Gut Hormones and Metabolism

Total Page:16

File Type:pdf, Size:1020Kb

Gut Hormones and Metabolism Gut Hormones and Metabolism Rebecca Scott* & Steve Bloom** *Department of Investigative Medicine, **Head of Division of Diabetes, Endocrinology and Metabolism, Commonwealth Building, Hammersmith Hospital, Imperial College London, Du Cane Road, London, W12 0NN www.tocris.com The gut is the largest endocrine organ in the body. More than 30 hormones are produced by the gastrointestinal tract, pancreas and fat, with many other related peptides produced in the brain. Many gut hormones are Products available from Tocris released by the direct action of ingested nutrients on enteroendocrine cells found within the intestine. These hormones act to control food intake and energy expenditure. AMPK A 769662, AICAR, Dorsomorphin, Metformin, PF 06409577, Gut-Brain Axis ARC SAMS Peptide Insulin Bombesin Receptors The hypothalamus is the co-ordination center for energy homeostasis, and the arcuate receptor Insulin receptor NPY receptor Melanocortin NPY receptor Bombesin, GRP (human), GRP (porcine), nucleus (ARC) in the hypothalamus is the epicenter for integration of signals about the receptor Neuromedin B (porcine), PD 176252 energy status and requirements of an individual. The ARC contains two distinct populations GLP-1 Calcitonin and Related Receptors receptor BIBN 4096, CGRP 8-37 (human), of neurons. NPY and AgRP neurons are orexigenic (stimulate appetite), and are activated by Arcuate nucleus (ARC) NPY/AgRP POMC/CART CGRP 8-37 (rat), α-CGRP (human) signals such as ghrelin, while CART and POMC neurons are anorexigenic (reduce appetite), Cannabinoid Receptor AM 251, AM 281, AM 630, HU 308, and are stimulated by GLP-1 and PYY. These neurons reciprocally innervate each other, so JWH 133, SR 141716A Leptin receptor Ghrelin receptor Melanocortin Leptin receptor Cholecystokinin1 Receptor activation of the CART/POMC neurons turns off the NPY/AGRP neurons and vice versa. receptor A-71623, CCK Octapeptide, sulfated, The ARC receives inputs from many different sources. It lies close to the median eminence, CI 988, Devazepide, Gastrin I (human), YM 022 which lacks a blood brain barrier, allowing direct access to hormones from the periphery. Galanin Receptors Increases food uptake Decreases food uptake The vagus nerve connects the gastrointestinal tract to the hypothalamus, relaying messages Galanin (1-29) (rat, mouse), “Orexigenic” “Anorexigenic” Galanin (1-30) (human), M 1145, about gut hormones and gastrointestinal distension. Reciprocal connections also exist M40, M617, M871 between the brain stem and the hypothalamus. The ARC then relays messages to other Ghrelin Receptors Orexigenic Mediators [D-Lys3]-GHRP-6, Ghrelin (human), hypothalamic nuclei, such as the ventromedial nucleus, the dorsomedial nucleus and the Ghrelin (rat), Tabimorelin, YIL 781 HORMONE RELEASE FROM RECEPTOR Glucagon Receptor lateral hypothalamic area. There is subsequent output to the sympathetic nervous system, Agouti-related peptide (AgRP) Hypothalamus, particularly Inverse agonist of Melanocortin des-His1-[Glu9]-Glucagon (1-29) amide, arcuate nucleus MC3 and MC4 receptors the thyroid axis, the limbic system, and back to the vagus, which then control food L-168,049, Oxyntomodulin Endocannabinoids Central nervous system CB1 and CB2 receptors Sympathetic nerves Glucagon-Like Peptide Receptors intake and energy expenditure. Galanin Enteric neurons, central and G-protein coupled receptors peripheral nervous system GAL1, GAL2 and GAL3 Exendin-3 (9-39) amide, Exendin-4, Glucagon-like peptide 1 (1-37) Ghrelin X/A-like cells of the stomach Ghrelin receptor (also increases (human, rat), Glucagon-like peptide 1 preference for sweet food) (7-36) amide (human, rat) Gut Hormones and Obesity Growth hormone-releasing