Sediment Disturbance Associated with Trampling by Humans Alters Species Assemblages on a Rocky Intertidal Seashore
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An Analysis of the Community Composition of the Xiphophora Gladiata Dominated Subzone of the Tasmanian Sublittoral Fringe
Papers and Proceedings ol the Royal Society of Tasmania, Volume 123, 1989 191 AN ANALYSIS OF THE COMMUNITY COMPOSITION OF THE XIPHOPHORA GLADIATA DOMINATED SUBZONE OF THE TASMANIAN SUBLITTORAL FRINGE by E. L. Rice (with five tables and nine text-figures) RICE, E.L., 1989 (31:x): An analysis of the community composition of the Xiphophora iladiata dominated subzone of the Tasmanian sublittoral fringe. Pap. Proc. R. Soc. Tasm. 123: I 91-209. https://doi.org/10.26749/rstpp.123.191 ISSN 0080-4703. Biological Sciences Branch, Department of Fisheries and Oceans, Halifax Research Laboratory, PO Box 550, Halifax, Nova Scotia B3J 2S7, Canada; formerly Department of Botany, University of Tasmania The rocky shore sublittoral fringe of the oceanic coasts of Tasmania contains a subzone dominated by the large brown alga Xiphophora iladiata. The community composition of this subzone is here examined at fourteen sites. The phytal and fauna! assemblages are analysed by principal co-ordinate, classification and nodal analyses. This subzone is found to have a high species richness. including species which had been thought to occupy only higher or lower tidal levels. It is suggested that both plant and animal assemblages are strongly influenced by wave exposure, freshwater run-off and geography. Key Words: marine community composition, sublittoral fringe, Xiphophora, multivariate analyses. INTRODUCTION (Bennett & Pope 1960). Thus, on the oceanic coasts of Tasmania it is possible to define a Xiphophora The rocky shores of southeastern Australia are subzone, dominated by X. g/adiata, which marks known to be occupied primarily by barnacles and the highest limit of the sublittoral fringe on very molluscs in the upper intertidal (Underwood 1981), exposed shores and represents the upper sublittoral while algae dominate at midshore level and below. -
Intertidal Monitoring Report 2009/2010
Adelaide Desalination Plant Final Intertidal Monitoring Report 2009/2010 Baring, R.J., Stewart, T. D.C. & Benkendorff, K.* School of Biological Sciences, Flinders University * Author for correspondence email: [email protected] [This document contains the final report for the seasonal Adelaide Desalination Plant Intertidal Monitoring Program undertaken by Flinders University in 2009/2010.] Table of Contents Table of Contents .............................................................................................................................. 1 Executive Summary ........................................................................................................................... 2 Introduction ...................................................................................................................................... 3 Aims and Objectives .......................................................................................................................... 4 Methods ............................................................................................................................................ 5 Sampling locations and sites ............................................................................................................. 5 Invertebrate abundance.................................................................................................................... 9 Percent cover of sessile organisms ................................................................................................... -
E Urban Sanctuary Algae and Marine Invertebrates of Ricketts Point Marine Sanctuary
