Potential Impact of Climate and Land Use Changes on the Water Resources Of

Total Page:16

File Type:pdf, Size:1020Kb

Potential Impact of Climate and Land Use Changes on the Water Resources Of Potential Impact of Climate and Land Use Changes on the Water Resources of the upper Blue Nile Basin Michael Menker Girma Freie University of Berlin 6/19/2012 Department of Earth Sciences Institute for Geographical Sciences, Physical Geography Potential Impact of Climate and Land Use Changes on the Water Resources of the Upper Blue Nile Basin A Dissertation Submitted in fulfillment of the requirements for the degree of Dr. rer.nat to the Freie Universität Berlin by MICHAEL MENKER GIRMA Berlin, June 2012 Supervisor: Univ.-Prof. Dr. Brigitta Schütt Second examiner: Jun.-Prof. Dr. Wiebke Bebermeier Date of the viva voce/defense: June 19, 2012 Copyright © 2012, by Michael Menker Girma, All rights reserved i DEDICATION This is dedicated to WUBET ZEWDU ii ACKNOWLEDGEMENTS I would like to thank my advisor Prof. Brigitta Schütt for her constructive comments and suggestions on the draft of this dissertation and for providing professional support and space during the whole period of the research. This research was supported by the Deutscher Akademischer Austauschdienst (DAAD) through a study grant. The field work was sponsored by the International Water Management Institute (IWMI) as part of its research project, Rethinking Water Storage for Climate Change Adaptation. Dr. Seleshi Bekele, Dr. Matthew McCartney, and Dr. Fred Hatterman provided technical assistance during the implementation of this research project and deserve special thanks. I want to express my appreciation to Dr. Amare Haileslassie for his encouragement and cooperation in providing useful information for the research at the start of this research project. I want to acknowledge the assistance of the Ethiopian Meteorological Agency, the Ethiopian Ministry of Water Resources, the Ethiopian Electric Power Corporation and the Potsdam Institute for Climate Impact Research (PIK) in providing data for the research. I would like to express my appreciation to Pasquale Borelli, Maik Blättermann, Marlen Schlöffel, Zyliad and Steffen Schneider from Freie University of Berlin; Tobias Vater from PIK and Yordanos Abel from Berlin for their friendship and/or for their assistance while I was having personal difficulties in Germany. Solomon Bokasa from the Metahara sugar state and Tesfaye Dejene from the International Livestock Research Institute played significant role during the field work of this research project. Finally special thanks go to Dr. med. Holger Mellerowicz from the Emil von Behring Krankenhaus, Berlin, Dr. Axel Panzer from the DRK-Kliniken Westend, Berlin, my wife Elsabeth Demissie and my daughter Hermela Michael. This PhD work wouldn’t have been a reality without their kindness and unreserved assistance. Michael Menker Girma iii TABLE OF CONTENTS Pages ACKNOWLEDGEMENTS ........................................................................................................................... iii LIST OF TABLES ....................................................................................................................................... vii LIST OF FIGURES .................................................................................................................................... viii ACRONYMS AND ABBREVIATIONS ........................................................................................................... x ABSTRACT ............................................................................................................................................ xi ZUSAMMENFASSUNG ........................................................................................................................... xiii CHAPTER 1 INTRODUCTION ..................................................................................................................... 1 1.1 Hydrological impact of climate and land use change in the upper Blue Nile basin ....................... 1 1.2 Implications of climate change in the upper Blue Nile basin ......................................................... 2 CHAPTER 2 STATE OF THE ART ................................................................................................................. 5 2.1 Global circulation models and climate scenarios .......................................................................... 5 2.2 Climate change scenarios .............................................................................................................. 5 2.3 Observed regional trends in temperature and rainfall in the Nile Basin ....................................... 9 2.4 Climate change in the Nile basin .................................................................................................. 10 2.5 Land use change and the upper Blue Nile basin .......................................................................... 