Acetobacter Aceti and Kluyveromyces Lactis August 2016

Total Page:16

File Type:pdf, Size:1020Kb

Acetobacter Aceti and Kluyveromyces Lactis August 2016 Staff Assessment Report APP202920: to determine the new organism status of Acetobacter aceti and Kluyveromyces lactis August 2016 Purpose To determine if Acetobacter aceti and Kluyveromyces lactis are new organisms under Section 26 of the HSNO Act Application number APP202920 Application type Statutory Determination Applicant Natural Solutions NZ Ltd Date formally received 21 July 2016 EPA Staff Assessment Report: Application APP202920 Executive Summary and Recommendation Natural Solutions New Zealand Ltd has submitted the application APP202920 in order to seek a determination on the new organism status of Acetobacter aceti and Kluyveromyces lactis. After reviewing the information provided by the applicant, EPA staff recommends the Hazardous Substances and New Organisms (HSNO) Decision-making Committee determine that Acetobacter aceti and Kluyveromyces lactis are not new organisms for the purpose of the HSNO Act. 2 EPA Staff Assessment Report: Application APP202920 Table of Contents Executive Summary and Recommendation ........................................................................................ 2 Table of Contents .................................................................................................................................. 3 1. Introduction .................................................................................................................................. 4 Purpose of this document .............................................................................................................. 4 The application .............................................................................................................................. 4 2. Summary of information ............................................................................................................. 4 Acetobacter aceti ........................................................................................................................... 4 Table 1: Summary of locations Acetobacter aceti has been isolated from: ........................ 6 Kluyveromyces lactis ..................................................................................................................... 6 Table 2: Summary of environments Kluyveromyces lactis has been isolated from: ........... 7 Ubiquity of microorganisms ........................................................................................................... 7 3. Evaluation against legislative criteria ....................................................................................... 7 Acetobacter aceti ........................................................................................................................... 8 Kluyveromyces lactis ..................................................................................................................... 8 4. Comments from government agencies ..................................................................................... 9 5. Overall findings and conclusion ................................................................................................ 9 6. References ................................................................................................................................. 10 Appendix 1: Correspondence ............................................................................................................ 13 Appendix 2: Comments from MPI ...................................................................................................... 14 Appendix 3: Decision path for section 26 determination ................................................................ 16 Context ........................................................................................................................................ 16 Introduction .................................................................................................................................. 16 Figure 1 Flowchart: Decision path for applications under Section 26 for determination as to whether an organism is a new organism ........................................................................................................ 17 Figure 1 Explanatory Notes ......................................................................................................... 