!e Urban Sanctuary Algae and Marine Invertebrates of Ricketts Point Marine Sanctuary Jessica Reeves & John Buckeridge Published by: Greypath Productions Marine Care Ricketts Point PO Box 7356, Beaumaris 3193 Copyright © 2012 Marine Care Ricketts Point !is work is copyright. Apart from any use permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission of the publisher. Photographs remain copyright of the individual photographers listed. ISBN 978-0-9804483-5-1 Designed and typeset by Anthony Bright Edited by Alison Vaughan Printed by Hawker Brownlow Education Cheltenham, Victoria Cover photo: Rocky reef habitat at Ricketts Point Marine Sanctuary, David Reinhard Contents Introduction v Visiting the Sanctuary vii How to use this book viii Warning viii Habitat ix Depth x Distribution x Abundance xi Reference xi A note on nomenclature xii Acknowledgements xii Species descriptions 1 Algal key 116 Marine invertebrate key 116 Glossary 118 Further reading 120 Index 122 iii Figure 1: Ricketts Point Marine Sanctuary. !e intertidal zone rocky shore platform dominated by the brown alga Hormosira banksii. Photograph: John Buckeridge. iv Introduction Most Australians live near the sea – it is part of our national psyche. We exercise in it, explore it, relax by it, "sh in it – some even paint it – but most of us simply enjoy its changing modes and its fascinating beauty. Ricketts Point Marine Sanctuary comprises 115 hectares of protected marine environment, located o# Beaumaris in Melbourne’s southeast ("gs 1–2). !e sanctuary includes the coastal waters from Table Rock Point to Quiet Corner, from the high tide mark to approximately 400 metres o#shore. -
Marine Snails of the Genus Phorcus: Biology and Ecology of Sentinel Species for Human Impacts on the Rocky Shores
DOI: 10.5772/intechopen.71614 Provisional chapter Chapter 7 Marine Snails of the Genus Phorcus: Biology and MarineEcology Snails of Sentinel of the Species Genus Phorcusfor Human: Biology Impacts and on the EcologyRocky Shores of Sentinel Species for Human Impacts on the Rocky Shores Ricardo Sousa, João Delgado, José A. González, Mafalda Freitas and Paulo Henriques Ricardo Sousa, João Delgado, José A. González, MafaldaAdditional information Freitas and is available Paulo at Henriques the end of the chapter Additional information is available at the end of the chapter http://dx.doi.org/10.5772/intechopen.71614 Abstract In this review article, the authors explore a broad spectrum of subjects associated to marine snails of the genus Phorcus Risso, 1826, namely, distribution, habitat, behaviour and life history traits, and the consequences of anthropological impacts, such as fisheries, pollution, and climate changes, on these species. This work focuses on discussing the ecological importance of these sentinel species and their interactions in the rocky shores as well as the anthropogenic impacts to which they are subjected. One of the main anthro- pogenic stresses that affect Phorcus species is fisheries. Topshell harvesting is recognized as occurring since prehistoric times and has evolved through time from a subsistence to commercial exploitation level. However, there is a gap of information concerning these species that hinders stock assessment and management required for sustainable exploi- tation. Additionally, these keystone species are useful tools in assessing coastal habitat quality, due to their eco-biological features. Contamination of these species with heavy metals carries serious risk for animal and human health due to their potential of biomag- nification in the food chain. -
Evidence for the Validity of Protatlanta Sculpta (Gastropoda: Pterotracheoidea)
Contributions to Zoology, 85 (4) 423-435 (2016) Evidence for the validity of Protatlanta sculpta (Gastropoda: Pterotracheoidea) Deborah Wall-Palmer1, 2, 6, Alice K. Burridge2, 3, Katja T.C.A. Peijnenburg2, 3, Arie Janssen2, Erica Goetze4, Richard Kirby5, Malcolm B. Hart1, Christopher W. Smart1 1 School of Geography, Earth and Environmental Sciences, Plymouth University, Drake Circus, Plymouth, PL4 8AA, United Kingdom 2 Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, the Netherlands 3 Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, P.O. Box 94248, 1090 GE Amsterdam, the Netherlands 4 Department of Oceanography, University of Hawai‘i at Mānoa, 1000 Pope Road, Honolulu, HI 96822, USA 5 Marine Biological Association, Citadel Hill, Plymouth, PL1 2PB, United Kingdom 6 E-mail: [email protected] Key words: Atlantic Ocean, biogeography, DNA barcoding, morphometrics, Protatlanta, shelled heteropod Abstract Introduction The genus Protatlanta is thought to be monotypic and is part of The genus Protatlanta Tesch, 1908 is one of three the Atlantidae, a family of shelled heteropods. These micro- shelled heteropod genera within the family Atlantidae. scopic planktonic gastropods are poorly known, although re- search on their ecology is now increasing in response to con- All members of the Atlantidae are microscopic (<12 cerns about the effects of ocean acidification on calcareous mm), holoplanktonic gastropods that have a foot mod- plankton. A correctly implemented taxonomy of the Atlantidae ified for swimming, a long proboscis, large, complex is fundamental to this progressing field of research and it re- eyes and flattened shells with keels. Defining charac- quires much attention, particularly using integrated molecular teristics of the three genera within the Atlantidae are and morphological techniques. -