11 CHAPTER 3 METHODS and DATA USED ................................................................................................. 13 3.1 Overall design............................................................................................................................... 13 3.2 Data used ..................................................................................................................................... 14 3.2.1 Observed climate data .......................................................................................................... 14 3.2.2 Monthly reanalysis data ........................................................................................................ 15 3.2.3 Monthly global circulation model scenarios ......................................................................... 16 3.2.4 Downscaled regional data ..................................................................................................... 16 3.2.5 Land use soil and digital elevation model data ..................................................................... 16 3.2.6 Hydrologic data ..................................................................................................................... 17 3.3 Software used .............................................................................................................................. 18 3.4 Statistical analysis ........................................................................................................................ 18 CHAPTER 4 STUDY AREA ........................................................................................................................ 19 4.1 The upper Blue Nile basin ............................................................................................................ 19 4.2 Climate ......................................................................................................................................... 19 4.3 Relief ............................................................................................................................................ 21 4.4 Hydrology ..................................................................................................................................... 21 4.5 Soils .............................................................................................................................................. 24 4.6 Land use and land cover .............................................................................................................. 27 iv CHAPTER 5 CLIMATE DOWNSCALING .................................................................................................... 29 5.1 Statistical downscaling of rainfall ................................................................................................ 29 5.1.1 Selection of climate stations ................................................................................................. 29 5.1 2 Predictors for statistical downscaling ................................................................................... 30 5.1.3 Statistical downscaling .......................................................................................................... 31 5.1.4 Selection of domains ............................................................................................................. 32 5.1.5 Effect of combined predictors from different domains ........................................................ 34 5.1.6 Calibration and validation of statistical downscaling models ............................................... 34 5.1.7 Simulation of future climate scenarios ................................................................................. 39 5.2 Dynamical downscaling of temperature and rainfall ................................................................... 40 5.2.1 Regional model descriptions ................................................................................................. 40 5.2.2 Observed data ....................................................................................................................... 42 5.2.3 Bias correction ...................................................................................................................... 42 5.2.4 Changes in rainfall and temperature at basin level .............................................................. 43 5.2.5 Changes in rainfall and temperature at sub basin level ....................................................... 47 CHAPTERS 6 LAND USE CHANGE SCENARIOS IN THE UPPER BLUE NILE BASIN ..................................... 51 6.1 Description of land use and land cover based on field investigation .........................................
Recommended publications
  • Pulses in Ethiopia, Their Taxonomy and Agricultural Significance E.Westphal
