273 Blockade of the V1b receptor reduces ACTH, but not corticosterone secretion induced by stress without affecting basal hypothalamic– pituitary–adrenal axis activity Francesca Spiga, Louise R Harrison, Susan Wood, David M Knight, Cliona P MacSweeney1, Fiona Thomson2, Mark Craighead2 and Stafford L Lightman Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Dorothy Hodgkin Building, Whitson Street, BS1 3NY Bristol, UK 1Department of Pharmacology, Schering-Plough Corporation, Newhouse, Motherwell, ML15SH UK 2Department of Molecular Pharmacology, Schering-Plough Corporation, Newhouse, Motherwell, ML15SH UK (Correspondence should be addressed to F Spiga; Email:
[email protected]) Abstract Vasopressin (AVP), produced in parvocellular neurons of the 2 ml/kg, s.c.). We found that blockade of the V1bR reduced hypothalamic paraventricular nucleus, regulates, together the increase in both ACTH and corticosterone secretion with CRH, pituitary ACTH secretion. The pituitary actions induced by AVP (100 ng, i.v.). The same treatment had no of AVP are mediated through the G protein receptor V1b effect either on basal ACTH and corticosterone levels or on (V1bjR). In man, hyperactivity of the hypothalamic– the ultradian or diurnal rhythms of corticosterone secretion. pituitary–adrenal axis has been associated with depression Acute administration of the V1bR antagonist reduced ACTH and other stress-related conditions. There are also clinical data secretion following both restraint and lipopolysaccharide, but suggesting a role for AVP in the dysfunctional HPA axis did not antagonise the ACTH response to noise. The same described in some depressed patients. In this study, we have treatment did not reduce corticosterone secretion in response investigated the effect of a recently synthesised selective to any of the three stressors used in this study.