Global EV Outlook 2020 Entering the Decade of Electric Drive? Global EV Outlook 2020 Abstract

Total Page:16

File Type:pdf, Size:1020Kb

Global EV Outlook 2020 Entering the Decade of Electric Drive? Global EV Outlook 2020 Abstract Global EV Outlook 2020 Entering the decade of electric drive? Global EV Outlook 2020 Abstract Abstract The Global EV Outlook is an annual publication that identifies and discusses recent developments in electric mobility across the globe. It is developed with the support of the members of the Electric Vehicles Initiative (EVI). Combining historical analysis with projections to 2030, the report examines key areas of interest such as electric vehicle and charging infrastructure deployment, ownership cost, energy use, carbon dioxide emissions and battery material demand. This edition features case studies on transit bus electrification in Kolkata (India), Shenzhen (China), Santiago (Chile) and Helsinki (Finland). The report includes policy recommendations that incorporate learning from frontrunner markets to inform policy makers and stakeholders that consider policy frameworks and market systems for electric vehicle adoption. This edition also features an update on the performance and costs of batteries. It further extends the life cycle analysis conducted in Global EV Outlook 2019, assessing the technologies and policies that will be needed to ensure that EV battery end-of-life treatment contributes to the fullest extent to sustainability and CO2 emissions reductions objectives. Finally, it analyses how off-peak electricity demand charging, dynamic controlled charging (V1G) and vehicle-to-grid (V2G) could mitigate the impact of EVs on peak demand, facilitate the integration of variable renewables and reduce electricity generation capacity needs. rights reserved. rights PAGE | 2 All IEA. Global EV Outlook 2020 Acknowledgements Acknowledgements The Global EV Outlook 2020 was prepared by the Energy Technology Policy (ETP) Division of the Directorate of Sustainability, Technology and Outlooks (STO) of the International Energy Agency (IEA), under the direction of Timur Gül, Head of the ETP Division. Marine Gorner co-ordinated the analysis and production of the report. This report was collectively developed by (in alphabetical order): Thibaut Abergel, Till Bunsen, Marine Gorner, Pierre Leduc, Sarbojit Pal, Leonardo Paoli, Seshadri Raghavan, Jacopo Tattini, Jacob Teter, Sadanand Wachche and Per-Anders Widell. Hanjiro Ambrose, Jessica Dunn and Margaret Slattery, from the University of California Davis, supported with primary research, drafting and other contributions to Chapter 4. Shahmeer Mohsin (Institut Polytechnique de Grenoble) also provided valuable contributions. The development of this analysis benefited from support provided by the following IEA colleagues: Nicolas Beltran Achury, Hiroyuki Fukui, Maximilian Jarrett, George Kamiya, Rebecca McKimm, Alison Pridmore, Alan Searl, Siddharth Singh, Lei Xiang, Chengwu Xu and Xiaotong Yang on the national and regional policy sections in Chapter 2; George Kamiya on the micromobility and aviation sections in Chapter 1; Jose Miguel Bermundez Menendez on the fuel cell electric vehicles section in Chapter 1; Zoe Hungerford on Chapter 5. Mechthild Wörsdörfer, Director of STO, provided