18 3 EPA Staff Assessment Report: Application APP202920 1. Introduction Purpose of this document This document has been prepared by Environmental Protection Authority (EPA) staff to advise the Hazardous Substances and New Organisms (HSNO) Decision-making Committee (the Committee) of our assessment of application APP202920 submitted under the HSNO Act (the Act). This document discusses information provided in the application and various other sources. The application The application from Natural Solutions NZ Ltd was submitted under section 26 of the Act to determine whether Acetobacter aceti (Pasteur 1864) Beijerinck 1898 and Kluyveromyces lactis (Dombrowski) van der Walt 1971 are new organisms for the purpose of the Act. This application was formally received by the EPA on 27 July 2016. The applicant had previously been importing these organisms contained within a kefir starter culture trading under the name Bravo manufactured in Switzerland by Silver Spring Sagl. Prior to June 2016 the applicant had imported this product under the Import Health Standard for the Importation into New Zealand of Specified Animal Products and Biologicals (INEPROIC.ALL). This import health standard allows for the import of ‘commercially manufactured food cultures, enzymes or starters derived from or consisting of micro-organisms’ and ‘brewer’s yeast, baker’s yeast or any other yeast products in the food industry’ from any country. As of 27 August 2015 a clause was added to the import health standard stating that there may be additional requirements for microorganisms under the HSNO Act. Therefore the applicant contacted the EPA for a formal determination on Acetobacter aceti and Kluyveromyces lactis to be able to continue importing the starter culture product into New Zealand. The applicant considers Acetobacter aceti and Kluyveromyces lactis to be naturally occurring in the New Zealand environment and widely used in the food industry. Therefore, the applicant considers these organisms to be not new for the purpose of the HSNO Act. Our assessment considers the information contained within the application and any other relevant information that we found in scientific literature or elsewhere. 2. Summary of information Acetobacter aceti Acetobacter aceti bacteria are gram-negative, obligate aerobic rods which can oxidise ethanol into acetic acid (Matsushita et al 2005). Acetobacter aceti is ubiquitous in the environment, existing in alcoholic niches in flowers and fruit, and in soil and water. The main industrial use of A. aceti is for the production of vinegar (US EPA 1997). 4 EPA Staff Assessment Report: Application APP202920 Worldwide, acetic acid bacteria (AAB) play a large part in the production and spoilage of wine. Acetobacter aceti is an AAB that is normally associated with grapes and wine. The exposure of wine to oxygen during the production process often leads to a proliferation of A. aceti bacteria. High numbers of A. aceti bacteria in wine results in a product with undesirable traits such as high volatile acidity and a vinegary taint (Du Toit et al 2005). Acetobacter aceti can be isolated from unspoiled grapes in low amounts, and from damaged grapes in much higher numbers (Guillamón and Mas, 2009). Work has also been done on the main species of AAB present on grapes/musts and wine. Acetobacter aceti is found throughout the production process (i.e. on grapes/must, mid fermentation and end fermentation) particularly on botrytized grapes1 in France, cabernet sauvignon in South Africa, and red Grenache in Spain (Unden and Frohlich, 2009). While we could find no evidence that A. aceti had been isolated in grapes and wine in New Zealand it is unlikely that New Zealand remains untouched by A. aceti given its ubiquity in the wine industry. Commercially, A. aceti is commonly used to ferment alcohol into vinegar. There are several companies in New Zealand that produce vinegar for the domestic market. There are also companies that export vinegar to New Zealand. Dominion Yeast Company Ltd (DYC) was established in Christchurch in 1915 and produces a range of vinegar products. These products are made in New Zealand by natural fermentation using A. aceti (DYC, 2016). Another New Zealand based company, Ceres Organics, produces a raw apple cider vinegar that ferments New Zealand apples with A. aceti. This product is unpasteurised, unfiltered, and undiluted. Bragg Live Foods is an American company that produces a variety of organic foodstuffs. Braggs have been exporting raw apple cider vinegar to New Zealand since 2002. Braggs apple cider vinegar is unfiltered and unpasteurized, and is fermented with A. aceti (Appendix 1). These three companies, and other vinegar producers in New Zealand (Coraltree Organics, Artisan Vinegar, Chantal Organics, Goulter’s Vinegar Products) mention that, over time, their products may develop the ‘mother of vinegar’. The mother is a non-toxic film that accumulates on the surface of vinegar during oxidisation and is made up of AAB and cellulose. Acetobacter aceti, along with several other species from the Acetobacter, Gluconacetobacter and Komagataeibacter genera are commonly detected in the mother of vinegar (Yetiman and Kesmen 2015). All of these products