Hypothalamus Growth hormone releasing hormone (GHRH) hormone receptor Insulin and Insulin-like Receptors In normal circumstances, Melanin-concentrating hormone Hypothalamus Melanin-concentrating 6bK, BMS 536924, Insulin (human) Hormone Obesity Weight loss (MCH) hormone receptor recombinant, Mitoglitazone, co-ordination of the gut-brain axis NBI 31772, Picropodophyllotoxin PYY â post-prandial rise â Neuropeptide Y (NPY) Hypothalamus and enteric Y1, Y2 and Y5 receptors ensures that an individual maintains neurons (increases food intake via Y Leptin Receptors PP â/á â/á 1 their weight within a narrow range. and Y5; decreases food intake LEP (116-130) (mouse) via Y receptor) However, persistent excessive food GLP-1 â post-prandial rise â 2 Melanocortin Receptors Orexin B Intestine and hypothalamus OX and OX receptors consumption can overcome the CCK â/á â 1 2 ACTH (1-39), Melanotan II, ML 00253764, SHU 9119 normal homeostatic mechanisms Leptin Increased baseline levels â and lead to the development of but increased resistance Anorexigenic Mediators Motilin Receptors obesity. Furthermore, once a person to action ANQ 11125, Motilin (human, porcine) HORMONE RELEASE FROM RECEPTOR mTOR has become obese, their physiology Ghrelin Reduced baseline levels á Amylin β-cells of the pancreas AMY1a, AMY2a and AMY3a AZD 3147, eCF 309, PP 242, changes to make weight loss even and failure to suppress (Calcitonin receptor core, with Rapamycin, Torin 1, Torin 2 an associated receptor activity harder. In obese patients, there is a post-prandially Neuromedin U Receptors relative reduction in levels and modifying protein RAMP1, Amylin á â RAMP2 or RAMP3) Neuromedin S (rat), Neuromedin U (rat) efficacy of the satiety hormones PYY, Calcitonin gene-related peptide Enteric neurons, central and CGRP receptor (Calcitonin NPY Receptors PP, GLP-1 and CCK. There is also a resistance to the effects of leptin, and an increased Leptin (CGRP) peripheral nervous system receptor-like receptor with [Leu31,Pro34]-Neuropeptide Y sensitivity to ghrelin. These changes stop people feeling full and increase food consumption. associated RAMP1) (human, rat), BIBO 3304, BIIE 0246, Adipose tissue Cholecystokinin (CCK) I-cells duodenum CCK1 and CCK2 receptors GW 438014A, Neuropeptide Y Unfortunately, when people diet, the body tries to defend against weight loss. The satiety Cocaine and amphetamine- Hypothalamus The CART receptor has not (human, rat), Peptide YY (3-36) hormones (such as PYY, CCK, leptin and amylin) fall, while the orexigenic NPY and ghrelin regulated transcript (CART) been fully identified Opioid Receptors increase. Metabolic rate also slows. This makes it progressively harder to lose weight and Liver Corticotrophin-releasing Hypothalamus CRHR1 and CRHR2 receptors (±)-U-50488, DAMGO, Naltrindole, hormone (CRH) (reduces or increases food maintain weight loss. nor-Binaltorphimine, SNC 80, intake depending on route of β-Funaltrexamine administration) Orexin Receptor Gastrin releasing peptide Enteric neurons and central BB2 receptor Ghrelin 11 15 nervous system [Ala ,D-Leu ]-Orexin B, EMPA, Gut Hormones Drug Therapies and Bariatric Surgery Orexin A (human, rat, mouse), Orexin B Stomach Glucagon α-cells of the pancreas Glucagon receptor (human), SB 334867, TCS OX2 29 Glucagon-like peptide 1 L-cells of the ileum GLP-1 receptor (also reduces Gut hormones can be used as a pharmacological therapy for obesity. Naturally-occurring Insulin, PP Secretin Receptors gut hormones have very short half-lives in the body, which limit their use. However, preference for sweet food) Pancreas Glucagon-like peptide 2 L-cells of the ileum GLP-2 receptor Secretin (human), Secretin (rat) long-lasting versions are being developed. Exendin-4 is a GLP-1 analog first discovered in Glucose-dependent K-cells of the jejunum GIP