Reinventing Space Conference 2017
Total Page:16
File Type:pdf, Size:1020Kb
Journal of the British Interplanetary Society VOLUME 71 NO.7 JULY 2018 Reinventing Space Conference 2017 RIGID BOOM ELECTRODYNAMIC TETHERS for Satellite De-orbiting and Propulsion Alexandru Cornogolub, Craig Underwood and Philipp Voigt A NEW APPROACH ON THE PHYSICAL ARCHITECTURE of CubeSats & PocketQubes J. Bouwmeester, E.K.A. Gill, S. Speretta and M.S. Uludag ADVANCING ON ORBIT ASSEMBLY with the Intelligent Space Assembly Robotic System: the Path to Flight Dakota Wenberg, Thomas Lai, Bianca Rubiocastaneda and Jin Kang WHY NOT VIDEO FROM SPACE? Alex da Silva Curiel APPLYING COMMERCIAL OFF-THE-SHELF SENSORS for Close Range Distance Measurement in Space Martin Grimm and Burkart Voß DEFINING THE POLISH SPACE POLICY In Search of Technological Niches for the Emerging National Space Sector Marcin Kamassa www.bis-space.com ISSN 0007-084X PUBLICATION DATE: 20 DECEMBER 2018 Submitting papers International Advisory Board to JBIS JBIS welcomes the submission of technical Rachel Armstrong, Newcastle University, UK papers for publication dealing with technical Peter Bainum, Howard University, USA reviews, research, technology and engineering in astronautics and related fields. Stephen Baxter, Science & Science Fiction Writer, UK James Benford, Microwave Sciences, California, USA Text should be: James Biggs, Te University of Strathclyde, UK ■ As concise as the content allows – typically 5,000 to 6,000 words. Shorter papers (Technical Notes) Anu Bowman, Foundation for Enterprise Development, California, USA will also be considered; longer papers will only Gerald Cleaver, Baylor University, USA be considered in exceptional circumstances – for Charles Cockell, University of Edinburgh, UK example, in the case of a major subject review. Ian A. Crawford, Birkbeck College London, UK ■ Source references should be inserted in the text in square brackets – [1] – and then listed at the Adam Crowl, Icarus Interstellar, Australia end of the paper. Eric W. Davis, Institute for Advanced Studies at Austin, USA ■ Illustration references should be cited in Kathryn Denning, York University, Toronto, Canada numerical order in the text; those not cited in the Martyn Fogg, Probability Research Group, UK text risk omission. Raghavan Gopalaswami, Aerospace Researcher, India ■ Captions must be labelled with their Fig. number and should be as short as possible. Lamartine Guimarães, Institute for Advanced Studies, Brazil Mark Hempsell, Hempsell Astronautics Ltd, UK Illustrations should be: Takuto Ishimatsu, Massachusetts Institute of Technology, USA ■ Colour or mono, but should be as close to print Les Johnson, Marshall Space Flight Center, USA resolution (300 dpi) as possible. Poor-quality illustrations may compromise the acceptance of Terry Kammash, University of Michigan, USA paper for publication. Images embedded in Word Kelvin F. Long, Initiative for Interstellar Studies documents may be acceptable, but JBIS reserves Inoue Makoto, Institute of Astronomy & Astrophysics Academia Sinica, Taiwan the right to request separate higher-resolution Gregory L. Matlof, City University New York, USA image files from the author prior to publication. Koichi Mori, Nagoya University, Japan ■ Responsibility for copyright clearance of images rests entirely with the author. Richard Obousy, Richard Obousy Consulting LLC, USA Robert Parkinson, BIS, Aylesbury, UK Submission of papers George Schmidt, NASA John H Glenn Research Center, Ohio, USA ■ Papers for consideration should be sent by Paul Schuch, Te SETI League Inc, USA email to [email protected] as both a Word document and as a Word PDF file (in order to Tabitha Smith, Bifrost, USA check for font anomalies), together with any Andreas Tziolas, Variance Dynamical Corporation, USA separate image files. Chris Welch, Te International Space University, Strasbourg, France ■ If a paper is accepted for publication, the Friedwardt Winterberg, University of Nevada, Reno, USA author will be asked to sign a License to Publish form. This can be downloaded at www.bis- space.com/wp-content/uploads/2012/08/ WebsiteLicense.pdf. ■ Authors will receive a complimentary copy of the issue in which their paper appears. Editor Roger Longstaff Deputy Editor Duncan Law-Green Associate Editors Stephen Ashworth, We respectfully ask authors to adhere to these Keith Cooper, Stephen Gamble, Paul Gilster, Rob Swinney, Production MP3 Media guidelines. Failure to do so will result in the Promotion Gill Norman JBIS Office British Interplanetary Society, Arthur C. Clarke House, delay of acceptable papers for publication. 