Recommended publications
  • Acetobacter Sacchari Sp. Nov., for a Plant Growth-Promoting Acetic Acid Bacterium Isolated in Vietnam
    Annals of Microbiology (2019) 69:1155–11631163 https://doi.org/10.1007/s13213-019-01497-0 ORIGINAL ARTICLE Acetobacter sacchari sp. nov., for a plant growth-promoting acetic acid bacterium isolated in Vietnam Huong Thi Lan Vu1,2 & Pattaraporn Yukphan3 & Van Thi Thu Bui1 & Piyanat Charoenyingcharoen3 & Sukunphat Malimas4 & Linh Khanh Nguyen1 & Yuki Muramatsu5 & Naoto Tanaka6 & Somboon Tanasupawat7 & Binh Thanh Le2 & Yasuyoshi Nakagawa5 & Yuzo Yamada3,8,9 Received: 21 January 2019 /Accepted: 7 July 2019 /Published online: 18 July 2019 # Università degli studi di Milano 2019 Abstract Purpose Two bacterial strains, designated as isolates VTH-Ai14T and VTH-Ai15, that have plant growth-promoting ability were isolated during the study on acetic acid bacteria diversity in Vietnam. The phylogenetic analysis based on 16S rRNA gene sequences showed that the two isolates were located closely to Acetobacter nitrogenifigens RG1T but formed an independent cluster. Methods The phylogenetic analysis based on 16S rRNA gene and three housekeeping genes’ (dnaK, groEL, and rpoB) sequences were analyzed. The genomic DNA of the two isolates, VTH-Ai14T and VTH-Ai15, Acetobacter nitrogenifigens RG1T, the closest phylogenetic species, and Acetobacter aceti NBRC 14818T were hybridized and calculated the %similarity. Then, phenotypic and chemotaxonomic characteristics were determined for species’ description using the conventional method. Results The 16S rRNA gene and concatenated of the three housekeeping genes phylogenetic analysis suggests that the two isolates were constituted in a species separated from Acetobacter nitrogenifigens, Acetobacter aceti,andAcetobacter sicerae. The two isolates VTH-Ai14T and VTH-Ai15 showed 99.65% and 98.65% similarity of 16S rRNA gene when compared with Acetobacter nitrogenifigens and Acetobacter aceti and they were so different from Acetobacter nitrogenifigens RG1T with 56.99 ± 3.6 and 68.15 ± 1.8% in DNA-DNA hybridization, when isolates VTH-Ai14T and VTH-Ai15 were respectively labeled.
    [Show full text]
  • And Acetobacter Pornorurn Spm Nov., Two New Species Isolated from Industrial Vinegar Fermentations
    International Journal of Systematic Bacteriology (1 998),48, 93 5-940 Printed in Great Britain Description of Acetobacter oboediens Spm nov, and Acetobacter pornorurn Spm nov., two new species isolated from industrial vinegar fermentations Stephan J. Sokollek, Christian HerteI and Walter P. Hammes Author for correspondence: Walter P. Hammes. Tel: +49 71 1 459 2305. Fax: +49 71 1 459 4255. e-mail: [email protected] lnstitut fur Two strains of Acetobacter sp., LTH 2460Tand LTH 2458T, have been isolated Lebensmitteltechnologie, from running red wine and cider vinegar fermentations, respectively. Universitat Hohenheim, GarbenstraBe 28, D-70599 Taxonomic characteristics of the isolates were investigated. Comparative Stuttg a rt, Germany analysis of the 165 rRNA sequences revealed > 99% similarity between strain LTH 2460Tand the type strains of the related species Acetobacter europaeus and Acetobacter xylinus and between strain LTH 2458Tand Acetobacter pasteurianus. On the other hand, low levels of DNA relatedness (< 34%) were determined in DNA-DNA similarity studies. This relatedness below the species level was consistent with specific physiological characteristics permitting clear identification of these strains within established species of acetic acid bacteria. Based on these results, the names Acetobacter oboediens sp. nov. and Acetobacterpomorum sp. nov. are proposed for strains LTH 2460Tand LTH 2458T, respectively. The phylogenetic positions of the new species are reflected by a 165 rRNA-based tree. Furthermore, a 165 rRNA-targeted oligonucleotide probe specific for A. oboediens was constructed. Keywords: Acetobacter oboediens sp. nov., Acetobacter pomorum sp. nov., vinegar fermentation, acetic acid bacteria INTRODUCTION isolated from vinegar fermentations are not suitable for preservation (Sievers & Teuber, 1995).
