Activation of Bombesin Receptor Subtype-3 Influences Activity of Orexin Neurons by Both Direct and Indirect Pathways

Total Page:16

File Type:pdf, Size:1020Kb

Activation of Bombesin Receptor Subtype-3 Influences Activity of Orexin Neurons by Both Direct and Indirect Pathways J Mol Neurosci (2010) 42:106–111 DOI 10.1007/s12031-010-9382-5 Activation of Bombesin Receptor Subtype-3 Influences Activity of Orexin Neurons by Both Direct and Indirect Pathways Naoki Furutani & Mari Hondo & Natsuko Tsujino & Takeshi Sakurai Received: 31 March 2010 /Accepted: 20 April 2010 /Published online: 14 May 2010 # Springer Science+Business Media, LLC 2010 Abstract The neuropeptides orexin A and orexin B (also BRS3 might be an important pathway for regulation of known as hypocretin 1 and hypocretin 2), produced in feeding and sleep/wake states. This pathway might serve as lateral hypothalamic neurons, are critical regulators of a novel target for the treatment of obesity. feeding behavior, the reward system, and sleep/wake states. Orexin-producing neurons (orexin neurons) are regulated Keywords Orexin . BRS3 . Patch clamp . Calcium by various factors involved in regulation of energy imaging . Food intake . Sleep homeostasis and sleep/wakefulness states. Bombesin recep- tor subtype 3 (BRS3) is an orphan receptor that might be implicated in energy homeostasis and is highly expressed in Introduction the hypothalamus. However, the neural pathway by which BRS3 regulates energy homeostasis is largely unknown. The neuropeptides orexin A and orexin B were identified as We examined whether BRS3 is involved in the regulation endogenous ligands for two orphan G-protein-coupled of orexin neurons. Using a calcium imaging method, we receptors (GPCRs) (Sakurai et al. 1998). Orexin-producing found that a selective BRS3 agonist [Ac-Phe-Trp-Ala-His- neurons (orexin neurons) are localized exclusively in the (τBzl)-Nip-Gly-Arg-NH2] increased the intracellular calci- lateral hypothalamic area (LHA), which is known as the um concentration of orexin neurons. However, intracellular feeding center. Various evidence has suggested that this recordings from slice preparations revealed that the BRS3 neuropeptide is involved in the regulation of feeding agonist hyperpolarized orexin neurons. The BRS3 agonist behavior (Sakurai et al. 1998; Edwards et al. 1999; Haynes depolarized orexin neuron in the presence of tetrodotoxin. et al. 2000; Haynes et al. 2002). Subsequently, the finding Moreover, in the presence of GABA receptor blockers, that orexin deficiency causes narcolepsy in humans and picrotoxin and CGP55845, the BRS3 agonist induced animals suggested that these hypothalamic neuropeptides depolarization and increased firing frequency. Additionally, also play a critical role in regulating sleep and wakefulness double-label in situ hybridization study revealed that Brs3 (Chemelli et al. 1999; Lin et al. 1999; Peyron et al. 2000; mRNA was expressed in almost all orexin neurons and Thannickal et al. 2000; Hara et al. 2001). many cells around these neurons. These findings suggest Recent studies of the efferent and afferent systems of that the BRS3 agonist indirectly inhibited orexin neurons orexin-producing neurons, as well as phenotypic character- through GABAergic input and directly activated orexin ization of mice with genetic alterations in the orexin system, neurons. Inhibition of activity of orexin neurons through have suggested further roles of orexin in the coordination of emotion, energy homeostasis, reward, drug addiction, and This manuscript is related to the Yakushima 2009 symposium arousal. Orexin neurons receive abundant input from the N. Furutani : M. Hondo : N. Tsujino : T. Sakurai (*) limbic system, preoptic sleep-promoting neurons, and hypo- Department of Molecular Neuroscience and Integrative thalamic neurons implicated in energy homeostasis. Orexin Physiology, Faculty of Medicine, neurons