    Pulses in Ethiopia, their taxonomy andagricultura l significance E.Westphal JN08201,579 E.Westpha l Pulses in Ethiopia, their taxonomy and agricultural significance Proefschrift terverkrijgin g van degraa dva n doctori nd elandbouwwetenschappen , opgeza gva n derecto r magnificus, prof.dr .ir .H .A . Leniger, hoogleraar ind etechnologie , inne t openbaar teverdedige n opvrijda g 15 maart 1974 desnamiddag st evie ruu r ind eaul ava nd eLandbouwhogeschoo lt eWageninge n Centrefor AgriculturalPublishing and Documentation Wageningen- 8February 1974 46° 48° TOWNS AND VILLAGES DEBRE BIRHAN 56 MAJI DEBRE SINA 57 BUTAJIRA KARA KORE 58 HOSAINA KOMBOLCHA 59 DE8RE ZEIT (BISHUFTU) BATI 60 MOJO TENDAHO 61 MAKI SERDO 62 ADAMI TULU 8 ASSAB 63 SHASHAMANE 9 WOLDYA 64 SODDO 10 KOBO 66 BULKI 11 ALAMATA 66 BAKO 12 LALIBELA 67 GIDOLE 13 SOKOTA 68 GIARSO 14 MAICHEW 69 YABELO 15 ENDA MEDHANE ALEM 70 BURJI 16 ABIYAOI 71 AGERE MARIAM 17 AXUM 72 FISHA GENET 16 ADUA 73 YIRGA CHAFFE 19 ADIGRAT 74 DILA 20 SENAFE 75 WONDO 21 ADI KAYEH 76 YIRGA ALEM 22 ADI UGRI 77 AGERE SELAM 23 DEKEMHARE 78 KEBRE MENGIST (ADOLA) 24 MASSAWA 79 NEGELLI 25 KEREN 80 MEGA 26 AGOROAT 81 MOYALE 27 BARENIU 82 DOLO 28 TESENEY 83 EL KERE 29 OM HAJER 84 GINIR 30 DEBAREK 85 ADABA 31 METEMA 86 DODOLA 32 GORGORA 87 BEKOJI 33 ADDIS ZEMEN 88 TICHO 34 DEBRE TABOR 89 NAZRET (ADAMA 35 BAHAR DAR 90 METAHARA 36 DANGLA 91 AWASH 37 INJIBARA 92 MIESO 38 GUBA 93 ASBE TEFERI 39 BURE 94 BEDESSA 40 DEMBECHA 95 GELEMSO 41 FICHE 96 HIRNA 42 AGERE HIWET (AMB3) 97 KOBBO 43 BAKO (SHOA) 98 DIRE DAWA 44 GIMBI 99 ALEMAYA
    [Show full text]
  • Groundwater in Ethiopia
    Springer Hydrogeology Groundwater in Ethiopia Features, Numbers and Opportunities Bearbeitet von Seifu Kebede 1. Auflage 2012. Buch. xiv, 283 S. Hardcover ISBN 978 3 642 30390 6 Format (B x L): 15,5 x 23,5 cm Gewicht: 613 g Weitere Fachgebiete > Geologie, Geographie, Klima, Umwelt > Geologie > Hydrologie, Hydrogeologie Zu Inhaltsverzeichnis schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte. Chapter 2 Groundwater Occurrence in Regions and Basins 2.1 The Broad (Oligo-Miocene) Volcanic Plateau and Associated Shields Geology and Stratigraphy The broad volcanic plateau (Fig. 1.2) accounts for about 25 % of Ethiopian land- mass. The Ethiopian volcanic plateau is a thick monotonous, rapidly erupted pile of locally deformed, flat lying basalts consisting of a number of volcanic centers with different magmatic character and with a large range of ages. The trap volcanics including the associated shield volcanoes cover an area at least 6 9 105 km2 (around two-third surface of the country), and a total volume estimated to be at least 3.5 9 105 km3 (Mohr 1983) and probably higher than 1.2 9 106 km3 according to Rochette et al. (1998). Flat-topped hills and nearly horizontal lava flows is a common scene in the broad volcanic plateau. Topographic features of the basaltic plateau are vertical cliffs, waterfalls, V-shaped valleys, vertical and mushroom-like outcrops of columnar basalts, and step-like hill terraces.
    [Show full text]
  • Revision of the Genus Ficus L. (Moraceae) in Ethiopia (Primitiae Africanae Xi)
    582.635.34(63) MEDEDELINGEN LANDBOUWHOGESCHOOL WAGENINGEN • NEDERLAND • 79-3 (1979) REVISION OF THE GENUS FICUS L. (MORACEAE) IN ETHIOPIA (PRIMITIAE AFRICANAE XI) G. AWEKE Laboratory of Plant Taxonomy and Plant Geography, Agricultural University, Wageningen, The Netherlands Received l-IX-1978 Date of publication 27-4-1979 H. VEENMAN & ZONEN B.V.-WAGENINGEN-1979 BIBLIOTHEEK T)V'. CONTENTS page INTRODUCTION 1 General remarks 1 Uses, actual andpossible , of Ficus 1 Method andarrangemen t ofth e revision 2 FICUS L 4 KEY TOTH E FICUS SPECIES IN ETHIOPIA 6 ALPHABETICAL TREATMENT OFETHIOPIA N FICUS SPECIES 9 Ficus abutilifolia (MIQUEL)MIQUEL 9 capreaefolia DELILE 11 carica LINNAEUS 15 dicranostyla MILDBRAED ' 18 exasperata VAHL 21 glumosu DELILE 25 gnaphalocarpa (MIQUEL) A. RICHARD 29 hochstetteri (MIQUEL) A. RICHARD 33 lutea VAHL 37 mallotocarpa WARBURG 41 ovata VAHL 45 palmata FORSKÀL 48 platyphylla DELILE 54 populifolia VAHL 56 ruspolii WARBURG 60 salicifolia VAHL 62 sur FORSKÂL 66 sycomorus LINNAEUS 72 thonningi BLUME 78 vallis-choudae DELILE 84 vasta FORSKÂL 88 vogelii (MIQ.) MIQ 93 SOME NOTES ON FIGS AND FIG-WASPS IN ETHIOPIA 97 Infrageneric classification of Hewsaccordin gt o HUTCHINSON, related to wasp-genera ... 99 Fig-wasp species collected from Ethiopian figs (Agaonid associations known from extra- limitalsample sadde d inparentheses ) 99 REJECTED NAMES ORTAX A 103 SUMMARY 105 ACKNOWLEDGEMENTS 106 LITERATURE REFERENCES 108 INDEX 112 INTRODUCTION GENERAL REMARKS Ethiopia is as regards its wild and cultivated plants, a recognized centre of genetically important taxa. Among its economic resources, agriculture takes first place. For this reason, a thorough knowledge of the Ethiopian plant cover - its constituent taxa, their morphology, life-cycle, cytogenetics etc.
