Citrus Diseases Exotic to Florida: Mal Secco1 K.-R

Total Page:16

File Type:pdf, Size:1020Kb

Citrus Diseases Exotic to Florida: Mal Secco1 K.-R Archival copy: for current recommendations see http://edis.ifas.ufl.edu or your local extension office. PP290 Citrus Diseases Exotic to Florida: Mal Secco1 K.-R. Chung2 Introduction Citrus is susceptible to a large number of diseases caused by plant pathogens. Plant diseases that affect citrus can cause severe economic losses, but, fortunately, not all pathogens attacking citrus worldwide are present in Florida. Any ex- otic disease, if introduced, has the potential to significantly increase production costs and thus decrease profitability for Florida growers. This series of EDIS fact sheets (available at http://edis.ifas.ufl.edu/topic_series_citrus_diseases_ex- otic_to_florida) presents background information for each exotic citrus disease in order to provide a basis for evaluating exotic pathogens that may pose potential risks Figure 1. A sour orange leaf affected by mal secco disease, showing to Florida citrus and to facilitate a decision-making frame- vein chlorosis. Credits: Reprinted with permission from Figure 2 of Q. work for preventing their introduction and spread. This Migheli, et al., “Mal Secco Disease Caused by Phoma tracheiphila: A paper discusses mal secco (Italian for dry disease), which Potential Threat to Lemon Production Worldwide,” Plant Disease (2009) 93: 852-67. Courtesy of American Phytopathological Society (APS) is caused by the fungus Phoma tracheiphila (synonym: Press. Deuterophoma tracheiphila). Concerns about Mal Secco Causal Agent of Mal Secco The causal agent of mal secco is the fungus Phoma tra- Mal secco is a fungal disease that causes serious damage cheiphila (syn. Deuterophoma tracheiphila). P. tracheiphila to a number of citrus cultivars in the Mediterranean and can be easily isolated and cultured from infected citrus Black Sea areas (with the exceptions of Spain, Portugal, and trees. Isolates vary in pathogenicity and pigment produc- Morocco). The fungus spreads systemically in the tree after tion. Some less virulent types of P. tracheiphila have also initial infection and then kills infected limbs. It often causes been reported. a complete collapse of the whole tree if infection occurs on the trunk or low in the canopy. The disease has been known for a century in the Mediterranean area, but has not been Cultivars Affected by Mal Secco reported in other citrus-growing regions. Under favorable conditions, mal secco can affect a range of citrus cultivars and relatives, including Fortunella, Poncirus, and Severina. However, mal secco is most severe 1. This document is PP290, one of a series of the Plant Pathology Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. Original publication date February 2012. Visit the EDIS website at http://edis.ifas.ufl.edu. 2. K.-R. Chung, associate professor, Plant Pathology Department, Citrus Research and Education Center, Lake Alfred, FL; Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611. The Institute of Food and Agricultural Sciences (IFAS) is an Equal Opportunity Institution authorized to provide research, educational information and other services only to individuals and institutions that function with non-discrimination with respect to race, creed, color, religion, age, disability, sex, sexual orientation, marital status, national origin, political opinions or affiliations. U.S. Department of Agriculture, Cooperative Extension Service, University of Florida, IFAS, Florida A&M University Cooperative Extension Program, and Boards of County Commissioners Cooperating. Millie Ferrer-Chancy, Interim Dean Archival copy: for current recommendations see http://edis.ifas.ufl.edu or your local extension office. on lemon, citron (Citrus medica L.), lime (C. latifolia Tan.), and bergamot (C. bergamia Risso). Under greenhouse conditions, P. tracheiphila is able to infect almost all citrus species that are wounded before inoculation. In fields, the fungus rarely affects oranges and grapefruit. However, P. tracheiphila infections of some