are also regulated by peripheral metabolic cues, Kanazawa University, including ghrelin, leptin, and glucose, suggesting that orexin 13-1 Takaramachi, Kanazawa-shi, Ishikawa 920-8640, Japan neurons might provide a link between energy homeostasis and e-mail: [email protected] sleep/wake states (Yamanaka et al. 2003b). J Mol Neurosci (2010) 42:106–111 107 Bombesin receptor subtype 3 (BRS3) is a member of the Animals bombesin receptor subfamily of GPCRs, which also includes the neuromedin B- and gastrin-releasing peptide receptors All experimental procedures involving animals were ap- (NMBR and GRPR) (Gorbulev et al. 1992). BRS3 couples to proved by the Kanazawa University Animal Care and Use endogenous Gq family proteins and increases intracellular Committee and were in accordance with NIH guidelines. calcium concentration. BRS3 has a unique pharmacological All efforts were made to minimize animal suffering and profile and does not bind with high affinity with any known discomfort and to reduce the number of animals used. bombesin-related peptides. Although a number of molecules Genetically modified mice used in this study were Orexin/ that can activate human BRS3 have been developed (Mantey YC2.1 mice (Tsujino et al. 2005) and Orexin/EGFP mice et al. 1997; Liu et al. 2002; Weber et al. 2003; Boyle et al. (Yamanaka et al. 2003a). 2005;Gonzalezetal.2008; Zhang et al. 2009), its natural ligands are still unknown (Jensen et al. 2008). In Situ Hybridization BRS3 is primarily expressed in the CNS and is present in the highest amounts in the hypothalamic area where orexin Double in situ hybridization was performed according to neurons are localized (Ohki-Hamazaki et al. 1997a; Yamada procedures previously described (Mieda et al. 2006). et al. 1999; Liu et al. 2002; Jennings et al. 2003; Sano et al. Digoxigenin (DIG)-labeled riboprobes for mBrs3 were 2004). Although the normal physiological function of BRS3 synthesized from a 1196-bp fragment of murine Brs3 is largely unknown, mice lacking the BRS3 gene develop cDNA (nucleotides −172 to +1367 from the initiation codon) late onset obesity, accompanied by a reduced metabolic rate containing 1196 bp of the whole coding region cloned into the and increased food intake (Ohki-Hamazaki et al. 1997b). In pCRII vector (Invitrogen). Fluorescein (FITC)-labeled ribop- good agreement with the Brs3−/− mouse study, a BRS3 robes for prepro-Orexin were synthesized by in vitro agonist, Bag-1, reduced food intake and increased metabolic transcription. pBluescript II SK (+) containing a 0.5-kb rate (Guan et al. 2010). These studies suggested that BRS3 fragment encoding Gln-33–Val-130 of prepro-Orexin was might be an important regulator of feeding behavior and used as a template for in vitro transcription (Sakurai et al. energy homeostasis. A recent study showed that the 1998). The DIG- and FITC-labeled probes were detected by anorectic effects of the BRS3 agonist remained intact in means of anti-DIG (1/2000) and anti-FITC (1/1000) anti- neuropeptide Y−/−, agouti-related peptide−/−, melanocortin bodies conjugated with alkaline phosphatase (Roche Diag- 4receptor−/−, cannabinoid receptor 1−/−,andleptin nostics, Basel, Switzerland). Alkaline phosphatase activity receptordb/db mice (Guan et al. 2010). These results suggest was detected with NBT/BCIP and INT/BCIP (Roche that the effect of the BRS3 agonist might be mediated Diagnostics). through other feeding mechanisms. However, the neural pathways of feeding behavior mediated by BRS3 are largely Brain Slice Preparation undefined. The orexin pathway is one of the possible pathways by which the BRS3 agonist evokes its effects, Orexin/YC2.1 mice (3–8 weeks old) and Orexin/EGFP mice because orexin neurons are regulated by several factors (3–6 weeks old) were anesthetized with forane (Abbott, involved in energy metabolism, and expression of BRS3 Osaka, Japan). The mice were decapitated under deep