Gerhard Herzberg (1904–99) to Have a Major Role in Identifying Hydrogen Both in Interstellar Space and in Patriarch of Modern Planetary and Stellar Atmospheres

Total Page:16

File Type:pdf, Size:1020Kb

Gerhard Herzberg (1904–99) to Have a Major Role in Identifying Hydrogen Both in Interstellar Space and in Patriarch of Modern Planetary and Stellar Atmospheres news and views Obituary spectrum of molecular hydrogen, destined Gerhard Herzberg (1904–99) to have a major role in identifying hydrogen both in interstellar space and in Patriarch of modern planetary and stellar atmospheres. In 1948 A he returned to Canada to join the National AD molecular spectroscopy Research Council laboratory (NRC) in Gerhard Herzberg, who died on 3 March, Ottawa, in which he served as director of was one of the world’s foremost molecular physics for 20 years. During his era, the spectroscopists. The myriad wavelengths NRC became the foremost laboratory for CH COUNCIL CAN of light emitted or absorbed by molecules molecular spectroscopy in the world, by offer a vast lode of knowledge about the virtue of his own fruitful work, and the arrangement of atoms within molecules, enterprising spirit and creative freedom he AL RESEAR TION the properties of the chemical bonds fostered in the research staff. A N linking atoms, and the electronic Herzberg was a mentor to legions of interactions governing those bonds. scientists by means of his definitive series Moreover, insight into how bonds can be of books on atomic and molecular made or broken in chemical reactions is spectroscopy, published in five volumes crucial for understanding phenomena in between 1936 and 1979. Extraordinary in physics and astrophysics, chemistry, scope, yet readable by the neophyte, his materials science, biology and medicine. books have been translated into several Developing the means to observe and languages. Researchers find them essential decipher molecular spectral patterns has guides, with their comprehensive tables of been a mighty task, in which Herzberg had At the invitation of J. E. Lennard-Jones, molecular parameters and abundant a leading role for 60 years. who was also working on molecular illustrations of characteristic spectra and Herzberg was born on Christmas day orbital theory, Herzberg continued his diagrams explaining theoretical concepts. in 1904 in Hamburg, Germany. When he studies of spectra at the University of Herzberg’s unpretentious, forthright was a young student, inspiring teachers Bristol, and diligently practised his manner, integrity and devotion to science encouraged his interest in science. English. He submitted his work on were greatly admired by colleagues and However, after the director of the molecular orbitals as a habilitation thesis students. His voice was a powerful Hamburg Observatory dissuaded him to Darmstadt and in 1930 was appointed baritone, enhanced by singing lessons from pursuing advanced study in Privatdozent there. This meant he did not with which he rewarded himself after astronomy, he entered the Technische receive a salary, but was able to earn a completing his first book. Also relished Hochschule in Darmstadt, where he modest income by supervising were his ready humour and storytelling. completed a doctorate in engineering laboratories and research students. He A revealing tale stemmed from a visit to physics in 1928. The period of his doctoral pursued research vigorously, and the Soviet Union in 1959. His books had work coincided with the advent of collaborated with Edward Teller in been reprinted for Soviet scientists, and at quantum mechanics, the essential working out selection rules for the his request the royalties were delivered: a theoretical foundation for molecular vibrational structure of electronic shoebox full of roubles that could only be spectroscopy. Herzberg liked to say “this transitions of polyatomic molecules. spent within the Soviet Union. Cheerfully, fortunate accident made it possible for me When deuterium was discovered by he applied a strategy akin to that he had to learn the subject while it was being Harold Urey in 1932, Herzberg recognized used when leaving Nazi Germany over 25 developed”. how this isotope of hydrogen might years before. With the roubles he At Göttingen, then one of the prime benefit studies of molecular structure. He purchased several round-the-world centres for quantum mechanics, Herzberg demonstrated this by synthesizing several aeroplane tickets, which he later worked both in the experimental institute deuterium-labelled compounds and exchanged for cash. headed by James Franck and the analysing the spectral shifts induced by Herzberg received many honours, theoretical institute led by Max Born. replacing hydrogen with deuterium. including the 1971 Nobel Prize in During that time, Herzberg made his first After Hitler came to power in 1933, Chemistry. Particularly cited were his measurements of electronic transitions in anyone with a Jewish wife was not allowed intrepid studies of free radicals, extremely polyatomic molecules. He also did to teach at a German university, and reactive chemical species that are transient important theoretical work. In particular, Herzberg looked