Origin and Adaptation to High Altitude of Tibetan Semi-Wild Wheat

Total Page:16

File Type:pdf, Size:1020Kb

Origin and Adaptation to High Altitude of Tibetan Semi-Wild Wheat ARTICLE https://doi.org/10.1038/s41467-020-18738-5 OPEN Origin and adaptation to high altitude of Tibetan semi-wild wheat Weilong Guo 1,4, Mingming Xin1,4, Zihao Wang 1,4, Yingyin Yao1, Zhaorong Hu 1, Wanjun Song1, ✉ Kuohai Yu1, Yongming Chen 1, Xiaobo Wang1, Panfeng Guan1, Rudi Appels2,3, Huiru Peng 1 , ✉ ✉ Zhongfu Ni 1 & Qixin Sun 1 Tibetan wheat is grown under environmental constraints at high-altitude conditions, but its 1234567890():,; underlying adaptation mechanism remains unknown. Here, we present a draft genome sequence of a Tibetan semi-wild wheat (Triticum aestivum ssp. tibetanum Shao) accession Zang1817 and re-sequence 245 wheat accessions, including world-wide wheat landraces, cultivars as well as Tibetan landraces. We demonstrate that high-altitude environments can trigger extensive reshaping of wheat genomes, and also uncover that Tibetan wheat acces- sions accumulate high-altitude adapted haplotypes of related genes in response to harsh environmental constraints. Moreover, we find that Tibetan semi-wild wheat is a feral form of Tibetan landrace, and identify two associated loci, including a 0.8-Mb deletion region con- taining Brt1/2 homologs and a genomic region with TaQ-5A gene, responsible for rachis brittleness during the de-domestication episode. Our study provides confident evidence to support the hypothesis that Tibetan semi-wild wheat is de-domesticated from local land- races, in response to high-altitude extremes. 1 State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China. 2 AgriBio, Centre for AgriBioscience, Department of Economic Development, Jobs, Transport, and Resources, 5 Ring Road, La Trobe University, Bundoora, VIC 3083, Australia. 3 University of Melbourne, FVAS, Grattan Street, Parkville, VIC 3010, Australia. ✉ 4These authors contributed equally: Weilong Guo, Mingming Xin, Zihao Wang. email: [email protected]; [email protected]; [email protected] NATURE COMMUNICATIONS | (2020) 11:5085 | https://doi.org/10.1038/s41467-020-18738-5 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18738-5 nderstanding the evolution and domestication of plants chromosomes with the aid of the Chinese Spring (CS) IWGSCv1 Uhas accelerated crop breeding through being able to target reference genome11. A total of 95.51% scaffolds were ordered to new germplasm for crossing into elite lines and creating a form the 21 high-confidence pseudochromosomes, comprising more secure world food supply1–3. Hexaploid or bread wheat 1067 scaffolds with 14.05 Gb (Fig. 1b), which is similar to that of (Triticum aestivum, AABBDD) is a staple food crop for more the reference CS genome (14.07 Gb)11. The Zang1817 genome than one-third of the world population4 and originated ~10,000 assembly reported here is a sequenced genome of a semi-wild years ago in the Near-Eastern Fertile Crescent through hybridi- form of hexaploid wheat to date. zation between domesticated tetraploid wheat, Triticum turgidum A total of 118,078 high-confidence protein-coding genes were (AABB) and wild goatgrass, Aegilops tauschii (DD)5. As a tem- inferred from the Zang1817 assembly using protein-homology- perate crop, hexaploid wheat is widely distributed around the based prediction methods supported by RNA-sequencing data. world, including the Tibetan Plateau, which has an average alti- Repetitive elements, a major component of complex genomes, tude of 4268 m above sea level6, and is characterized by extensive were widely dispersed throughout the wheat genome11,12.Upto UV-B irradiation, extremely low temperature and strong hypoxia 82.74% of the Zang1817 assembly sequence were annotated as stress. Although