were found in the LHA. To investigate this possibility, we anesthesia. Brains were isolated in ice-cold cutting solution evaluated the effect of a BRS3 agonist on orexin neurons. In consisting of (in millimolar): 280 sucrose, 2 KCl, 10 HEPES, this study, we found that a BRS3 agonist activated orexin 0.5 CaCl2,10MgCl2, and 10 glucose, pH 7.4, bubbled with neurons directly, while it also inhibited these neurons 100% O2. Brains were cut coronally into 300-μmsliceswith through activation of local GABAergic interneurons. a vibratome (VTA-1000S, Leica, Germany). Slices contain- ing the LHA were transferred for 1 h to an incubation chamber at room temperature filled with physiological Materials and Methods solution containing (in millimolar): 125 NaCl, 2.5 KCl, 1.25 NaH2PO4, 2.0 CaCl2,1.0MgSO4,26NaHCO3,and11 Drugs glucose, pH 7.4, bubbled with 95% O2/5% CO2. The BRS3 agonist, neuromedin B (Peptide Institute, Osaka, Calcium Imaging of Orexin Neurons Japan), tetrodotoxin (TTX) (Wako, Osaka, Japan), picro- toxin (Sigma, St. Louis, MO), and CGP55845 (Wako) were Optical recordings were performed on a fluorescence dissolved in extracellular solution. We also used a synthe- microscope (BX51WI, Olympus, Tokyo, Japan) equipped sized a selective BRS3 agonist [Ac-Phe-Trp-Ala-His with a cooled charge-coupled device (CCD) camera (Cool- (τBzl)-Nip-Gly-Arg-NH2] (Boyle et al. 2005). SNAP HQ2, Roper Scientific, Tucson, AZ) controlled by 108 J Mol Neurosci (2010) 42:106–111 MetaFluor 5.0.7 software (Universal Imaging, West Chester, slice. A tight seal of 0.5–1.0 GΩ was made by applying PA). YC2.1 was excited through a 440DF20 filter, and its negative pressure. The membrane patch was then fluorescent image was subjected to dual emission ratio ruptured by suction. The series resistance during record- imaging through two emission filters (480DF30 for ECFP, ing was 10–25 MΩ and was compensated. The reference 535DF26 for EYFP) controlled by a filter changer (ProscanII, electrode was an Ag–AgCl pellet
Recommended publications
  • Neuromedin B Receptor Stimulation of Cav3.2 T-Type Ca 2+ Channels In
    Neuromedin B receptor stimulation of Cav3.2 T-type Ca2+ channels in primary sensory neurons mediates peripheral pain hypersensitivity Yuan Zhang 1, 3, #, *, Zhiyuan Qian 1, #, Dongsheng Jiang 2, #, Yufang Sun 3, 5, Shangshang Gao 3, Xinghong Jiang 3, 5, Hua Wang 4, *, Jin Tao 3, 5, * 1 Department of Geriatrics & Institute of Neuroscience, the Second Affiliated Hospital of Soochow University, Suzhou 215004, China; 2 Comprehensive Pneumology Center, Helmholtz Zentrum München, Munich 81377, Germany; 3 Department of Physiology and Neurobiology & Centre for Ion Channelopathy, Medical College of Soochow University, Suzhou 215123, China; 4 Department of Endocrinology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; 5 Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou 215123, China # These authors contribute to this work equally Running title: NmbR facilitates Cav3.2 channels Individual email addresses for all authors: Yuan Zhang ([email protected]), Zhiyuan Qian ([email protected]), Dongsheng Jiang ([email protected]), Yufang Sun ([email protected]), Shangshang Gao ([email protected]), Xinghong Jiang ([email protected]), Hua Wang ([email protected]), Jin Tao ([email protected]) *To whom correspondence should be addressed: Dr. Yuan Zhang, Department of Geriatrics & Institute of Neuroscience, the Second Affiliated Hospital of Soochow University, Suzhou 215004, China. E-mail: [email protected] Dr. Hua Wang, Department of Endocrinology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China. E-mail: [email protected] Dr. Jin Tao, Department of Physiology and Neurobiology & Centre for Ion Channelopathy, Medical College of Soochow University, Suzhou 215123, China. E-mail: [email protected] 1 Abstract Background: Neuromedin B (Nmb) is implicated in the regulation of nociception of sensory neurons.