    [Show full text]
  • Isolation and Characterization of Acetobacter Aceti from Rotten Papaya
    J. Bangladesh Agril. Univ. 13(2): 299–306, 2015 ISSN 1810-3030 Isolation and characterization of Acetobacter aceti from rotten papaya J. Kowser*, M. G. Aziz and M. B. Uddin Department of Food Technology and Rural Industries, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh, *Email: [email protected] Abstract The present study was concerned with the isolation and characterization of Acetobacter aceti from rotten papaya for vinegar production. The samples were inoculated in sterilized GYC standard media and then incubated at 30°C for 48 hours. Successive subculture was performed to screen out the strains. In Gram’s staining, the morphology of the isolated bacteria exhibited pink, small rod shaped single, pair and chain in arrangement, in the hanging drops technique, all the isolates revealed motile. Biochemical tests were performed by fermentation of five basic sugars by producing both acid and gas bubbles in Durham tube. All of the isolates were Indole, Voges-Proskauer (VP) and Oxidase negative, Methyl Red (MR) and Catalase positive. The growth rate of isolated strain was optimized by weighing dry cell and turbidity at 600 nm at different concentrations of dextrose (1%, 5% and 10%). Ten (10) percent dextrose solution showed rapid growth and higher cell mass than 5% and 1% solution respectively. Acidity of the media gradually increased from 0.102% to 2.18% from day 0 to day 7 and pH of the media decreased from 6.8 to 5.5 during the period. This protocol was successful for enriching Acetobacter aceti, which was essential for vinegar production. Keywords: Rotten Papaya, Acetobacter aceti, GYC culture media, Morphological and Biochemical assessment Introduction Acetic acid bacteria (AAB) is a group of gram-negative, aerobic and motile rods that carry out incomplete oxidation of alcohol and sugars, leading to the accumulation of organic acids as end products.
    [Show full text]
  • Contemporary Pursuits of Vinegar from Scullery to Dermatology
    International Journal of Research in Dermatology Bansal M et al. Int J Res Dermatol. 2020 Sep;6(5):708-714 http://www.ijord.com DOI: http://dx.doi.org/10.18203/issn.2455-4529.IntJResDermatol20203539 Review Article Contemporary pursuits of vinegar from scullery to dermatology Mansi Bansal1*, Umesh Budhiraja2, Himanshu Bansal3 1Department of Dermatology, Venereology, Leprosy, Kaya Skin Clinics, New Delhi, India 2Guru Gobind Singh Hospital, New Delhi, India 3PGIMS, Rohtak, Haryana, India Received: 01 August 2020 Accepted: 10 August 2020 *Correspondence: Dr. Mansi Bansal, E-mail: [email protected] Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. ABSTRACT Vinegar is widely available as a food ingredient for flavouring and as a preservative. It is one of the oldest skin remedy known to mankind. However, its status in treatment regimens has declined over the decades. This article is an attempt to highlight its therapeutic armamentarium in dermatology, venereology and leprosy. Acetic acid in vinegar has antibacterial, antifungal and antiviral properties. This review talks about various studies of acetic acid for various indications, such as screening for cervical cancer, healing of chronic wounds, atopic dermatitis, onychomycosis, marine dermatoses, acne vulgaris, warts, in sclerotherapy and many others dermatoses. Combination therapies and newer indications are also described in this article. Recently, its antiviral action in vitro has been demonstrated against the ongoing coronavirus disease of 2019 (COVID-19) pandemic.
    [Show full text]
  • APPLE CIDER VINEGAR ~ How to Make from Scratch ~
    APPLE CIDER VINEGAR ~ How to make from scratch ~ Apple Cider Quart Glass Jar &Plastic lid ¼ tsp. baker’s yeast ¼ cup “Mother of Vinegar” Vinegar: From the French “Vin-Aigre” meaning “sour wine” Fresh, sweet Cider turns to Hard cider cider - hard cider - turns to Contains yeast converts vinegar - natural or cider sugars acetobacter Step 1 Step 2 Step 3 Step added yeast; into alcohol; + oxygen - natural or acetobacter converts added (mother) alcohol into acetobacter introduced vinegar 1. Make or buy RAW apple cider. Raw cider contains natural yeast, the yeast in pasteurized juice has been killed (adding yeast is recommended for raw cider, required for pasteurized cider). The first step of turning cider to alcohol can be done by leaving the cider in the plastic jug it was purchased in or by pouring into a narrow-necked clean jar (smaller diameter neck helps prevent contamination). Cover with loosely fitting plastic wrap, plastic lid, or cheesecloth and rubber band (no metal!). Set in a clean, dark, warm place. 2. Yeast eats the sugar in fresh juice, converts to alcohol. Within a day to a week, the liquid will start to bubble (looks like champagne bubbles). As the bubble become more active, particles will float to the top and settle to the bottom. The smell should be of alcohol instead of sweet juice. You made hard cider – half way there! 3. Acetobacter convert alcohol to acetic acid (vinegar). Acetobacter (enemy to hard cider) are in the air, but to ensure a better transformation, you can add “mother of vinegar” to the cider alcohol as the bubbling starts to slow down.