tangelos, tangors, and mandarins have been reported. While infections most commonly occur in the scion, infection can also occur in rootstock sprouts. Rough lemon, alemow, sour oranges, volkamer lemon, and citranges are all susceptible. Trees of any age can become infected, but the disease is especially severe in young plantings. Typical Symptoms of Mal Secco Symptoms include vein chlorosis (Figure 1) and wilting of leaves, followed by twig and/or limb dieback. The vascular system in an affected tree is often clogged by gum and fungal mycelium. The wood of infected limbs often shows red or yellow streaks, which are diagnostic for the disease (Figures 2 and 3). Infections in the canopy move downward Figure 3. Orange-reddish discoloration of an orange limb affected by slowly, while infections at the base of the tree may move mal secco disease. Credits: Reprinted with permission from Figure 6 of upward rapidly. Symptoms apparently are associated with Q. Migheli, et al., “Mal Secco Disease Caused by Phoma tracheiphila: A Potential Threat to Lemon Production Worldwide,” Plant Disease (2009) toxins and cell-wall degrading enzymes released by the 93: 852-67. Courtesy of APS Press. causal fungus. The affected trees quickly decline and die. Transmission of Mal Secco The fungus forms a spherical or inversely pear-shaped pycnidium (an asexual fruit body) on twigs, leaves, and fruit. Local spread of P. tracheiphila is by rain-dispersed pycnidiospores (asexual spores) produced from pycnidia (singular pycnidium). Spores can penetrate leaves directly, but infections typically occur through wounds that may be caused by hail, frost, harvesting injury, or pruning. Infec- tions can also occur through exposed roots. Most infections occur during cool periods with rainy weather. Spread within the xylem of the infected trees is associated with the movement of spores. Long distance spread usually occurs through the movement of infected nursery stock. Detecting Mal Secco in the Field The main diagnostic field symptom is that wood of affected limbs has a reddish-yellow stain (Figures 2 and 3). This symptom can be seen by making a tangential cut into an Figure 2. Orange-reddish discoloration of the ‘Femminello’ lemon affected limb. Isolation and pathogenicity tests can confirm affected by mal secco. Credits: Dr. Santa Olga Cacciola and Dr. Gaetano the identity of the causal agent. Serological and molecular Magnano di San Lio. assays have also been developed to test for mal secco. Control of Mal Secco Long distance spread of mal secco can be prevented by using disease-free nursery materials. Pruning dry twigs 2 Archival copy: for current recommendations see http://edis.ifas.ufl.edu or your local extension office. and limbs can decrease the rate of spread into the trunk, within affected trees, and to adjacent trees. Removal of suckers and root sprouts reduces the chance of infection in the trunk and main scaffolds. Wounding should be avoided during rainy periods. In Italy, copper-based fungicides are effective for controlling mal secco if applied every 2–4 weeks between October and February. Lemons that are tolerant of mal secco have been identified, but they lack the market appeal of susceptible cultivars. Pre-infection with either citrus exocortis viroid or a hypovirulent isolate of P. tracheiphila has been shown to reduce development of mal secco symptoms. What Can Growers Do? While mal secco is a serious problem for certain citrus areas in the Mediterranean, its failure to spread to other regions suggests that climatic conditions limit its distribution or that it is not easily spread to new areas. Better information on the potential susceptibility of Florida cultivars, especially newer releases, would be useful to assess the future threat. Preventing mal secco from entering Florida is much easier than trying to eradicate or control it. Any citrus-propa- gating materials must be introduced through the Florida Department of Agricultural and Consumer Services, Division of Plant Industry to ensure healthy plants and the economic viability of the Florida citrus industry. 3.
