Metadata of the Chapter That Will Be Visualized Online

Total Page:16

File Type:pdf, Size:1020Kb

Metadata of the Chapter That Will Be Visualized Online Metadata of the chapter that will be visualized online ChapterTitle North American Tree Rings, Climatic Extremes, and Social Disasters Chapter Sub-Title Chapter CopyRight - Year Springer Science+Business Media B.V. 2010 (This will be the copyright line in the final PDF) Book Name Dendroclimatology Corresponding Author Family Name Stahle Particle Given Name David W. Suffix Division Department of Geosciences Organization University of Arkansas Address Fayetteville, AR, 72701, USA Email [email protected] Author Family Name Dean Particle Given Name Jeffrey S. Suffix Division Laboratory of Tree-Ring Research Organization University of Arizona Address 85721, Tucson, AZ, USA Email [email protected] Abstract Tree-ring reconstructed climatic extremes contemporaneous with severe socioeconomic impacts can be identified in the modern, colonial, and precolonial eras. These events include the 1950s, Dust Bowl, mid- and late-nineteenth century Great Plains droughts, El Año del Hambre, and the seventeenth and sixteenth century droughts among the English and Spanish colonies. The new tree-ring reconstructions confirm the severe, sustained Great Drought over the Colorado Plateau in the late thirteenth century identified by A.E. Douglass and document its spatial impact across the cultural heartland of the Anasazi. The available tree-ring data also indicate a succession of severe droughts over the western United States during the Terminal Classic Period in Mesoamerica, but these droughts are located far from the centers of Mesoamerican culture and their extension into central Mexico needs to be confirmed with the new suite of millennium-long tree-ring chronologies now under development in the region. The only clear connections between climate extremes and human impacts are found during the period of written history, including the prehispanic Aztec era where codices describe the drought of One Rabbit in Mexico and other precolonial droughts. The link between reconstructed climate and societies in the prehistoric era may never be made irrefutably, but testing these hypotheses with improved climate reconstructions, better archaeological data, and modeling experiments to explore the range of potential social response have to be central goals of archaeology and high-resolution paleoclimatology. Keywords (separated by '-') Climate - Dendrochronology - Drought - Epidemic disease - Human impacts - Megadrought - Palmer Drought Severity Index - PDSI - North America famines SPB-125752 Chapter ID 10 July 23, 2010 Time: 02:23am Proof 1 01 Chapter 10 02 North American Tree Rings, Climatic Extremes, 03 04 and Social Disasters 05 06 07 David W. Stahle and Jeffrey S. Dean 08 09 10 11 12 13 Abstract Tree-ring reconstructed climatic extremes contemporaneous with severe 14 socioeconomic impacts can be identified in the modern, colonial, and precolonial 15 eras. These events include the 1950s, Dust Bowl, mid- and late-nineteenth cen- 16 tury Great Plains droughts, El Año del Hambre, and the seventeenth and sixteenth 17 century droughts among the English and Spanish colonies. The new tree-ring recon- 18 structions confirm the severe, sustained Great Drought over the Colorado Plateau 19 in the late thirteenth century identified by A.E. Douglass and document its spatial 20 impact across the cultural heartland of the Anasazi. The available tree-ring data 21 also indicate a succession of severe droughts over the western United States dur- 22 ing the Terminal Classic Period in Mesoamerica, but these droughts are located far 23 from the centers of Mesoamerican culture and their extension into central Mexico 24 needs to be confirmed with the new suite of millennium-long tree-ring chronologies 25 now under development in the region. The only clear connections between climate 26 extremes and human impacts are found during the period of written history, includ- 27 ing the prehispanic Aztec era where codices describe the drought of One Rabbit 28 in Mexico and other precolonial droughts. The link between reconstructed climate 29 and societies in the prehistoric era may never be made irrefutably, but testing these 30 hypotheses with improved climate reconstructions, better archaeological data, and 31 modeling experiments to explore the range of potential social response have to be 32 central goals of archaeology and high-resolution paleoclimatology. 