encouragement and support throughout the project. Valuable comments and feedback were also provided by other senior management and colleagues within the IEA, in particular Keisuke Sadamori, Laszlo Varro, Apostolos Petropoulos, Julien Armijo and Zoe Hungerford. The report was edited by Debra Justus. Sebastián Galarza Suárez (Centro Mario Molina Chile); Alekhya Datta, Ram Krishnan and Shashank Vyas (TERI); Preet Gill, Scott Moura, Lin Osseiran and Raja Sengupta (University of California Berkeley); Xiuli Zhang (University of California Davis); Reijo Mäkinen, Tommi Muona, Marko Paakkinen and Mikko Pihlatie (VTT Finland); Rakhi Basu, Annika Berlin and Chen Yang (World Bank) and Ivan Jaques (World Bank/ESMAP) provided essential inputs and review for the development of the electric bus section in Chapter 2. The members of Project ReCell (EIT InnoEnergy): Attabik Awan, Anqi Shi, Robin Barkhausen, Gustavo Gomes Pereira, Piotr Grudzień, Thomas Kürstgens, Sameer Chourasia, Iryna Samarukha, and Jane Christina Irawan, rights reserved. rights PAGE | 3 All IEA. Global EV Outlook 2020 Acknowledgements provided inputs, review, and support for the development of Chapter 4. Matteo Muratori (United States National Renewable Energy Laboratory) provided support for the development of Chapter 5. The following individuals have contributed to developing the activities of the Electric Vehicles Initiative (EVI) on behalf of their governments by providing data and assistance, and reviewing this report: Ekta Meena Bibra, Carol Burelle, Aaron Hoskin, Thierry Speiss, Sylvain Roussel and Paula Vieira (Canada); Gabriel Prudencio and Daniela Soler (Chile); Jiayu You (China), Zheng Yali, Hui Lai Zhang, and Jian Liu (China); Pentti Puhakka, Mikko Pihlatie and Marko Paakkinen (Finland); Cédric Bozonnat, Clarisse Durand and Sylène Lasfargues (France); Gereon Meyer and Birgit Hofmann (Germany); Abhay Bakre (India); Tatsuya Nagai and Yoshinobu Sato (Japan); Sonja Munnix, Gerben Passier (Netherlands) and Sacha Scheffer (Netherlands); Mitchel Trezona-lecomte and Nesta Jones (New Zealand); Marianne Dalgard, Ingeborg Kjærnli, Daniel Thorsell (Norway); Mia Abramsson, Lina Kinning, Martina Wikström (Sweden); Rob Gould, Bob Moran and Tim Ward (United Kingdom). Other contributors to data collection include Miranda Lello (Australia); Ricardo Zomer (Brazil) with the help of Bruno Carvalho Doberstein de Magalhães (GIZ); Baldur Petursson, Sigurdur Ingi Fridleifsson, Jón Äsgeir H. Porvaldsson and Anna Lilja Oddsdóttir (Iceland); Alok Ray (Society of manufacturers of electric vehicles, India); Andi Novianto (Indonesia); Francesco Vellucci (Italy); Hwanjung Jung (Korea); Huzaimi Omar (Malaysia); Luis Filipe and Olinda Pereira (Portugal); Hiten Parmar (South Africa); Stephan Walter (Switzerland); Yossapong Lao (Thailand) and Michael Berube, Steven Boyd and James Miller (United States). Dan Dorner, Sarbojit Pal, Rui Luo, Ellina Levina and Christian Zinglersen from the Clean Energy Ministerial secretariat were also instrumental to facilitate the development of EVI activities and providing relevant inputs to the publication. Peer reviewers provided essential feedback to improve the quality of the report. They include: Xavier Moreau (Altergrids); Ryan Melsert (American Battery Metals); Qiang