Interaction Between Substance P and TRH in the Control of Prolactin Release
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Vasopressin Release from the Rat Hypothalamo-Neurohypophysial System: Effects of Tachykinin NK–1 and NK–2 Receptors Agonis
Neuroendocrinology Letters No.4 August Vol.26, 2005 Copyright © 2005 Neuroendocrinology Letters ISSN 0172–780X www.nel.edu Vasopressin release from the rat hypothalamo-neurohy- pophysial system: Effects of tachykinin NK–1 and NK–2 receptors agonists and antagonists ARTICLE ORIGINAL Marlena Juszczak Department of Pathophysiology, Medical University of Lodz, Lodz, Poland. Correspondence to: Marlena Juszczak, Ph.D., D.Sc. Department of Pathophysiology Medical University of Lodz Narutowicza 60 90-136 Lodz, POLAND TEL/FAX: +48 42 6306187 [email protected] Submitted: July 7, 2004 Accepted: October 15, 2004 Key words: tachykinin receptors; substance P; neurokinin A; vasopressin Neuroendocrinol Lett 2005; 26(4):367–372 PMID: 16136007 NEL260405A13 © Neuroendocrinology Letters www.nel.edu Abstract OBJECTIVES: Present experiments were undertaken to study the influence of pep- tide NK–1 and NK–2 receptor agonists and antagonists as well as substance P and neurokinin A (the natural ligands for these tachykinin receptors) on vasopres- sin (AVP) secretion from the rat hypothalamo-neurohypophysial (HN) system in vitro. RESULTS: The results showed that both substance P and highly selective tachykinin 9 11 NK–1 receptor agonist, i.e., [Sar ,Met(O2) ]-Substance P, enhanced significantly AVP secretion, while the NK–1 receptor antagonist (Tyr6,D–Phe7,D–His9)-Sub- stance P (6–11) – sendide – was found to antagonize the substance P–induced hormone release from isolated rat HN system (all peptides at the concentration of 10–7 M/L). The NK–2 receptor selective agonist (β–Ala8)–Neurokinin A (4–10) was essentially inactive in modifying AVP release from the rat HN system in vitro, while neurokinin A (the natural ligand for this tachykinin receptor) was found to stimulate the AVP release; this effect of neurokinin A has been diminished by the 5 6,8,9 10 NK–2 receptor antagonist (Tyr ,D–Trp ,Lys–NH2 )–Neurokinin A (4–10). -
Neuromedin B Receptor Stimulation of Cav3.2 T-Type Ca 2+ Channels In
Neuromedin B receptor stimulation of Cav3.2 T-type Ca2+ channels in primary sensory neurons mediates peripheral pain hypersensitivity Yuan Zhang 1, 3, #, *, Zhiyuan Qian 1, #, Dongsheng Jiang 2, #, Yufang Sun 3, 5, Shangshang Gao 3, Xinghong Jiang 3, 5, Hua Wang 4, *, Jin Tao 3, 5, * 1 Department of Geriatrics & Institute of Neuroscience, the Second Affiliated Hospital of Soochow University, Suzhou 215004, China; 2 Comprehensive Pneumology Center, Helmholtz Zentrum München, Munich 81377, Germany; 3 Department of Physiology and Neurobiology & Centre for Ion Channelopathy, Medical College of Soochow University, Suzhou 215123, China; 4 Department of Endocrinology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; 5 Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou 215123, China # These authors contribute to this work equally Running title: NmbR facilitates Cav3.2 channels Individual email addresses for all authors: Yuan Zhang ([email protected]), Zhiyuan Qian ([email protected]), Dongsheng Jiang ([email protected]), Yufang Sun ([email protected]), Shangshang Gao ([email protected]), Xinghong Jiang ([email protected]), Hua Wang ([email protected]), Jin Tao ([email protected]) *To whom correspondence should be addressed: Dr. Yuan Zhang, Department of Geriatrics & Institute of Neuroscience, the Second Affiliated Hospital of Soochow University, Suzhou 215004, China. E-mail: [email protected] Dr. Hua Wang, Department of Endocrinology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China. E-mail: [email protected] Dr. Jin Tao, Department of Physiology and Neurobiology & Centre for Ion Channelopathy, Medical College of Soochow University, Suzhou 215123, China. E-mail: [email protected] 1 Abstract Background: Neuromedin B (Nmb) is implicated in the regulation of nociception of sensory neurons. -
