Production of Tetrapyrrole Compounds and Vitamin B12 Using Genetically Engineering of Propionibacterium Freudenreichii

Total Page:16

File Type:pdf, Size:1020Kb

Production of Tetrapyrrole Compounds and Vitamin B12 Using Genetically Engineering of Propionibacterium Freudenreichii Production of tetrapyrrole compounds and vitamin B12 using genetically engineering of Propionibacterium freudenreichii. An overview Yoshikatsu Murooka, Yongzhe Piao, Pornpimon Kiatpapan, Mitsuo Yamashita To cite this version: Yoshikatsu Murooka, Yongzhe Piao, Pornpimon Kiatpapan, Mitsuo Yamashita. Production of tetrapyrrole compounds and vitamin B12 using genetically engineering of Propionibacterium freuden- reichii. An overview. Le Lait, INRA Editions, 2005, 85 (1-2), pp.9-22. hal-00895589 HAL Id: hal-00895589 https://hal.archives-ouvertes.fr/hal-00895589 Submitted on 1 Jan 2005 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Lait 85 (2005) 9–22 © INRA, EDP Sciences, 2005 9 DOI: 10.1051/lait:2004035 Review Production of tetrapyrrole compounds and vitamin B12 using genetically engineering of Propionibacterium freudenreichii. An overview Yoshikatsu MUROOKAa*, Yongzhe PIAOa, Pornpimon KIATPAPANb, Mitsuo YAMASHITAa a Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan b Department of Biochemistry, Faculty of Science, Rangsit University, Patumthani 12000, Thailand Abstract – Propionibacterium freudenreichii is a commercially important bacterium that is used in the production of cheeses, cobalamin (vitamin B12) and propionic acid. Metabolic engineering using genetically improved strains will make the fermentation process more economical and also enhance the quality of the products. Host-vector systems and expression vectors using strong pro- moters from P. freudenreichii were developed in propionibacteria. By using these expression vec- tors and amplification of various genes, productions of 5-aminolevulinic acid, tetrapyrrole com- pounds and vitamin B12 were reported. Here, we review the advancement of genetic engineering in P. freudenreichii in recent years, covering the molecular aspects of the formation of tetrapyrrole compounds and vitamin B12. Propionibacterium / tetrapyrrole / vitamin B12 / expression vector Résumé – Production de composés tetrapyrrole et de vitamine B12 par Propionibacterium freudenreichii génétiquement modifié. Propionibacterium freudenreichii est une bactérie d’importance commerciale, car elle intervient dans la production de fromages, de cobalamine (vita- mine B12) et d’acide propionique. Le procédé de fermentation peut être amélioré sur le plan écono- mique et qualitatif grâce au génie métabolique et l’utilisation de souches améliorées. Des systèmes vecteur-hôtes et des vecteurs d’expression utilisant des promoteurs de P. freudenreichii ont été développés pour les bactéries propioniques. Des productions d’acide 5-aminolévulinique, de com- posés tetrapyrrole et de vitamine B12 ont été réalisées en utilisant ces vecteurs d’expression et l’amplification de différents gènes. Les avancées du génie génétique de ces dernières années, cou- vrant les aspects moléculaires de la formation des composés tetrapyrrole et de la vitamine B12 chez P. freudenreichii, sont passées en revue. Propionibacterium / tetrapyrrole / vitamine B12 / vecteur d’expression * Corresponding author: [email protected] 10 Y. Murooka et al. 1. INTRODUCTION bacterial species, a broader host range might be expected for pPK705. Jore et al. [24] also Propionibacterium species are of inter- described another efficient transformation est for their functions as probiotics and their system for Propionibacterium. Reproduci- nutraceutical properties as well as for their ble transformation of Propionibacterium role as a starter in the cheese-making process. freudenreichii was achieved with shuttle Propionibacteria are also known for their vectors based on the plasmid p545 from high production of vitamin B12 and this has P. freudenreichii. The erythromycin resistance led to the development of commercially gene (ermE) from Saccharopolyspora eryth- interesting production processes [72]. raea and the chloramphenicol resistance Since some Propionibacterium sp. have gene (cml) from Corynebacterium striatum been granted GRAS (generally recognized [69] were used as the selection markers. DNA as safe) status by the United States Food and