such environmental constraints would be repeat sequences, including retrotransposons (63.91%), DNA expected to trigger genomic variation of wheat associated with transposons (18.45%) and other unclassified sequence (1.57%). adaptation to high-altitude (HA), the underlying molecular Copia and Gypsy family retrotransposons accounted for ~44.16% changes are still unknown. Thus, Tibetan wheat provides a sig- and 15.28% of the Zang1817 assembly sequence, respectively nificant resource to understand genomic adaptation to the (Supplementary Table 1). The composition of the different classes environmental extremes at high altitude conditions. In addition, of repetitive DNA in Zang1817 was highly similar to that in the although wild forms of bread wheat are not found, a unique CS genome. We further evaluated the annotation with 1440 Tibetan semi-wild hexaploid wheat (Triticum aestivum ssp. tibe- Benchmarking Universal Single Copy Orthologs (BUSCO)13 tanum Shao) is discovered on the Tibetan Plateau, China7. Huang genes, and found 99.51% genes were recalled in the genome, and his colleagues6 investigated 17 agronomic traits of 77 Tibetan with 94.38~96.81% among the three subgenomes individually, a accessions and 277 Tibetan semi-wild wheat, and found that percentage similar to that of the CS genome (99.72%), thus Tibetan semi-wild wheat phenotypically resembles Tibetan local indicating a near completeness of Zang1817 genome assembly landraces but differs in brittle rachis characteristics (Fig. 1a). (Supplementary Table 2). Thus, they suspected that Tibetan semi-wild wheat was a de- Extensive genomic variations have been reported in maize and domesticated form of Tibetan local landraces as a result of natural rice14,15. We found that genomic variation between Zang1817 selection. Yet, no genetic or genomic evidence is provided to and CS, when the pseudochromosomes were aligned, mainly support this hypothesis. Brittle rachis is generally controlled by occurred in non-coding regions. By comparing the two genomes, genes on the short arm of the group 3 chromosomes, especially we determined the present/absent variation (PAV) for segments chr3D8, as well as alleles of the Q locus on 5A9. However, there is longer than 10 kb (Fig. 1c) and identified 345.73 Mb Zang1817- a lack of understanding of the genomic variations that contribute specific genomic segments, including 1875 Zang1817-specific to the Tibetan wheat wild-like traits at the population scale. genes compared with CS (Supplementary Data 1). GO analysis To address these knowledge gaps, we de novo assemble the revealed that these genes were predominantly enriched in genome sequence of a high-altitude wheat accession (Tibetan “polysaccharide binding” (GO:0030247) and “serine-type endo- semi-wild wheat Zang1817), and resequence 245 wheat acces- peptidase inhibitor activity” (GO:0004867) categories. We also sions, including Tibetan semi-wild wheat accessions, Tibetan identified 389.29 Mb of genomic segments containing 2540 genes landraces and cultivars, representing the largest resequencing of that were absent from the Zang1817 assembly in comparison with world-wide wheat landraces and accessions to date. In combi- CS genome (Supplementary Data 2). These genes were mostly nation with previously published 73 re-sequenced accessions10, involved in photosynthesis related GO terms including “photo- we demonstrate that adaptation to high-altitude environments system II reaction center” (GO:0009539), “chloroplast thylakoid likely trigger extensive reshaping of the wheat genomes. In par- membrane” (GO:0009535), “photosynthesis, light reaction” ticular, we argue that the TaHY5-like-mediated signaling pathway (GO:0019684) and “cytochrome b6f complex” (GO:0009512). might play a role in the adaptation to high-altitude