    [Show full text]
  • Bombesin Receptors in Distinct Tissue Compartments of Human Pancreatic Diseases Achim Fleischmann, Ursula Läderach, Helmut Friess, Markus W
    0023-6837/00/8012-1807$03.00/0 LABORATORY INVESTIGATION Vol. 80, No. 12, p. 1807, 2000 Copyright © 2000 by The United States and Canadian Academy of Pathology, Inc. Printed in U.S.A. Bombesin Receptors in Distinct Tissue Compartments of Human Pancreatic Diseases Achim Fleischmann, Ursula Läderach, Helmut Friess, Markus W. Buechler, and Jean Claude Reubi Division of Cell Biology and Experimental Cancer Research (AF, UL, JCR), Institute of Pathology, University of Berne, and Department of Visceral and Transplantation Surgery (HF, MWB), Inselspital, University of Berne, Berne, Switzerland SUMMARY: Overexpression of receptors for regulatory peptides in various human diseases is reportedly of clinical interest. Among these peptides, bombesin and gastrin-releasing peptide (GRP) have been shown to play a physiological and pathophysiological role in pancreatic tissues. Our aim has been to localize bombesin receptors in the human diseased pancreas to identify potential clinical applications of bombesin analogs in this tissue. The presence of bombesin receptor subtypes has been evaluated in specimens of human pancreatic tissues with chronic pancreatitis (n ϭ 23) and ductal pancreatic carcinoma (n ϭ 29) with in vitro receptor autoradiography on tissue sections incubated with 125I-[Tyr4]-bombesin or the universal ligand 125I-[D-Tyr6, ␤-Ala11, Phe13, Nle14]-bombesin(6–14) as radioligands and displaced by subtype-selective bombesin receptor agonists and antagonists. GRP receptors were identified in the pancreatic exocrine parenchyma in 17 of 20 cases with chronic pancreatitis. No measurable bombesin receptors were found in the tumor tissue of ductal pancreatic carcinomas, however, GRP receptors were detected in a subset of peritumoral small veins in 19 of 29 samples.
    [Show full text]
  • Neuromedins U and S Involvement in the Regulation of the Hypothalamo–Pituitary–Adrenal Axis
    REVIEW ARTICLE published: 05 December 2012 doi: 10.3389/fendo.2012.00156 Neuromedins U and S involvement in the regulation of the hypothalamo–pituitary–adrenal axis Ludwik K. Malendowicz*, Agnieszka Ziolkowska and Marcin Rucinski Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland Edited by: We reviewed neuromedin U (NMU) and neuromedin S (NMS) involvement in the regulation Hubert Vaudry, University of Rouen, of the hypothalamo–pituitary–adrenal (HPA) axis function. NMU and NMS are structurally France related and highly conserved neuropeptides. They exert biological effects via two GPCR Reviewed by: receptors designated as NMUR1 and NMUR2 which show differential expression. NMUR1 James A. Carr, Texas Tech University, USA is expressed predominantly at the periphery, while NMUR2 in the central nervous system. Gábor B. Makara, Hungarian Elements of the NMU/NMS and their receptors network are also expressed in the HPA Academy of Sciences, Hungary axis and progress in molecular biology techniques provided new information on their *Correspondence: actions within this system. Several lines of evidence suggest that within the HPA axis Ludwik K. Malendowicz, NMU and NMS act at both hypothalamic and adrenal levels. Moreover, new data suggest Department of Histology and Embryology, Poznan University of that NMU and NMS are involved in central and peripheral control of the stress response. Medical Sciences, 6 Swie¸cickiSt., 60-781 Poznan, Poland. Keywords: neuromedin U, neuromedin S, hypothalamus, pituitary, adrenal e-mail: [email protected] INTRODUCTION Identification of specific NMU receptors (NMUR1 and In search for new biologically active peptides, the group of NMUR2) and its anorexigenic action have enhanced interest in Minamino, Kangawa, and Matsuo in the 1980s isolated numerous physiological role of NMU and NMS (Howard et al., 2000; Ida small neuropeptides from porcine spinal cord.