33 34 Keywords Climate · Dendrochronology · Drought · Epidemic disease · Human 35 impacts · Megadrought · Palmer Drought Severity Index · PDSI · North America 36 famines 37 38 39 40 41 42 D.W. Stahle (B) 43 Department of Geosciences, University of Arkansas, Fayetteville, AR 72701, USA 44 e-mail: [email protected] 45 UNCORRECTED PROOF M.K. Hughes et al. (eds.), Dendroclimatology, Developments in Paleoenvironmental Research 11, DOI 10.1007/978-1-4020-5725-0_10, C Springer Science+Business Media B.V. 2010 SPB-125752 Chapter ID 10 July 23, 2010 Time: 02:23am Proof 1 D.W. Stahle and J.S. Dean 46 10.1 Introduction 47 48 The impact of climate on society has been a controversial research focus from 49 the early days of dendrochronology. A.E. Douglass (1935) noted the coincidence 50 between tree-ring-dated climate extremes and prehistoric Anasazi activities on the 51 Colorado Plateau, including an increase in tree-ring-dated building activity during 52 wet years and decreased activity or complete village abandonment in dry years. 53 ‘The great drouth from 1276 to 1299 was the most severe of all those represented in 54 this 1200-year record and undoubtedly was connected with extensive disturbances 55 in the welfare of the Pueblo people’ (Douglass 1935, p. 49). ‘Pueblo III, the golden 56 age of southwestern prehistory, took its early form in Chaco Canyon about 919 AD, 57 reached its local climax in the late eleventh century, and probably closed with the 58 great drouth of 1276–1299’ (Douglass 1935, p. 41). The first long tree-ring chronol- 59 ogy developed by Douglass for the American Southwest has been replicated by more 60 than 850 tree-ring chronologies now available for North America (Cook et al. 2004), 61 and Douglass’ ‘great drouth’ of the late thirteenth century has been verified as one of 62 the most severe and protracted of the past 1000 years (Grissino-Mayer et al. 1997). 63 However, the precise role of prolonged drought in the welfare of the Anasazi and 64 their ancient migrations remains an interesting and provocative research question. 65 There have been a number of more recent attempts to link paleoclimatic extremes 66 to famine, disease, and the collapse of human societies (Keys 1999; Diamond 67 2005). These catastrophe scenarios have been fiercely controversial among anthro- 68 pologists, historians, and social theorists, and include viewpoints involving climate 69 determinism, Malthusian demographics, a famine-prone peasantry, and Marxist and 70 entitlement economic theory (Arnold 1988). Elements of each viewpoint are evident 71 in many recent famines, and a loose consensus on the causes of modern hunger now 72 includes environmental hazards, food system breakdowns, and entitlement failure. 73 The impact of climatic hazards may have been greater among simple premodern 74 societies, but under some circumstances even modern, more complex societies can 75 suffer extreme climatic disruption. However, the impacts of climate and other geo- 76 physical hazards do tend to be greatest among impoverished segments of societies 77 (Ingram et al. 1981; Mutter 2005), as has been demonstrated by the effects of the 78 southeastern Asia tsunami and hurricanes Katrina and Rita. It is anticipated that the 79 consequences of future anthropogenic climate change will continue to be greatest 80 among the poor (Houghton 1997). 81 Two of the worst famines in world history illustrate the complex environmental, 82 socioeconomic, and political dimensions of these catastrophes. The so-called ‘late 83 Victorian famines’ of 1876–1879 across India, northern China, and Brazil—when 84 an estimated 16–31 million people perished—were initiated by a strong El Niño 85 event and extreme drought across the Indo-Pacific realm; the human tragedy, how- 86 ever, appears to have been aggravated by poverty, unrestrained market forces, and 87 incompetent government (Davis 2001). Likewise, the catastrophic Chinese famines 88 of 1958–1961 that attended the ‘Great Leap Forward’—when 16–30 million ‘excess 89 deaths’ occurred—began with drought but seem to have been magnified by Mao 90 Zedong’s social experimentsUNCORRECTED and failed centralization of Chinese PROOF agriculture (Davis SPB-125752 Chapter ID 10 July 23, 2010 Time: 02:23am Proof 1 10 North American Tree Rings, Climatic Extremes, and Social Disasters 91 2001). Analyses of these and other nineteenth- and twentieth-century famines indi- 92 cate that the role of climatic extremes in economic system collapse and starvation 93 has been complex, nonlinear, and strongly subject to prevailing social and tech- 94 nological conditions. The climatic sensitivity of premodern agrarian societies was 95 likely increased by simpler trade and transportation systems, smaller-scale water 96 control systems, and the absence of immunization against disease. 97 The variable social impacts of climatic extremes also were evident during the 98 major decadal moisture regimes witnessed over North America during the mod- 99 ern era. The Dust Bowl drought of the 1930s (Figs. 10.1 and 10.2a) included the 100 most extreme annual to decadal moisture shortfalls measured in the United States 101 or Canada during the instrumental period (Fye et al.