Recommended publications
  • 048 (3) Plenodomus Tracheiphilus (Formerly Phoma Tracheiphila)
    Bulletin OEPP/EPPO Bulletin (2015) 45 (2), 183–192 ISSN 0250-8052. DOI: 10.1111/epp.12218 European and Mediterranean Plant Protection Organization Organisation Europe´enne et Me´diterrane´enne pour la Protection des Plantes PM 7/048 (3) Diagnostics Diagnostic PM 7/048 (3) Plenodomus tracheiphilus (formerly Phoma tracheiphila) Specific scope Specific approval and amendment This Standard describes a diagnostic protocol for First approved in 2004–09. Plenodomus tracheiphilus (formerly Phoma tracheiphila).1 Revision approved in 2007–09 and 2015–04. Phytosanitary categorization: EPPO A2 list N°287; EU 1. Introduction Annex designation II/A2. Plenodomus tracheiphilus is a mitosporic fungus causing a destructive vascular disease of citrus named ‘mal secco’. 3. Detection The name of the disease was taken from the Italian words ‘male’ = disease and ‘secco’ = dry. The disease first 3.1 Symptoms appeared on the island of Chios in Greece in 1889, but the causal organism was not determined until 1929. Symptoms appear in spring as leaf and shoot chlorosis fol- The principal host species is lemon (Citrus limon), but lowed by a dieback of twigs and branches (Fig. 2A). On the the fungus has also been reported on many other citrus spe- affected twigs, immersed, flask-shaped or globose pycnidia cies, including those in the genera Citrus, Fortunella, appear as black points within lead-grey or ash-grey areas Poncirus and Severina; and on their interspecific and (Fig. 3B). On fruits, browning of vascular bundles can be intergenic hybrids (EPPO/CABI, 1997 – Migheli et al., observed in the area of insertion of the peduncle. 2009).
    [Show full text]
  • Generation of Sexual and Somatic Hybrids in Acid Citrus Fruits
    GENERATION OF SEXUAL AND SOMATIC HYBRIDS IN ACID CITRUS FRUITS By ZENAIDA JOSEFINA VILORIA VILLALOBOS A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2003 Copyright 2003 by Zenaida Josefina Viloria Villalobos This dissertation is dedicated to my darling mother Olivia and to the memory of my beloved father Dimas, and to my sisters Celina, Doris, Celmira, and Olivia, and brothers Dimas, Silfredo and Alejandro, with love. ACKNOWLEDGMENTS This work was completed with the generous collaboration of many people to whom I will always be grateful. First I wish to thank my supervisor Dr. Jude Grosser, for his guidance, suggestions, and financial assistance during the last period of my studies. I also want to thank the University of Zulia and Fondo Nacional de Ciencias, Tecnologia e Innovation for giving me the opportunity to do my doctoral studies. I thank very much Dr. Renee Goodrich, Dr. Frederick Gmitter, Dr. Michael Kane and Dr. Dennis Gray for being members of my committee and for their contributions to this work. Thanks go to Dr. Glem Wright (University of Arizona) for making it possible to generate more lemon progenies in this study. I appreciate very much the supervision and help in completing the canker screening study from Dr. Graham, Diana Drouillard and Diane Bright. I thank very much Dr. Ramon Littell and Belkys Bracho for their assistance on the statistical analysis of my experiments. Thanks go to the Division of Plant Industry (Lake Alfred, FL), particularly to Mrs.
    [Show full text]
  • Citrus Industry Biosecurity Plan 2015
    Industry Biosecurity Plan for the Citrus Industry Version 3.0 July 2015 PLANT HEALTH AUSTRALIA | Citrus Industry Biosecurity Plan 2015 Location: Level 1 1 Phipps Close DEAKIN ACT 2600 Phone: +61 2 6215 7700 Fax: +61 2 6260 4321 E-mail: [email protected] Visit our web site: www.planthealthaustralia.com.au An electronic copy of this plan is available through the email address listed above. © Plant Health Australia Limited 2004 Copyright in this publication is owned by Plant Health Australia Limited, except when content has been provided by other contributors, in which case copyright may be owned by another person. With the exception of any material protected by a trade mark, this publication is licensed under a Creative Commons Attribution-No Derivs 3.0 Australia licence. Any use of this publication, other than as authorised under this licence or copyright law, is prohibited. http://creativecommons.org/licenses/by-nd/3.0/ - This details the relevant licence conditions, including the full legal code. This licence allows for redistribution, commercial and non-commercial, as long as it is passed along unchanged and in whole, with credit to Plant Health Australia (as below). In referencing this document, the preferred citation is: Plant Health Australia Ltd (2004) Industry Biosecurity Plan for the Citrus Industry (Version 3.0 – July 2015). Plant Health Australia, Canberra, ACT. Disclaimer: The material contained in this publication is produced for general information only. It is not intended as professional advice on any particular matter. No person should act or fail to act on the basis of any material contained in this publication without first obtaining specific and independent professional advice.