    [Show full text]
  • A Study of Some Chemical and Physical Characteristics of Vinegar Produced by the Malt of Some Varieties of Maize, Zehdi Dates, and Grapes
    Journal of Natural Sciences Research www.iiste.org ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) Vol.6, No.6, 2016 A Study of Some Chemical and Physical Characteristics of Vinegar Produced by the Malt of Some Varieties of Maize, Zehdi Dates, and Grapes Qais Satwan Abass Abdullah Department of Horticulture & Gardens Engineering, College of Agriculture, Kirkuk University –Iraq Abstract This experiment was conducted for producing vinegar by varieties of maize, Zehdi dates and grapes and to study some of their chemical and physical properties. Also to assess some organic acids and mineral elements for samples. The experiment included five samples of vinegar produced by maize malt researches class (106) with symbol of (S1).Vinegar produced from spring class maize malt, with symbol of (S2).Vinegar produced from maize malt class (5012) with symbol of (S3).Vinegar produced from Zehdi dates, with symbol of (S4).Vinegar produced from grape, with symbol of (S5).The results showed the superiority of the properties of (S5) in (total acidity, alcohol percentage, moisture, total solids, total ash, relative density, viscosity), as the highest ratios of the properties were (4.46%, 0.53%, 96.107%, 4.3%, 0.52 %, 1.025 g / cm 3, 0.093 mli Boiz) except for the property of PH as the (S5) has recorded the highest values of (3.71) .Whereas (S3) has recorded the lowest in the properties of (total acidity, alcohol percentage, moisture content, total ash, relative density) as they have recorded (3.91%, 0.32%, 94.589%, 0.26%, 1.015 g / cm 3) respectively. (S1) on the other hand, has recorded less value of PH as it was (2.73), while (S4) has recorded the lowest value for TSS which was (2.9%), and (S2) recorded the lowest value for the relative viscosity which was (0.028) mli Boiz).
    [Show full text]
  • An Overview on Types, Medicinal Uses and Production of Vinegar
    The Pharma Innovation Journal 2019; 8(6): 1083-1087 ISSN (E): 2277- 7695 ISSN (P): 2349-8242 NAAS Rating: 5.03 An overview on types, medicinal uses and production of TPI 2019; 8(6): 1083-1087 © 2019 TPI vinegar www.thepharmajournal.com Received: 10-04-2019 Accepted: 12-05-2019 Avinash A Sankpal Avinash A Sankpal Department of Pharmaceutics, Abstract Satara College of Pharmacy, Vinegar is the fermented product which consisting about 5-20% of acetic acid, prepared by fermentation Satara. Maharashtra, India of alcohol with the help of Acecobactor species. Vinegar is the food additive it is used in ketchup, salad dressing and in pickle. It is also used as food preservatives. The use of vinegar as a medicine is firstly carried out by Hippocrates. He used vinegar for the treatment of wound healing. Different types of Vinegar are present in the world. The different possible medicinal uses of Vinegar are reviewed in the present review. Vinegar is used as Antidiabetic, Antimicrobial, Antioxidant, Antitumor, Antiobesity, it reduces Cholesterol level, it maintains different Brain functions and it is also used in Injuries. In present Article we are reviewed all previous work which are carried out on the Vinegar including Method of preparation, Characterization of Vinegar and uses of Vinegar etc. The Vinegar is prepared with the help of different methods like artificial method and natural fermentation method etc. The characterization of Vinegar is mainly carried out with the help of following tests pH, Titratable acidity, Specific gravity etc. Keywords: Vinegar, types, uses of vinegar, fermentation, characterization 1. Introduction Vinegar is prepared by different methods and from various raw materials.