Recommended publications
  • Climate Change and Cultural Response in the Prehistoric American Southwest
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln USGS Staff -- Published Research US Geological Survey Fall 2009 Climate Change and Cultural Response In The Prehistoric American Southwest Larry Benson U.S. Geological Survey, [email protected] Michael S. Berry Bureau of Reclamation Follow this and additional works at: https://digitalcommons.unl.edu/usgsstaffpub Benson, Larry and Berry, Michael S., "Climate Change and Cultural Response In The Prehistoric American Southwest" (2009). USGS Staff -- Published Research. 725. https://digitalcommons.unl.edu/usgsstaffpub/725 This Article is brought to you for free and open access by the US Geological Survey at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USGS Staff -- Published Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. CLIMATE CHANGE AND CULTURAL RESPONSE IN THE PREHISTORIC AMERICAN SOUTHWEST Larry V. Benson and Michael S. Berry ABSTRACT Comparison of regional tree-ring cutting-date distributions from the southern Col- orado Plateau and the Rio Grande region with tree-ring-based reconstructions of the Palmer Drought Severity Index (PDSI) and with the timing of archaeological stage transitions indicates that Southwestern Native American cultures were peri- odically impacted by major climatic oscillations between A.D. 860 and 1600. Site- specifi c information indicates that aggregation, abandonment, and out-migration from many archaeological regions occurred during several widespread mega- droughts, including the well-documented middle-twelfth- and late-thirteenth- century droughts. We suggest that the demographic response of southwestern Native Americans to climate variability primarily refl ects their dependence on an inordinately maize-based subsistence regimen within a region in which agricul- ture was highly sensitive to climate change.
    [Show full text]
  • Resilient Watershed & Fire Management
    PANDEMIC RECOVERY AND BEYOND Resilient Watersheds and Fire Management California is in the midst of the COVID-19 pandemic during the second-worst megadrought in the past 1,200 years.1 Simultaneously,2020 was named the largest wildfire season recorded in California’s modern history,and included the first “gigafire”– the August Complex fire,which burned more than 1 million acres.2 The drought-fire-flood cycle. Drought and fire intensification are intrinsically linked [see graphic on page 2]: Drought increases fire risk while wildfires limit and impair our water supplies. Drying of vegetation from drought creates more fuel for fires. Fire reduces forest carbon sequestration,therefore releasing more greenhouse gases,causing air temperatures to increase. With increased temperatures,more moisture evaporates from land and lakes,rivers and other bodies of water. These waterbodies are additionally impaired because fire erodes the landscape, allowing more runoff and debris into our water supplies. In a post-fire landscape,vegetation crucial for groundwater recharge can take years to regrow. With the pandemic complicating and stressing resource management and emergency response, capacity and priorities,a pause in forest-management approaches, particularly controlled burns,increases our current vulnerability and leaves In 2020, five of California’s six largest fires Californians in a heightened state of risk. Agencies at all levels of governance must in modern history burned simultaneously. develop strategies to contend with the multi-threat challenges that Californians Source:California’s Wildfire Management and Resilience are experiencing now and will continue to experience in the years to come. Plan.10/10/20 draft (numbers not finalized).