    [Show full text]
  • Flow Regime and Land Cover Changes in the Didessa Sub-Basin of the Blue Nile River, South - Western Ethiopia
    Flow Regime and Land Cover Changes In the Didessa Sub-Basin of the Blue Nile River, South - Western Ethiopia: Combining Empirical Analysis and Community Perception Swedish University of Agricultural Sciences Master thesis Study (EX0658) Integrated Water Resource Management Program Department of Aquatic Science and Assessment Department of Urban and Rural Development Swedish University of Agricultural Sciences (SLU) Uppsala, 2011 Sweden Sima, Bizuneh Admassu Flow Regime and Land Cover Changes in the Didessa Sub-Basin of the Blue Nile River, South-Western Ethiopia: Combining Empirical Analysis and Community Perception EX0658 Master Thesis in Integrated Water Resource Management, 30hp, Master E, Department of Aquatic Science and Assessment Department of Urban and Rural Development SLU, Swedish University of Agricultural Sciences Uppsala, 2011 Sima, Bizuneh Admassu Supervisors: Kevin Bishop Professor of Environmental Assessment Department of Aquatic Science and Assessment Swedish University of Agricultural Sciences Solomon Gebrehiwot Doctoral Student Department of Aquatic Science and Assessment Swedish University of Agricultural Sciences Uppsala Examiners Nadarajah Sriskandarajah Professor of Environmental Communication Department of Urban and Rural Development Swedish University of Agricultural Sciences Ashok Swain Director, Uppsala Center for Sustainable Development Professor of Peace and Conflict Research Department of Peace and Conflict Research Uppsala University Uppsala Key words: Ethiopia, Blue Nile, Didessa Sub-basin, Flow Regime, land cover change, Community Perception E-mail Address of the Author: [email protected] / [email protected] Acknowledgement First and foremost I would like to express my sincere thankfulness to my main thesis supervisor Professor Kevin Bishop for financial support of my stay in the field, patient guidance, excellent and critical supervision and ever reaching cooperation during the all process of this thesis work.
    [Show full text]
  • Local History of Ethiopia
    Local History of Ethiopia Bal - Barye Gemb © Bernhard Lindahl (2005) bal (Som) large leaf; (Gimirra) kind of tall tree, Sapium ellipticum; (A) 1. master, husband; 2. holiday, festival HDE67 Bal 08°43'/39°07' 1984 m, east of Debre Zeyt 08/39 [Gz] JCS80 Bal Dhola (area) 08/42 [WO] JDD51 Bal Gi (area) 08/42 [WO] bala, balaa (O) wicked spirit, devil; baala (O) leaf HCC42c Bala 05/36 [x] Area in the middle of the Male-inhabited district. The headman of the Male lived there in the 1950s. HEM84 Bala 12°29'/39°46' 1787 m 12/39 [Gz] balag- (O) sparkle; balage (O) mannerless, rude; balege (baläge) (A) rude, rough, without shame; balager (balagär) (A) 1. local inhabitant; 2. rural, rustic HCB00c Balage Sefer (Balaghe Safar) (caravan stop) 05/35 [+ Gu] In a forest glade with a single large slab of black rock, without water. [Guida 1938] KCN63 Balagel (Balaghel, Balagal) 07°47'/45°05' 723 m 07/45 [+ WO Gz] HEU12 Balago 12°50'/39°32' 2533 m 12/39 [Gz] HEB65 Balaia, see Belaya ?? Balake (river) ../.. [Mi] An affluent of Sai which is a left affluent of the Didessa river. Small-scale production of gold may have taken place in 1940. [Mineral 1966] balakiya: belaka (bälaka) (T) you have eaten; balakie (O) peasant JFA84 Balakiya (Balakia, Balachia) (mountain) 14/40 [+ Ne WO Gz] 14°18'/40°08' 307, 1210 m HEL34 Balakurda 12°04'/38°51' 2008 m 12/38 [Gz] HBL85 Balala (Ballale), see Belale HBP81 Balala 05°20'/35°51' 606 m 05/35 [WO Gz] Balala, near the border of Sudan JDS23 Balale (area) 10/42 [WO] balamba (= bal amba) (A) mountain man? JCL89 Balamba (Balambal)
    [Show full text]
  • List of Rivers of Ethiopia