Europium-Labeled Ligands for Receptor Binding Studies
Europium-labeled Ligands for Receptor Binding Studies Katja Sippola, Maija-Liisa Mäkinen, Sanna Rönnmark, Joni Helenius, Riitta Heilimö, Anu Koivikko, Pertti Hurskainen and Christel Gripenberg-Lerche PerkinElmer Life and Analytical Sciences, Wallac Oy 1 Introduction 2 Methods Time-resolved fluorescence enhancement technique DELFIA® enables development of highly sensitive assays for screening. We have developed a family of Europium-labeled peptides and proteins designed for ligand receptor binding assays that can be easily automated The DELFIA® ligand receptor binding assay is based on dissociation-enhanced time-resolved fluorescence. DELFIA® Eu-labeled ligand and and optimized either for 96 or 384 well format. These Eu-labeled ligands provide an excellent non-radioactive alternative that is both receptor membrane preparate are incubated on an filter plate (PALL AcroWell or AcroPrep) after which unbound labeled ligand is removed by stabile and sensitive. filtration. Eu is dissociated from the bound ligand by using DELFIA® Enhancement Solution. Dissociated Eu creates highly fluorescent complexes, ® The new tachycinin members of the DELFIA ligand family are Substance P and Neurokinin A. These peptide ligands have many which are measured in a multilabel counter with TRF option, e.g. EnVision™. physiological roles, e.g. they stimulate smooth muscle contraction and glandular secretion and are involved in immune responses and neurotransmission. 3 DELFIA® Neurokinin A assays on 96 well filtration plates 4 DELFIA® Substance P assays on 96 well -
Role of Tachykinin Receptors and Melatonin in Oxytocin
JOURNAL OF PHYSIOLOGY AND PHARMACOLOGY 2004, 55, 4, 739749 www.jpp.krakow.pl M. JUSZCZAK, K. FURYKIEWICZ-NYKI, B. STEMPNIAK ROLE OF TACHYKININ RECEPTORS AND MELATONIN IN OXYTOCIN SECRETION FROM ISOLATED RAT HYPOTHALMO- NEUROHYPOPHYSIAL SYSTEM Department of Pathophysiology, Medical University of £ód, £ód, Poland Present investigations were undertaken to study the influence of peptide NK-1 and NK-2 receptor agonists and antagonists as well as substance P and neurokinin A (the natural ligands for these tachykinin receptors) on oxytocin (OT) release from isolated rat hypothalamo-neurohypophysial (H-N) system as well as to determine whether the tachykinin NK-1 and/or NK-2 receptors contribute to the response of oxytocinergic neurons to melatonin. The results show, for the first time, that highly selective NK- 9 11 1 receptor agonist, i.e., [Sar ,Met(O2) ]-Substance P, enhances while the NK-1 6 7 9 receptor antagonist (Tyr ,D-Phe ,D-His )-Substance P (6-11) - sendide - diminishes significantly OT secretion; the latter peptide was also found to antagonize the substance P-induced hormone release from isolated rat H-N system, when used at the -7 concentration of 10 M/L. Melatonin significantly inhibited basal and substance P- stimulated OT secretion. Neurokinin A and the NK-2 receptor selective agonist (ß- 8 5 6,8,9 Ala )-Neurokinin A (4-10) as well as the NK-2 receptor antagonist (Tyr ,D-Trp , 10 Lys-NH2 )-Neurokinin A (4-10) were essentially inactive in modifying OT release from the rat H-N system in vitro. The present data indicate a distinct role for tachykinin NK-1 (rather than NK-2) receptor in tachykinin-mediated regulation of OT secretion from the rat H-N system. -
Substance P and Antagonists of the Neurokinin-1 Receptor In