restriction/modification systems observed in Drug Administration and are not known to propionibacteria have to be taken into account produce either endo- or exotoxins [61], since successful DNA transformation at high Propionibacterium sp. are the preferred rates (up to 108 transformants·µg–1 DNA) species for the production of vitamin B12 succeeds only with plasmid DNA originat- and other food additives. The genes that ing from propionibacteria with the same were involved in biosynthesis of vitamin restriction/modification system(s) as the B12 were consecutively isolated in this bac- strain to be transformed, and not from E. coli terium [11, 12, 37, 58, 63]. The clarification hosts. Furthermore, the basis for an integrat- of the genetic organization and the gene ing vector has been set up after identification products showed more information about of a potential attP site and an adjacent inte- tetrapyrrole and vitamin B12 biosynthesis. grase gene from a Propionibacterium phage/ In this review, we focus on the productivity prophage system [16]. Kiatpapan et al. [30] of these useful compounds in propionibac- succeeded in overexpression of heterologous teria using these gene manipulations. genes in propionibacteria, such as choA encoding cholesterol oxidase from Strepto- myces [39] and hemA encoding 5-amino- 2. GENETIC MANUPULATION levulinic acid (ALA) synthase from Rhodo- SYSTEMS IN PROPIONI- bacter sphaeroides [41] based on pPK705 BACTERIA and screened endogenous promoters. These successes resulted in the overproduction of Researchers in the genetics and molecu- ALA [27] and cholesterol oxidase [30]. lar biology of propionibacteria are currently However, only a few attempts have been making much progress. In order to develop made to study the genetics of propionibac- efficient DNA transfer systems for the teria [28]. The development of genetic tools genus Propionibacterium, dairy and envi- will facilitate an increase in fundamental ronmental propionibacteria were screened and application-oriented knowledge of the for the presence of suitable plasmids. Fol- genus Propionibacterium. lowing nucleotide sequence analysis, potential replication functions were identi- fied on several Propionibacterium plas- 3. MOLECULAR ANALYSIS mids such as pLME106/pRGO1, p545 and OF PROMOTER ELEMENTS pLME108. Murooka’s group [28, 29] first FROM P. FREUDENREICHII described the development of an Escherichia coli - Propionibacterium shuttle vector The improvement and molecular study pPK705, based on a part of the pRGO1 plas- of an economically important group of bac- mid, containing the replication region of terial strains would be greatly facilitated by this plasmid, and the E. coli cloning vector genetic modification. The efficiency of pUC18. A hygromycin B (hygB) gene from gene transcription has gained attention in Streptomyces hygroscopicus [80] was used Gram-positive bacteria that are important as a selective marker. Since plasmid pRGO1 industrially such as Bacillus [14], Coryne- has been detected in all four dairy propioni- bacterium [44], Streptomyces [67] and lactic Genetically engineered Propionibacterium 11 acid bacteria [34]. However, little informa- sus sequence of the promoter region of tion on transcription, including the genes P. freudenreichii was also different from that encoding sigma factor and promoter con- of Streptomyces [67]. These results should sensus sequences in propionibacteria, is provide new opportunities for controlled available [28]. Recently, active promoter gene expression in P. freudenreichii. sequences from P. freudenreichii have been characterized [47]. In order to screen pro- moter regions in P. freudenreichii, Piao 4. BIOSYNTHESIS et al. [47] tried to screen the promoter OF TETRAPYRROLE library directly in P. freudenreichii. How- COMPOUNDS ever, since the efficiency of transformation in P. freudenreichii was not sufficient to Tetrapyrrole synthesis is initiated by the make the library, E. coli was substituted as synthesis of ALA, a comparatively stable a host for P. freudenreichii at the first amino ketone. ALA is synthesized by one screening using a promoter probe vector, of two routes (Fig. 1), either from the con- pCVE1, which harbors the modified choA densation of succinyl-CoA and glycine gene from Streptomyces sp. as a reporter (C4 pathway) or, more commonly, from the gene [43], and assayed for cholesterol oxi- intact carbon skeleton of glutamic acid dase activity by the filter paper method [39]. (C5 pathway). Since Murakami et al. iso- Finally, 17 transformants were selected. To lated the gene encoding glutamate 1-semi- confirm if all of the inserted DNA fragments aldehyde 2,1-aminomutase (HemL) [37] from the 17 transformants were active in and no gene involved in the C4 pathway has P. freudenreichii, all of the inserted DNA been found in the genomic sequence of fragments and the choA gene in pCVE1 P. freudenreichii [45], Propionibacterium were