Dai, Jarod C. Kelly and Michael Wang (Argonne National Laboratory); Sohail Hasnie (Asian Development Bank); Robert Spicer (BP plc); Cécile Goubet (AVERE France); Cristiano Façanha (CALSTART); Mridula D. Bharadwaj (Center for Study of Science, Technology and Policy); Makoto Dave Yoshida, Tomoya Imazu, Utaka Kamishima, Yasuo Matsunaaga and Tomoko Blech (CHAdeMO Association); Patrick Jochem (DLR); Daniel Noll (Edison Electric Institute); Ana Quelhas (Energias de Portugal SA); Huiming Gong (Energy Foundation China); Céline Cluzel (Element Energy); Chiara dalla Chiesa (Enel X); James Copping, Panagiota Dilara, Filip Francois, Maurizio Maggiore, Julija Sakovica and Cesar Santos (European Commission); Viktor Irle and Roland Irle (EV- rights reserved. rights PAGE | 4 All IEA. Global EV Outlook 2020 Acknowledgements Volumes); Renske Schuitmaker (Fastned); Patrick Ploetz (Fraunhofer Institute); Ramón Morales Balcázar (Fundacion Tantí – Observatorio Plurinacional de Salares Andinos); Charlotte Argue (Geotab); Dennis Knese (GIZ); Mathy Stanislaus and Jonathan Eckart (Global Battery Alliance); Filippo Berardi and Ming Yang (Global Environment Facility); Kaoru Horie and Yuichiro Tanabe (Honda); Francisco Laverón Simavilla (Iberdrola); Nicholas Lutsey and Dale Hall (International Council on Clean Transportation); Jérôme Sabathier (IFPEN); Cristina Corchero García (IREC); Nicholas Wagner and Yong Chen (IRENA); Pierpaolo Cazzola (International Transport Forum); Gen Saito, Hiroyuki Kaneko and Yutaka Fukunaga (Nissan); Kevin Johnsen and Svend Soyland (Nordic Energy Research); Emma Wiesner (Northvolt); Luca Maiotti and Benjamin Katz (OECD); Marcello Contestabile (Qatar Environment & Energy Research Institute); Hannah E. Murdock, Rana Adib and Duncan Gibb (REN21); Christell Galbrun-Noel (Schneider Electric); Martin Haigh (Shell); Nikola Medimorec (SLOCAT Partnership on Sustainable, Low Carbon Transport); Thalis P. V. Zis (Technical University of Denmark); Naotaka Shibata (TEPCO); Amy Davidsen, Sandra Roling and James Beard (The Climate Group); Hiroyuki Fukui, Max Parness and Risa Oya (Toyota); Samuel Karslake (UK BEIS); Fabrice Stassin, Jan Tytgat and Stéphane Levasseur (Umicore); Rob de Jong and Alexander Koerner (UNEP); James Turnure, John Maples and Mark Schipper (United States Energy Information Administration); Cabell Hodge, Jeffrey Logan and Matteo Muratori (United States National Renewable Energy Laboratory); Sebastián Castellanos, Vishant Kothari, Ryan Sclar and Lulu Xue (World Resources Institute); Francesco Vellucci, Gerfried Jungmeier and James Miller as members of the Hybrid and Electric Vehicles Technology Collaboration Programme; Daniela Soler Lavin, Gideon Friedmann and Magnus Lindgren as members of the Advanced Motor Fuels Technology Collaboration Programme and members of the Clean and Efficient Combustion Technology Collaboration Programme. The development of this report was facilitated by contributions from EVI countries and the Hewlett Foundation for the co-ordination of the Electric Vehicles Initiative by the IEA. rights reserved. rights PAGE | 5 All IEA. Global EV Outlook 2020 Table of contents Table of contents Executive summary .................................................................................................................