extreme Interestingly, the PAV genes were unevenly distributed across the environments in Tibetan wheat and possibly other plants. Fur- genome and tended to be distributed at the ends of chromosomes thermore, we uncover a feral origin of Tibetan semi-wild wheat, and devoid in centromeric regions (Fig. 1d). A genomic inversion which is probably, in effect, a de-domesticated form of Tibetan at 366~375 Mb region of chromosome 6D in Zang1817 was landraces, suggesting that the Tibetan wheat is a resource for fine revealed based on the genomic comparison, which shared a fine tuning wheat germplasm to certain environments. collinearity between Zang1817 assembly and Aegilops tauschii genome12 (Supplementary Fig. 1), further validating the high- quality of the Zang1817 genome assembly. Results The α-gliadin genes confer wheat the unique viscoelastic De novo assembly of Tibetan semi-wild wheat Zang1817 gen- properties, which facilitate the processing of flour into bread, ome. Genomic variation in HA adapted wheat compared with pasta, noodles, and other food products. An in-depth sequence low-altitude (LA) wheat was determined by generating a de novo comparison of the terminal regions of the chromosome group 6 genome assembly of Tibetan semi-wild wheat Zang1817. First, we indicated that the duplication and expansion of α-gliadin genes in generated >240× coverage sequencing reads from a series of PCR- the three homeologous groups occurred extensively in Zang1817 free Illumina paired-end libraries and mate-paired libraries. The assembly compared with CS genome. For example, the 2.4 Mb contig and scaffold assembly was performed using the region at 25.91–28.31 Mb on chromosome 6 A from the DeNovoMAGIC3 software platform (NRGene, Nes Ziona, Israel), Zang1817 genome contained 34 α-gliadin genes, more than triple and additional Chromium 10X genomic data were utilized to the number from the CS genome (9, region at 24.92–26.84 Mb), support scaffold
Recommended publications
  • Genome Sequence of the Progenitor of the Wheat D Genome Aegilops Tauschii Ming-Cheng Luo1*, Yong Q
    OPEN LETTER doi:10.1038/nature24486 Genome sequence of the progenitor of the wheat D genome Aegilops tauschii Ming-Cheng Luo1*, Yong Q. Gu2*, Daniela Puiu3*, Hao Wang4,5,6*, Sven O. Twardziok7*, Karin R. Deal1, Naxin Huo1,2, Tingting Zhu1, Le Wang1, Yi Wang1,2, Patrick E. McGuire1, Shuyang Liu1, Hai Long1, Ramesh K. Ramasamy1, Juan C. Rodriguez1, Sonny L. Van1, Luxia Yuan1, Zhenzhong Wang1,8, Zhiqiang Xia1, Lichan Xiao1, Olin D. Anderson2, Shuhong Ouyang2,8, Yong Liang2,8, Aleksey V. Zimin3, Geo Pertea3, Peng Qi4,5, Jeffrey L. Bennetzen6, Xiongtao Dai9, Matthew W. Dawson9, Hans-Georg Müller9, Karl Kugler7, Lorena Rivarola-Duarte7, Manuel Spannagl7, Klaus F. X. Mayer7,10, Fu-Hao Lu11, Michael W. Bevan11, Philippe Leroy12, Pingchuan Li13, Frank M. You13, Qixin Sun8, Zhiyong Liu8, Eric Lyons14, Thomas Wicker15, Steven L. Salzberg3,16, Katrien M. Devos4,5 & Jan Dvořák1 Aegilops tauschii is the diploid progenitor of the D genome of We conclude therefore that the size of the Ae. tauschii genome is about hexaploid wheat1 (Triticum aestivum, genomes AABBDD) and 4.3 Gb. an important genetic resource for wheat2–4. The large size and To assess the accuracy of our assembly, sequences of 195 inde- highly repetitive nature of the Ae. tauschii genome has until now pendently sequenced and assembled AL8/78 BAC clones8, which precluded the development of a reference-quality genome sequence5. contained 25,540,177 bp in 2,405 unordered contigs, were aligned to Here we use an array of advanced technologies, including ordered- Aet v3.0. Five contigs failed to align and six extended partly into gaps, clone genome sequencing, whole-genome shotgun sequencing, accounting for 0.25% of the total length of the contigs.