    [Show full text]
  • The Role of Neuromedin B in the Regulation of Rat Pituitary-Adrenocortical Function
    Histol Histopathol (1 996) 1 1 : 895-897 Histology and Histopathology The role of neuromedin B in the regulation of rat pituitary-adrenocortical function L.K. ~alendowicz~,C. Macchi2, G.G. Nussdorfer2and M. Nowakl 'Department of Histology and Embryology, School of Medicine, Poznan, Poland and 2Department of Anatomy, University of Padua, Padua, ltaly Summary. The effects of a 7-day administration of NMB-receptor antagonist (NMB-A) (Kroog et al., neuromedin B (NMB) andlor (~~r~,D-phe12)-bornbesin, 1995). an NMB-receptor antagonist (NMB-A) on the function of pituitary-adrenocortical axis were investigated in Materials and methods the rat. NMB raised the plasma concentration of aldosterone, without affecting that of ACTH or Experimental procedure corticosterone; the simultaneous administration of NMB-A prevented the effect of NMB. Neither NMB nor Adult female Wistar rats (200k20 g body weight) NMB-A treatments induced significant changes in were kept under a 12:12 h light-dark cycle (illumination adenohypophysis and adrenal weights, nor in the average onset at 8:00 a.m.) at 23 T,and maintained on a volume of zona glomerulosa and zona reticularis cells. standard diet and tap water ad libitum. The rats were NMB-A administration lowered the volume of zona divided into equal groups (n=8), which were fasciculata cells, an effect annulled by the concomitant subcutaneously injected daily with NMB, NMB-A or NMB administration. Our results suggest that NMB NMB plus NMB-A (Bachem, Bubendorf, Switzerland) specifically stimulates aldosterone secretion, and that dissolved in 0.2 m1 0.9% NaC1, for 7 consecutive days. endogenous NMB or NMB-like peptides exert a tonic The dose was 1 nmo1/100 g body weight.
    [Show full text]
  • A Peptide-Hormone-Inactivating Endopeptidase in Xenopus Laevis Skin Secretion
    Proc. Nati. Acad. Sci. USA Vol. 89, pp. 84-88, January 1992 Biochemistry A peptide-hormone-inactivating endopeptidase in Xenopus laevis skin secretion (metailoendopeptidase/neutral endopeptidase/thermolysin) KRISHNAMURTI DE MORAIS CARVALHO*, CARINE JOUDIOU, HAMADI BOUSSETTA, ANNE-MARIE LESENEY, AND PAUL COHEN Groupe de Neurobiochimie Cellulaire et Moldculaire de l'Universitd Pierre et Marie Curie, Unit6 de Recherche Associ6e 554 au Centre National de la Recherche Scientifique, % Boulevard Raspail, 75006 Paris, France Communicated by I. Robert Lehman, September 16, 1991 ABSTRACT An endopeptidase was isolated from Xenopus Indeed the Ser-Phe dipeptide, or a related motif such as laevis skin secretions. This enzyme, which has an apparent Phe-Phe, Ala-Phe, or His-Phe, is often present near the molecular mass of 100 kDa, performs a selective cleavage at the carboxyl terminus of substances from the bombesin and Xaa-Phe, Xaa-Leu, or Xaa-Ile bond (Xaa = Ser, Phe, Tyr, His, tachykinin families (1). Xaa-Phe, Xaa-Leu, or Xaa-Ile was or Gly) of a number of peptide hormones, including atrial also found frequently at a similar position in other peptide natriuretic factor, substance P, angiotensin H, bradykinin, hormone sequences of higher organisms, notably in atrial somatostatin, neuromedins B and C, and litorin. The peptidase natriuretic factor (ANF). exhibited optimal activity at pH 7.5 and aKm in the micromolar We have purified this enzyme 2029-fold and demonstrate range. No cleavage was produced in vasopressin, ocytocin, that it inactivates ANF by exclusive cleavage of the Ser25- minigastrin I, and [Leu5Jenkephalin, which include in their Phe26 bond and similarly inactivates a number of important sequence an Xaa-Phe, Xaa-Leu, or Xaa-Ile motif.