for a position in another intermediates in many reaction processes. in collaboration with Walter Heitler, country. In 1935, the Herzbergs relocated In 1975 the NRC Herzberg Institute of Herzberg made use of a theorem, proven to the University of Saskatchewan in Astrophysics was created in his honour, by Eugene Wigner a few months before, to Saskatoon, Canada. This haven came about and he continued active research until the show that intensity variations seen in because of the efforts of a young physical age of 90. His legacy will long endure, and rotational lines of the spectrum of the chemist, J. W. T. Spinks, who had worked continue to grow, as methods he developed diatomic nitrogen molecule were in with Herzberg on deuterated molecules. or elucidated enable new generations of conflict with the prevailing view of nuclear Here Herzberg began some of his most scientists to read intriguing messages structure. This was a striking result, not seminal work, including experiments in encoded in molecular spectra. cleared up until three years later, when which he identified molecules in Dudley Herschbach James Chadwick discovered the neutron. interstellar space by replicating their Dudley Herschbach is in the Department of Herzberg also began work on molecular spectra in the laboratory. Chemistry and Chemical Biology, Harvard orbital theory as a systematic approach to In 1945 Herzberg went to the Yerkes University, 12 Oxford Street, Cambridge, describing the electronic configurations of Observatory of the University of Chicago, Massachusetts 02138, USA. molecules and their spectral transitions. where he discovered the quadrupole e-mail: [email protected] 670 © 1999 Macmillan Magazines Ltd NATURE | VOL 398 | 22 APRIL 1999 | www.nature.com.
Recommended publications
  • The Beckman Center for the History of Chemistry
    THE BECKMAN CENTER FOR THE HISTORY OF CHEMISTRY GERHARD HERZBERG Transcript of an Interview Conducted by M. Christine King at The National Research Council of Canada on 5 May 1986 This interview has been designated as Free Access. One may view, quote from, cite, or reproduce the oral history with the permission of CHF. Please note: Users citing this interview for purposes of publication are obliged under the terms of the Chemical Heritage Foundation Oral History Program to credit CHF using the format below: Gerhard Herzberg, interview by M. Christine King at The National Research Council of Canada, Ottawa, Canada, 5 May 1986 (Philadelphia: Chemical Heritage Foundation, Oral History Transcript # 0023). Chemical Heritage Foundation Oral History Program 315 Chestnut Street Philadelphia, Pennsylvania 19106 The Chemical Heritage Foundation (CHF) serves the community of the chemical and molecular sciences, and the wider public, by treasuring the past, educating the present, and inspiring the future. CHF maintains a world-class collection of materials that document the history and heritage of the chemical and molecular sciences, technologies, and industries; encourages research in CHF collections; and carries out a program of outreach and interpretation in order to advance an understanding of the role of the chemical and molecular sciences, technologies, and industries in shaping society. GERHARD HERZBERG 1904 Born in Hamburg, Germany on 25 December Education 1928 Dr. Ing., Darmstadt Technische Universität Professional Experience 1928-1929 Post-doctoral
    [Show full text]
  • The Manhattan Project and Its Legacy
    Transforming the Relationship between Science and Society: The Manhattan Project and Its Legacy Report on the workshop funded by the National Science Foundation held on February 14 and 15, 2013 in Washington, DC Table of Contents Executive Summary iii Introduction 1 The Workshop 2 Two Motifs 4 Core Session Discussions 6 Scientific Responsibility 6 The Culture of Secrecy and the National Security State 9 The Decision to Drop the Bomb 13 Aftermath 15 Next Steps 18 Conclusion 21 Appendix: Participant List and Biographies 22 Copyright © 2013 by the Atomic Heritage Foundation. All rights reserved. No part of this book, either text or illustration, may be reproduced or transmit- ted in any form by any means, electronic or mechanical, including photocopying, reporting, or by any information storage or retrieval system without written persmission from the publisher. Report prepared by Carla Borden. Design and layout by Alexandra Levy. Executive Summary The story of the Manhattan Project—the effort to develop and build the first atomic bomb—is epic, and it continues to unfold. The decision by the United States to use the bomb against Japan in August 1945 to end World War II is still being mythologized, argued, dissected, and researched. The moral responsibility of scientists, then and now, also has remained a live issue. Secrecy and security practices deemed necessary for the Manhattan Project have spread through the govern- ment, sometimes conflicting with notions of democracy. From the Manhattan Project, the scientific enterprise has grown enormously, to include research into the human genome, for example, and what became the Internet. Nuclear power plants provide needed electricity yet are controversial for many people.