Fracture Mechanics of Mollusc Shells
Fracture mechanics of mollusc shells Michael B.Cortie,a,* Katie E. McBean,b Margaret M. Elcombec aInstitute for Nanoscale Technology, University of Technology Sydney, Australia bMicrostructural Analysis Unit, University of Technology Sydney, Australia cBragg Institute, Australian Nuclear Science and Technology Organisation, PMB 1, NSW, Australia Elsevier use only: Received date here; revised date here; accepted date here Abstract The shape and structure of the shells of molluscs has attracted considerable attention. One aspect of interest is the comparatively high resistance to fracture of these shells. It is known that they are composite structures of aragonite, other calcereous materials, and up to 5% by volume of protein ‘glue’. A large component of their toughening derives from crack tip blunting, deflection and closure, concepts well-known from the field of fracture mechanics. However, the possibility that they might also derive a measure of toughening from a residual stress distribution has been generally overlooked, although Illert first raised this over a decade ago. The optimum situation would be when the inner surface of the shell is maintained in a state of tensile stress, while the outer layers are in the necessarily counter-balancing compressive state. We have examined this hypothesis using a combination of neutron diffraction and scanning electron microscopy and find that it is certainly feasible. However, a definitive proof will require a diffraction study at higher resolution. © 2006 Elsevier Science. All rights reserved Keywords: Mollusc shell, Fracture, Residual stress, Neutron diffraction The mathematically regular spirals of mollusc shells plastic deformation [5]. Although these microstructural (e.g.[1-3] and references therein) and their comparatively mechanisms certainly provide toughening, it might also be high resistance to fracture (e.g.[4,5]) have long been of worthwhile to consider an often overlooked proposal made interest. -
The Limpet Form in Gastropods: Evolution, Distribution, and Implications for the Comparative Study of History
UC Davis UC Davis Previously Published Works Title The limpet form in gastropods: Evolution, distribution, and implications for the comparative study of history Permalink https://escholarship.org/uc/item/8p93f8z8 Journal Biological Journal of the Linnean Society, 120(1) ISSN 0024-4066 Author Vermeij, GJ Publication Date 2017 DOI 10.1111/bij.12883 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Biological Journal of the Linnean Society, 2016, , – . With 1 figure. Biological Journal of the Linnean Society, 2017, 120 , 22–37. With 1 figures 2 G. J. VERMEIJ A B The limpet form in gastropods: evolution, distribution, and implications for the comparative study of history GEERAT J. VERMEIJ* Department of Earth and Planetary Science, University of California, Davis, Davis, CA,USA C D Received 19 April 2015; revised 30 June 2016; accepted for publication 30 June 2016 The limpet form – a cap-shaped or slipper-shaped univalved shell – convergently evolved in many gastropod lineages, but questions remain about when, how often, and under which circumstances it originated. Except for some predation-resistant limpets in shallow-water marine environments, limpets are not well adapted to intense competition and predation, leading to the prediction that they originated in refugial habitats where exposure to predators and competitors is low. A survey of fossil and living limpets indicates that the limpet form evolved independently in at least 54 lineages, with particularly frequent origins in early-diverging gastropod clades, as well as in Neritimorpha and Heterobranchia. There are at least 14 origins in freshwater and 10 in the deep sea, E F with known times ranging from the Cambrian to the Neogene. -
2006-2007 Intertidal Reef Biodiversity on Kangaroo