    [Show full text]
  • Interaction Between Substance P and TRH in the Control of Prolactin Release
    373 Interaction between substance P and TRH in the control of prolactin release B H Duvilanski, D Pisera, A Seilicovich, M del Carmen Díaz, M Lasaga, E Isovich and M O Velardez Centro de Investigaciones en Reproducción, Facultad de Medicina, Universidad de Buenos Aires, Argentina (Requests for offprints should be addressed to B H Duvilanski, Centro de Investigaciones en Reproducción, Facultad de Medicina, Piso 10, Universidad de Buenos Aires, Paraguay 2155 (1121) Buenos Aires, Argentina; Email: [email protected]) Abstract Substance P (SP) may participate as a paracrine and/or release. In order to study the interaction between TRH autocrine factor in the regulation of anterior pituitary and SP on prolactin release, anterior pituitaries were function. This project studied the effect of TRH on SP incubated with either TRH (107 M) or SP, or with both content and release from anterior pituitary and the role of peptides. SP (107 and 106 M) by itself stimulated SP in TRH-induced prolactin release. TRH (107 M), prolactin release. While 107 M SP did not modify the but not vasoactive intestinal polypeptide (VIP), increased TRH effect, 106 M SP reduced TRH-stimulated pro- immunoreactive-SP (ir-SP) content and release from male lactin release. SP (105 M) alone failed to stimulate rat anterior pituitary in vitro. An anti-prolactin serum also prolactin release and markedly decreased TRH-induced increased ir-SP release and content. In order to determine prolactin release. The present study shows that TRH whether intrapituitary SP participates in TRH-induced stimulates ir-SP release and increases ir-SP content in the prolactin release, anterior pituitaries were incubated with anterior pituitary.
    [Show full text]
  • Effects of Neuromedin B on Insulin and Glucagon Release from the Isolated Perfused Rat Pancreas
    Endocrinol.Japon.1989, 36(4), 587-594 Effects of Neuromedin B on Insulin and Glucagon Release from the Isolated Perfused Rat Pancreas KOICHI KAWAI, HIDEHITO MUKAI*, YUKINOBU CHIBA, HAJIME OHMORI, SEIJI SUZUKI, EISUKE MUNEKATA* AND KAMEJIRO YAMASHITA Division of Endocrinology and Metabolism, Institute of Clinical Medicine, Institute of Applied Biochemistry*, University of T sukuba, T sukuba, Ibaraki 305, Japan Abstract The effect of neuromedin B (NMB) on insulin and glucagon release was studied in isolated perfused rat pancreases. Infusion of NMB (10nM, 100nM and 1ƒÊM) did not affect the insulin release under the perfusate conditions of 5.5mM glucose plus 10mM arginine and 11mM glucose plus 10mM arginine, although 10nM NMB tended to slightly suppress it under the perfusate condition of 5.5mM glucose alone. The degree of stimulation of insulin release provoked by the addition of 5.5mM glucose to the perfusate was not affected by the presence of 10nM NMB. The glucagon release was slightly stimulated by the infusion of 100nM and 1ƒÊM,NMB but not by 10nM NMB under the perfusate condition of 5.5mM glucose plus 10mM arginine. The effect of C-terminal decapeptide of gastrin releasing peptide (GRP-10) was also examined and similar results were obtained; 10nM and 100nM GRP-10 did not aifect insulin release and 100nM GRP-10 stimulated glucagon release under the perfusate condition of 5.5mM glucose plus 10mM arginine. The present results concerning glucagon release are consistent with the previous results obtained with isolated perfused canine and porcine pancreas. However, the results regarding insulin release are not. Species differences in insulin release are also evident with other neuropeptides such as substance P and the mechanism of such differences remains fo be clarified.