    [Show full text]
  • New 78 Covers
    NATIONAL ACADEMY OF SCIENCES ROBERT SANDERSON MULLIKEN 1896–1986 A Biographical Memoir by R. STEPHEN BERRY Biographical Memoirs, VOLUME 78 PUBLISHED 2000 BY THE NATIONAL ACADEMY PRESS WASHINGTON, D.C. Photo credit: Photo by Harris & Ewing, Washington, D.C. ROBERT SANDERSON MULLIKEN June 7, 1896-October 31, 1986 BY R. STEPHEN BERRY OBERT S. MULLIKEN WAS a quiet, soft-spoken man, yet so R single-minded and determined in his devotion to under- standing molecules that he came to be called “Mr. Molecule.” If any single person’s ideas and teachings dominated the development of our understanding of molecular structure and spectra, it surely was Robert Mulliken. From the begin- ning of his career as an independent scientist in the mid- 1920s until he published his last scientific papers in the early 1980s, he guided an entire field through his penetrat- ing solutions of outstanding puzzles, his identification (or discovery) and analysis of the new major problems ripe for study, and his creation of a school—the Laboratory of Molecular Structure and Spectroscopy or LMSS at the University of Chicago, during its existence the most impor- tant center in the world for the study of molecules. Robert’s background led him naturally into academic sci- ence. He was born in Newburyport, Massachusetts, in a house built by his great-grandfather in about 1798. His father, Samuel Parsons Mulliken, was a professor of chemistry at MIT, which made him a daily commuter between Newburyport and Boston. Samuel Mulliken and his child- hood friend and later MIT colleague Arthur A. Noyes were 3 4 BIOGRAPHICAL MEMOIRS strong influences stirring Robert’s interests in science.
    [Show full text]
  • Henry Taube Papers SC0731SC0731
    http://oac.cdlib.org/findaid/ark:/13030/kt329035mg No online items Guide to the Henry Taube Papers SC0731SC0731 Stanford University Archives staff Department of Special Collections and University Archives October 2010 Green Library 557 Escondido Mall Stanford 94305-6064 [email protected] URL: http://library.stanford.edu/spc Note This encoded finding aid is compliant with Stanford EAD Best Practice Guidelines, Version 1.0. Guide to the Henry Taube Papers SC073117755 1 SC0731SC0731 Language of Material: English Contributing Institution: Department of Special Collections and University Archives Title: Henry Taube papers Creator: Taube, Henry Identifier/Call Number: SC0731 Identifier/Call Number: 17755 Physical Description: 65.25 Linear Feet(56 boxes) Date (inclusive): 1941-2003 Abstract: Collection pertains to his teaching and research, primarily while at Stanford University, and includes grant files, articles and papers, reprints, class files, correspondence, travel records, and biographical materials. Information about Access This collection is open for research; materials must be requested at least 48 hours in advance of intended use. Ownership & Copyright All requests to reproduce, publish, quote from, or otherwise use collection materials must be submitted in writing to the Head of Special Collections and University Archives, Stanford University Libraries, Stanford, California 94304-6064. Consent is given on behalf of Special Collections as the owner of the physical items and is not intended to include or imply permission from the copyright owner. Such permission must be obtained from the copyright owner, heir(s) or assigns. See: http://library.stanford.edu/depts/spc/pubserv/permissions.html. Restrictions also apply to digital representations of the original materials.