    [Show full text]
  • Chapter 5 Diseases and Pests
    Chapter 5 Diseases and pests It is believed that numerous diseases have been attacking citrus trees already in their region of origin and that their actual widespread occurrence is the man-made consequence of international travel and trade. The pathogen or- ganisms are bacteria, fungi, viruses, and viroids. The diseases are spread by biological natural vectors such as insects, by winds and rain, or by humans and man-made devices. Many of the diseases have been qualified as “dev- astating.” This is no exaggeration, considering that each one of the diseases has almost caused destruction of the citrus industry, in some part of the world, at one time or another. 5.1 DISEASES 5.1.1 Huanglongbing (HLB) Huanglongbing (HLB), also known as the “Citrus greening disease” (da Graça, 1991) is a serious microbial disease affecting major citrus- growing areas and spreading to new citrus-growing regions. It is caused by a gram-negative bacterium named Candidatus Liberibacter, spread by the psyllids Trioza erytrea and Diaphorina citri, acting as natural vectors. The disease is also propagated by grafting. Three species of the bacterium are known. They are named after the continent in which they are promi- nent Liberibacter asiaticus, L. africanus, and L. americanus (Bové, 2006). The pathogens penetrate the phloem and attack the vascular system, clog- ging the veins and drastically reducing the transport of water and nutrients. The disease was described in China, already in 1919. In the first half of the 20th century, it affected large citrus-producing areas in South-East Asia, India, and South Africa and caused serious damage to the production of citrus in many countries.
    [Show full text]
  • Notification of Ministry of Agriculture and Cooperatives Re : Specification of Plant Pests As Prohibited Articles Under the Plant Quarantine Act B.E
    G/SPS/N/THA/151/Rev. 1 Notification of Ministry of Agriculture and Cooperatives Re : Specification of plant pests as prohibited articles under the Plant Quarantine Act B.E. 2507 (No. 6) B.E. 2550 ----------------------------- By virtue of Article 6 of the Plant Quarantine Act B.E. 2507, revised by the Plant Quarantine Act (No. 2) B.E. 2542, the Minister of Agriculture and Cooperatives, through the recommendation of the Plant Quarantine Committee, hereby issue the following notification. Item 1. Notification of the Ministry of Agriculture and Cooperatives Re : Specification of plant pests as prohibited articles B.E. 2507 (No. 3) B.E. 2546 dated 14 October B.E. 2546 shall be repealed. Item 2. Plant pests from any source listed with this notification are considered as prohibited articles because they are quarantine pests. This notification shall enter into force 60 days after the date of its proclamation in the Royal Gazette, and shall remain valid henceforth. Given on 26 April B.E. 2550 Thira Sutabutra (Professor Thira Sutabutra) Minister Ministry of Agriculture and Cooperatives 2 G/SPS/N/THA/151/Rev. 1 List of plant pests attached to the Notification of Ministry of Agriculture and Cooperatives Re : Specification of plant pests as prohibited articles, under the Plant Quarantine Act B.E. 2507 (No. 6) B.E. 2550 ------------------------------ Fungi 1. Ascochyta gossypii (Woronichin) Syd. 2. Asperisporium caricae (Speg.) Maubl. 3. Balansia oryzae-sativae Hashioka 4. Botryotinia allii (Sawada) W.Yamam 5. Botryotinia fuckeliana (de Bary) Whetzel 6. Botryotinia porri (J.F.H. Beyma) Whetzel 7. Botrytis aclada Fresen. 8. Cephalosporium maydis Samra, Sabet & Hingorani 9.