Martinez AN and Philipp MT, J Neurol Neuromed (2016) 1(2): 29-36 Neuromedicine www.jneurology.com www.jneurology.com Journal of Neurology & Neuromedicine Mini Review Article Open Access Substance P and Antagonists of the Neurokinin-1 Receptor in Neuroinflammation Associated with Infectious and Neurodegenerative Diseases of the Central Nervous System Alejandra N. Martinez1 and Mario T. Philipp1,2* 1Division of Bacteriology & Parasitology, Tulane National Primate Research Center, Covington, LA, USA 2Department of Microbiology and Immunology, Tulane University Medical School, New Orleans, LA, USA Article Info ABSTRACT Article Notes This review addresses the role that substance P (SP) and its preferred receptor Received: May 03, 2016 neurokinin-1 (NK1R) play in neuroinflammation associated with select bacterial, Accepted: May 18, 2016 viral, parasitic, and neurodegenerative diseases of the central nervous system. *Correspondence: The SP/NK1R complex is a key player in the interaction between the immune Division of Bacteriology and Parasitology and nervous systems. A common effect of this interaction is inflammation. For Tulane National Primate Research Center this reason and because of the predominance in the human brain of the NK1R, Covington, LA, USA its antagonists are attractive potential therapeutic agents. Preventing the Email: [email protected] deleterious effects of SP through the use of NK1R antagonists has been shown © 2016 Philipp MT. This article is distributed under the terms of to be a promising therapeutic strategy, as these antagonists are selective, the Creative Commons Attribution 4.0 International License potent, and safe. Here we evaluate their utility in the treatment of different neuroinfectious and neuroinflammatory diseases, as a novel approach to Keywords clinical management of CNS inflammation. -
Bombesin Receptors in Distinct Tissue Compartments of Human Pancreatic Diseases Achim Fleischmann, Ursula Läderach, Helmut Friess, Markus W
0023-6837/00/8012-1807$03.00/0 LABORATORY INVESTIGATION Vol. 80, No. 12, p. 1807, 2000 Copyright © 2000 by The United States and Canadian Academy of Pathology, Inc. Printed in U.S.A. Bombesin Receptors in Distinct Tissue Compartments of Human Pancreatic Diseases Achim Fleischmann, Ursula Läderach, Helmut Friess, Markus W. Buechler, and Jean Claude Reubi Division of Cell Biology and Experimental Cancer Research (AF, UL, JCR), Institute of Pathology, University of Berne, and Department of Visceral and Transplantation Surgery (HF, MWB), Inselspital, University of Berne, Berne, Switzerland SUMMARY: Overexpression of receptors for regulatory peptides in various human diseases is reportedly of clinical interest. Among these peptides, bombesin and gastrin-releasing peptide (GRP) have been shown to play a physiological and pathophysiological role in pancreatic tissues. Our aim has been to localize bombesin receptors in the human diseased pancreas to identify potential clinical applications of bombesin analogs in this tissue. The presence of bombesin receptor subtypes has been evaluated in specimens of human pancreatic tissues with chronic pancreatitis (n ϭ 23) and ductal pancreatic carcinoma (n ϭ 29) with in vitro receptor autoradiography on tissue sections incubated with 125I-[Tyr4]-bombesin or the universal ligand 125I-[D-Tyr6, -Ala11, Phe13, Nle14]-bombesin(6–14) as radioligands and displaced by subtype-selective bombesin receptor agonists and antagonists. GRP receptors were identified in the pancreatic exocrine parenchyma in 17 of 20 cases with chronic pancreatitis. No measurable bombesin receptors were found in the tumor tissue of ductal pancreatic carcinomas, however, GRP receptors were detected in a subset of peritumoral small veins in 19 of 29 samples. -