Recommended publications
  • Light-Independent Nitrogen Assimilation in Plant Leaves: Nitrate Incorporation Into Glutamine, Glutamate, Aspartate, and Asparagine Traced by 15N
    plants Review Light-Independent Nitrogen Assimilation in Plant Leaves: Nitrate Incorporation into Glutamine, Glutamate, Aspartate, and Asparagine Traced by 15N Tadakatsu Yoneyama 1,* and Akira Suzuki 2,* 1 Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan 2 Institut Jean-Pierre Bourgin, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), UMR1318, RD10, F-78026 Versailles, France * Correspondence: [email protected] (T.Y.); [email protected] (A.S.) Received: 3 September 2020; Accepted: 29 September 2020; Published: 2 October 2020 Abstract: Although the nitrate assimilation into amino acids in photosynthetic leaf tissues is active under the light, the studies during 1950s and 1970s in the dark nitrate assimilation provided fragmental and variable activities, and the mechanism of reductant supply to nitrate assimilation in darkness remained unclear. 15N tracing experiments unraveled the assimilatory mechanism of nitrogen from nitrate into amino acids in the light and in darkness by the reactions of nitrate and nitrite reductases, glutamine synthetase, glutamate synthase, aspartate aminotransferase, and asparagine synthetase. Nitrogen assimilation in illuminated leaves and non-photosynthetic roots occurs either in the redundant way or in the specific manner regarding the isoforms of nitrogen assimilatory enzymes in their cellular compartments. The electron supplying systems necessary to the enzymatic reactions share in part a similar electron donor system at the expense of carbohydrates in both leaves and roots, but also distinct reducing systems regarding the reactions of Fd-nitrite reductase and Fd-glutamate synthase in the photosynthetic and non-photosynthetic organs.
    [Show full text]
  • Magnesium-Protoporphyrin Chelatase of Rhodobacter
    Proc. Natl. Acad. Sci. USA Vol. 92, pp. 1941-1944, March 1995 Biochemistry Magnesium-protoporphyrin chelatase of Rhodobacter sphaeroides: Reconstitution of activity by combining the products of the bchH, -I, and -D genes expressed in Escherichia coli (protoporphyrin IX/tetrapyrrole/chlorophyll/bacteriochlorophyll/photosynthesis) LUCIEN C. D. GIBSON*, ROBERT D. WILLOWSt, C. GAMINI KANNANGARAt, DITER VON WETTSTEINt, AND C. NEIL HUNTER* *Krebs Institute for Biomolecular Research and Robert Hill Institute for Photosynthesis, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, United Kingdom; and tCarlsberg Laboratory, Department of Physiology, Gamle Carlsberg Vej 10, DK-2500 Copenhagen Valby, Denmark Contributed by Diter von Wettstein, November 14, 1994 ABSTRACT Magnesium-protoporphyrin chelatase lies at Escherichia coli and demonstrate that the extracts of the E. coli the branch point of the heme and (bacterio)chlorophyll bio- transformants can convert Mg-protoporphyrin IX to Mg- synthetic pathways. In this work, the photosynthetic bacte- protoporphyrin monomethyl ester (20, 21). Apart from posi- rium Rhodobacter sphaeroides has been used as a model system tively identifying bchM as the gene encoding the Mg- for the study of this reaction. The bchH and the bchI and -D protoporphyrin methyltransferase, this work opens up the genes from R. sphaeroides were expressed in Escherichia coli. possibility of extending this approach to other parts of the When cell-free extracts from strains expressing BchH, BchI, pathway. In this paper, we report the expression of the genes and BchD were combined, the mixture was able to catalyze the bchH, -I, and -D from R. sphaeroides in E. coli: extracts from insertion of Mg into protoporphyrin IX in an ATP-dependent these transformants, when combined in vitro, are highly active manner.