receptors Somatostatin Receptors the saliva of the Gila monster. It is resistant to the enzyme dipeptidyl peptidase IV, which insulinotropic peptide Cyclosomatostatin, CYN 154806, breaks down GLP-1, and therefore has a prolonged half-life. The synthetic version, Insulin β-cells of the pancreas Insulin receptor L-803,087, Octreotide, Seglitide, Somatostatin exenatide, is a common treatment for diabetes. Another long-acting GLP-1 analog, Leptin Adipose tissue Leptin receptor VIP Receptors liraglutide, is available as a treatment for both diabetes and obesity. Stabilized analogs α-melanocortin-stimulating Hypothalamus Melanocortin MC3 and MC4 hormone (α-MSH) receptors [D-p-Cl-Phe6,Leu17]-VIP, Bay 55-9837, of both PYY and PP have been developed and have entered clinical trials as treatments VIP (human, rat, mouse, rabbit, for obesity. There is increasing evidence for targeting obesity with combinations of gut Neuromedin B Hypothalamus and enteric BB1 receptor Small intestine neurons canine, porcine) hormones. Chronic injections of oxyntomodulin, which activates both GLP-1 and glucagon Neuromedin U (NMU) Central nervous system and NMU1 and NMU2 receptors receptors, reduce body weight in obese patients, and a number of oxyntomodulin analogs intestine are in development as a treatment for obesity. Additionally, several drugs targeting both Neurotensin Central nervous system and NTS1 and NTS receptors the GLP-1 and GIP pathways, and triple-agonists at the GLP-1, GIP and glucagon N cells of intestine receptors, are being developed. Opioid Peptides (met-enkephalin, Enteric neurons µ, κ and δ-opioid receptors CKK leu-enkephalin, β-endorphin PYY and dynorphin) Bariatric surgery is now recognized as the most effective, lasting treatment for obesity. 3–36 References: Oxyntomodulin L-cells of the ileum Co-agonist of glucagon and Lean and Malkova (2016) Int. Journal of Surgery has two effects. Firstly, the size of the GI tract, particularly the stomach, is made GLP-1 receptors Obesity (London) 40 622 Meek (2016) 77 28 smaller, so patients
Recommended publications
  • The 2021 List of Pharmacological Classes of Doping Agents and Doping Methods
    BGBl. III - Ausgegeben am 8. Jänner 2021 - Nr. 1 1 von 23 The 2021 list of pharmacological classes of doping agents and doping methods www.ris.bka.gv.at BGBl. III - Ausgegeben am 8. Jänner 2021 - Nr. 1 2 von 23 www.ris.bka.gv.at BGBl. III - Ausgegeben am 8. Jänner 2021 - Nr. 1 3 von 23 THE 2021 PROHIBITED LIST WORLD ANTI-DOPING CODE DATE OF ENTRY INTO FORCE 1 January 2021 Introduction The Prohibited List is a mandatory International Standard as part of the World Anti-Doping Program. The List is updated annually following an extensive consultation process facilitated by WADA. The effective date of the List is 1 January 2021. The official text of the Prohibited List shall be maintained by WADA and shall be published in English and French. In the event of any conflict between the English and French versions, the English version shall prevail. Below are some terms used in this List of Prohibited Substances and Prohibited Methods. Prohibited In-Competition Subject to a different period having been approved by WADA for a given sport, the In- Competition period shall in principle be the period commencing just before midnight (at 11:59 p.m.) on the day before a Competition in which the Athlete is scheduled to participate until the end of the Competition and the Sample collection process. Prohibited at all times This means that the substance or method is prohibited In- and Out-of-Competition as defined in the Code. Specified and non-Specified As per Article 4.2.2 of the World Anti-Doping Code, “for purposes of the application of Article 10, all Prohibited Substances shall be Specified Substances except as identified on the Prohibited List.