Recommended publications
  • United States Patent (19) 11 Patent Number: 5,836,541 Pham (45) Date of Patent: Nov
    USOO5836541A United States Patent (19) 11 Patent Number: 5,836,541 Pham (45) Date of Patent: Nov. 17, 1998 54) EASILY-CONVERTIBLE FIXED-WING 3,986,686 10/1976 Girard ..................................... 244f7 A ROADABLE AIRCRAFT 4,269,374 5/1981 Miller .......................................... 244/2 4,720,061 1/1988 Abdenour et al. ... 244/46 76 Inventor: Roger N. C. Pham, 625 Veranda Ct., 4.881,701 11/1989 Bullard - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 244/2 #1140, Grand Prairie, Tex. 75050 5,050,817 9/1991 Miller .......................................... 244/2 21 Appl.ppl. No.: 859,7329 Primary Examiner-Galen L. Barefoot 57 ABSTRACT 22 Filed: May 21, 1997 57 A fixed-wing four-seat light aircraft that can be easily Related U.S. Application Data converted to a roadway vehicle within minutes by a single perSon in the field, comprising a one-piece wing center panel 63 Continuation-in-part of Ser. No. 811,503, Mar. 5, 1997. with foldable wing tips on each sides. The whole wing unit (51) Int. Cl. ............................................... B64C37.00 is then rotatably mounted on top of the fuselage. The aircraft 52 U.S. CI 24412; 244/46; 244/49 features a conventional front-engine-and-propeller lay-out, 58 Fi la fs - - - - - - - - h - - - - - - - - - - - - - - - - - - - - - - - s 2442. 46.49 with a short fuselage for convenient roadability and 58) Field of Searc 244/135R, 1 R, 100 R. 1 02 R 50 garageability, with horizontal Stabilizer of Significant Span s s s s with foldable tips for adequate flight stability. The vehicle 56) References Cited has a low ride-height with a low center of gravity, four wheels with independent Suspension, nose-height leveling U.S.
    [Show full text]
  • Accelerating Electric Vehicle Adoption: a Vision for Minnesota
    Accelerating Electric Vehicle Adoption: A Vision for Minnesota Minnesota Department of Transportation Minnesota Pollution Control Agency 2019 Great Plains Institute 2 Acknowledgements Authors Fran Crotty, Minnesota Pollution Control Agency Brendan Jordan, Great Plains Institute, Drive Electric Minnesota Dane McFarlane, Great Plains Institute Tim Sexton, Minnesota Department of Transportation Siri Simons, Minnesota Department of Transportation Data Analysis Anne Claflin, Minnesota Pollution Control Agency Anne Jackson, Minnesota Pollution Control Agency Dorian Kvale, Minnesota Pollution Control Agency Amanda Jarrett Smith, Minnesota Pollution Control Agency Contributors Katelyn Bocklund, Great Plains Institute Matthew Blackler, ZEF Energy Larry Herke, State of Minnesota Office of Enterprise Sustainability Pat Jones, Metro Transit Jukka Kukkonen, Plug-in Connect Diana McKeown, Great Plains Institute Sophia Parr, Duluth Transit Authority Rebecca Place, Minnesota Pollution Control Agency Lisa Thurstin, American Lung Association in Minnesota, Twin Cities Clean Cities Coalition Andrew Twite, Fresh Energy Denise Wilson, Minnesota Pollution Control Agency Photographer Will Dunder, Great Plains Institute Layout & Graphics Siri Simons, Minnesota Department of Transportation Accelerating Electric Vehicle Adoption: A Vision for Minnesota 3 Table of Contents 2 Acknowledgements 4 Executive Summary 6 Introduction 7 Collaboration Advances EVs 8 EV Basics 12 What are the Benefits of Electric Vehicles in Minnesota? 18 What are the Challenges? 20 Strategies to Advance Electric Vehicles 31 Utility Electric Vehicle Programs 32 Looking to the Future 35 Appendices 35 Appendix A 35 Appendix B 36 Appendix C 37 Appendix D 39 Appendix E 40 Appendix F 41 Appendix G 42 Appendix H 43 Appendix I 4 Executive Summary A STATEWIDE VISION FOR ELECTRIC VEHICLES The goal is admittedly ambitious.