Distribution of Neurokinin 2 and 3 Receptor Mrna in the Normal
Distribution of Neurokinin 2 and 3 Receptor mRNA in the Normal Equine Gastrointestinal Tract and Effect of Inflammation on Expression of Neurokinin 1, 2 and 3 Receptor mRNA in the Jejunum by Dr. Christina Martin A Thesis presented to The University of Guelph In partial fulfillment of requirements for the degree of Masters of Science in Clinical Studies Guelph, Ontario, Canada Dr. Christina Martin, April, 2014 ABSTRACT DISTRIBUTION OF NEUROKININ 2 AND 3 RECEPTOR mRNA IN THE NORMAL EQUINE GASTROINTESTINAL TRACT AND EFFECT OF INFLAMMATION ON EXPRESSION OF NEUROKININ 1, 2 AND 3 RECEPTOR mRNA IN THE JEJUNUM Dr. Christina E. W. Martin Advisor: University of Guelph, 2014 Dr. Judith B. Koenig This study is an investigation of the distribution of neurokinin receptors in the equine gastrointestinal tract. The objectives of this research were to determine the relative distribution of neurokinin 2 (NK2) and 3 (NK3) receptor mRNA in the normal equine gastrointestinal tract, and also to determine changes in neurokinin 1 (NK1), NK2 and NK3 receptor mRNA expression after ischemia/reperfusion injury or intraluminal distension in the jejunum. Samples from 9 regions in the gastrointestinal tract (duodenum, jejunum, ileum, caecum, right ventral colon, left ventral colon, pelvic flexure, right dorsal colon and left dorsal colon) were harvested from 5 mature healthy horses, euthanized for reasons unrelated to the gastrointestinal tract, for the study of NK2 and NK3 mRNA distribution in the normal intestinal tract. To evaluate the effect of inflammation on NK1, NK2 and NK3 receptor mRNA distribution, samples were taken from 6 horses whose jejunum underwent one of three treatments: control (sham-operated), intraluminal distension (ILD) or ischemic strangulation obstruction and subsequent reperfusion injury (ISO). -
The Significance of NK1 Receptor Ligands and Their Application In
pharmaceutics Review The Significance of NK1 Receptor Ligands and Their Application in Targeted Radionuclide Tumour Therapy Agnieszka Majkowska-Pilip * , Paweł Krzysztof Halik and Ewa Gniazdowska Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland * Correspondence: [email protected]; Tel.: +48-22-504-10-11 Received: 7 June 2019; Accepted: 16 August 2019; Published: 1 September 2019 Abstract: To date, our understanding of the Substance P (SP) and neurokinin 1 receptor (NK1R) system shows intricate relations between human physiology and disease occurrence or progression. Within the oncological field, overexpression of NK1R and this SP/NK1R system have been implicated in cancer cell progression and poor overall prognosis. This review focuses on providing an update on the current state of knowledge around the wide spectrum of NK1R ligands and applications of radioligands as radiopharmaceuticals. In this review, data concerning both the chemical and biological aspects of peptide and nonpeptide ligands as agonists or antagonists in classical and nuclear medicine, are presented and discussed. However, the research presented here is primarily focused on NK1R nonpeptide antagonistic ligands and the potential application of SP/NK1R system in targeted radionuclide tumour therapy. Keywords: neurokinin 1 receptor; Substance P; SP analogues; NK1R antagonists; targeted therapy; radioligands; tumour therapy; PET imaging 1. Introduction Neurokinin 1 receptor (NK1R), also known as tachykinin receptor 1 (TACR1), belongs to the tachykinin receptor subfamily of G protein-coupled receptors (GPCRs), also called seven-transmembrane domain receptors (Figure1)[ 1–3]. The human NK1 receptor structure [4] is available in Protein Data Bank (6E59). -