    [Show full text]
  • Phytosiderophore Release in Aegilops Tauschii and Triticum Species Under Zinc and Iron Deficiencies
    Journal of Experimental Botany, Vol. 52, No. 358, pp. 1093±1099, May 2001 Phytosiderophore release in Aegilops tauschii and Triticum species under zinc and iron deficiencies I. Tolay1, B. Erenoglu1,2,V.RoÈ mheld2, H.J. Braun3 and I. Cakmak4,5 1 Cukurova University, Department of Soil Science and Plant Nutrition, 01330 Adana, Turkey 2 UniversitaÈ t Hohenheim, Institut fuÈ r PflanzenernaÈ hrung %330), 70593 Stuttgart, Germany 3 CIMMYT, POB 39, Emek 06511, Ankara, Turkey 4 Sabanci University, Faculty of Engineering and Natural Sciences, 81474 Tuzla, Istanbul, Turkey Received 2 August 2000; Accepted 27 November 2000 Abstract of PS release was around 14 mmol *30 plants)À1 *3 h)À1. Diploid wheats and Ae. tauschii accessions Using three diploid *Triticum monococcum, AA), behaved similarly in their capacity to release PS three tetraploid *Triticum turgidum, BBAA), two hexa- and intermediate between tetraploid and hexa- ploid *Triticum aestivum and Triticum compactum, ploid wheats regarding the PS release capacity. All BBAADD) wheats and two Aegilops tauschii *DD) Triticum and Aegilops species released more PS genotypes, experiments were carried out under under Fe than Zn deficiency, particularly when the controlled environmental conditions in nutrient solu- rate of PS release was expressed per unit dry weight tion *i) to study the relationships between the rates of roots. On average, the rates of PS release under Fe of phytosiderophore *PS) release from the roots and deficiency were 3.0, 5.7, 8.4, and 16 mmol *30 plants)À1 the tolerance of diploid, tetraploid, and hexaploid *3 h)À1 for Ae. tauschii, diploid, tetraploid and wheats and Ae.
    [Show full text]
  • Aegilops Tauschii Draft Genome Sequence Reveals a Gene Repertoire for Wheat Adaptation
    LETTER OPEN doi:10.1038/nature12028 Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation Jizeng Jia1*, Shancen Zhao2,3*, Xiuying Kong1*, Yingrui Li2*, Guangyao Zhao1*, Weiming He2*, Rudi Appels4*, Matthias Pfeifer5, Yong Tao2, Xueyong Zhang1, Ruilian Jing1, Chi Zhang2, Youzhi Ma1, Lifeng Gao1, Chuan Gao2, Manuel Spannagl5, Klaus F. X. Mayer5, Dong Li2, Shengkai Pan2, Fengya Zheng2,3,QunHu6, Xianchun Xia1, Jianwen Li2, Qinsi Liang2, Jie Chen2, Thomas Wicker7, Caiyun Gou2, Hanhui Kuang6, Genyun He2, Yadan Luo2, Beat Keller7, Qiuju Xia2, Peng Lu2, Junyi Wang2, Hongfeng Zou2, Rongzhi Zhang1, Junyang Xu2, Jinlong Gao2, Christopher Middleton7, Zhiwu Quan2, Guangming Liu8, Jian Wang2, International Wheat Genome Sequencing Consortium{, Huanming Yang2, Xu Liu1, Zhonghu He1,9, Long Mao1 & Jun Wang2,10,11 About 8,000 years ago in the Fertile Crescent, a spontaneous hybridi- (Supplementary Information). Using both evidence-based and de novo zation of the wild diploid grass Aegilops tauschii (2n 5 14; DD) with gene predictions, we identified 34,498 high-confidence protein-coding the cultivated tetraploid wheat Triticum turgidum (2n 5 4x 5 28; loci. FGENESH4 and GeneID models were supported by a 60% AABB) resulted in hexaploid wheat (T. aestivum;2n 5 6x 5 42; overlap with either our ESTs and RNA-Seq reads, or with homologous AABBDD)1,2. Wheat has since become a primary staple crop world- proteins. More than 76% of the gene models had a significant match wide as a result of its enhanced adaptability to a wide range of (E value # 1025; alignment length $ 60%) in the GenBank non- climates and improved grain quality for the production of baker’s redundant database.