    [Show full text]
  • May 2021 Newsletter
    May 2021 Newsletter Utah Clean Cities Announces Drive Electric Utah A partnership of the U.S. Department of Energy Clean Cities Programs recently won over $1.8 million in DOE funding to significantly advance electric vehicle (EV) adoption in states across the nation. Learn more about what this statewide Drive Electric Utah project is doing: DRIVE ELECTRIC UTAH WEBSITE PRESS RELEASE Working Together for a Cleaner Utah Utah is making tremendous progress on advancing smart mobility solutions to help protect the environment and improve air quality across the state. In both the public and private sectors, Utahns are coming together in the spirit of collaboration to help build a cleaner, more sustainable energy future by investing in Read full article! forward-thinking strategies and technologies. T a m m i e B o s t i c k Executive Director Utah Clean Cities Utah Clean Cities, PERC and Utah Stakeholders discuss how propane is being used by Utah fleets. Learn how propane could be used in your organization and the benefits to making the switch to a clean fuel. Additional Speakers: Chris Hussey Ed Dumire Steve Whaley T a m m i e B o s t i c k PERC Director of Autogas Executive Director Vice President Business Business Development Business Development Utah Clean Cities Development - Lancer Energy Manger – Western Region Frank Austin Mark Rich Tom Clark Transportation Coordinator - Executive Director- Fleet Manager - Zion Rocky Mountain Propane National Park Uintah School District Association Upcoming Webinars MAY 4, 2021 ON DEMAND ELECTRIC TRUCK
    [Show full text]
  • Assessment Method of Fuel Consumption and Emissions of Aircraft During Taxiing on Airport Surface Under Given Meteorological Conditions
    sustainability Article Assessment Method of Fuel Consumption and Emissions of Aircraft during Taxiing on Airport Surface under Given Meteorological Conditions Ming Zhang * , Qianwen Huang, Sihan Liu and Huiying Li College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China; [email protected] (Q.H.); [email protected] (S.L.); [email protected] (H.L.) * Correspondence: [email protected] or [email protected] Received: 27 September 2019; Accepted: 31 October 2019; Published: 2 November 2019 Abstract: Reducing fuel consumption and emissions of aircrafts during taxiing on airport surfaces is crucial to decrease the operating costs of airline companies and construct green airports. At present, relevant studies have barely investigated the influences of the operation environment, such as low visibility and traffic conflict in airports, reducing the assessment accuracy of fuel consumption and emissions. Multiple aircraft ground propulsion systems on airport surfaces, especially the electric green taxiing system, have attracted wide attention in the industry. Assessing differences in fuel consumption and emissions under different taxiing modes is difficult because environmental factors were hardly considered in previous assessments. Therefore, an innovative study was conducted based on practical running data of quick access recorders and climate data: (1) Low visibility and taxiing conflict on airport surfaces were inputted into the calculation model of fuel consumption to set up a modified model of fuel consumption and emissions. (2) Fuel consumption and emissions models under full- and single-engine taxiing, external aircraft ground propulsion systems, and electric green taxiing system could accurately estimate fuel consumption and emissions under different taxiing modes based on the modified model.
    [Show full text]
  • Fleet Efficiencies and Upgrades
    INNOVATIVE Fleet Efficiencies and Upgrades As a top three provider of LTL freight service in components as carmakers ramp up production. North America and the owner of one of the largest We’re also exploring the promise of electric SWITCHING TO road fleets in Europe, XPO has the responsibility vehicles in our own fleet, particularly as a zero- PREMIUM DIESEL to take an industry-leading role in innovation and emission alternative to diesel for urban deliveries sustainability. We continue to focus on reducing in areas where tailpipe exhaust rules are growing In 2021, XPO is switching our carbon footprint as well as to improving the stricter. XPO’s first electric truck is expected to to 100% premium diesel. overall efficiency of all resources we consume. enter service in 2021 in the US and represents a Higher in cetane — valuable pilot to advance our understanding of With operations spanning North America and how and where to best use electric vehicles. analogous to octane Europe, XPO has the scale to experiment locally, in gasoline — premium and expand industry-leading improvements In the past year, XPO continued to roll out diesel can burn cleaner, continuously. Ongoing initiatives include innovations guided by the understanding that lubricate better and run modernizing and upgrading our tractors, trailers decisions we take today will impact our business and facilities, deploying cleaner fuels such as for years to come: more smoothly. premium diesel, natural gas, biogas and electricity, where practical, and deepening our use of data ■ Europe. In 2020, XPO’s European fleet benefited On the road, this and software analytics to improve the efficiency of from significant upgrades and investment, translates into fuel routing, loading and handling.