Neuromedins U and S Involvement in the Regulation of the Hypothalamo–Pituitary–Adrenal Axis
REVIEW ARTICLE published: 05 December 2012 doi: 10.3389/fendo.2012.00156 Neuromedins U and S involvement in the regulation of the hypothalamo–pituitary–adrenal axis Ludwik K. Malendowicz*, Agnieszka Ziolkowska and Marcin Rucinski Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland Edited by: We reviewed neuromedin U (NMU) and neuromedin S (NMS) involvement in the regulation Hubert Vaudry, University of Rouen, of the hypothalamo–pituitary–adrenal (HPA) axis function. NMU and NMS are structurally France related and highly conserved neuropeptides. They exert biological effects via two GPCR Reviewed by: receptors designated as NMUR1 and NMUR2 which show differential expression. NMUR1 James A. Carr, Texas Tech University, USA is expressed predominantly at the periphery, while NMUR2 in the central nervous system. Gábor B. Makara, Hungarian Elements of the NMU/NMS and their receptors network are also expressed in the HPA Academy of Sciences, Hungary axis and progress in molecular biology techniques provided new information on their *Correspondence: actions within this system. Several lines of evidence suggest that within the HPA axis Ludwik K. Malendowicz, NMU and NMS act at both hypothalamic and adrenal levels. Moreover, new data suggest Department of Histology and Embryology, Poznan University of that NMU and NMS are involved in central and peripheral control of the stress response. Medical Sciences, 6 Swie¸cickiSt., 60-781 Poznan, Poland. Keywords: neuromedin U, neuromedin S, hypothalamus, pituitary, adrenal e-mail: [email protected] INTRODUCTION Identification of specific NMU receptors (NMUR1 and In search for new biologically active peptides, the group of NMUR2) and its anorexigenic action have enhanced interest in Minamino, Kangawa, and Matsuo in the 1980s isolated numerous physiological role of NMU and NMS (Howard et al., 2000; Ida small neuropeptides from porcine spinal cord. -
The Role of Neuromedin B in the Regulation of Rat Pituitary-Adrenocortical Function
Histol Histopathol (1 996) 1 1 : 895-897 Histology and Histopathology The role of neuromedin B in the regulation of rat pituitary-adrenocortical function L.K. ~alendowicz~,C. Macchi2, G.G. Nussdorfer2and M. Nowakl 'Department of Histology and Embryology, School of Medicine, Poznan, Poland and 2Department of Anatomy, University of Padua, Padua, ltaly Summary. The effects of a 7-day administration of NMB-receptor antagonist (NMB-A) (Kroog et al., neuromedin B (NMB) andlor (~~r~,D-phe12)-bornbesin, 1995). an NMB-receptor antagonist (NMB-A) on the function of pituitary-adrenocortical axis were investigated in Materials and methods the rat. NMB raised the plasma concentration of aldosterone, without affecting that of ACTH or Experimental procedure corticosterone; the simultaneous administration of NMB-A prevented the effect of NMB. Neither NMB nor Adult female Wistar rats (200k20 g body weight) NMB-A treatments induced significant changes in were kept under a 12:12 h light-dark cycle (illumination adenohypophysis and adrenal weights, nor in the average onset at 8:00 a.m.) at 23 T,and maintained on a volume of zona glomerulosa and zona reticularis cells. standard diet and tap water ad libitum. The rats were NMB-A administration lowered the volume of zona divided into equal groups (n=8), which were fasciculata cells, an effect annulled by the concomitant subcutaneously injected daily with NMB, NMB-A or NMB administration. Our results suggest that NMB NMB plus NMB-A (Bachem, Bubendorf, Switzerland) specifically stimulates aldosterone secretion, and that dissolved in 0.2 m1 0.9% NaC1, for 7 consecutive days. endogenous NMB or NMB-like peptides exert a tonic The dose was 1 nmo1/100 g body weight. -