2006-2007 Kangaroo Island Natural Resources Management Board INTERTIDAL REEF BIODIVERSITY Intertidal Reef Biodiversity on Kangaroo Island – 2007 ON KANGAROO ISLAND 1 INTERTIDAL REEF BIODIVERSITY ON KANGAROO ISLAND Oceans of Blue: Coast, Estuarine and Marine Monitoring Program A report prepared for the Kangaroo Island Natural Resources Management Board by Kirsten Benkendorff Martine Kinloch Daniel Brock June 2007 2006-2007 Kangaroo Island Natural Resources Management Board Intertidal Reef Biodiversity on Kangaroo Island – 2007 2 Oceans of Blue The views expressed and the conclusions reached in this report are those of the author and not necessarily those of persons consulted. The Kangaroo Island Natural Resources Management Board shall not be responsible in any way whatsoever to any person who relies in whole or in part on the contents of this report. Project Officer Contact Details Martine Kinloch Coast and Marine Program Manager Kangaroo Island Natural Resources Management Board PO Box 665 Kingscote SA 5223 Phone: (08) 8553 4980 Fax: (08) 8553 0122 Email: [email protected] Kangaroo Island Natural Resources Management Board Contact Details Jeanette Gellard General Manager PO Box 665 Kingscote SA 5223 Phone: (08) 8553 0111 Fax: (08) 8553 0122 Email: [email protected] © Kangaroo Island Natural Resources Management Board This document may be reproduced in whole or part for the purpose of study or training, subject to the inclusion of an acknowledgment of the source and to its not being used for commercial purposes or sale. Reproduction for purposes other than those given above requires the prior written permission of the Kangaroo Island Natural Resources Management Board. -
Download Full Article 2.0MB .Pdf File
Memoirs of the National Museum of Victoria 12 April 1971 Port Phillip Bay Survey 2 https://doi.org/10.24199/j.mmv.1971.32.08 8 INTERTIDAL ECOLOGY OF PORT PHILLIP BAY WITH SYSTEMATIC LIST OF PLANTS AND ANIMALS By R. J. KING,* J. HOPE BLACKt and SOPHIE c. DUCKER* Abstract The zonation is recorded at 14 stations within Port Phillip Bay. Any special features of a station arc di�cusscd in �elation to the adjacent stations and the whole Bay. The intertidal plants and ammals are listed systematically with references, distribution within the Bay and relevant comment. 1. INTERTIDAL ECOLOGY South-western Bay-Areas 42, 49, 50 By R. J. KING and J. HOPE BLACK Arca 42: Station 21 St. Leonards 16 Oct. 69 Introduction Arca 49: Station 4 Swan Bay Jetty, 17 Sept. 69 This account is basically coneerncd with the distribution of intertidal plants and animals of Eastern Bay-Areas 23-24, 35-36, 47-48, 55 Port Phillip Bay. The benthic flora and fauna Arca 23, Station 20, Ricketts Pt., 30 Sept. 69 have been dealt with in separate papers (Mem Area 55: Station 15 Schnapper Pt. 25 May oir 27 and present volume). 70 Following preliminary investigations, 14 Area 55: Station 13 Fossil Beach 25 May stations were selected for detailed study in such 70 a way that all regions and all major geological formations were represented. These localities Southern Bay-Areas 60-64, 67-70 are listed below and are shown in Figure 1. Arca 63: Station 24 Martha Pt. 25 May 70 For ease of comparison with Womersley Port Phillip Heads-Areas 58-59 (1966), in his paper on the subtidal algae, the Area 58: Station 10 Quecnscliff, 12 Mar. -
Vertical Migration During the Life History of the Intertidal Gastropod Monodonta Labio on a Boulder Shore
MARINE ECOLOGY PROGRESS SERIES Published January 11 Mar Ecol Prog Ser Vertical migration during the life history of the intertidal gastropod Monodonta labio on a boulder shore Yoshitake Takada* Amakusa Marine Biological Laboratory, Kyushu University, Arnakusa. Kumamoto 863-25, Japan ABSTRACT: Environmental and biological conditions of the intertidal zone vary according to tidal level. Monodonta labjo (Gastropods; trochidae) occurs over the whole range of the intertidal zone, but juveniles occur only in the mid intertidal zone. In this study, vertical migration of this snail was investi- gated by mark-recapture techniques for 1 yr at Amakusa, Japan. Snails migrated vertically throughout the year, but varied with season and size. Generally, juvenile snails (<? mm in shell width) did not actively migrate. Upward migration was conspicuous only in small snails (7 to 10 mm) in summer. Downward migration was greatest in the larger size classes Thus, large snails (>l3 mm) gradually migrated downward to the lower zone. Seasonal fluctuations In the vertical distribution pattern of M. labio could be explained by this vertical migration. Possible factors affecting this vertical migration and the