    [Show full text]
  • Blockade of the V1b Receptor Reduces ACTH, but Not Corticosterone Secretion Induced by Stress Without Affecting Basal Hypothalamic– Pituitary–Adrenal Axis Activity
    273 Blockade of the V1b receptor reduces ACTH, but not corticosterone secretion induced by stress without affecting basal hypothalamic– pituitary–adrenal axis activity Francesca Spiga, Louise R Harrison, Susan Wood, David M Knight, Cliona P MacSweeney1, Fiona Thomson2, Mark Craighead2 and Stafford L Lightman Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Dorothy Hodgkin Building, Whitson Street, BS1 3NY Bristol, UK 1Department of Pharmacology, Schering-Plough Corporation, Newhouse, Motherwell, ML15SH UK 2Department of Molecular Pharmacology, Schering-Plough Corporation, Newhouse, Motherwell, ML15SH UK (Correspondence should be addressed to F Spiga; Email: [email protected]) Abstract Vasopressin (AVP), produced in parvocellular neurons of the 2 ml/kg, s.c.). We found that blockade of the V1bR reduced hypothalamic paraventricular nucleus, regulates, together the increase in both ACTH and corticosterone secretion with CRH, pituitary ACTH secretion. The pituitary actions induced by AVP (100 ng, i.v.). The same treatment had no of AVP are mediated through the G protein receptor V1b effect either on basal ACTH and corticosterone levels or on (V1bjR). In man, hyperactivity of the hypothalamic– the ultradian or diurnal rhythms of corticosterone secretion. pituitary–adrenal axis has been associated with depression Acute administration of the V1bR antagonist reduced ACTH and other stress-related conditions. There are also clinical data secretion following both restraint and lipopolysaccharide, but suggesting a role for AVP in the dysfunctional HPA axis did not antagonise the ACTH response to noise. The same described in some depressed patients. In this study, we have treatment did not reduce corticosterone secretion in response investigated the effect of a recently synthesised selective to any of the three stressors used in this study.
    [Show full text]
  • Somatostatin Receptors As Targets for Nuclear Medicine Imaging and Radionuclide Treatment
    FOCUS ON MOLECULAR IMAGING Somatostatin Receptors as Targets for Nuclear Medicine Imaging and Radionuclide Treatment Helmut R. Maecke1 and Jean Claude Reubi2 1Department of Nuclear Medicine, University Hospital Freiburg, Freiburg, Germany; and 2Division of Cell Biology and Experimental Cancer Research, Institute of Pathology, University of Berne, Berne, Switzerland tumor retention. Clearance via the kidneys is preferable to clearance via the gastrointestinal tract. Radiolabeled peptides have been an important class of com- pounds in radiopharmaceutical sciences and nuclear medicine for more than 20 years. Despite strong research efforts, only DEVELOPMENT OF SOMATOSTATIN somatostatin-based radiopeptides have a real impact on pa- RECEPTOR–TARGETING RADIOPEPTIDES tient care, diagnostically and therapeutically. [111In-diethylene- The molecular basis for the development and clinical applica- 0 triaminepentaacetic acid ]octreotide is commercially available tion of somatostatin-based radiopeptide targeting is the high expres- for imaging. Imaging was highly improved by the introduction sion of somatostatin receptors on the plasma membrane of tumor 68 64 18 of PET radionuclides such as Ga, Cu, and F. Two peptides cells. In vitro receptor evaluation using receptor autoradiography are successfully used in targeted radionuclide therapy when or immunohistochemistry is mandatory before radioligands can be bound to DOTA and labeled with 90Y and 177Lu. developed for in vivo studies. The most reliable method is auto- Key Words: somatostatin receptors;
    [Show full text]
  • High Affinity Binding Sites for Gastrin Releasing Peptide on Human Gastric Cancer and MéNã©Trier'smucosa1
    (CANCER RESEARCH 53. 5(190-5092, November 1. 1993] Advances in Brief High Affinity Binding Sites for Gastrin Releasing Peptide on Human Gastric Cancer and Ménétrier'sMucosa1 Shaun R. Preston,2-3 Linda F. Woodhouse, Steven Jones-Blackett,4 Judy I. Wyatt, and John N. Primrose Academic Unit of Surgery ¡S.R. P., L. F. W., S. J-B., J. N. P.] and Department of Pathology ¡J.I. Vf.], St. James's university Hospital, Leeds, LS9 7TF, United Kingdom Abstract creas (reviewed in Ref. 7), and have been shown to promote chemi cally induced gastric cancer in rats (10). In addition, these peptides are The bombesin-like peptides gastrin releasing peptide (GRP) and neu- known to be important in the autocrine growth of a number of human romedin B are found in the submucosal and myenteric plexuses of the small cell lung cancer cell lines (11) and have been implicated in the human gastrointestinal tract. These peptides are potent mitogens to Swiss 3T3 fibroblasts and are important autocrine growth factors in human pathogenesis of other solid malignancies, for example colon cancer small cell lung cancer cells. We have recently described the presence of (12). Previous work in our laboratory demonstrated bombesin recep receptors for the bombesin-like peptide, GRP, on the human gastric can tors of the GRP-preferring subtype on a human gastric cancer cell line, cer cell line St42. In this study, we examined fresh resected gastric cancer St42 (13). In this study we have investigated human gastric cancer and uninvolved mucosa from 23 patients for the presence of binding sites tissue and gastric mucosa for the presence of high affinity binding to the bombesin-like peptides.