    [Show full text]
  • Advancing the National Fish, Wildlife, and Plants Climate Adaptation Strategy Into a New Decade
    1 2 0 2 . K R O W T E N N O I T A T P A D A E T A M I L A D V A N C I N G T H E C S T N A T I O N A L F I S H , N A L P W I L D L I F E , A N D D N A , E P L A N T S C L I M A T E F I L D L A D A P T A T I O N I W , H S T R A T E G Y I N T O S I F L A A N E W D E C A D E N O I T A N Advancing the National Fish, Wildlife, and Plants Climate Adaptation Strategy into a New Decade Contributors Joe Burns, USFS/Office of Sustainability Mike Langston, U.S. Geological and Climate Survey/South Central Climate Adaptation Whisper Camel-Means, Confederated Science Center Salish and Kootenai Tribes Dara Marks-Marino, Institute for Tribal Nikki Cooley, Institute for Tribal Environmental Professionals Environmental Professionals Tracy Melvin, Michigan State University Karen Cozzetto, Institute for Tribal Robert Newman, University of North Dakota Environmental Professionals Rachael Novak, Bureau of Indian Rob Croll, Great Lakes Indian Fish and Affairs/Tribal Resilience Program Wildlife Commission Madeleine Rubenstein, U.S. Geological Aimee Delach, Defenders of Wildlife Survey/National Climate Adaptation Science Maggie Ernest Johnson, Association of Fish Center and Wildlife Agencies Ted Weber, Defenders of Wildlife Roger Griffis, NOAA/National Marine Fisheries Service This report was reviewed by members of the Association of Fish and Wildlife Agencies’ Climate Adaptation Committee and the National Fish, Wildlife, and Plants Climate Adaptation Network.
    [Show full text]
  • California's Fourth Climate Change Assessment: Statewide Summary
    CALIFORNIA’S FOURTH CLIMATE CHANGE ASSESSMENT Statewide Summary Report Coordinating Agencies: Introduction to California’s Fourth Climate Change Assessment alifornia is a global leader in using, investing in, and advancing research to set proactive climate change policy, and its Climate Change Assessments provide the scientifc foundation for understanding climate- related vulnerability at the local scale and informing resilience actions. The Climate Change Assessments C directly inform State policies, plans, programs, and guidance to promote effective and integrated action to safeguard California from climate change. California’s Fourth Climate Change Assessment (Fourth Assessment) advances actionable science that serves the growing needs of state and local-level decision-makers from a variety of sectors. Tis cutting-edge research initiative is comprised of a wide-ranging body of technical reports, including rigorous, comprehensive climate change scenarios at a scale suitable for illuminating regional vulnerabilities and localized adaptation strategies in California; datasets and tools that improve integration of observed and projected knowledge about climate change into decision- making; and recommendations and information to directly inform vulnerability assessments and adaptation strategies for California’s energy sector, water resources and management, oceans and coasts, forests, wildfres, agriculture, biodiversity and habitat, and public health. In addition, these technical reports have been distilled into summary reports and a brochure, allowing the public and decision-makers to easily access relevant fndings from the Fourth Assessment. • A concise summary of the Fourth Assessment’s most important fndings and conclusions. • An in-depth report on how California’s people, built KEY FINDINGS environment, and ecosystems will be impacted by climate change and how we can proactively adapt, based on the Fourth Assessment’s fndings.