    [Show full text]
  • Acetobacteraceae Sp., Strain AT-5844 Catalog No
    Product Information Sheet for HM-648 Acetobacteraceae sp., Strain AT-5844 immediately upon arrival. For long-term storage, the vapor phase of a liquid nitrogen freezer is recommended. Freeze- thaw cycles should be avoided. Catalog No. HM-648 Growth Conditions: For research use only. Not for human use. Media: Tryptic Soy broth or equivalent Contributor: Tryptic Soy agar with 5% sheep blood or Chocolate agar or Carey-Ann Burnham, Ph.D., Medical Director of equivalent Microbiology, Department of Pediatrics, Washington Incubation: University School of Medicine, St. Louis, Missouri, USA Temperature: 35°C Atmosphere: Aerobic with 5% CO2 Manufacturer: Propagation: BEI Resources 1. Keep vial frozen until ready for use, then thaw. 2. Transfer the entire thawed aliquot into a single tube of Product Description: broth. Bacteria Classification: Rhodospirillales, Acetobacteraceae 3. Use several drops of the suspension to inoculate an agar Species: Acetobacteraceae sp. slant and/or plate. Strain: AT-5844 4. Incubate the tube, slant and/or plate at 35°C for 18-24 Original Source: Acetobacteraceae sp., strain AT-5844 was hours. isolated at the St. Louis Children’s Hospital in Missouri, USA, on May 28, 2010, from a leg wound infection of a Citation: human patient that was stepped on by a bull.1 Acknowledgment for publications should read “The following Comments: Acetobacteraceae sp., strain AT-5844 (HMP ID reagent was obtained through BEI Resources, NIAID, NIH as 9946) is a reference genome for The Human Microbiome part of the Human Microbiome Project: Acetobacteraceae Project (HMP). HMP is an initiative to identify and sp., Strain AT-5844, HM-648.” characterize human microbial flora.
    [Show full text]
  • PRODUCTION of ACETIC ACID from MOLASSES by FERMENTATION PROCESS Rutu Patel1, Hiral N
    Vol-1 Issue-2 2015 IJARIIE-ISSN(O)-2395-4396 PRODUCTION OF ACETIC ACID FROM MOLASSES BY FERMENTATION PROCESS Rutu Patel1, Hiral N. Pandya2 1 Rutu Patel, Masters Fallow, Chemical Engineering Department, L.D.C.E., Gujarat, India. 2 Hiral N. Pandya, Assistant Professor, Chemical Engineering Department, L.D.C.E., Gujarat, India. ABSTRACT Acetic acid also called ethanoic acid is organic compound. Acetic acid produced via fermentation. Its pathway is conversion of glucose to ethanol and ethanol to acetic acid. In first step, Saccaromyces cerevesiae (yeast) converts fermentable sugar of molasses into ethanol and carbon dioxide. In second step, acetobacter aceti (acetic acid bacteria) converts ethanol into acetic acid and water. After completing process, the separation of product is carried out via centrifugation. Mixture of acetic acid and water is separated by distillation. In this report, details regarding cultures (micro-organism) have been used for the process is discussed. In practical laboratory work, ethanol fermentation and acetic acid fermentation have been carried out and it’s optimum parameters (pH, temperature, sugar concentration, and ethanol concentration) have been decided, which is discussed in detail. The kinetic study also have been done is mentioned. Key words: Saccaromyces cerevesiae, acetobacter aceti, micro-organism, fermentable sugar 1. FERMENTATION The term “fermentation” comes from a Latin word fermentum(to ferment). Fermentation is described as the process in which chemical changes occur in an organic substrate as the result of action of microbial enzymes. The product can either be: The cell itself: referred to as biomass production. A microorganisms own metabolite: referred to as a product from a natural or genetically improved strain.
    [Show full text]
  • The History of Vinegar and of Its Acetifcation Systems
    The history of vinegar and of its acetifcation systems Autor(en): Bourgeois, Jacques F. / Barja, François Objekttyp: Article Zeitschrift: Archives des sciences [2004-ff.] Band (Jahr): 62 (2009) Heft 2 PDF erstellt am: 11.10.2021 Persistenter Link: http://doi.org/10.5169/seals-738455 Nutzungsbedingungen Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden. Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber. Haftungsausschluss Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind. Ein Dienst der ETH-Bibliothek ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch http://www.e-periodica.ch I 777e d/sfo/y of w'negar and of /ts acef/f/caf/'on systems I 147 I The history of vinegar and of its acetification systems Jacques F. BOURGEOIS', François BARJA^ Ms reçu /e 24 févr/'er 2009, accepté /e 27 noi/emdre 2009 Abstract The history of vinegar and of its acetification systems.