    [Show full text]
  • Neuromedin B Receptor Stimulation of Cav3.2 T-Type Ca 2+ Channels In
    Neuromedin B receptor stimulation of Cav3.2 T-type Ca2+ channels in primary sensory neurons mediates peripheral pain hypersensitivity Yuan Zhang 1, 3, #, *, Zhiyuan Qian 1, #, Dongsheng Jiang 2, #, Yufang Sun 3, 5, Shangshang Gao 3, Xinghong Jiang 3, 5, Hua Wang 4, *, Jin Tao 3, 5, * 1 Department of Geriatrics & Institute of Neuroscience, the Second Affiliated Hospital of Soochow University, Suzhou 215004, China; 2 Comprehensive Pneumology Center, Helmholtz Zentrum München, Munich 81377, Germany; 3 Department of Physiology and Neurobiology & Centre for Ion Channelopathy, Medical College of Soochow University, Suzhou 215123, China; 4 Department of Endocrinology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; 5 Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou 215123, China # These authors contribute to this work equally Running title: NmbR facilitates Cav3.2 channels Individual email addresses for all authors: Yuan Zhang ([email protected]), Zhiyuan Qian ([email protected]), Dongsheng Jiang ([email protected]), Yufang Sun ([email protected]), Shangshang Gao ([email protected]), Xinghong Jiang ([email protected]), Hua Wang ([email protected]), Jin Tao ([email protected]) *To whom correspondence should be addressed: Dr. Yuan Zhang, Department of Geriatrics & Institute of Neuroscience, the Second Affiliated Hospital of Soochow University, Suzhou 215004, China. E-mail: [email protected] Dr. Hua Wang, Department of Endocrinology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China. E-mail: [email protected] Dr. Jin Tao, Department of Physiology and Neurobiology & Centre for Ion Channelopathy, Medical College of Soochow University, Suzhou 215123, China. E-mail: [email protected] 1 Abstract Background: Neuromedin B (Nmb) is implicated in the regulation of nociception of sensory neurons.
    [Show full text]
  • Neuromedin U Directly Stimulates Growth of Cultured Rat Calvarial Osteoblast-Like Cells Acting Via the NMU Receptor 2 Isoform
    363-368 1/8/08 15:53 Page 363 INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 22: 363-368, 2008 363 Neuromedin U directly stimulates growth of cultured rat calvarial osteoblast-like cells acting via the NMU receptor 2 isoform MARCIN RUCINSKI, AGNIESZKA ZIOLKOWSKA, MARIANNA TYCZEWSKA, MARTA SZYSZKA and LUDWIK K. MALENDOWICZ Department of Histology and Embryology, Poznan University of Medical Sciences, 6 Swiecicki St., 60-781 Poznan, Poland Received April 4, 2008; Accepted June 2, 2008 DOI: 10.3892/ijmm_00000031 Abstract. The neuromedin U (NMU) system is composed of nervous system. Among others, peptides involved in regulation NMU, neuromedin S (NMS) and their receptors NMUR1 and of energy homeostasis belong to this group of compounds NMUR2. This system is involved in the regulation of energy (1-3), and the best recognised is leptin, an adipocyte-derived homeostasis, neuroendocrine functions, immune response, anorexigenic hormone, which plays a role in regulating bone circadian rhythm and spermatogenesis. The present study formation. Acting directly this pleiotropic cytokine exerts a aimed to investigate the possible role of the NMU system in stimulatory effect on bone formation. While acting through regulating functions of cultured rat calvarial osteoblast-like the central nervous system (CNS) leptin suppresses bone (ROB) cells. By using QPCR, high expression of NMU formation (4-10). Moreover, OB-Rb mRNA is expressed in mRNA was found in freshly isolated ROB cells while after 7, osteoblasts, and in vitro leptin enhances their proliferation 14, and 21 days of culture, expression of the studied gene and has no effect on osteocalcin and osteopontin production by was very low.