    [Show full text]
  • Birth and Death of LTR-Retrotransposons in Aegilops Tauschii
    HIGHLIGHTED ARTICLE | INVESTIGATION Birth and Death of LTR-Retrotransposons in Aegilops tauschii Xiongtao Dai ,*,1 Hao Wang,† Hongye Zhou ,† Le Wang,‡ Jan Dvořák,‡ Jeffrey L. Bennetzen,† andHans-GeorgMüller* *Department of Statistics, University of California, Davis, California 95616, †Department of Genetics, University of Georgia, Athens, Georgia 30602, and ‡Department of Plant Sciences, University of California, Davis, California 95616 ORCID ID: 0000-0002-6996-5930 (X.D.) ABSTRACT Long terminal repeat-retrotransposons (LTR-RTs) are a major component of all flowering plant genomes. To analyze the time dynamics of LTR-RTs, we modeled the insertion rates of the 35 most abundant LTR-RT families in the genome of Aegilops tauschii, one of the progenitors of wheat. Our model of insertion rate (birth) takes into account random variation in LTR divergence and the deletion rate (death) of LTR-RTs. Modeling the death rate is crucial because ignoring it would underestimate insertion rates in the distant past. We rejected the hypothesis of constancy of insertion rates for all 35 families and showed by simulations that our hypothesis test controlled the false-positive rate. LTR-RT insertions peaked from 0.064 to 2.39 MYA across the 35 families. Among other effects, the average age of elements within a family was negatively associated with recombination rate along a chromosome, with proximity to the closest gene, and weakly associated with the proximity to its 59 end. Elements within a family that were near genes colinear with genes in the genome of tetraploid emmer wheat tended to be younger than those near noncolinear genes. We discuss these associations in the context of genome evolution and stability of genome sizes in the tribe Triticeae.
    [Show full text]
  • The Haplotype-Based Analysis of Aegilops Tauschii Introgression Into Hard Red Winter Wheat and Its Impact on Productivity Traits
    bioRxiv preprint doi: https://doi.org/10.1101/2021.05.29.446303; this version posted May 30, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. The haplotype-based analysis of Aegilops tauschii introgression into hard red winter wheat and its impact on productivity traits 1 Moses Nyine1, Elina Adhikari1, Marshall Clinesmith2, Robert Aiken2, Bliss Betzen1, Wei 2 Wang1, Dwight Davidson1, Zitong Yu1, Yuanwen Guo1, Fei He1, Alina Akhunova3, Katherine 3 W Jordan1,4, Allan K Fritz2, Eduard Akhunov1*. 4 5 1 Department of Plant Pathology, Kansas State University, Manhattan, USA 6 2 Department of Agronomy, Kansas State University, Manhattan, USA 7 3 Integrated Genomics Facility, Kansas State University, Manhattan, USA 8 4 USDA-ARS Hard Winter Wheat Genetics Research Unit, Manhattan, USA 9 *Corresponding author: 10 Eduard Akhunov 11 Email: [email protected] 12 13 Keywords: wheat, Aegilops tauschii, wild relative introgression, whole genome sequencing, 14 haplotypes, genotype imputation, grain yield, yield component traits. 15 16 Abstract 17 Introgression from wild relatives have a great potential to broaden beneficial allelic diversity 18 available for crop improvement in breeding programs. Here, we assessed the impact of introgression 19 from 21 diverse accessions of Aegilops tauschii, the diploid ancestor of the wheat D genome, into six 20 hard red winter wheat cultivars on yield and yield component traits. We used 5.2 million imputed D 21 genome SNPs identified by whole-genome sequencing of parental lines and the sequence-based 22 genotyping of introgression population including 351 BC1F3:5 lines.
