International Journal of Fluid Machinery and Systems DOI: http://dx.doi.org/10.5293/IJFMS.2018.11.1.063 Vol. 11, No. 1, January-March 2018 ISSN (Online): 1882-9554 Original Paper Review of Fluid Structure Interaction Methods Application to Floating Wave Energy Converter Mohammed Asid Zullah1, Young-Ho Lee2 1Geoscience, Energy and Maritime Division, Pacific Community, Private Mail Bag, Suva, Fiji,
[email protected] 2Division of Mechanical Engineering, College of Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-Gu, Busan 49112, South Korea,
[email protected] Abstract Computational fluid dynamics (CFD) is a highly efficient paradigm that is used extensively in marine renewable energy research studies and commercial applications. The CFD paradigm is ideal for simulating the complex dynamics of Fluid-Structure Interactions (FSI) and can capture all kinds of nonlinear fluid motions. While nonlinear simulations are considered more expensive and resource intensive compared to the frequency domain approaches, they are much more accurate and ideal for commercial applications. This review study presents a comprehensive overview of the computation fluid dynamics paradigm in context of wave energy converter (WEC) and highlights different CFD tools that are available today for commercial and research applications. State-of-the-art CFD codes such as ANSYS CFX that are highly ideal for WEC simulation problems are highlighted and aspects such as time and frequency domains are also thoroughly discussed along with efficacy of the nonlinear simulations compared to the linear models. The paper presents a comparative evaluation of different WEC modelling codes available today and illustrates the code framework of different CFD simulation software suites.