    [Show full text]
  • CURRICULUM VITAE Joseph S. Takahashi Howard Hughes Medical
    CURRICULUM VITAE Joseph S. Takahashi Howard Hughes Medical Institute Department of Neuroscience University of Texas Southwestern Medical Center 5323 Harry Hines Blvd., NA4.118 Dallas, Texas 75390-9111 (214) 648-1876, FAX (214) 648-1801 Email: [email protected] DATE OF BIRTH: December 16, 1951 NATIONALITY: U.S. Citizen by birth EDUCATION: 1981-1983 Pharmacology Research Associate Training Program, National Institute of General Medical Sciences, Laboratory of Clinical Sciences and Laboratory of Cell Biology, National Institutes of Health, Bethesda, MD 1979-1981 Ph.D., Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, Oregon, Dr. Michael Menaker, Advisor. Summer 1977 Hopkins Marine Station, Stanford University, Pacific Grove, California 1975-1979 Department of Zoology, University of Texas, Austin, Texas 1970-1974 B.A. in Biology, Swarthmore College, Swarthmore, Pennsylvania PROFESSIONAL EXPERIENCE: 2013-present Principal Investigator, Satellite, International Institute for Integrative Sleep Medicine, World Premier International Research Center Initiative, University of Tsukuba, Japan 2009-present Professor and Chair, Department of Neuroscience, UT Southwestern Medical Center 2009-present Loyd B. Sands Distinguished Chair in Neuroscience, UT Southwestern 2009-present Investigator, Howard Hughes Medical Institute, UT Southwestern 2009-present Professor Emeritus of Neurobiology and Physiology, and Walter and Mary Elizabeth Glass Professor Emeritus in the Life Sciences, Northwestern University
    [Show full text]
  • Fully Automated Dried Blood Spot Sample Preparation Enables the Detection of Lower Molecular Mass Peptide and Non-Peptide Doping Agents by Means of LC-HRMS
    Analytical and Bioanalytical Chemistry (2020) 412:3765–3777 https://doi.org/10.1007/s00216-020-02634-4 RESEARCH PAPER Fully automated dried blood spot sample preparation enables the detection of lower molecular mass peptide and non-peptide doping agents by means of LC-HRMS Tobias Lange1 & Andreas Thomas1 & Katja Walpurgis1 & Mario Thevis1,2 Received: 10 December 2019 /Revised: 26 March 2020 /Accepted: 31 March 2020 # The Author(s) 2020 Abstract The added value of dried blood spot (DBS) samples complementing the information obtained from commonly routine doping control matrices is continuously increasing in sports drug testing. In this project, a robotic-assisted non-destructive hematocrit measurement from dried blood spots by near-infrared spectroscopy followed by a fully automated sample preparation including strong cation exchange solid-phase extraction and evaporation enabled the detection of 46 lower molecular mass (< 2 kDa) peptide and non-peptide drugs and drug candidates by means of LC-HRMS. The target analytes included, amongst others, agonists of the gonadotropin-releasing hormone receptor, the ghrelin receptor, the human growth hormone receptor, and the antidiuretic hormone receptor. Furthermore, several glycine derivatives of growth hormone–releasing peptides (GHRPs), argu- ably designed to undermine current anti-doping testing approaches, were implemented to the presented detection method. The initial testing assay was validated according to the World Anti-Doping Agency guidelines with estimated LODs between 0.5 and 20 ng/mL. As a proof of concept, authentic post-administration specimens containing GHRP-2 and GHRP-6 were successfully analyzed. Furthermore, DBS obtained from a sampling device operating with microneedles for blood collection from the upper arm were analyzed and the matrix was cross-validated for selected parameters.
    [Show full text]
  • Bombesin Receptors in Distinct Tissue Compartments of Human Pancreatic Diseases Achim Fleischmann, Ursula Läderach, Helmut Friess, Markus W
    0023-6837/00/8012-1807$03.00/0 LABORATORY INVESTIGATION Vol. 80, No. 12, p. 1807, 2000 Copyright © 2000 by The United States and Canadian Academy of Pathology, Inc. Printed in U.S.A. Bombesin Receptors in Distinct Tissue Compartments of Human Pancreatic Diseases Achim Fleischmann, Ursula Läderach, Helmut Friess, Markus W. Buechler, and Jean Claude Reubi Division of Cell Biology and Experimental Cancer Research (AF, UL, JCR), Institute of Pathology, University of Berne, and Department of Visceral and Transplantation Surgery (HF, MWB), Inselspital, University of Berne, Berne, Switzerland SUMMARY: Overexpression of receptors for regulatory peptides in various human diseases is reportedly of clinical interest. Among these peptides, bombesin and gastrin-releasing peptide (GRP) have been shown to play a physiological and pathophysiological role in pancreatic tissues. Our aim has been to localize bombesin receptors in the human diseased pancreas to identify potential clinical applications of bombesin analogs in this tissue. The presence of bombesin receptor subtypes has been evaluated in specimens of human pancreatic tissues with chronic pancreatitis (n ϭ 23) and ductal pancreatic carcinoma (n ϭ 29) with in vitro receptor autoradiography on tissue sections incubated with 125I-[Tyr4]-bombesin or the universal ligand 125I-[D-Tyr6, ␤-Ala11, Phe13, Nle14]-bombesin(6–14) as radioligands and displaced by subtype-selective bombesin receptor agonists and antagonists. GRP receptors were identified in the pancreatic exocrine parenchyma in 17 of 20 cases with chronic pancreatitis. No measurable bombesin receptors were found in the tumor tissue of ductal pancreatic carcinomas, however, GRP receptors were detected in a subset of peritumoral small veins in 19 of 29 samples.