    [Show full text]
  • Ornacitrus: Citrus Plants (Citrus Spp.) As Ornamentals
    FOLIA HORTICULTURAE Folia Hort. 31(2) (2019): 239-251 Published by the Polish Society DOI: 10.2478/fhort-2019-0018 for Horticultural Science since 1989 REVIEW Open access http://www.foliahort.ogr.ur.krakow.pl Ornacitrus: Citrus plants (Citrus spp.) as ornamentals Francesco Sottile1*, Maria Beatrice Del Signore2, Ettore Barone2 1 Dipartimento di Architettura, University of Palermo Viale delle Scienze, 90128 Palermo, Italy 2 Dipartimento di Scienze Agrarie, Alimentari e Forestali University of Palermo, Viale delle Scienze, 90128 Palermo, Italy ABSTRACT The industrial production of citrus plants for ornamental use (ornacitrus) began in Italy at the end of the 1960s due to the need for many citrus nurseries to adapt their activities in a time of crisis for citriculture. Nowadays, the ornamental citrus nursery sector is a well-established industry in many European countries such as Portugal, Spain, Greece, and southern Italy. In Italy, nursery production of ornamental citrus plants has become prominent due to the gradual shutdown of many commercial citrus orchards. Currently, Italy maintains its leadership with more than 5.5 million ornacitrus plants produced annually. Ornamental citrus production regards mainly different cultivars ofCitrus and Fortunella species, with lemon as the lead species. In this paper, the contribution of breeding and cultural techniques to the innovation of the sector is reported and discussed. This review aims to give an updated scientific and technical description of a sector with large competitive potential that remains still largely unexplored, pointing out its strengths and weaknesses. Key words: Citrus spp., nursery management, potted ornamental plants, rootstocks, variety INTRODUCTION (Tolkowsky, 1938). The beautiful appearance of both tree and fruit, and the fragrance due to the Citrus L.
    [Show full text]
  • PP 1/257 FEET 56 (1) First Published in 2016 EXTRAPOLATION TABLE for EFFECTIVENESS of FUNGICIDES ► DISEASES on CITRUS FRUIT
    European and Mediterranean Plant Protection Organization Organisation Européenne et Méditerranéenne pour la Protection des Plantes PP 1/257 FEET 56 (1) First published in 2016 EXTRAPOLATION TABLE for EFFECTIVENESS of FUNGICIDES ► DISEASES ON CITRUS FRUIT INTRODUCTION The table provides detailed lists of acceptable extrapolations organized by crop groups, for regulatory authorities and applicants, in the context of the registration of plant protection products for minor uses. The table should be used in conjunction with the EPPO Standard PP1/257(1) - Efficacy and crop safety extrapolations for minor uses. It is important to ensure that expert judgment and regulatory experience are employed when using these tables. EPPO excludes liability as to the reliability of the information provided through these tables. The scope for extrapolation may be extended as data and experience with a certain plant protection product increases. The applicant should always provide appropriate justification and information to support the proposed extrapolation. For example, comparability of target biology may be a relevant factor, either in extrapolating to other target species or for the same target onto another crop. For crops, factors such as comparable growth habit, structure etc. should be considered. TABLE FORMAT The main pest species for the crop group are listed in Column 1 (although this is not exhaustive), and the pest group to which they belong is specified in Column 2. Companies may choose if they wish to provide data only for individual named species, which would then appear individually listed on the label. But underlined species have been identified as key major targets and as such it is advisable to generate data on these.
    [Show full text]
  • Leptosphaeria Teleomorph Plants
    PERSOONIA Published by Rijksherbarium / Hortus Bolanicus, Leiden Volume Part 431-487 15, 4, pp. (1994) Contributions towards a monograph of Phoma (Coelomycetes) — III. often with 1. Section Plenodomus: Taxa a Leptosphaeria teleomorph G.H. Boerema J. de Gruyter& H.A. van Kesteren Twenty-six species of Phoma, characterized by the ability to produce scleroplectenchyma- tous pycnidia (and often also pseudothecia) are documented and described. An addendum deals with five but which of literature data be related. The atypical species, on account may following new taxa are proposed: Phoma acuta subsp. errabunda (Desm.) comb. nov. (teleo- morph Leptosphaeriadoliolum subsp. errabunda subsp. nov.), Phoma acuta subsp. acuta f. comb. Phoma and Phoma sp. phlogis (Roum.) nov., congesta spec. nov. vasinfecta spec. nov. Detailed keys and indices on host-fungus and fungus-host relations are provided and short comments on the ecology and distribution of the taxa are given. The previously published contributions towards the planned monograph of Phoma re- fer to species of sect. Phoma (de Gruyter & Noordeloos, 1992; de Gruyter et al., 1993) and sect. Peyronellaea (Boerema, 1993). The deals with all far in the section Pleno- present paper primarily species so placed domus Kesteren & Loerakker The (Preuss) Boerema, van (1981) (species 1-26). mem- bers of this section are characterized by their ability to produce ‘scleroplectenchyma (term cf. Holm, 1957: 11) in the peridium of the pycnidia, i.e. a tissue of cells with uniformly thickened walls, similar to sclerenchyma in higher plants (evolutionary convergence). The thickening of the walls may be so extensive that only a very small lumen remains as in stone cells of fruitand seed.