    [Show full text]
  • Effect of Neuromedin B on Gut Hormone Secretion in the Rat
    Biomedical Research 5 (3) 229-234, 1984 EFFECT OF NEUROMEDIN B ON GUT HORMONE SECRETION IN THE RAT - Mitsuyoshi NAMBA, Mohammad A. GHATEI, Thomas E. ADRIAN, Adolfo J. BACARESE-HAMILTON, Peter K. MULDERRY and Stephen R. BLOOM Department of Medicine, Royal Postgraduate Medical School, Hammersmith Hospital, DuCane Road, London W12 OHS, U.K. ABSTRACT Neuromedin B is a novel decapeptide which has recently been isolated from porcine spi- nal cord and shows striking sequence homology with bombesin-like peptides at the C-ter- minal region. The effect of synthetic neuromedin B on the secretion of gastrointestinal and pancreatic regulatory peptides has been compared with bombesin in the rat. Insulin, glucagon, enteroglucagon, gastrin, cholecystokinin (CCK) and bombesin were measured in plasma by radioimmunoassays. Neuromedin B (1.0 nmol) had significant stimulatory effects on insulin, enteroglucagon, gastrin and CCK release, similar in pattern but slightly less potent than those ofbombesin (1.0 nmol). Neuromedin B had no significant effect on plasma concentrations of glucagon and bombesin. These results suggest the possibility that neuromedin B could be one of the neural factors which play a regulatory role in the control of the endocrine pancreas and gastrointestinal tract. A variety of putative peptide neurotransmitter with bombesin-like peptides at the C-terminal have been identified by radioimmunoassay and region (Table 1). immunocytochemistry in the gut and pancreas. Although the effect of neuromedin B has not Of these peptides, bombesin-like peptides which hitherto been investigated, it is apparent from was originally isolated from amphibian skin (4), the sequence homology that this peptide may exhibits biological activity on several mamma- well exhibit bombesin-like actions.
    [Show full text]
  • Growing up POMC: Pro-Opiomelanocortin in the Developing Brain
    Growing Up POMC: Pro-opiomelanocortin in the Developing Brain Stephanie Louise Padilla Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy under the Executive Committee of the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2011 © 2011 Stephanie Louise Padilla All Rights Reserved ABSTRACT Growing Up POMC: Pro-opiomelanocortin in the Developing Brain Stephanie Louise Padilla Neurons in the arcuate nucleus of the hypothalamus (ARH) play a central role in the regulation of body weight and energy homeostasis. ARH neurons directly sense nutrient and hormonal signals of energy availability from the periphery and relay this information to secondary nuclei targets, where signals of energy status are integrated to regulate behaviors related to food intake and energy expenditure. Transduction of signals related to energy status by Pro-opiomelanocortin (POMC) and neuropeptide-Y/agouti-related protein (NPY/AgRP) neurons in the ARH exert opposing influences on secondary neurons in central circuits regulating energy balance. My thesis research focused on the developmental events regulating the differentiation and specification of cell fates in the ARH. My first project was designed to characterize the ontogeny of Pomc- and Npy-expressing neurons in the developing mediobasal hypothalamus (Chapter 2). These experiments led to the unexpected finding that during mid-gestation, Pomc is broadly expressed in the majority of newly-born ARH neurons, but is subsequently down-regulated during later stages of development as cells acquire a terminal cell identity. Moreover, these studies demonstrated that most immature Pomc-expressing progenitors subsequently differentiate into non-POMC neurons, including a subset of functionally distinct NPY/AgRP neurons.
    [Show full text]