    [Show full text]
  • AOP 131: Aryl Hydrocarbon Receptor Activation Leading to Uroporphyria
    Organisation for Economic Co-operation and Development DOCUMENT CODE For Official Use English - Or. English 1 January 1990 AOP 131: Aryl hydrocarbon receptor activation leading to uroporphyria Short Title: AHR activation-uroporphyria This document was approved by the Extended Advisory Group on Molecular Screening and Toxicogenomics in June 2018. The Working Group of the National Coordinators of the Test Guidelines Programme and the Working Party on Hazard Assessment are invited to review and endorse the AOP by 29 March 2019. Magdalini Sachana, Administrator, Hazard Assessment, [email protected], +(33- 1) 85 55 64 23 Nathalie Delrue, Administrator, Test Guidelines, [email protected], +(33-1) 45 24 98 44 This document, as well as any data and map included herein, are without prejudice to the status of or sovereignty over any territory, to the delimitation of international frontiers and boundaries and to the name of any territory, city or area. 2 │ Foreword This Adverse Outcome Pathway (AOP) on Aryl hydrocarbon receptor activation leading to uroporphyria, has been developed under the auspices of the OECD AOP Development Programme, overseen by the Extended Advisory Group on Molecular Screening and Toxicogenomics (EAGMST), which is an advisory group under the Working Group of the National Coordinators for the Test Guidelines Programme (WNT). The AOP has been reviewed internally by the EAGMST, externally by experts nominated by the WNT, and has been endorsed by the WNT and the Working Party on Hazard Assessment (WPHA) in xxxxx. Through endorsement of this AOP, the WNT and the WPHA express confidence in the scientific review process that the AOP has undergone and accept the recommendation of the EAGMST that the AOP be disseminated publicly.
    [Show full text]
  • On Tuning the Fluorescence Emission of Porphyrin Free Bases Bonded to the Pore Walls of Organo-Modified Silica
    Molecules 2014, 19, 2261-2285; doi:10.3390/molecules19022261 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Article On Tuning the Fluorescence Emission of Porphyrin Free Bases Bonded to the Pore Walls of Organo-Modified Silica Rosa I. Y. Quiroz-Segoviano 1, Iris N. Serratos 1, Fernando Rojas-González 1, Salvador R. Tello-Solís 1, Rebeca Sosa-Fonseca 2, Obdulia Medina-Juárez 1, Carmina Menchaca-Campos 3 and Miguel A. García-Sánchez 1,* 1 Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Vicentina, D. F. 09340, Mexico 2 Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Vicentina, D. F. 09340, Mexico 3 Centro de Investigación en Ingeniería y Ciencias Aplicadas, UAEM, Av. Universidad 1001, Col. Chamilpa, C.P. 62209, Cuernavaca Mor., Mexico * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +52-55-5804-4677; Fax: +52-55-5804-4666. Received: 24 December 2013; in revised form: 29 January 2014 / Accepted: 7 February 2014 / Published: 21 February 2014 Abstract: A sol-gel methodology has been duly developed in order to perform a controlled covalent coupling of tetrapyrrole macrocycles (e.g., porphyrins, phthalocyanines, naphthalocyanines, chlorophyll, etc.) to the pores of metal oxide networks. The resulting absorption and emission spectra intensities in the UV-VIS-NIR range have been found to depend on the polarity existing inside the pores of the network; in turn, this polarization can be tuned through the attachment of organic substituents to the tetrapyrrrole macrocycles before bonding them to the pore network.