    [Show full text]
  • Hydrological Droughts in the Southern Andes (40–45°S)
    www.nature.com/scientificreports OPEN Hydrological droughts in the southern Andes (40–45°S) from an ensemble experiment using CMIP5 and CMIP6 models Rodrigo Aguayo1, Jorge León‑Muñoz2,3*, René Garreaud4,5 & Aldo Montecinos6,7 The decrease in freshwater input to the coastal system of the Southern Andes (40–45°S) during the last decades has altered the physicochemical characteristics of the coastal water column, causing signifcant environmental, social and economic consequences. Considering these impacts, the objectives were to analyze historical severe droughts and their climate drivers, and to evaluate the hydrological impacts of climate change in the intermediate future (2040–2070). Hydrological modelling was performed in the Puelo River basin (41°S) using the Water Evaluation and Planning (WEAP) model. The hydrological response and its uncertainty were compared using diferent combinations of CMIP projects (n = 2), climate models (n = 5), scenarios (n = 3) and univariate statistical downscaling methods (n = 3). The 90 scenarios projected increases in the duration, hydrological defcit and frequency of severe droughts of varying duration (1 to 6 months). The three downscaling methodologies converged to similar results, with no signifcant diferences between them. In contrast, the hydroclimatic projections obtained with the CMIP6 and CMIP5 models found signifcant climatic (greater trends in summer and autumn) and hydrological (longer droughts) diferences. It is recommended that future climate impact assessments adapt the new simulations as more CMIP6 models become available. Anthropogenic climate change has increased the probability of extreme events in the mid-latitudes of the South- ern Hemisphere, mainly those linked to severe droughts 1. Projections indicate that these drought events may increase in extent, frequency and magnitude as they superimpose on the gradual decrease in precipitation2,3 and a signifcant increase in heat waves 4.
    [Show full text]
  • Henry 1 Anthropogenic Influence on Climate Change
    Henry 1 Anthropogenic Influence on Climate Change Induced Drought in the American Southwest Katherine Henry Submitted to the Faculty of the Honors College of the Oklahoma State University in fulfillment of the requirements for the Honors Degree May 2019 Henry 2 Abstract Anthropogenic influence on climate change induced drought in the predominantly arid region of the American Southwest plays a major role in the effects it has over climate, environment, and sustainability. Topics such as fossil fuels, megadroughts, sustainability, and human roles are addressed specifically. Background and discussion sections are included as a literature review that goes over the different variables involving anthropogenic influence on climate change induced drought. Drought and climate change and natural phenomena such as monsoons are found to be linked together. However, human influences from fossil fuels and water resource usage are also a significant factor in climate change induced drought in the American Southwest. This paper demonstrates how human influence on global warming has caused an increase in drought conditions and human water usage is putting them further at risk by depleting water resources. Two paths are considered to combat water shortage issues and with one being to acquire new water resources and the other to conserve and recycle water. There may not be a single resolution to drought, but sustainable practices appear to be the best way to combat the negative effects of climate change induced drought in the American Southwest. Henry 3
    [Show full text]
  • IPCC AR6 WGI Faqs.Pdf
    AR6 WGI Report – List of corrigenda to be implemented The corrigenda listed below will be implemented in the FAQs during copy-editing. FAQs Document Section Page :Line Detailed info on correction to make (Chapter, (based on Annex, Supp. the final Mat…) pdf FGD version) 3 FAQ3.2 103:4 & Replace “CESM1 large ensemble” with “MPI-ESM grand ensemble”. 201:10 3 FAQ3.2 201:2 (Figure The image should be replaced to 1) The new figure was uploaded to the Figure Manager. 8 FAQ 8.1 227 :1 Replace “land use changes effect ” by “land use changes affect ” 9 FAQ9.1, 131 :9 Change ‘Table 9.SM.5’ to ‘Table 9.SM.9’. Figure 1 and 255 :6 9 FAQ 9.1 132 : 9 Remove “Table 9.SM.5” 11 FAQ 11.1 117:41 Replace “changes to on be only” with “changes over the globe by only” 11 FAQ 11.1, 343: Replace “refer” with “refers” Figure 1: 11 FAQ 11.1, 343: Replace “largest daily rainfall in a year” with “largest daily precipitation in a Figure 1: year” 11 FAQ 11.1, 343: Replace “CMIP6 ensemble mean” with “CMIP6 ensemble median” Figure 1: Final Government Distribution Chapter 1 IPCC AR6 WGI 1 Frequently Asked Questions 2 3 4 FAQ 1.1: Do we understand climate change better now compared to when the IPCC started? 5 Yes, much better. The first IPCC report, released in 1990, concluded that human-caused climate change 6 would soon become evident, but could not yet confirm that it was already happening. Today, evidence is 7 overwhelming that the climate has indeed changed since the pre-industrial era and that human activities are 8 the principal cause of that change.