    [Show full text]
  • The Role for Federal R&D on Alternative Automotive
    THE ROLE FOR FEDERAL R&D ON ALTERNATIVE AUTOMOTIVE POWER SYSTEMS by John B. Heywood Henry D. Jacoby Lawrence H. Linden MIT Energy Laboratory Report No. MIT-EL 74-013 November 1974 Contract No. EN-44166 Report # MIT-EL 74-013 REPORT SUBMITTED TO: THE OFFICE OF ENERGY R & D POLICY NATIONAL SCIENCE FOUNDATION by the ENERGY LABORATORY Massachusetts Institute of Technology Cambridge, Massachusetts THE ROLE FOR FEDERAL R & D ON ALTERNATIVE AUTOMOTIVE POWER SYSTEMS prepared by John B. Heywood Henry D. Jacoby Lawrence H. Linden with the assistance of Patricia D. Mooney Joe M. Rife November 1974 4 i EXECUTIVE SUMMARY Within the past few years, reductions in air pollutant emissions and fuel consumption of the U.S. passenger car fleet have become important public policy goals. The automobile manufacturers have responded to government regulation or changing market pressures in these areas by modifying the internal combustion engine (ICE), the powerplant which has dominated the passenger car application for almost sixty years. There are, however, alternatives to the ICE which may offer substantial improvements in emissions and fuel economy, but to many people the industry appears reluctant to deal seriously with them, and a Federally sponsored research and development (R & D) program has been called for. This report examines the question: Is it appropriate for the Federal Government to support R & D on alternative automotive powerplants? This issue is highly controversial. Some argue that emissions regulations and the high level of importance given to fuel economy by car buyers give the manufacturers strong and clear incentives for improvements in these areas.
    [Show full text]
  • Investigating the Feasibility of Introducing Alternative Fuel Vehicles Into a Maintenance Fleet
    Report No. UT-21.11 INVESTIGATING THE FEASIBILITY OF INTRODUCING ALTERNATIVE FUEL VEHICLES INTO A MAINTENANCE FLEET Prepared For: Utah Department of Transportation Research & Innovation Division Final Report June 2021 1 DISCLAIMER The authors alone are responsible for the preparation and accuracy of the information, data, analysis, discussions, recommendations, and conclusions presented herein. The contents do not necessarily reflect the views, opinions, endorsements, or policies of the Utah Department of Transportation or the U.S. Department of Transportation. The Utah Department of Transportation makes no representation or warranty of any kind, and assumes no liability therefore. ACKNOWLEDGMENTS The authors acknowledge the Utah Department of Transportation (UDOT) for funding this research and the following individuals from UDOT on the Technical Advisory Committee for helping to guide the research: • Tim Ularich • Ryan Ferrin • Vincent Liu • Daniel Page • Kendall Draney • Abdul Wakil i TECHNICAL REPORT ABSTRACT 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. UT-21.11 N/A N/A 4. Title and Subtitle 5. Report Date INVESTIGATING THE FEASIBILITY OF INTRODUCING June 2021 ALTERNATIVE FUEL VEHICLES INTO A MAINTENANCE 6. Performing Organization Code FLEET 7. Author(s) 8. Performing Organization Report No. Samia Rubaiat, Hossein Nasr Esfahani, Ziqi Song 9. Performing Organization Name and Address 10. Work Unit No. Utah State University 5H08429H Department of Civil and Environmental Engineering 11. Contract or Grant No. Logan, Utah 84322 19-8051 12. Sponsoring Agency Name and Address 13. Type of Report & Period Covered Utah Department of Transportation Final Report 4501 South 2700 West Sept 2018 to June 2021 P.O.