    [Show full text]
  • Preparation of Tetrapyrrole-Amino Acid Covalent Complexes
    I'lunt I'ht.siol.Ritx ltt'nt. 1996. -14 (3). 393-39lt Preparation of tetrapyrrole-amino acid covalent complexes Leszek Fiedorl'2*, Varda Rosenbach-Belkinl, Maruthi Sail and Avigdor Scherzl I BiochernistryDepartment. The Weizn-rannInstitute of Science.76100 Rehovot.Israel. I Prcscntaddress: Institute of Molecular BiologSr.Ja-ciellonian University. Al. Mickiewicza 3. 3 l- 120 Cracow. Poland. ':'Author to whom correspondenceshould bc addrcsscd(fax +48-12-336907:E-mail fiedor@)mol.uj.edu.pl) Abstract The presentedsynthetic approach towards chcn'rical modifications of chlorophylls(Chls) provides a perspectivcto construct model systems. where tetrapyrrole-aminoacid and tetrapyrrole-peptideinteractions coulcl be studied in covalent rnodel compor,rncls. The approach relies on thc lact that in Chls the | 7r propionic rcid sidc chain docs not participatc in the tetrapl'rroleii--electron system. It makes use of a plant enzvmechlolophyllase (EC 3.1.1.1,+).which lrr lilo and in yitrc catalysesreactions at this sidc function. The transesterilicationand hyclrolysisenzymatic rerctions are useful on a preparativescale. ln the transesterificationreaction. a desiredamino acid rcsiduc posscssirrgprimary hydloxyl group can be directly attachedto the propiorric acid side chain o1' Chl. This mcthod allows to replace the phytyl moiety in Chls n'ith seline. The r:rtherreaction. enzyrratic hydrolysis of Chls, yields chlorophyllides and opens a convenientroutc fbr furthcr rnodifications.If sufliciently mild synthetic mcthodsarc uscd. such as catalysisw,ith ,l-dimethyl arnino pyridine or activationwith N-hvdroxvsuccinimide.an arrino acid or peptide residuecan be covalentlybound to chlorophyllides' carboxylic group. lear,'ingthe essentialclectlonic structure of Chl intact. The activation w'ith N-hydroxvsuccininridcallows fbr the coupling cvrn in aqueous rncdia.
    [Show full text]
  • Bacterial Heme Biosynthesis and Its Biotechnological Application
    Appl Microbiol Biotechnol (2003) 63: 115–127 DOI 10.1007/s00253-003-1432-2 MINI-REVIEW N. Frankenberg . J. Moser . D. Jahn Bacterial heme biosynthesis and its biotechnological application Received: 23 June 2003 / Revised: 22 August 2003 / Accepted: 26 July 2003 / Published online: 16 September 2003 # Springer-Verlag 2003 Abstract Proteins carrying a prosthetic heme group are The nickel-containing yellow coenzyme F430 is the vital parts of bacterial energy conserving and stress prosthetic group of methyl-coenzyme M reductase that response systems. They also mediate complex enzymatic catalyzes the final step of methane formation in methano- reactions and regulatory processes. Here, we review the genenic archaea (Thauer and Bonacker 1994). The pink multistep biosynthetic pathway of heme formation includ- cobalt-containing vitamin B12 derivatives are the most ing the enzymes involved and reaction mechanisms. complex known tetrapyrroles (Martens et al. 2002). They Potential biotechnological implications are discussed. are involved in multiple enzymatic reactions, e.g., radical- dependent nucleotide reduction and methyl transfer. The iron-chelating yellow-greenish siroheme is required for the Introduction six electron transfer reactions during assimilatory nitrite or sulfite reduction (Raux et al. 2003). The green pigment Structure and function of tetrapyrroles heme d1, is part of the dissimilatory nitrite reductase in Pseudomonads and is a typical porphinoid that differs Compounds of the tetrapyrrole class are characterized by significantly in structure and color from the other their four five-membered pyrrole rings, usually linked porphyrin-based hemes (Chang 1994). together via single atom bridges (Fig. 1). The four rings of The other commonly found tetrapyrrole structures are the macrocycle are labelled clockwise A–D starting with the open-chain molecules that are all derived from cleaved the first of the three symmetric rings with regard to the macrocycles.