27-29 South Lambeth Road, London, SW8 1SZ, United Kingdom tel +44 (0)20 7735 3160 email [email protected] www.bis-space.com Our full Guidelines for Authors can be downloaded DISTRIBUTION from www.bis-space.com JBIS is distributed worldwide by mail and may be received by annual subscription or purchase of single copies. It is available through membership of the British Interplanetary Society at much reduced rates. Subscription details for members, non-members and libraries are available from the above address. JBIS is a publication that promotes the mission of the British Interplanetary Society. Opinions expressed in signed articles are those of the contributors and do not necessarily reflect the views of the Editor or the Council of the British Interplanetary Society. Security clearance, where necessary, is the responsibility of the author. Published by the British Interplanetary Society. Registered Company No: 402498. Registered Charity No: 250556. Printed by Latimer Trend & Company Ltd, Estover Road, Plymouth, PL6 7PY, England. © 2018 British Interplanetary Society. No part of this magazine may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying or recording by any information storage or retrieval system without prior permission from the Publishers. CONTENTS VOLUME 71 NO.7 JULY 2018 234 RIGID BOOM ELECTRODYNAMIC TETHERS for Satellite De-orbiting and Propulsion Alexandru Cornogolub, Craig Underwood and Philipp Voigt 239 A NEW APPROACH ON THE PHYSICAL ARCHITECTURE of CubeSats & PocketQubes J. Bouwmeester, E.K.A. Gill, S. Speretta and M.S. Uludag 250 ADVANCING ON ORBIT ASSEMBLY with the Intelligent Space Assembly Robotic System: the Path to Flight Dakota Wenberg, Thomas Lai, Bianca Rubiocastaneda and Jin Kang 255 WHY NOT VIDEO FROM SPACE? Alex da Silva Curiel 262 APPLYING COMMERCIAL OFF-THE-SHELF SENSORS for Close Range Distance Measurement in Space Martin Grimm and Burkart Voß 268 DEFINING THE POLISH SPACE POLICY In Search of Technological Niches for the Emerging National Space Sector Marcin Kamassa From the Editor This issue of JBIS is comprised of selected papers from the 2017 Reinventing Space conference. The papers have been selected to be representative of the overall conference, and the editorial board would like to thank Stuart Eves and Scott Hatton for their help in this process. Roger Longstaff, Editor OUR MISSION STATEMENT The British Interplanetary Society promotes the exploration and use of space for the beneft of humanity, connecting people to create, educate and inspire, and advance knowledge in all aspects of astronautics. JBIS Vol 71 No.7 July 2018 233 JBIS VOLUME 71 2018 PAGES 234-238 RIGID BOOM ELECTRODYNAMIC TETHERS for Satellite De-orbiting and Propulsion ALEXANDRU CORNOGOLUB1, CRAIG UNDERWOOD1, and PHILIPP VOIGT2 1University of Surrey, Surrey Space Centre, GU2 7XH, Guildford, UK; 2Airbus DS, Claude-Dornier-Straße, 88090, Immenstaad am Bodensee, Germany email [email protected] Most satellites, currently in use, don’t incorporate any post mission disposal system and therefore will end up as debris once they reach the end of their life. Without any intervention, these objects could endanger future space missions, once their density is high enough. In this paper the authors propose a new concept for an uncontrolled removal system based on electro dynamical principles. Instead of long flexible tethers (which have proven problematic to deploy), we consider using relatively short (~150m-300m) rigid electro-dynamic booms. The main advantage of such a structure is that, for satellites in polar orbits, it leads to a larger Lorentz force. Also, the deployment is more reliable and the attitude control is greatly simplified (because the booms are rigid). A ground demonstrator is under development based around a 6U CubeSat structure. We also look at different techniques which could be used for electron emission into the surrounding plasma because currently this is what limits the generated currents in the proposed system. This work is conducted as a part of the European Commission funded Horizon-2020 TeSeR (Technology for Self-Removal) project, which aims to demonstrate the feasibility of a scalable post mission removal system which should be able to be connected to different satellites via a standard interface. Keywords: Rigid boom, Electrodynamic tether, De-orbiting, Propellant-less propulsion, Thermionic emission. 1 INTRODUCTION which are obtained are much smaller due to the fact that the ions are more massive and would require higher electrical forc- Propellant-less thrust or drag generation is an interesting es in order to get the same debit. concept for satellites which have to change their orbit over long periods of time (de-orbiting, relocation) with a min- Te EDTs could generate both drag and thrust and could imum additional mass. Tis can be achieved by using large therefore be used for de-orbiting as well as for re-orbiting. It all deployable structures which interact