    [Show full text]
  • Copyright by Paul Harold Rubinson 2008
    Copyright by Paul Harold Rubinson 2008 The Dissertation Committee for Paul Harold Rubinson certifies that this is the approved version of the following dissertation: Containing Science: The U.S. National Security State and Scientists’ Challenge to Nuclear Weapons during the Cold War Committee: —————————————————— Mark A. Lawrence, Supervisor —————————————————— Francis J. Gavin —————————————————— Bruce J. Hunt —————————————————— David M. Oshinsky —————————————————— Michael B. Stoff Containing Science: The U.S. National Security State and Scientists’ Challenge to Nuclear Weapons during the Cold War by Paul Harold Rubinson, B.A.; M.A. Dissertation Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy The University of Texas at Austin August 2008 Acknowledgements Thanks first and foremost to Mark Lawrence for his guidance, support, and enthusiasm throughout this project. It would be impossible to overstate how essential his insight and mentoring have been to this dissertation and my career in general. Just as important has been his camaraderie, which made the researching and writing of this dissertation infinitely more rewarding. Thanks as well to Bruce Hunt for his support. Especially helpful was his incisive feedback, which both encouraged me to think through my ideas more thoroughly, and reined me in when my writing overshot my argument. I offer my sincerest gratitude to the Smith Richardson Foundation and Yale University International Security Studies for the Predoctoral Fellowship that allowed me to do the bulk of the writing of this dissertation. Thanks also to the Brady-Johnson Program in Grand Strategy at Yale University, and John Gaddis and the incomparable Ann Carter-Drier at ISS.
    [Show full text]
  • Date: To: September 22, 1 997 Mr Ian Johnston©
    22-SEP-1997 16:36 NOBELSTIFTELSEN 4& 8 6603847 SID 01 NOBELSTIFTELSEN The Nobel Foundation TELEFAX Date: September 22, 1 997 To: Mr Ian Johnston© Company: Executive Office of the Secretary-General Fax no: 0091-2129633511 From: The Nobel Foundation Total number of pages: olO MESSAGE DearMrJohnstone, With reference to your fax and to our telephone conversation, I am enclosing the address list of all Nobel Prize laureates. Yours sincerely, Ingr BergstrSm Mailing address: Bos StU S-102 45 Stockholm. Sweden Strat itddrtSMi Suircfatan 14 Teleptelrtts: (-MB S) 663 » 20 Fsuc (*-«>!) «W Jg 47 22-SEP-1997 16:36 NOBELSTIFTELSEN 46 B S603847 SID 02 22-SEP-1997 16:35 NOBELSTIFTELSEN 46 8 6603847 SID 03 Professor Willis E, Lamb Jr Prof. Aleksandre M. Prokhorov Dr. Leo EsaJki 848 North Norris Avenue Russian Academy of Sciences University of Tsukuba TUCSON, AZ 857 19 Leninskii Prospect 14 Tsukuba USA MSOCOWV71 Ibaraki Ru s s I a 305 Japan 59* c>io Dr. Tsung Dao Lee Professor Hans A. Bethe Professor Antony Hewlsh Department of Physics Cornell University Cavendish Laboratory Columbia University ITHACA, NY 14853 University of Cambridge 538 West I20th Street USA CAMBRIDGE CB3 OHE NEW YORK, NY 10027 England USA S96 014 S ' Dr. Chen Ning Yang Professor Murray Gell-Mann ^ Professor Aage Bohr The Institute for Department of Physics Niels Bohr Institutet Theoretical Physics California Institute of Technology Blegdamsvej 17 State University of New York PASADENA, CA91125 DK-2100 KOPENHAMN 0 STONY BROOK, NY 11794 USA D anni ark USA 595 600 613 Professor Owen Chamberlain Professor Louis Neel ' Professor Ben Mottelson 6068 Margarldo Drive Membre de rinstitute Nordita OAKLAND, CA 946 IS 15 Rue Marcel-Allegot Blegdamsvej 17 USA F-92190 MEUDON-BELLEVUE DK-2100 KOPENHAMN 0 Frankrike D an m ar k 599 615 Professor Donald A.
    [Show full text]
  • UC San Diego UC San Diego Electronic Theses and Dissertations
    UC San Diego UC San Diego Electronic Theses and Dissertations Title The new prophet : Harold C. Urey, scientist, atheist, and defender of religion Permalink https://escholarship.org/uc/item/3j80v92j Author Shindell, Matthew Benjamin Publication Date 2011 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, SAN DIEGO The New Prophet: Harold C. Urey, Scientist, Atheist, and Defender of Religion A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in History (Science Studies) by Matthew Benjamin Shindell Committee in charge: Professor Naomi Oreskes, Chair Professor Robert Edelman Professor Martha Lampland Professor Charles Thorpe Professor Robert Westman 2011 Copyright Matthew Benjamin Shindell, 2011 All rights reserved. The Dissertation of Matthew Benjamin Shindell is approved, and it is acceptable in quality and form for publication on microfilm and electronically: ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ Chair University of California, San Diego 2011 iii TABLE OF CONTENTS Signature Page……………………………………………………………………...... iii Table of Contents……………………………………………………………………. iv Acknowledgements………………………………………………………………….