    [Show full text]
  • Continuous Chlorophyll Degradation Accompanied by Chlorophyllide and Phytol Reutilization for Chlorophyll Synthesis in Synechocystis Sp
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Biochimica et Biophysica Acta 1767 (2007) 920–929 www.elsevier.com/locate/bbabio Continuous chlorophyll degradation accompanied by chlorophyllide and phytol reutilization for chlorophyll synthesis in Synechocystis sp. PCC 6803 ⁎ Dmitrii Vavilin, Wim Vermaas School of Life Sciences and Center for the Study of Early Events in Photosynthesis, Arizona State University, Box 874501, Tempe, AZ 85287, USA Received 3 January 2007; received in revised form 23 March 2007; accepted 27 March 2007 Available online 3 April 2007 Abstract Chlorophyll synthesis and degradation were analyzed in the cyanobacterium Synechocystis sp. PCC 6803 by incubating cells in the presence of 13C-labeled glucose or 15N-containing salts. Upon mass spectral analysis of chlorophyll isolated from cells grown in the presence of 13C-glucose for different time periods, four chlorophyll pools were detected that differed markedly in the amount of 13C incorporated into the porphyrin (Por) and phytol (Phy) moieties of the molecule. These four pools represent (i) unlabeled chlorophyll (12Por12Phy), (ii) 13C-labeled chlorophyll (13Por13Phy), and (iii, iv) chlorophyll, in which either the porphyrin or the phytol moiety was 13C-labeled, whereas the other constituent of the molecule remained unlabeled (13Por12Phy and 12Por13Phy). The kinetics of 12Por12Phy disappearance, presumably due to chlorophyll de- esterification, and of 13Por12Phy, 12Por13Phy, and 13Por13Phy accumulation due to chlorophyll synthesis provided evidence for continuous chlorophyll turnover in Synechocystis cells. The loss of 12Por12Phy was three-fold faster in a photosystem I-less strain than in a photosystem II- less strain and was accelerated in wild-type cells upon exposure to strong light.
    [Show full text]
  • Bilirubin Suppresses Th17 Immunity in Colitis by Upregulating CD39
    Bilirubin suppresses Th17 immunity in colitis by upregulating CD39 Maria Serena Longhi, … , Francisco J. Quintana, Simon C. Robson JCI Insight. 2017;2(9):e92791. https://doi.org/10.1172/jci.insight.92791. Research Article Gastroenterology Immunology Unconjugated bilirubin (UCB), a product of heme oxidation, has known immunosuppressant properties but the molecular mechanisms, other than antioxidant effects, remain largely unexplored. We note that UCB modulates T helper type 17 (Th17) immune responses, in a manner dependent upon heightened expression of CD39 ectonucleotidase. UCB has protective effects in experimental colitis, where it enhances recovery after injury and preferentially boosts IL-10 production by colonic intraepithelial CD4+ cells. In vitro, UCB confers immunoregulatory properties on human control Th17 cells, as reflected by increased levels of FOXP3 and CD39 with heightened cellular suppressor ability. Upregulation of CD39 by Th17 cells is dependent upon ligation of the aryl hydrocarbon receptor (AHR) by UCB. Genetic deletion of CD39, as in Entpd1–/– mice, or dysfunction of AHR, as inA hrd mice, abrogates these UCB salutary effects in experimental colitis. However, in inflammatory bowel disease (IBD) samples, UCB fails to confer substantive immunosuppressive properties upon Th17 cells, because of decreased AHR levels under the conditions tested in vitro. Immunosuppressive effects of UCB are mediated by AHR resulting in CD39 upregulation by Th17. Boosting downstream effects of AHR via UCB or enhancing CD39-mediated ectoenzymatic activity might provide therapeutic options to address development of Th17 dysfunction in IBD. Find the latest version: https://jci.me/92791/pdf RESEARCH ARTICLE Bilirubin suppresses Th17 immunity in colitis by upregulating CD39 Maria Serena Longhi,1 Marta Vuerich,1 Alireza Kalbasi,1 Jessica E.