    Sl. No Name Location (Flowing into) Location (Lake) 1 Adar River (South Sudan) The Mediterranean 2 Akaki River Endorheic basins Afar Depression 3 Akobo River The Mediterranean 4 Ala River Endorheic basins Afar Depression 5 Alero River (or Alwero River) The Mediterranean 6 Angereb River (or Greater Angereb River) The Mediterranean 7 Ataba River The Mediterranean 8 Ataye River Endorheic basins Afar Depression 9 Atbarah River The Mediterranean 10 Awash River Endorheic basins Afar Depression 11 Balagas River The Mediterranean 12 Baro River The Mediterranean 13 Bashilo River The Mediterranean 14 Beles River The Mediterranean 15 Bilate River Endorheic basins Lake Abaya 16 Birbir River The Mediterranean 17 Blue Nile (or Abay River) The Mediterranean 18 Borkana River Endorheic basins Afar Depression 19 Checheho River The Mediterranean 20 Dabus River The Mediterranean 21 Daga River (Deqe Sonka Shet) The Mediterranean 22 Dawa River The Indian Ocean 23 Dechatu River Endorheic basins Afar Depression 24 Dembi River The Mediterranean 25 Denchya River Endorheic basins Lake Turkana 26 Didessa River The Mediterranean 27 Dinder River The Mediterranean 28 Dipa River The Mediterranean 29 Dungeta River The Indian Ocean 30 Durkham River Endorheic basins Afar Depression 31 Erer River The Indian Ocean 32 Fafen River (only reaches the Shebelle in times of flood) The Indian Ocean 33 Galetti River The Indian Ocean 34 Ganale Dorya River The Indian Ocean 35 Gebba River The Mediterranean 36 Germama River (or Kasam River) Endorheic basins Afar Depression 37 Gibe River
    [Show full text]
  • 2-Reem-Phd Thesis-Draft-21-2020-04-17-Final W
    Optimizing the Operation of a Multiple Reservoir System in the Eastern Nile Basin Considering Water and Sediment Fluxes Reem Fikri Mohamed Osman Digna OPTIMIZING THE OPERATION OF A MULTIPLE RESERVOIR SYSTEM IN THE EASTERN NILE BASIN CONSIDERING WATER AND SEDIMENT FLUXES Reem Fikri Mohamed Osman Digna OPTIMIZING THE OPERATION OF A MULTIPLE RESERVOIR SYSTEM IN THE EASTERN NILE BASIN CONSIDERING WATER AND SEDIMENT FLUXES DISSERTATION Submitted in fulfillment of the requirements of the Board for Doctorates of Delft University of Technology and of the Academic Board of the IHE Delft Institute for Water Education for the Degree of DOCTOR to be defended in public on Tuesday 26 May 2020, at 15:00 hours in Delft, the Netherlands by Reem Fikri Mohamed Osman DIGNA Master of Science in Water Resources Engineering, University of Khartoum born in Khartoum, Sudan iii This dissertation has been approved by the promotors: Prof.dr.ir. P. van der Zaag IHE Delft / TU Delft Prof.dr. S. Uhlenbrook IHE Delft / TU Delft and copromotor Dr. Y. A. Mohamed IHE Delft Composition of the doctoral committee: Rector Magnificus TU Delft Chairman Rector IHE Delft Vice-Chairman Prof. dr.ir. P. van der Zaag IHE Delft / TU Delft, promotor Prof. dr. S. Uhlenbrook IHE Delft / TU Delft, promotor Dr. Y. Mohamed IHE Delft, copromotor Independent members: Prof.dr. D. P. Solomatine IHE Delft / TU Delft Prof.dr. G.P.W. Jewitt IHE Delft / University of Kwazulu-Natal, South Africa Prof.dr. E. Van Beek University of Twente Prof.dr. S. Hamad NBI, Uganda Prof.dr. M.J. Franca TU Delft,
    [Show full text]
  • The Derg-SPLM/A Cooperation: an Aspect of Ethio-Sudan Proxy Wars
    The Derg-SPLM/A Cooperation: An Aspect of Ethio-Sudan Proxy Wars Regassa Bayissa∗ Abstract The warm and friendly Ethio-Sudan diplomatic relations that followed Sudan’s independence in 1956 and the long standing frontier trade between the two countries have been severely damaged by the outbreak of civil wars in southern Sudan in 1955 as well as in Eritrea in 1962. As the civil wars intensified in both countries, the influx of refugees and insurgents across their common border took place. Internal political and socio-economic problems in Ethiopia and the Sudan, together with super-power rivalries in the Horn brought about periods of increasing hostilities between the two countries. On a tit for tat basis, both the Imperial and military governments of Ethiopia and the successive governments of the Sudan came to encourage and assist cross-border guerrilla forces from either side. Thus, animosity rather than cooperation characterized relations between the Sudan and Ethiopia until the fall of the Derg in 1991. Keywords: Derg, Ethio-sudan relations, SPLM/A, proxy wars Introduction The Upper Nile and Jonglei regions of Southern Sudan bordering Gambella and the Gambella region itself were intensively affected by the wars between the governments of the Sudan and the Anyanya I (the southern Sudan Guerilla group in the first civil war 1955- 1972), the SPLA (Sudan People’s Liberation Army of the second civil war 1983-2005), the Lou-Jikany conflict (1993-1994), the armed conflicts following the splits within the SPLM/A and the South Sudan Independence Movement Army (SSIM/A) 1991-2005). The Sudan governments claimed that Ethiopia was supporting the South Sudan guerrillas struggling to secede from the north while the governments of Ethiopia accused successive Sudanese governments of material and moral support to the Eritrean secessionist movements.