    [Show full text]
  • Interactions of the Growth Hormone Secretory Axis and the Central Melanocortin System
    INTERACTIONS OF THE GROWTH HORMONE SECRETORY AXIS AND THE CENTRAL MELANOCORTIN SYSTEM By AMANDA MARIE SHAW A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2004 Copyright 2004 by Amanda Marie Shaw This document is dedicated to my wonderful family. ACKNOWLEDGMENTS I would like to thank a number of people who greatly helped me through this long process of earning my Ph.D. First, I would like to thank my husband, Jason Shaw for his unwavering love and support during this time. I would also like to thank my parents, Robert and Rita Crews and my sister, Erin Crews for always standing by me and for their constant support throughout my life. I would also like to thank my extended family including my grandmother, aunts, uncles, in-laws, and cousins as well as friends who have always been tremendously supportive of me. I couldn’t have made it through this process without the support of all of these people. I would also like to thank my advisor, Dr. William Millard, for his guidance and understanding in helping me reach my goal. I truly value the independence I was allowed while working in his lab, and I appreciate the fact that he always knew when I needed help getting through the rough spots. I would also like to thank the other members of my supervisory committee: Dr. Joanna Peris, Dr. Maureen Keller-Wood, Dr. Michael Katovich, Dr. Steve Borst, and Dr. Ed Meyer for their valuable advice and for allowing me to use their laboratories and equipment as needed.
    [Show full text]
  • ( 12 ) United States Patent
    US010317418B2 (12 ) United States Patent ( 10 ) Patent No. : US 10 ,317 ,418 B2 Goosens (45 ) Date of Patent: * Jun . 11 , 2019 (54 ) USE OF GHRELIN OR FUNCTIONAL 7 , 479 ,271 B2 1 / 2009 Marquis et al . GHRELIN RECEPTOR AGONISTS TO 7 ,632 , 809 B2 12 / 2009 Chen 7 ,666 , 833 B2 2 /2010 Ghigo et al. PREVENT AND TREAT STRESS -SENSITIVE 7 , 901 ,679 B2 3 / 2011 Marquis et al . PSYCHIATRIC ILLNESS 8 ,013 , 015 B2 9 / 2011 Harran et al . 8 ,293 , 709 B2 10 /2012 Ross et al . (71 ) Applicant: Massachusetts Institute of 9 ,724 , 396 B2 * 8 / 2017 Goosens A61K 38 /27 9 , 821 ,042 B2 * 11 /2017 Goosens .. A61K 39/ 0005 Technology , Cambridge , MA (US ) 10 , 039 ,813 B2 8 / 2018 Goosens 2002/ 0187938 A1 12 / 2002 Deghenghi (72 ) Inventor : Ki Ann Goosens, Cambridge , MA (US ) 2003 / 0032636 Al 2 /2003 Cremers et al. 2004 / 0033948 Al 2 / 2004 Chen ( 73 ) Assignee : Massachusetts Institute of 2005 / 0070712 A1 3 /2005 Kosogof et al. Technology , Cambridge , MA (US ) 2005 / 0148515 Al 7/ 2005 Dong 2005 / 0187237 A1 8 / 2005 Distefano et al. 2005 /0191317 A1 9 / 2005 Bachmann et al. ( * ) Notice : Subject to any disclaimer , the term of this 2005 /0201938 A1 9 /2005 Bryant et al. patent is extended or adjusted under 35 2005 /0257279 AL 11 / 2005 Qian et al. U . S . C . 154 ( b ) by 0 days. 2006 / 0025344 Al 2 /2006 Lange et al. 2006 / 0025566 A 2 /2006 Hoveyda et al. This patent is subject to a terminal dis 2006 / 0293370 AL 12 / 2006 Saunders et al .