    [Show full text]
  • Climate Change, Addiction, and Spiritual Liberation
    religions Article Climate Change, Addiction, and Spiritual Liberation Margaret Bullitt-Jonas 1,2,3 1 Missioner for Creation Care, Episcopal Diocese of Western Massachusetts, Springfield, MA 01103, USA; [email protected] 2 Missioner for Creation Care, Southern New England Conference, United Church of Christ, Framingham, MA 01702, USA 3 Creation Care Advisor, Episcopal Diocese of Massachusetts, Boston, MA 02111, USA Abstract: Climate scientists have sounded the alarm: The only way to preserve a planet that is generally habitable for human beings is to carry out a transformation of society at a rate and scale that are historically unprecedented. Can we do this? Will we do this? Drawing on her long-term recovery from addiction and on her decades of ministry as a climate activist, the author reflects on how understanding the dynamics of addiction and recovery might inform our efforts to protect the web of life and to bear witness to the liberating God of love who makes all things new. Keywords: addiction; recovery; Twelve-Step Program; climate change 1. An Addict’s World The addict looks away. The addict sees but does not see. She does not want to see. There is nothing to see here. Change the subject. Citation: Bullitt-Jonas, Margaret. The addict is empty. She does not have enough. She must be filled. She must be 2021. Climate Change, Addiction, filled right now. and Spiritual Liberation. Religions 12: The addict carries out repetitive, compulsive rituals that disconnect her from self, 709. https://doi.org/10.3390/ others, Earth, and the sacred. rel12090709 The addict functions like a machine.
    [Show full text]
  • Lake Powell Megadrought: Image Simulation
    Middle States Geographer; 2018, 51:11-20 LAKE POWELL MEGADROUGHT: IMAGE SIMULATION P. R. Baumann Department of Geography State University of New York, College at Oneonta Oneonta, NY 13820 ABSTRACT: Southwestern United States is experiencing a megadrought that started in 1999 and is now entering its third decade. This megadrought is centered on the Colorado River Basin, an area that has dealt with drought conditions for at least 2000 years. Throughout this basin numerous reservoirs have been developed to control and manage water distribution throughout the Southwest. A key reservoir in this distribution system is Lake Powell through which water from mountain snowpacks in the Upper Basin flow into the arid and heavily populated Lower Basin. This paper shows how the current megadrought has reduced the water level in the lower portion of Lake Powell. Between 1999 and 2004 the water level in the reservoir decreased at a significant rate mainly due to low snowfalls in the surrounding mountains. By 2009 the water level had reached a low stage. The reservoir’s water level has remained at this stage and it has shown no sign of recovering to the height where the reservoir would again be near full capacity. This paper also provides a simulation of what the water level might be if another major decrease occurs similar to one that existed between 1999 and 2004. The simulation illustrates the fragility of this water system to meet the needs of the Southwest. Landsat 5 Thematic Mapper (TM) data for 1999, 2004, and 2009 were used in this study in conjunction with an image processing package.
    [Show full text]
  • Reduction in Carbon Uptake During Turn of the Century Drought in Western North America
    LETTERS PUBLISHED ONLINE: XX MONTH XXXX | DOI: 10.1038/NGEO1529 Reduction in carbon uptake during turn of the century drought in western North America Christopher R. Schwalm1*, Christopher A. Williams2, Kevin Schaefer3, Dennis Baldocchi4,5, T. Andrew Black6, Allen H. Goldstein4,7, Beverly E. Law8, Walter C. Oechel9,10, Kyaw Tha Paw U12 and Russel L. Scott12 1 Fossil fuel emissions aside, temperate North America is evident in highly managed croplands. Crop productivity in 2,383 39 1–3 9 −1 2 a net sink of carbon dioxide at present . Year-to-year counties of the western United States declined 5% or 29 Tg C yr 40 −1 3 variations in this carbon sink are linked to variations in (from 551 to 521 Tg C yr ) during the turn of the century drought, 41 3,4 4 hydroclimate that affect net ecosystem productivity . The with the largest reduction in 2002 (Fig.2). 42 5 severity and incidence of climatic extremes, including drought, Consistent with these large-scale patterns, carbon uptake was 43 5–8 6 have increased as a result of climate warming . Here, we suppressed at 10 of 15 eddy-covariance flux tower sites from 44 7 examine the effect of the turn of the century drought in the global FLUXNET network (Supplementary Table S1). Despite 45 8 western North America on carbon uptake in the region, using differences in ecosystem types, edaphic and climatic conditions, 46 10 9 reanalysis data, remote sensing observations and data from temporal extent of flux tower records, disturbance impacts 47 11 10 global monitoring networks.