    [Show full text]
  • Ferredoxin: the Central Hub Connecting Photosystem I to Cellular Metabolism
    DOI: 10.1007/s11099-018-0793-9 PHOTOSYNTHETICA 56 (1): 279-293, 2018 REVIEW Ferredoxin: the central hub connecting photosystem I to cellular metabolism J. MONDAL* and B.D. BRUCE*,**,+ Department of Biochemistry, Cellular and Molecular Biology*, Graduate School of Genome Science and Technology**, University of Tennessee at Knoxville, Knoxville, Tennessee, USA Abstract Ferredoxin (Fd) is a small soluble iron-sulfur protein essential in almost all oxygenic photosynthetic organisms. It contains a single [2Fe-2S] cluster coordinated by four cysteine ligands. It accepts electrons from the stromal surface of PSI and facilitates transfer to a myriad of acceptors involved in diverse metabolic processes, including generation of NADPH via Fd-NADP-reductase, cyclic electron transport for ATP synthesis, nitrate reduction, nitrite reductase, sulfite reduction, hydrogenase and other reductive reactions. Fd serves as the central hub for these diverse cellular reactions and is integral to complex cellular metabolic networks. We describe advances on the central role of Fd and its evolutionary role from cyanobacteria to algae/plants. We compare structural diversity of Fd partners to understand this orchestrating role and shed light on how Fd dynamically partitions between competing partner proteins to enable the optimum transfer of PSI-derived electrons to support cell growth and metabolism. Additional key words: cellular metabolism; electron transfer; ferredoxin; global interaction; oxidation-reduction. Introduction The discovery of Fd is itself an interesting achievement (Fd). Dan Arnon and collaborators were the first to investi- in the history of biochemistry. Its role in the cellular gate the role of Fd in photosynthesis as described over 50 oxidation-reduction processes is essential in organisms years ago (Tagawa and Arnon 1962).
    [Show full text]
  • Vitamin B, and B,-Proteins Edited by Bernhard Krautler, Duilio Arigoni and Bernard T
    Vitamin B, and B,-Proteins Edited by Bernhard Krautler, Duilio Arigoni and Bernard T. Golding Lectures presented at the 4th European Symposium on Vitamin B,, and B,,-Proteins @ W I LEY-VCH Weinheim - Chichester - New York - Toronto. Brisbane - Singapore This Page Intentionally Left Blank Vitamin B, and BIZ-Proteins Edited by B. Krautler, D. Arigoni and B.T. Golding 633 WILEY-VCH This Page Intentionally Left Blank Vitamin B, and B,-Proteins Edited by Bernhard Krautler, Duilio Arigoni and Bernard T. Golding Lectures presented at the 4th European Symposium on Vitamin B,, and B,,-Proteins @ W I LEY-VCH Weinheim - Chichester - New York - Toronto. Brisbane - Singapore Prof. Dr. B. Krautler Prof. Dr. D. Arigoni Prof. Dr. B.T. Golding Leopold-Franzens-Universitat ETH-Zurich Department of Chemistry Innsbruck Laboratoriuin fur University of Newcastle Institut fur Organische Chemie Organische Chemie NE 17 RU Newcastle Iiinrain 52a Universitatsstrasse 16 upon Thyne A-6020 Innsbruck CH-8092 Zurich This book was carefully produced. Nevertheless, authors, editor and publisher do not warrant the in- formation contained theirein to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate. L I The cover picture shows a cartoon of B,,-dependent methionine synthase (see contribution by Drennan et al. in this book). The picture was kindly provided by Martin Tollinger, University of Innsbruck. Library of Congress Card No.: applied for British Library Cataloguing-in-Publication Data: A catalogue record for this book is available from the British Library Die Deutsche Bibliothek - CIP-Einheitsaufnahme Vitamin B,, and B,,-proteins :lectures presented at the 4th European Symposium on Vitamin B,, and B,,-Proteins / ed.