    [Show full text]
  • The Melanocortin-4 Receptor As Target for Obesity Treatment: a Systematic Review of Emerging Pharmacological Therapeutic Options
    International Journal of Obesity (2014) 38, 163–169 & 2014 Macmillan Publishers Limited All rights reserved 0307-0565/14 www.nature.com/ijo REVIEW The melanocortin-4 receptor as target for obesity treatment: a systematic review of emerging pharmacological therapeutic options L Fani1,3, S Bak1,3, P Delhanty2, EFC van Rossum2 and ELT van den Akker1 Obesity is one of the greatest public health challenges of the 21st century. Obesity is currently responsible for B0.7–2.8% of a country’s health costs worldwide. Treatment is often not effective because weight regulation is complex. Appetite and energy control are regulated in the brain. Melanocortin-4 receptor (MC4R) has a central role in this regulation. MC4R defects lead to a severe clinical phenotype with lack of satiety and early-onset severe obesity. Preclinical research has been carried out to understand the mechanism of MC4R regulation and possible effectors. The objective of this study is to systematically review the literature for emerging pharmacological obesity treatment options. A systematic literature search was performed in PubMed and Embase for articles published until June 2012. The search resulted in 664 papers matching the search terms, of which 15 papers remained after elimination, based on the specific inclusion and exclusion criteria. In these 15 papers, different MC4R agonists were studied in vivo in animal and human studies. Almost all studies are in the preclinical phase. There are currently no effective clinical treatments for MC4R-deficient obese patients, although MC4R agonists are being developed and are entering phase I and II trials. International Journal of Obesity (2014) 38, 163–169; doi:10.1038/ijo.2013.80; published online 18 June 2013 Keywords: MC4R; treatment; pharmacological; drug INTRODUCTION appetite by expressing anorexigenic polypeptides such as Controlling the global epidemic of obesity is one of today’s pro-opiomelanocortin and cocaine- and amphetamine-regulated most important public health challenges.
    [Show full text]
  • Different Distribution of Neuromedin S and Its Mrna in the Rat Brain: NMS Peptide Is Present Not Only in the Hypothalamus As the Mrna, but Also in the Brainstem
    ORIGINAL RESEARCH ARTICLE published: 03 December 2012 doi: 10.3389/fendo.2012.00152 Different distribution of neuromedin S and its mRNA in the rat brain: NMS peptide is present not only in the hypothalamus as the mRNA, but also in the brainstem Miwa Mori 1†, Kenji Mori 1†,Takanori Ida2,Takahiro Sato3, Masayasu Kojima3, Mikiya Miyazato1* and Kenji Kangawa1 1 Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan 2 Interdisciplinary Research Organization, University of Miyazaki, Miyazaki, Japan 3 Molecular Genetics, Institute of Life Sciences, Kurume University, Fukuoka, Japan Edited by: Neuromedin S (NMS) is a neuropeptide identified as another endogenous ligand for two Hubert Vaudry, University of Rouen, orphan G protein-coupled receptors, FM-3/GPR66 and FM-4/TGR-1, which have also been France identified as types 1 and 2 receptors for neuromedin U structurally related to NMS. Although Reviewed by: expression of NMS mRNA is found mainly in the brain, spleen, and testis, the distribution of Etienne Challet, Centre National de la Recherche Scientifique, France its peptide has not yet been investigated. Using a newly prepared antiserum, we developed Manuel Tena-Sempere, University of a highly sensitive radioimmunoassay for rat NMS. NMS peptide was clearly detected in the Cordoba, Spain rat brain at a concentration of 68.3 ± 3.4 fmol/g wet weight, but it was hardly detected in the *Correspondence: spleen and testis. A high content of NMS peptide was found in the hypothalamus, midbrain, Mikiya Miyazato, Department of and pons–medulla oblongata, whereas abundant expression of NMS mRNA was detected Biochemistry, National Cerebral and Cardiovascular Center Research only in the hypothalamus.