    [Show full text]
  • Glacier Albedo Reduction and Drought Effects in the Extratropical Andes, 1986–2020
    Journal of Glaciology Glacier albedo reduction and drought effects in the extratropical Andes, 1986–2020 Thomas E. Shaw1,2 , Genesis Ulloa3, David Farías-Barahona4, 3 3,5 2,6 Article Rodrigo Fernandez , Jose M. Lattus and James McPhee 1 2 Cite this article: Shaw TE, Ulloa G, Farías- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland; Advanced Barahona D, Fernandez R, Lattus JM, McPhee J Mining Technology Center, Universidad de Chile, Santiago, Chile; 3Department of Geology, Universidad de Chile, (2021). Glacier albedo reduction and drought Santiago, Chile; 4Institute für Geographie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; effects in the extratropical Andes, 1986–2020. 5SRGIS: Geología y Geomática Ltda, Santiago, Chile and 6Department of Civil Engineering, Universidad de Chile, – Journal of Glaciology 67(261), 158 169. https:// Santiago, Chile doi.org/10.1017/jog.2020.102 Received: 10 August 2020 Abstract Revised: 10 November 2020 Surface albedo typically dominates the mass balance of mountain glaciers, though long-term Accepted: 11 November 2020 First published online: 17 December 2020 trends and patterns of glacier albedo are seldom explored. We calculated broadband shortwave albedo for glaciers in the central Chilean Andes (33–34°S) using end-of-summer Landsat scenes Key words: between 1986 and 2020. We found a high inter-annual variability of glacier-wide albedo that is Albedo; Andes; climate; drought; glacier; largely a function of the glacier fractional snow-covered area and the total precipitation of the remote sensing preceding hydrological year (up to 69% of the inter-annual variance explained). Under the Author for correspondence: 2010–2020 ‘Mega Drought’ period, the mean albedo, regionally averaged ranging from ∼0.25– Thomas E.
    [Show full text]
  • Climate Change and the Aridification of North America Jonathan T
    COMMENTARY COMMENTARY Climate change and the aridification of North America Jonathan T. Overpecka,b,1 and Bradley Udallb,c Discussions of droughts and their impacts often center human activities, most notably the burning of fossil fuels on the lack of precipitation, just as assessments of (1–5). Warmer summers are also likely to reduce flows in hydrologic impacts under a changing climate most the Columbia River, as well as in rivers along the Sierra often focus on how average precipitation in a given Nevada in California (6). Now, an important study (7) locale is likely to change in the future. Within climate documents how warming is also causing flow declines science, however, focus has begun to include the in the northern Rocky Mountains and in the largest river growing role warming temperatures are playing as a basin in the United States, the Missouri. This work further potent driver of greater aridity: hotter climate ex- highlights the mechanisms behind the temperature- tremes; drier soil conditions; more severe drought; driven river flow declines and places more focus on and the impacts of hydrologic stress on rivers, forests, how anthropogenic climate warming is progressively in- agriculture, and other systems. This shift in the hydro- creasing the risk of hot drought and more arid conditions logic paradigm is most clear in the American Southwest, across an expanding swath of the United States. where declining flows in the region’stwomostimportant The work by Martin et al. (7) on the temperature- rivers, the Colorado (Fig. 1) and Rio Grande, have been driven flow reductions in the Upper Missouri River has attributed in part to increasing temperatures caused by broader implications.
    [Show full text]