    [Show full text]
  • Aegilops Tauschii
    Genetics and Molecular Biology, 39, 3, 398-407 (2016) Copyright © 2016, Sociedade Brasileira de Genética. Printed in Brazil DOI: http://dx.doi.org/10.1590/1678-4685-GMB-2015-0232 Research Article Genome-wide association study of drought-related resistance traits in Aegilops tauschii Peng Qin1,2*,YuLin1,*, Yaodong Hu3,4, Kun Liu1, Shuangshuang Mao1, Zhanyi Li1, Jirui Wang1, Yaxi Liu1, Yuming Wei1 and Youliang Zheng1 1Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, China. 2College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China. 3Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China. 4Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China. Abstract The D-genome progenitor of wheat (Triticum aestivum), Aegilops tauschii, possesses numerous genes for resis- tance to abiotic stresses, including drought. Therefore, information on the genetic architecture of A. tauschii can aid the development of drought-resistant wheat varieties. Here, we evaluated 13 traits in 373 A. tauschii accessions grown under normal and polyethylene glycol-simulated drought stress conditions and performed a genome-wide as- sociation study using 7,185 single nucleotide polymorphism (SNP) markers. We identified 208 and 28 SNPs associ- ated with all traits using the general linear model and mixed linear model, respectively, while both models detected 25 significant SNPs with genome-wide distribution. Public database searches revealed several candidate/flanking genes related to drought resistance that were grouped into three categories according to the type of encoded protein (enzyme, storage protein, and drought-induced protein). This study provided essential information for SNPs and genes related to drought resistance in A.
    [Show full text]
  • Aetmyc1, the Candidate Gene Controlling the Red Coleoptile Trait in Aegilops Tauschii Coss
    molecules Article AetMYC1, the Candidate Gene Controlling the Red Coleoptile Trait in Aegilops tauschii Coss. Accession As77 Dong Cao 1,3,4,†, Guangji Ye 2,†, Yuan Zong 2, Bo Zhang 1,4, Wenjie Chen 1,4, Baolong Liu 1,4,* and Huaigang Zhang 1,4,* 1 Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Xining 810008, China; [email protected] (D.C.); [email protected] (B.Z.); [email protected] (W.C.) 2 State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Qinghai, Xining 800010, China; [email protected] (G.Y.); [email protected] (Y.Z.) 3 Northwest Institute of Plateau Biology, University of Chinese Academy of Sciences, Beijing 100049, China 4 Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China * Correspondence: [email protected] (B.L.); [email protected] (H.Z.); Tel.: +86-971-6143-610 (B.L.); +86-971-6143-630(H.Z.); Fax: +86-971-6143-282 (H.Z.) † These authors contributed equally to this paper. Received: 21 November 2017; Accepted: 15 December 2017; Published: 18 December 2017 Abstract: The red coleoptile trait can help monocotyledonous plants withstand stresses, and key genes responsible for the trait have been isolated from Triticum aestivum, Triticum urartu, and Triticum monococcum, but no corresponding research has been reported for Aegilops tauschii. In this research, transcriptome analysis was performed to isolate the candidate gene controlling the white coleoptile trait in Ae. tauschii. There were 5348 upregulated, differentially-expressed genes (DEGs) and 4761 downregulated DEGs in red coleoptile vs.
    [Show full text]
  • Intraspecific Lineage Divergence and Its Association with Reproductive
    Matsuoka et al. BMC Evolutionary Biology (2015) 15:213 DOI 10.1186/s12862-015-0496-9 RESEARCH ARTICLE Open Access Intraspecific lineage divergence and its association with reproductive trait change during species range expansion in central Eurasian wild wheat Aegilops tauschii Coss. (Poaceae) Yoshihiro Matsuoka1*, Shigeo Takumi2 and Taihachi Kawahara3 Abstract Background: How species ranges form in landscapes is a matter of long-standing evolutionary interest. However, little is known about how natural phenotypic variations of ecologically important traits contribute to species range expansion. In this study, we examined the phylogeographic patterns of phenotypic changes in life history (seed production) and phenological (flowering time) traits during the range expansion of Aegilops tauschii Coss. from the Transcaucasus and Middle East to central Asia. Results: Our comparative analyses of the patterns of natural variations for those traits and their association with the intraspecific lineage structure showed that (1) the eastward expansion to Asia was driven by an intraspecific sublineage (named TauL1b), (2) high seed production ability likely had an important role at the initial dispersal stage of TauL1b’s expansion to Asia, and (3) the phenological change to early flowering phenotypes was one of the key adaptation events for TauL1b to further expand its range in Asia. Conclusions: This study provides for the first time a broad picture of the process of Ae. tauschii’s eastward range expansion in which life history and phenological traits may have had respective roles in its dispersal and adaptation in Asia. The clear association of seed production and flowering time patterns with the intraspecific lineage divergence found in this study invites further genetic research to bring the mechanistic understanding of the changes in these key functional traits during range expansion within reach.