    [Show full text]
  • Immunoenzymatic Detection of Phytophthorafragariae in Infected Strawberry Plants
    Techniques Immunoenzymatic Detection of Phytophthorafragariae in Infected Strawberry Plants Eugenie Amouzou-Alladaye, Jean Dunez, and Michel Clerjeau INRA-Station de Pathologie V~g&tale, Centre de Recherches de Bordeaux, BP 131, 33140 Pont de la Maye, France. Financial support for this research was provided by INRA and the Aquitaine Region Council. We wish to thank K. D. Mayo for a careful revision of the English of the manuscript. Accepted for publication 22 February 1988 (submitted for electronic processing). ABSTRACT Amouzou-Alladaye, E., Dunez, J., and Clerjeau, M. 1988. Immunoenzymatic detection of Phytophthorafragariae in infected strawberry plants. Phytopathology 78:1022-1026. Antiserum obtained by injecting rabbits with mycelial protein extracts of parts of strawberry but reacted with some strains of P. cactorum, which one strain of Phytophthorafragariaehad a dilution end point of 1/64 in parasitized only rhizomes but not roots, and Pythium middletonii, which double diffusion and 1/ 512,000 in indirect enzyme-linked immunosorbent was isolated sometimes in association with P.fragariae from strawberry assay (ELISA). This serum could detect 11 different strains of P.fragariae roots. In inoculated strawberry roots, P.fragariaewas detected reliably by in pure culture and the pathogen in naturally infected or inoculated roots. ELISA several days before oospores were found and before symptoms Although the sensitivities of direct double antibody sandwich and indirect developed. Thus, direct double antibody sandwich ELISA may be useful ELISA were comparable, the direct double antibody sandwich ELISA was for early detection of infection and for the detection of latent infections of more specific for the detection of P. fragariae in strawberry roots.
    [Show full text]
  • Response of Cybrids and a Somatic Hybrid of Lemon to Phoma
    HORTSCIENCE 35(1):125–127. 2000. Materials and Methods The allotetraploid somatic hybrid ‘Valencia Response of Cybrids and a Somatic + Femminello’ and the two ‘Femminello’ lemon cybrid plants used for this study, one Hybrid of Lemon to Phoma tracheiphila diploid (2n = 2x = 18) and one tetraploid (2n = 4x = 36), were produced by polyethylene Infections glycol (PEG)–induced somatic fusion of nu- cellus-derived embryogenic protoplasts with Nicasio Tusa1 and Sergio Fatta Del Bosco protoplasts derived from nucellar seedlings, as previously described (Grosser et al., 1996; Centro di Studio per il Miglioramento Genetico degli Agrumi, C.N.R., Viale Tusa et al., 1990). Buds were grafted onto 2- delle Scienze, 90128 Palermo, Italy year-old sour orange (C. aurantium L.) seed- lings in 1989. Franco Nigro and Antonio Ippolito Mal secco resistance was assayed by spe- Dipartimento Protezione delle Piante dalle Malattie. Universita’ degli Studi cific tests performed in a growth chamber di Bari, Via Amendola, 165/a 70126, Bari, Italy maintained at 20 ± 1 °C and artificially illumi- nated for 12 h (Gro-lux tubes, type F4T12/ Additional index words. symmetrical and asymmetrical protoplast fusion, mal secco, Citrus Gro; Sylvania, Danvers, Mass.) with a light limon, Citrus improvement intensity of 100 µE. The somatic hybrid and cybrid plants were grown in a mixture of soil Abstract. The reaction of lemon hybrids obtained by symmetrical and asymmetrical (70%) and peat (30%) in 3-L plastic contain- protoplast fusion, toward “mal secco” infection caused by Phoma tracheiphila (Petri) ers. ‘Femminello’ and ‘Monachello’ lemons, Kanc. et Ghik. was examined. Resistance was tested in ‘Valencia’ sweet orange [Citrus highly susceptible and resistant to the disease, sinensis (L.) Osbeck] and ‘Femminello’ lemon [C.