    [Show full text]
  • Magazine 2020 1 Contents
    FOCUS Cell culture Hands on Having pooled its technological expertise, In the early days of the pandemic, employees Magazine MAHLE is making the fuel cell drive ready at MAHLE locations around the world showed for the market. what it means to act decisively. 2020 _ p. 4 _ p. 12 At a glance MAHLE is a leading international development partner and supplier to the automotive industry as well as a pioneer and technology driver for the mobility of the future. Around 160 5 production locations business units 12 Engine Systems and Components major research & development centers Filtration and Engine Peripherals 72,184 Thermal Management employees as at December 31, 2020 Electronics and Mechatronics EUR 9.8 billion sales in 2020 Aftermarket Editorial Ladies and gentlemen, The year 2020 was like no other. On the one hand, almost all markets and national economies felt the full force of the unpredictable coronavirus pandemic—and the international automotive industry, our company included, was no exception. On the other hand, we at MAHLE surpassed ourselves in many respects as a consequence of this unprecedented crisis. Our magazine article “Hands on” tells this story. It talks about the international teamwork by our locations around the world and how the teams responded decisively to keep our business processes running smoothly. I’m delighted that we also performed a service for society through our production of protective masks and numerous local initiatives. From a technology perspective, our focus in 2020 was on our strategic future Michael Frick, priorities. With our project house and technical cooperation with a fuel Chairman of the Management Board cell specialist, we’re helping fuel cell drives achieve their technological break- (ad interim) / Member of the through—read more about this in “Cell culture.” MAHLE’s another future Management Board Finance priority concerns electronics and mechatronics.
    [Show full text]
  • Electric Truck at Redwood National & State Parks
    breathe cleaner air Electric Trams: Alternative Fuel Vehicles At Cape Cod National Seashore National Park Service Expands Alternative Fuels Fleet If you’re among the millions visiting national parks in the U.S. during the next few years, you’ll be breathing a little easier because a growing number of vehicles serving the parks will not be powered by gasoline or diesel fuel. The national parks are adding more vehicles using alternative fuels as part of a federal program to reduce vehicle pollution in those treasured environments. The program is sponsored by the U.S. Department of Energy (DOE), U.S. Department of the Interior (DOI), DOE’s National Renewable Energy Laboratory (NREL), and the National Park Service (NPS). The objective is to demonstrate how using alternative fuel vehicles (AFV) can improve the environment at the parks, while allowing the vehicles to perform efficiently and cost-effectively. About the Electric Trams Two of the “cleaner air” vehicles at the Cape Cod National Seashoreelectric tram buseshad their engines upgraded and new charging equipment installed. The modified buses originally were “hybrid” vehicles, built to operate on propane and electric power. The engines were converted to all-electric power but they could not keep the pace needed to transport visitors. Now the remodeled buses can more efficiently transport up to 60 passengers at a time from an inland parking lot to Coast Guard Beach. Before the upgrades, the buses had to be taken out of service every few hours for recharging. These remodeled buses rejoin the all-electric fleet at Cape Cod National Seashore, where other all-electric trams have been transporting visitors since1998.
    [Show full text]
  • Usf Yr2 Zhang Bertini Gao Final Reducing Airport
    Reducing Airport Pollution and Consequent Health Impacts to Local Community Center for Transportation, Environment, and Community Health Final Report By Hualong Tang, Yu Zhang October 31, 2018 1 DISCLAIMER The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the information presented herein. This document is disseminated in the interest of information exchange. The report is funded, partially or entirely, by a grant from the U.S. Department of Transportation’s University Transportation Centers Program. However, the U.S. Government assumes no liability for the contents or use thereof. 2 TECHNICAL REPORT STANDARD TITLE PAGE 1. Report No. 2.Government Accession No. 3. Recipient’s Catalog No. 4. Title and Subtitle 5. Report Date Reducing Airport Pollution and Consequent Health Impacts to October 31, 2018 Local Community 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Hualong Tang Yu Zhang (0000-0003-1202-626X) 9. Performing Organization Name and Address 10. Work Unit No. Department of Civil and Environmental Engineering University of South Florida 11. Contract or Grant No. Tampa, FL, 33620 69A3551747119 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered U.S. Department of Transportation Final Report 1200 New Jersey Avenue, SE 10/01/2017 – 09/30/2018 Washington, DC 20590 14. Sponsoring Agency Code US-DOT 15. Supplementary Notes 16. Abstract Research shows that air pollution caused by a large airport could be equivalent to that produced by many hundreds of miles of freeway traffic. Airplane air pollution include ultrafine sulfur dioxide, nitrogen oxide and other toxic particles, which not only affect employees and passengers on airport and residents near airport but could spread to as far as 10 miles and cause health concerns of a significant amount of population.