    [Show full text]
  • LA JOLLA MAIL PO Box 2085 La Jolla, CA 92038 HISTORICAL SOCIETY OFFICE & RESEARCH 7846 Eads Ave .• EXHIBIT GALLERIES 780 Prospect St
    w LA JOLLA MAIL PO Box 2085 La Jolla, CA 92038 HISTORICAL SOCIETY OFFICE & RESEARCH 7846 Eads Ave .• EXHIBIT GALLERIES 780 Prospect St. T 858.459.5335 • lajollahistory.org July 5, 2016 Suzanne Segur San Diego Planning Department 1010 Second A venue, Suite 1200 San Diego, CA 92101 RE: Historical Report for 2345 Via Sienna, La Jolla Dear Ms. Segur: The La Jolla Historical Society recommends that 2345 Via Sienna be considered for designation as a historically significant under HRB Criterion B for its association with Dr. Maria Goeppert-Mayer, who was awarded the Nobel Prize for Physics while living in the property. Maria Goeppert-Mayer is one of only two females awarded the Nobel Prize for physics since its inception in 1901. (The other was Mme. Curie, who was awarded the prize in 1903.) In fact, only 49 women have EVER won the Nobel Prize in ANYTHING, as opposed to 822 men. Ms. Goeppert-Mayer's biographies provide evidence regarding the difficulty she had in being taken seriously as a scientist because of her gender. It was with her hiring at UC San Diego that she became a full-time faculty professor, earning the respect her training and achievements deserved. We believe Dr. Goeppert-Mayer's home is eligible for designation under Criterion B as defined in the Department of Interior Standards. Although the residence may read today as an interpretation of the mid-century era's California ranch style, it is not atypical of the kind of housing many UCSD professors and members of La Jolla's new scientific community resided in at the time - modest dwellings in tune with economic situations and their new lives as Californians enjoying the amenable climate of the West Coast.
    [Show full text]
  • Jewish Scientists, Jewish Ethics and the Making of the Atomic Bomb
    8 Jewish Scientists, Jewish Ethics and the Making of the Atomic Bomb MERON MEDZINI n his book The Jews and the Japanese: The Successful Outsiders, Ben-Ami IShillony devoted a chapter to the Jewish scientists who played a central role in the development of nuclear physics and later in the construction and testing of the fi rst atomic bomb. He correctly traced the well-known facts that among the leading nuclear physics scientists, there was an inordinately large number of Jews (Shillony 1992: 190–3). Many of them were German, Hungarian, Polish, Austrian and even Italian Jews. Due to the rise of virulent anti-Semitism in Germany, especially after the Nazi takeover of that country in 1933, most of the German-Jewish scientists found themselves unemployed, with no laboratory facilities or even citi- zenship, and had to seek refuge in other European countries. Eventually, many of them settled in the United States. A similar fate awaited Jewish scientists in other central European countries that came under German occupation, such as Austria, or German infl uence as in the case of Hungary. Within a short time, many of these scientists who found refuge in America were highly instrumental in the exceedingly elabo- rate and complex research and work that eventually culminated in the construction of the atomic bomb at various research centres and, since 1943, at the Los Alamos site. In this facility there were a large number of Jews occupying the highest positions. Of the heads of sections in charge of the Manhattan Project, at least eight were Jewish, led by the man in charge of the operation, J.
    [Show full text]
  • EUGENE PAUL WIGNER November 17, 1902–January 1, 1995
    NATIONAL ACADEMY OF SCIENCES E U G ENE PAUL WI G NER 1902—1995 A Biographical Memoir by FR E D E R I C K S E I T Z , E RICH V OG T , A N D AL V I N M. W E I NBER G Any opinions expressed in this memoir are those of the author(s) and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 1998 NATIONAL ACADEMIES PRESS WASHINGTON D.C. Courtesy of Atoms for Peace Awards, Inc. EUGENE PAUL WIGNER November 17, 1902–January 1, 1995 BY FREDERICK SEITZ, ERICH VOGT, AND ALVIN M. WEINBERG UGENE WIGNER WAS A towering leader of modern physics Efor more than half of the twentieth century. While his greatest renown was associated with the introduction of sym- metry theory to quantum physics and chemistry, for which he was awarded the Nobel Prize in physics for 1963, his scientific work encompassed an astonishing breadth of sci- ence, perhaps unparalleled during his time. In preparing this memoir, we have the impression we are attempting to record the monumental achievements of half a dozen scientists. There is the Wigner who demonstrated that symmetry principles are of great importance in quan- tum mechanics; who pioneered the application of quantum mechanics in the fields of chemical kinetics and the theory of solids; who was the first nuclear engineer; who formu- lated many of the most basic ideas in nuclear physics and nuclear chemistry; who was the prophet of quantum chaos; who served as a mathematician and philosopher of science; and the Wigner who was the supervisor and mentor of more than forty Ph.D.
