land Area, Antarctica: 1947–2009 By Jane G. Ferrigno, Alison J. Cook, Amy M. Mathie, Richard S. Williams, Jr., Charles Swithinbank, Kevin M. Foley, Adrian J. Fox, Janet W. Thomson, and Jörn Sievers Pamphlet to accompany Geologic Investigations Series Map I–2600–C 2009 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia: 2009 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS--the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report. Suggested citation: Ferrigno, J.G., Cook, A.J., Mathie, A.M., Williams, R.S., Jr., Swithinbank, Charles, Foley, K.M., Fox, A.J., Thomson, J.W., and Sievers, Jörn, 2009, Coastal-change and glaciological map of the Palmer Land area, Antarctica: 1947–2009: U.S. Geological Survey Geologic Investigations Series Map I–2600–C, 1 map sheet, 28-p.