adaptive significance of migration in the life history of M. labio are discussed. KEY WORDS: Seasonal migration . Size . Herbivorous snail . Life history . lntertidal zone INTRODUCTION (McQuaid 1982), escape from strong wave action (McQuaid 1981), and maximization of reproductive Vertical migration of intertidal gastropods is one of output (Paine 1969).As growth rate, survival rate, and the main factors determining vertical distribution fecundity vary with tidal level, the life history of indi- (Smith & Newel1 1955, Frank 1965, Breen 1972, Gal- vidual snails can be considered to be determined by lagher & Reid 1979, review in Underwood 1979), and is their migration history. -
The Growth and Reproduction of the Freshwater Limpet
The Growth and Reproduction of the Freshwater Limpet Burnupia stenochorias (Pulmonata, Ancylidae), and An Evaluation of its Use As An Ecotoxicology Indicator in Whole Effluent Testing A thesis submitted in fulfilment of the requirements for the degree of DOCTOR OF PHILOSOPHY of RHODES UNIVERSITY by HEATHER DENISE DAVIES-COLEMAN September 2001 ABSTRACT For the protection of the ecological Reserve in South Africa, the proposed introduction of compulsory toxicity testing in the licensing of effluent discharges necessitates the development of whole effluent toxicity testing. The elucidation of the effects of effluent on the local indigenous populations of organisms is essential before hazard and risk assessment can be undertaken. The limpet Burnupia stenochorias, prevalent in the Eastern Cape of South Africa, was chosen to represent the freshwater molluscs as a potential toxicity indicator. Using potassium dichromate (as a reference toxicant) and a textile whole effluent, the suitability of B. stenochorias was assessed under both acute and chronic toxicity conditions in the laboratory. In support of the toxicity studies, aspects of the biology of B. stenochorias were investigated under both natural and laboratory conditions. Using Principal Component and Discriminant Function Analyses, the relative shell morphometrics of three feral populations of B. stenochorias were found to vary. Length was shown to adequately represent growth of the shell, although the inclusion of width measurements is more statistically preferable. Two of the feral populations, one in impacted water, were studied weekly for 52 weeks to assess natural population dynamics. Based on the Von Bertalanffy Growth Equation, estimates of growth and longevity were made for this species, with growth highly seasonal. -
An Integrative Approach Using Biochemical, Life History and Transcriptomic Markers to Develop a Mechanistic Understanding of Response
The response of Isidorella newcombi to copper exposure: An integrative approach using biochemical, life history and transcriptomic markers to develop a mechanistic understanding of response Rodney P. Ubrihien This thesis is submitted in fulfilment of the requirements for the degree of Doctor of Philosophy July 2018 Institute for Applied Ecology University of Canberra Australia Acknowledgements Acknowledgements I would like to thank my supervisors Bill Maher, Anne Taylor, Tariq Ezaz and Mark Stevens for their guidance through this project. Throughout the process they have provided support, inspiration, knowledge and experience. To other people who have helped me with academic, administrative and technical assistance throughout the project thank you. These include; Simon Foster for advice and analysis of samples, Frank Krikowa for analysis of samples, the ESTeM faculty technical staff who have always gone out of their way to help (especially Pat Ceeney and Tom Long), and the IAE admin team for excellent support (especially Barbara Harriss). The Institute for Applied Ecology supported me through a top-up scholarship during my candidature making it possible for me to undertake the project. For assistance with maintaining of my sanity through the PhD process I would like to thank the Dungeon crew, current and past, including Teresa, Yaz, Jill, Eman, Chamani and Rajani as well as other PhD students including Jonas, Margi, Al, Sal, Adrian and Andrew. To Jen, my partner in life, I thank you for persisting and supporting me through the PhD journey. Without your support in so many ways this project would not have been possible. iii Abstract Abstract The widespread extraction, processing and use of Cu in modern society has caused Cu concentrations to become elevated in the environment.