    [Show full text]
  • Robert Mulliken
    NATIONAL ACADEMY OF SCIENCES ROBERT SANDERSON MULLIKEN 1896–1986 A Biographical Memoir by R. STEPHEN BERRY Biographical Memoirs, VOLUME 78 PUBLISHED 2000 BY THE NATIONAL ACADEMY PRESS WASHINGTON, D.C. Photo credit: Photo by Harris & Ewing, Washington, D.C. ROBERT SANDERSON MULLIKEN June 7, 1896-October 31, 1986 BY R. STEPHEN BERRY OBERT S. MULLIKEN WAS a quiet, soft-spoken man, yet so R single-minded and determined in his devotion to under- standing molecules that he came to be called “Mr. Molecule.” If any single person’s ideas and teachings dominated the development of our understanding of molecular structure and spectra, it surely was Robert Mulliken. From the begin- ning of his career as an independent scientist in the mid- 1920s until he published his last scientific papers in the early 1980s, he guided an entire field through his penetrat- ing solutions of outstanding puzzles, his identification (or discovery) and analysis of the new major problems ripe for study, and his creation of a school—the Laboratory of Molecular Structure and Spectroscopy or LMSS at the University of Chicago, during its existence the most impor- tant center in the world for the study of molecules. Robert’s background led him naturally into academic sci- ence. He was born in Newburyport, Massachusetts, in a house built by his great-grandfather in about 1798. His father, Samuel Parsons Mulliken, was a professor of chemistry at MIT, which made him a daily commuter between Newburyport and Boston. Samuel Mulliken and his child- hood friend and later MIT colleague Arthur A. Noyes were 3 4 BIOGRAPHICAL MEMOIRS strong influences stirring Robert’s interests in science.
    [Show full text]
  • Otto Stern Annalen 4.11.11
    (To be published by Annalen der Physik in December 2011) Otto Stern (1888-1969): The founding father of experimental atomic physics J. Peter Toennies,1 Horst Schmidt-Böcking,2 Bretislav Friedrich,3 Julian C.A. Lower2 1Max-Planck-Institut für Dynamik und Selbstorganisation Bunsenstrasse 10, 37073 Göttingen 2Institut für Kernphysik, Goethe Universität Frankfurt Max-von-Laue-Strasse 1, 60438 Frankfurt 3Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4-6, 14195 Berlin Keywords History of Science, Atomic Physics, Quantum Physics, Stern- Gerlach experiment, molecular beams, space quantization, magnetic dipole moments of nucleons, diffraction of matter waves, Nobel Prizes, University of Zurich, University of Frankfurt, University of Rostock, University of Hamburg, Carnegie Institute. We review the work and life of Otto Stern who developed the molecular beam technique and with its aid laid the foundations of experimental atomic physics. Among the key results of his research are: the experimental test of the Maxwell-Boltzmann distribution of molecular velocities (1920), experimental demonstration of space quantization of angular momentum (1922), diffraction of matter waves comprised of atoms and molecules by crystals (1931) and the determination of the magnetic dipole moments of the proton and deuteron (1933). 1 Introduction Short lists of the pioneers of quantum mechanics featured in textbooks and historical accounts alike typically include the names of Max Planck, Albert Einstein, Arnold Sommerfeld, Niels Bohr, Max von Laue, Werner Heisenberg, Erwin Schrödinger, Paul Dirac, Max Born, and Wolfgang Pauli on the theory side, and of Wilhelm Conrad Röntgen, Ernest Rutherford, Arthur Compton, and James Franck on the experimental side. However, the records in the Archive of the Nobel Foundation as well as scientific correspondence, oral-history accounts and scientometric evidence suggest that at least one more name should be added to the list: that of the “experimenting theorist” Otto Stern.
    [Show full text]