    [Show full text]
  • Local History of Ethiopia : Raayo
    Local History of Ethiopia Raayo - Ryke © Bernhard Lindahl (2005) HFE66 Raayo (Ra'ayo) (mountain) 14°12'/39°00' 2525 m 14/39 [Gz] east of Adwa rab (A) hunger, famine; (Som) 1. narrow place; 2. want, desire JED01 Rab (area & place) c700 m 10/42 [WO Gu] Railway station 25 km inside Ethiopia. raba (O) age grade 24-32 years of the Oromo gada system, regarded as the senior warriors JDJ70 Rabal (area), cf Rabel 09/41 [WO] ?? Rabat ../.. [Yo] In 1982 the TPLF negotiated permission by the Afar to operate a base at Rabat in the isolated Magale area. [Young 1997] rabassa: rabbaas (Som) jump /repeatedly/; rabash (Som) trouble, nuisance JDR10 Rabassa (area) 10/41 [WO] rabbi (O,Som) God HCF65 Rabbi 05°58'/39°48' 1301 m, cf Rebbi .. 05/39 [WO Gz] HEU... Rabea (village) see under Mekele 13/39 [n] HDU54 Rabel 10°27'/39°42' 2390 m, south-east of Were Ilu 10/39 [Gz] HDU63 Rabel (Rabiel) 10°33'/39°36' 2965 m 10/39 [Gz Ad] south-east of Were Ilu (centre in 1964 of Gishe wereda) /this Rabel?:/ The first airdrop of relief food was carried out on 13 February 1985 near Rabel, a village situated on a high plateau about 250 km north-east of Addis Abeba. "RRC agreed to the airdrop and gradually became a strong supporter of the operation which utilised a new airdropping technique developed in the United States. The grain was rebagged into double or triple sacks containing 25 kg each and placed on wooden pallets which were dropped from a height of 6 to 10 metres above the ground.
    [Show full text]
  • Arjo Didessa Reservoir Water Evaluation and Application System
    Arjo Didessa reservoir water Evaluation and application system A THESIS SUBMITTED TO SCHOOL OF GRADUATE STUDIES ADDIS ABABA UNIVERSITY INSTITUTE OF TECHNOLOGY (AAiT) Title: Arjo Didessa reservoir water Evaluation and allocation system MSc. Thesis By Ebisa Abiram Advisor: Dr.Ing. Dereje Hailu ADDIS ABABA UNIVERSITY October, 2018 Arjo Didessa reservoir water Evaluation and application system Submitted by Ebisa Abiram __________ ___________ Student Signature Date Approved by Dr. Ing.Dereje Hailu _____________ __________ Advisor Signature Date _____________ __________ External examiner Signature Date _____________ __________ Internal examiner Signature Date Dr.Agizew Nigussie _____________ __________ Dean, School of Civil and Signature Date Environmental Engineering _____________ __________ Director of Postgraduate Program Signature Date Arjo Didessa reservoir water Evaluation and allocation system Acknowledgment My deep appreciation goes to my gratitude to my advisor Dr. Ing Dereje Hailu of Addis Ababa University for his encouragement, advice, support and, his valuable guidance throughout the course of this study and, all his contribution through materials support and also his trust and confidence makes me to work on my interest topic. I would like to acknowledge the Ministry of Water Resource particularly hydrology and Library; Oromia Water works & Design enterprise (OWWDE); for their appreciable supporting by providing me hydrological data and other reference materials; and the Ethiopia Meteorological Service Agency for providing me the relevant data and information required free of payment. My deepest thank is to my beloved parents. Their unconditional love, inspiration and always encouraging me, support me, and give me strength to go through my study. A special group of friends also supported me through their friendship and professional help; among them I would like to mention: Yohanis.D who stands with me through contribution his appreciable ideas.