    [Show full text]
  • Nomenclature of Tetrapyrroles
    Pure & Appi. Chem. Vol.51, pp.2251—2304. 0033-4545/79/1101—2251 $02.00/0 Pergamon Press Ltd. 1979. Printed in Great Britain. PROVISIONAL INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY and INTERNATIONAL UNION OF BIOCHEMISTRY JOINT COMMISSION ON BIOCHEMICAL NOMENCLATURE*t NOMENCLATURE OF TETRAPYRROLES (Recommendations, 1978) Prepared for publication by J. E. MERRITT and K. L. LOENING Comments on these proposals should be sent within 8 months of publication to the Secretary of the Commission: Dr. H. B. F. DIXON, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK. Comments from the viewpoint of languages other than English are encouraged. These may have special significance regarding the eventual publication in various countries of translations of the nomenclature finally approved by IUPAC-IUB. PROVISIONAL IUPAC—ITJB Joint Commission on Biochemical Nomenclature (JCBN), NOMENCLATUREOF TETRAPYRROLES (Recommendations 1978) CONTENTS Preface 2253 Introduction 2254 TP—O General considerations 2256 TP—l Fundamental Porphyrin Systems 1.1 Porphyrin ring system 1.2 Numbering 2257 1.3 Additional fused rings 1.4 Skeletal replacement 2258 1.5 Skeletal replacement of nitrogen atoms 2259 1.6Fused porphyrin replacement analogs 2260 1.7Systematic names for substituted porphyrins 2261 TP—2 Trivial names and locants for certain substituted porphyrins 2263 2.1 Trivial names and locants 2.2 Roman numeral type notation 2265 TP—3 Semisystematic porphyrin names 2266 3.1 Semisystematic names in substituted porphyrins 3.2 Subtractive nomenclature 2269 3.3 Combinations of substitutive and subtractive operations 3.4 Additional ring formation 2270 3.5 Skeletal replacement of substituted porphyrins 2271 TP—4 Reduced porphyrins including chlorins 4.1 Unsubstituted reduced porphyrins 4.2 Substituted reduced porphyrins.
    [Show full text]
  • Indoleamine 2, 3-Dioxygenase Regulation of Immune Response (Review)
    MOLECULAR MEDICINE REPORTS 17: 4867-4873, 2018 Indoleamine 2, 3-dioxygenase regulation of immune response (Review) HAO WU1, JIANPING GONG1 and YONG LIU2 1Chongqing Key Laboratory of Hepatobiliary Surgery and Department of Hepatobiliary Surgery, Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010; 2Department of Hepatobiliary Surgery, The People's Hospital of Hechuan, Chongqing 401520, P.R. China Received November 28, 2016; Accepted January 4, 2018 DOI: 10.3892/mmr.2018.8537 Abstract. Indoleamine 2, 3-dioxygenase (IDO) catalyzes Contents the initial and rate-limiting step in the degradation pathway of the essential amino acid tryptophan and is expressed by 1. Introduction professional antigen presenting cells (APCs), epithelial cells, 2. Properties of the IDO enzyme vascular endothelium and tumor cells. IDO-mediated cata- 3. IDO pathways and immune regulation bolic products, which are additionally termed ʻkynureninesʼ, 4. Role of IDO in immune suppression exerts important immunosuppressive functions primarily via 5. Strategies to target IDO regulating T effector cell anergy and inducing the proliferation 6. Conclusions of T regulatory cells. This endogenous tolerogenic pathway has a critical effect on mediating the magnitude of immune responses under various stress conditions, including tumor, 1. Introduction infection and transplantation. The present review evaluates the recent progress in elucidating how catabolism of tryptophan As a highly evolved biological response, immunoregulation not regulated by IDO modulates the immune response to inflam- only coordinates inflammation and innate immunity, however matory and immunological signals. Blocking this pathway may may additionally modulate adaptive immunity and establish be a novel adjuvant therapeutic strategy for clinical application self-tolerance. Continuous access to nutrients is a primary in immunotherapy.
    [Show full text]