    [Show full text]
  • Developing a High-Throughput SNP-Based Marker System to Facilitate the Introgression of Traits from Aegilops Species Into Bread Wheat (Triticum Aestivum)
    ORIGINAL RESEARCH published: 24 January 2019 doi: 10.3389/fpls.2018.01993 Developing a High-Throughput SNP-Based Marker System to Facilitate the Introgression of Traits From Aegilops Species Into Bread Wheat (Triticum aestivum) Alexandra M. Przewieslik-Allen 1*, Amanda J. Burridge 1, Paul A. Wilkinson 1, Mark O. Winfield 1, Daniel S. Shaw 1, Lorna McAusland 2, Julie King 2, Ian P. King 2, Keith J. Edwards 1 and Gary L. A. Barker 1 1 Life Sciences, University of Bristol, Bristol, United Kingdom, 2 Plant Sciences, Sutton Bonington Campus, Leicestershire, United Kingdom The genus Aegilops contains a diverse collection of wild species exhibiting variation Edited by: in geographical distribution, ecological adaptation, ploidy and genome organization. István Molnár, Centre for Agricultural Research Aegilops is the most closely related genus to Triticum which includes cultivated wheat, (MTA), Hungary a globally important crop that has a limited gene pool for modern breeding. Aegilops Reviewed by: species are a potential future resource for wheat breeding for traits, such as adaptation Parveen Chhuneja, Punjab Agricultural University, India to different ecological conditions and pest and disease resistance. This study describes Kentaro Yoshida, the development and application of the first high-throughput genotyping platform Kobe University, Japan specifically designed for screening wheat relative species. The platform was used to Pilar Hernandez, Instituto de Agricultura Sostenible screen multiple accessions representing all species in the genus Aegilops. Firstly, the (IAS), Spain data was demonstrated to be useful for screening diversity and examining relationships *Correspondence: within and between Aegilops species. Secondly, markers able to characterize and track Alexandra M.
    [Show full text]
  • Aegilops Species for the Improvement of the Leaf and Stripe Rust Resistance in Cultivated Triticale (×Triticosecale Wittmack)
    agronomy Review Aegilops Species for the Improvement of the Leaf and Stripe Rust Resistance in Cultivated Triticale (×Triticosecale Wittmack) Waldemar Ulaszewski 1 and Michał Tomasz Kwiatek 2,* 1 Institute of Plant Genetics of the Polish Academy of Sciences, Strzeszy´nska34 str., 60-479 Pozna´n,Poland; [email protected] 2 Department of Genetics and Plant Breeding, Pozna´nUniversity of Life Sciences, Dojazd 11, 60-637 Pozna´n,Poland * Correspondence: [email protected]; Tel.: +48-6184-87-760 Received: 26 October 2020; Accepted: 16 December 2020; Published: 18 December 2020 Abstract: Hexaploid triticale ( Triticosecale Wittmack, 2n = 6x = 42 chromosomes, AABBRR) is a × cultivated hybrid, which combines wheat (Triticum aestivum L.) and rye (Secale cereale L.) properties. It has a better ability to be grown on poor soils, compared to wheat. Mainly, triticale is produced for forage feed and bioethanol. Considering the limited diversity of this human-made crop, there is a need to widen its genetic variability, especially to introduce new genes, responsible for agronomic traits, such as resistance to biotic stresses. Leaf rust caused by Puccinia triticina Eriks. and stripe rust caused by Puccinia striiformis Westend are the most destructive foliar diseases of triticale and related cereals. Developing resistant triticale varieties is an important strategy for the control of these diseases. A number of leaf and stripe rust resistance genes have been already introduced into bread wheat from related species using chromosome manipulations. Exploitation of related species conferring desirable loci is the most effective non-GMO way of improving the rust resistance of triticale. The procedure encompasses chromosome doubling of obtained hybrids followed by a number of backcrosses to eliminate unnecessary alien chromatin and to reduce the linkage drag.