    [Show full text]
  • Endophytic Fungi of Citrus Plants 3 Rosario Nicoletti 1,2,*
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 October 2019 doi:10.20944/preprints201910.0268.v1 Peer-reviewed version available at Agriculture 2019, 9, 247; doi:10.3390/agriculture9120247 1 Review 2 Endophytic Fungi of Citrus Plants 3 Rosario Nicoletti 1,2,* 4 1 Council for Agricultural Research and Economics, Research Centre for Olive, Citrus and Tree Fruit, 81100 5 Caserta, Italy; [email protected] 6 2 Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy 7 * Correspondence: [email protected] 8 9 Abstract: Besides a diffuse research activity on drug discovery and biodiversity carried out in 10 natural contexts, more recently investigations concerning endophytic fungi have started 11 considering their occurrence in crops based on the major role that these microorganisms have been 12 recognized to play in plant protection and growth promotion. Fruit growing is particularly 13 involved in this new wave, by reason that the pluriannual crop cycle implies a likely higher impact 14 of these symbiotic interactions. Aspects concerning occurrence and effects of endophytic fungi 15 associated with citrus species are revised in the present paper. 16 Keywords: Citrus spp.; endophytes; antagonism; defensive mutualism; plant growth promotion; 17 bioactive compounds 18 19 1. Introduction 20 Despite the first pioneering observations date back to the 19th century [1], a settled prejudice 21 that pathogens basically were the only microorganisms able to colonize living plant tissues has long 22 delayed the awareness that endophytic fungi are constantly associated to plants, and remarkably 23 influence their ecological fitness. Overcoming an apparent vagueness of the concept of ‘endophyte’, 24 scientists working in the field have agreed on the opportunity of delimiting what belongs to this 25 functional category; thus, a series of definitions have been enunciated which are all based on the 26 condition of not causing any immediate overt negative effect to the host [2].
    [Show full text]
  • Behavior of Italian Lemon Rootstocks Towards Mal Secco Leaf Infection
    atholog P y & nt a M l i P c f r o Ziadi, J Plant Pathol Microb 2012, 3:7 o b l i Journal of a o l n DOI: 10.4172/2157-7471.1000150 o r g u y o J ISSN: 2157-7471 Plant Pathology & Microbiology Research Article Open Access Behavior of Italian Lemon Rootstocks towards Mal Secco Leaf Infection with Tunisian Fungus Phoma tracheiphila in Controlled Environment Sana Ziadi1*, Samir Chebil1, Angela Ligorio2, Antonio Ippolito2 and Ahmed Mliki1 1Laboratory of Plants Molecular Physiology, Centre of Biotechnology Borj-Cedria, BP 901 Hammam-Lif, 2050, Tunisia 2Department of Agro Forestry and Environmental Biology and Chemistry, University of Bari, Via G Amendola 165/A, Bari 70126, Italy Abstract Studying behaviors of four Italian lemon rootstocks towards Mal Secco leaf infection with the fungus Phoma tracheiphila, isolated in Tunisia in controlled environment, is the aim of this research work. It involves prospection of infected lemons fields in Tunisia, isolation and morphological identification of the fungus, preparation of inoculum and infection of leaves of four rootstocks. Following the artificial inoculation in three assessments after 10, 20 and 30 days post inoculation (dpi) by observing the appearance of disease symptoms, counting the percentage of positive inoculation and determining the average disease intensity according to the leaf empirical scale. All these parameters indicated about the behaviour of the rootstock towards disease in addition to allowing the classification of the four lemon rootstocks according to susceptibility to Mal Secco. Therefore Volkameriana which showed great sensitive behavior was considered as susceptible rootstock. However, Sour Orange showed an intermediate susceptibility to Mal Secco infection and was classified as tolerant rootstock.
    [Show full text]