    [Show full text]
  • Diversity and Dynamics Stability of Bacterial Community in Traditional Solid-State Fermentation of Qishan Vinegar
    Ann Microbiol (2017) 67:703–713 DOI 10.1007/s13213-017-1299-6 ORIGINAL ARTICLE Diversity and dynamics stability of bacterial community in traditional solid-state fermentation of Qishan vinegar Xing Gan1 & Hanlan Tang1 & Dongdong Ye 1 & Pan Li1 & Lixin Luo1 & Weifeng Lin 2 Received: 20 August 2017 /Accepted: 3 September 2017 /Published online: 16 September 2017 # Springer-Verlag GmbH Germany and the University of Milan 2017 Abstract Qishan vinegar is a typical Chinese fermented ce- and showed batch-to-batch consistency and stability. real product that is prepared using traditional solid-state fer- Therefore, the conformity of bacterial community succession mentation (SSF) techniques. The final qualities of the vinegar with physiochemical parameters guaranteed the final quality produced are closely related to the multiple bacteria present of Qishan vinegar products. This study provided a scientific during SSF. In the present study, the dynamics of microbial perspective for the uniformity and stability of Qishan vinegar, communities and their abundance in Daqu and vinegar Pei and might aid in controlling the manufacturing process. were investigated by the combination of high throughput se- quencing and quantitative PCR. Results showed that the Keywords Bacterial composition . Physiochemical Enterobacteriales members accounted for 94.7%, 94.6%, parameters . Uniformity . Chinese Qishan vinegar and 92.2% of total bacterial sequences in Daqu Q3, Q5, and Q10, respectively. Conversely, Lactobacillales and Rhodospirillales dominated during the acetic acid fermenta- Introduction tion (AAF) stage, corresponding to the quantitative PCR re- sults. Lactobacillus, Acetobacter, Weissella, Leuconostoc and Vinegar—a fermented food—is a common and important Bacillus were the dominant and characteristic bacterial genera condiment with a unique flavor, nutritional value, and health of Qishan vinegar during AAF process.
    [Show full text]
  • Exemption for Acetobacter Aceti
    FINAL DECISION DOCUMENT: TSCA SECTION 5(H)(4) EXEMPTION FOR ACETOBACTER ACETI I. BACKGROUND In the September 1, 1994, Federal Register (59 FR 45526), the Environmental Protection Agency (EPA) proposed at 40 CFR Part 700 under section 5(h)(4) of the Toxic Substances Control Act (TSCA), Tier I and Tier II exemptions. These exemptions, which would be found at § 725.400, are exemptions from EPA review and expedited EPA review, respectively, for certain microorganisms under certain use conditions. EPA proposed to include Acetobacter aceti at § 725.420 as a candidate recipient microorganism for the tiered exemptions. Acetobacter aceti is a benign microorganism that is ubiquitous in the environment existing in ecological niches such as flowers, fruits, honey bees, as well as in water and soil. It has a long history of safe use in the fermentation industry for the production of acetic acid from alcohol. This final decision document describes the basis for EPA's decision to include Acetobacter aceti as a recipient microorganism at § 725.420. II. CONDITIONS OF EXEMPTION EPA recognizes that some microorganisms present a low risk when used under specific conditions at general commercial use. Therefore, EPA proposed to institute expedited regulatory processes for certain microorganisms under these specific conditions at the general commercial use stage. Microorganism uses that are exempt would meet criteria addressing: (1) performance based standards for minimizing the numbers of microorganisms emitted from the manufacturing facility; (2) the introduced genetic material; and (3) the recipient microorganism. Microorganisms that qualify for these exemptions, termed Tier I and Tier II, must meet a standard of no unreasonable risk in the exempted use.
    [Show full text]