Tachykinins in Endocrine Tumors and the Carcinoid Syndrome
European Journal of Endocrinology (2008) 159 275–282 ISSN 0804-4643 CLINICAL STUDY Tachykinins in endocrine tumors and the carcinoid syndrome Janet L Cunningham1, Eva T Janson1, Smriti Agarwal1, Lars Grimelius2 and Mats Stridsberg1 Departments of 1Medical Sciences and 2Genetics and Pathology, University Hospital, SE 751 85 Uppsala, Sweden (Correspondence should be addressed to J Cunningham who is now at Section of Endocrine Oncology, Department of Medical Sciences, Lab 14, Research Department 2, Uppsala University Hospital, Uppsala University, SE 751 85 Uppsala, Sweden; Email: [email protected]) Abstract Objective: A new antibody, active against the common tachykinin (TK) C-terminal, was used to study TK expression in patients with endocrine tumors and a possible association between plasma-TK levels and symptoms of diarrhea and flush in patients with metastasizing ileocecal serotonin-producing carcinoid tumors (MSPCs). Method: TK, serotonin and chromogranin A (CgA) immunoreactivity (IR) was studied by immunohistochemistry in tissue samples from 33 midgut carcinoids and 72 other endocrine tumors. Circulating TK (P-TK) and urinary-5 hydroxyindoleacetic acid (U-5HIAA) concentrations were measured in 42 patients with MSPCs before treatment and related to symptoms in patients with the carcinoid syndrome. Circulating CgA concentrations were also measured in 39 out of the 42 patients. Results: All MSPCs displayed serotonin and strong TK expression. TK-IR was also seen in all serotonin- producing lung and appendix carcinoids. None of the other tumors examined contained TK-IR cells. Concentrations of P-TK, P-CgA, and U-5HIAA were elevated in patients experiencing daily episodes of either flush or diarrhea, when compared with patients experiencing occasional or none of these symptoms. -
Calcitonin Gene-Related Peptide and Other Peptides
P1: KWW/KKL P2: KWW/HCN QC: KWW/FLX T1: KWW GRBT050-16 Olesen- 2057G GRBT050-Olesen-v6.cls July 9, 2005 4:30 ••Chapter 16 ◗ Calcitonin Gene-Related Peptide and Other Peptides Susan Brain and Lars Edvinsson Vasoactive peptides can be either stored or synthesized de THE CGRP FAMILY OF PEPTIDES novo before release from a range of tissues in the brain or from the walls of intracranial vasculature. In this chapter, The expression of mRNA from the calcitonin gene is tissue we concentrate on neuropeptides that are released from specific in that CGRP mRNA is predominantly expressed perivascular nerves. These include calcitonin gene-related in nerves and calcitonin mRNA in the thyroid (5). The 37 peptide (CGRP), substance P, neurokinin A, nociceptin, amino acid peptide CGRP belongs to a family that include somatostatin, and opioids (Table 16-1). The endothelium the more recently discovered peptides adrenomedullin produces the potent vasoconstrictors endothelin and an- that is primarily produced by non-neuronal tissues, espe- giotensin, and dilators such as nitric oxide, prostacyclin, cially vascular tissues and amylin that is mainly produced and endothelium-derived hyperpolarizing factors. In ad- in the pancreas. They share some structural homology (ap- dition there are circulating agents; among these the most proximately 25–40%) and also some, but not total, similar- potent is 5-hydroxytryptamine. The neuronal messengers ities in biological activities (see Brain and Grant [11] for stored in the intracranial vessels have been reviewed recent review). CGRP is abundant in the body and has a (32) and it was revealed that sympathetic nerves store wide distribution throughout the central and peripheral noradrenaline, neuropeptide Y, and ATP, the parasympa- nervous systems.