    [Show full text]
  • The Role of Melanocortin-3 and -4 Receptor in Regulating Appetite, Energy Homeostasis and Neuroendocrine Function in the Pig
    39 The role of melanocortin-3 and -4 receptor in regulating appetite, energy homeostasis and neuroendocrine function in the pig C R Barb, A S Robertson1, J B Barrett, R R Kraeling and K L Houseknecht1 USDA-ARS, Russell Research Center, PO Box 5677, Athens, Georgia 30604, USA 1Pfizer Global Research and Development, Pfizer, Inc., Groton, Connecticut 06340, USA (Requests for offprints should be addressed to C R Barb; Email: [email protected]) Abstract A recently discovered class of receptors, melanocortin-3 of NDP-MSH, which exhibited both a stimulatory and an and -4 receptor (MC3/4-R), are located within the brain inhibitory effect on GH secretion in fasted animals. and modulate feed intake in rodents. Stimulation of the Treatment with agouti-related peptide, a natural brain receptor (agonist) inhibits feed intake whereas blockade hormone that blocks the MC3/4R, failed to stimulate (antagonist) of the receptor increases intake. Our knowl- feed intake. These results do not support the idea that edge of factors regulating voluntary feed intake in humans endogenous melanocortin pays a critical role in regulating and domestic animals is very limited. i.c.v. administration feed intake and pituitary hormone secretion in the pig. of an MC3/4-R agonist, NDP-MSH, suppressed SHU9119 blocked the NDP-MSH-induced increase in (P,0·05) feed intake compared with controls at 12, 24, 48 cAMP in HEK293 cells expressing the porcine MC4-R and 72 h after treatment in growing pigs. Fed pigs were sequence without the missense mutation. The EC50 and more responsive to the MC3/4-R agonist then fasted IC50 values were similar to the human MC4-R, confirm- animals.
    [Show full text]
  • Neuropeptides Controlling Energy Balance: Orexins and Neuromedins
    Neuropeptides Controlling Energy Balance: Orexins and Neuromedins Joshua P. Nixon, Catherine M. Kotz, Colleen M. Novak, Charles J. Billington, and Jennifer A. Teske Contents 1 Brain Orexins and Energy Balance ....................................................... 79 1.1 Orexin............................................................................... 79 2 Orexin and Feeding ....................................................................... 80 3 Orexin and Arousal ....................................................................... 83 J.P. Nixon • J.A. Teske Veterans Affairs Medical Center, Research Service (151), Minneapolis, MN, USA Department of Food Science and Nutrition, University of Minnesota, 1334 Eckles Avenue, St. Paul, MN 55108, USA Minnesota Obesity Center, University of Minnesota, 1334 Eckles Avenue, St. Paul, MN 55108, USA C.M. Kotz (*) Veterans Affairs Medical Center, GRECC (11 G), Minneapolis, MN, USA Veterans Affairs Medical Center, Research Service (151), Minneapolis, MN, USA Department of Food Science and Nutrition, University of Minnesota, 1334 Eckles Avenue, St. Paul, MN 55108, USA Minnesota Obesity Center, University of Minnesota, 1334 Eckles Avenue, St. Paul, MN 55108, USA e-mail: [email protected] C.M. Novak Department of Biological Sciences, Kent State University, Kent, OH, USA C.J. Billington Veterans Affairs Medical Center, Research Service (151), Minneapolis, MN, USA Veterans Affairs Medical Center, Endocrine Unit (111 G), Minneapolis, MN, USA Department of Food Science and Nutrition, University of Minnesota, 1334 Eckles Avenue, St. Paul, MN 55108, USA Minnesota Obesity Center, University of Minnesota, 1334 Eckles Avenue, St. Paul, MN 55108, USA H.-G. Joost (ed.), Appetite Control, Handbook of Experimental Pharmacology 209, 77 DOI 10.1007/978-3-642-24716-3_4, # Springer-Verlag Berlin Heidelberg 2012 78 J.P. Nixon et al. 4 Orexin Actions on Endocrine and Autonomic Systems ................................. 84 5 Orexin, Physical Activity, and Energy Expenditure ....................................
    [Show full text]