    [Show full text]
  • Vehicle Repair Shop Isn't Budging from Jackson Ave. Home
    Public Records & Notices Monitoring local real estate since 1968 View a complete day’s public records Subscribe Presented by and notices today for our at memphisdailynews.com. free report www.chandlerreports.com Tuesday, May 25, 2021 MemphisDailyNews.com Vol. 136 | No. 62 Rack–50¢/Delivery–39¢ Collierville, Bartlett students take top honors in airport art contest ABIGAIL WARREN May 19. Students from schools Meredith Dai, a Collierville painting.” Her artwork depicted the Dixon Gallery and Gardens, Courtesy of The Daily Memphian across Shelby County showed off High sophomore, took home first a live concert at Levitt Shell in said during the event. “It was Winners for Memphis Interna- their interpretations of Memphis place for her painting titled “A Overton Park, but highlighted a original. The skill was so strong, tional Airport’s 14th annual High culture. Levitt Picnic.” family enjoying a picnic as many and it felt like I was sitting on the School Visual Arts and Photogra- While 51 pieces will hang in “I love music and I love food enjoy the show. picnic blanket with this family at phy Competition were announced the airport for a year, six received and the community and the cul- “I fell out when I saw that the show.” during a virtual program hosted special recognition and the artists ture of Memphis as a whole,” she piece,” judge Karen Strachan, by cityCURRENT on Wednesday, awarded cash prizes. said. “I tried to fit it all in one youth program coordinator of ART CONTINUED ON P2 commercial artery that runs through or near the economically distressed neighborhoods of Nutbush, Vehicle repair shop isn’t budging Douglass and the Heights.
    [Show full text]
  • Case Study on HYBRID VEHICLES Power Vehicle Type
    Case Study on HYBRID VEHICLES Power Power sources for hybrid vehicles include: Coal, wood or other solid combustibles Compressed or liquefied natural gas Electricity Electromagnetic fields, Radio waves Electric vehicle battery Human powered e.g. pedaling or rowing Hydrogen On-board or out-board rechargeable energy storage system (RESS) Petrol or Diesel fuel Solar Wind Vehicle type Two-wheeled and cycle-type vehicles Mopeds, electric bicycles, and even electric kick scooters are a simple form of a hybrid, as power is delivered both via an internal combustion engine or electric motor and the rider's muscles. Early prototypes of motorcycles in the late 19th century used the same principles to power it up. In a parallel hybrid bicycle human and motor power are mechanically coupled at the pedal drive train or at the rear or the front wheel, e.g. using a hub motor, a roller pressing onto a tire, or a connection to a wheel using a transmission element. Human and motor torques are added together. Almost all manufactured Motorized bicycles, Mopeds are of this type. In a series hybrid bicycle (SH) the user powers a generator using the pedals. This is converted into electricity and can be fed directly to the motor giving a chainless bicycle but also to charge a battery. The motor draws power from the battery and must be able to deliver the full mechanical torque required because none is available from the pedals. SH bicycles are commercially available, because they are very simple in theory and manufacturing. The first known prototype and publication of an SH bicycle is by Augustus Kinzel (US Patent 3'884'317) in 1975.
    [Show full text]