    [Show full text]
  • Aegilops Tauschii Genome Aegilops Tauschii Coss
    Sequencing the Aegilops tauschii genome AEGILOPS TAUSCHII Coss. is typica (Lubbers et al. 1991; Dvořák et al. 1998; Wang a diploid (2n=14), self- et al. 2013). The L1 lineage consists ofAe. tauschii ssp. pollinating (cleistogamic) tauschii var. anathera and the remaining populations of goatgrass species in the Ae. tauschii ssp. tauschii var. typica (Dvořák et al. 1998). Triticeae tribe of the grass The two lineages are genetically strongly differentiated, family. Its natural range and there are virtually no intermediate forms between is from eastern Turkey to them (Wang et al. 2013). The L2 lineage occupies low China and Pakistan and altitudes, less than 400 m above sea level, whereas most a few naturalized popula- of the Ae. tauschii ssp. tauschii occupies altitudes higher tions have been reported than 400 m above sea level (Wang et al. 2013). in central and northeast- The genome of Ae. tauschii is designated by the let- ern Syria (van Slageren ter D. The estimates of its size range from 4.02 to 4.98 1994). Aegilops tauschii en- Gbp (Rees & Walters 1965; Arumuganathan & Earle compasses four morpho- 1991; Jia et al. 2013). As much as 90% of the genome logical varieties, of which may consist of repeated sequences. three, var. typica, var. ana- Aegilops tauschii donated the third (D) genome thera, and var. meyeri, are of hexaploid wheat (Triticum aestivum L., genomes grouped taxonomically BBAADD) (Kihara 1944; McFadden & Sears 1946). into Ae. tauschii ssp. taus- It is a widely believed hypothesis that T. aestivum chii, while the fourth is originated by hybridization of domesticated tetraploid the monotypic Ae.
    [Show full text]
  • An Ancient Integration in a Plant NLR Is Maintained As a Trans-Species Polymorphism
    bioRxiv preprint doi: https://doi.org/10.1101/239541; this version posted January 8, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Title An ancient integration in a plant NLR is maintained as a trans-species polymorphism Authors Helen J. Brabham1, Inmaculada Hernández-Pinzón1, Samuel Holden1, Jennifer Lorang2, and Matthew J. Moscou1* Address 1The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, United Kingdom 2Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331- 2902 USA *e-mail: [email protected] Main text Plant immune receptors are under constant selective pressure to maintain resistance to plant pathogens. Nucleotide-binding leucine-rich repeat (NLR) proteins are one class of cytoplasmic immune receptors whose genes commonly show signatures of adaptive evolution1,2. While it is known that balancing selection contributes to maintaining high intraspecific allelic diversity, the evolutionary mechanism that influences the transmission of alleles during speciation remains unclear. The barley Mla locus has over 30 described alleles conferring isolate-specific resistance to barley powdery mildew and contains three NLR families (RGH1, RGH2, and RGH3)3. We discovered (using sequence capture and RNAseq) the presence of a novel integrated Exo70 domain in RGH2 in the Mla3 haplotype. Allelic variation across barley accessions includes presence/absence of the integrated domain in RGH2. Expanding our search to several Poaceae species, we found shared interspecific conservation in the RGH2-Exo70 integration. We hypothesise that balancing selection has maintained allelic variation at Mla as a trans-species polymorphism over 24 My, thus contributing to and preserving interspecific allelic diversity during speciation.
    [Show full text]