    [Show full text]
  • Ethiopia): Findings from a DEM Michal Kusák1,*, Vít Vilímek2, Jozef Minár3
    Original Article 129 Influence of neotectonics on land surface evolution in the upper part of the Blue Nile Basin (Ethiopia): findings from a DEM Michal Kusák1,*, Vít Vilímek2, Jozef Minár3 1 Institute of Rock Structure and Mechanics of the Czech Academy of Sciences, Czech Republic 2 Charles University, Faculty of Science, Department of Physical Geography and Geoecology, Czech Republic 3 Comenius University in Bratislava, Faculty of Natural Sciences, Department of Physical Geography and Geoecology, Slovak Republic * Corresponding author: [email protected] ABSTRACT The morphometric analysis of lineaments, valleys and signs of erosion taken from a digital elevation model (DEM) made it possible to not only confirm most of the conclusions of the morphotectonic development of the Blue Nile Basin from the previously pub- lished results of structural, petrological, tectonic and geochronological analyses, but also to expand our knowledge by applying several new hypotheses. The relative age of the morpholineaments of particular directions was estimated from the character of topographic profiles. Faults, lineaments and valleys are predominantly oriented in a direction compatible to the published concepts of the tectonic development of the area. Overall, the most abundant NE-SW and NNE-SSW lines reflect a change of extension from a NW-SE to WNW-ESE direction during the Pliocene, in relation to the creation and development of the Main Ethiopian Rift (MER). This is confirmed by a more developed character of the valleys and less pronounced erosion activity of the NE-SW oriented valleys contrary to the deeper narrower NNE-SSW valleys characterised by downward and headward erosion in the second direction.
    [Show full text]
  • Hydrological Responses to Land Use Land Cover Changes in the Fincha’A Watershed, Ethiopia
    land Article Hydrological Responses to Land Use Land Cover Changes in the Fincha’a Watershed, Ethiopia Urgessa Kenea 1, Dereje Adeba 1, Motuma Shiferaw Regasa 2 and Michael Nones 2,* 1 Department of Hydraulic and Water Resources Engineering, Institute of Engineering and Technology, Wollega University, 395 Nekemte, Oromia Region, Ethiopia; [email protected] (U.K.); [email protected] (D.A.) 2 Department of Hydrology and Hydrodynamics, Institute of Geophysics Polish, Academy of Sciences, 01-452 Warsaw, Poland; [email protected] * Correspondence: [email protected] Abstract: Land use land cover (LULC) changes are highly pronounced in African countries, as they are characterized by an agriculture-based economy and a rapidly growing population. Understanding how land use/cover changes (LULCC) influence watershed hydrology will enable local governments and policymakers to formulate and implement effective and appropriate response strategies to minimize the undesirable effects of future land use/cover change or modification and sustain the local socio-economic situation. The hydrological response of the Ethiopia Fincha’a watershed to LULCC that happened during 25 years was investigated, comparing the situation in three reference years: 1994, 2004, and 2018. The information was derived from Landsat sensors, respectively Landsat 5 TM, Landsat 7 ETM, and Landsat 8 OLI/TIRS. The various LULC classes were derived via ArcGIS using a supervised classification system, and the accuracy assessment was done using confusion matrixes. For all the years investigated, the overall accuracies and the kappa coefficients were higher than 80%, with 2018 as the more accurate year. The analysis of LULCC revealed that forest decreased Citation: Kenea, U.; Adeba, D.; by 20.0% between the years 1994–2004, and it decreased by 11.8% in the following period 2004–2018.
    [Show full text]