2013 Legislative Report Template

Total Page:16

File Type:pdf, Size:1020Kb

2013 Legislative Report Template 2016 Report on the MnDOT Cost Participation Policy DRAFT – 12/11/15 1 Prepared by The Minnesota Department of Transportation 395 John Ireland Boulevard Saint Paul, Minnesota 55155-1899 Phone: 651-296-3000 Toll-Free: 1-800-657-3774 TTY, Voice or ASCII: 1-800-627-3529 2 Contents Contents .............................................................................................................................................................. 3 Legislative request .............................................................................................................................................. 4 Summary .............................................................................................................................................................. 5 Interpretation ...................................................................................................................................................... 6 Interpreting the Law ..................................................................................................................................... 6 Policy Principles ............................................................................................................................................. 7 Consulting Representatives of Local Units of Government ....................................................................... 8 Policy Recommendations ................................................................................................................................. 9 Non-Policy Recommendations ...................................................................................................................... 11 Financial Resources ..................................................................................................................................... 11 Communication ........................................................................................................................................... 12 Training ......................................................................................................................................................... 12 Design Manuals ............................................................................................................................................ 12 Recommendations for Further Study ........................................................................................................... 14 Attachment 1 Side-by-Side Comparison ...................................................................................................... 15 3 Legislative request This report has been prepared to accompany the update to the MnDOT policy on Cost Participation for Cooperative Construction Projects and Maintenance Responsibilities between MnDOT and Local Units of Government. The update was performed at the request of the Minnesota Legislature in Minnesota Laws 2015, Chapter 75, Article 2, Section 52. Sec. 52. COST PARTICIPATION POLICY. The commissioner of transportation, in consultation with representatives of local units of government, shall create and adopt a policy concerning cost participation for cooperative construction projects and maintenance responsibilities between the Department of Transportation and local units of government. The policy must minimize the share of cooperative project costs to be funded by the local units of government, while complying in all respects with the state constitutional requirements concerning allowable uses of the trunk highway fund. The policy should provide and include sufficient flexibility for unique projects and locations if doing so results in a lower total project cost. The policy must be completed and adopted by the commissioner no later than March 1, 2016. The legislature did not request a report to the legislature, but this report has been prepared to document the efforts made to consult with representatives of local government, the philosophy for minimizing costs while complying with the constitution, and the rationale for changes that were made to the policy in response. The contents of this report were recommended by the Cost Participation Policy Steering Team and accepted by MnDOT’s Governance Council. 4 Summary Coming Soon! 5 Interpretation Interpreting the Law As with any law, there is room for interpretation. Following are the key points for how MnDOT and the Steering Team interpreted the direction of the law about cost participation with local agencies. A. “Complying in all respects with the state constitutional requirements concerning allowable uses of the trunk highway fund.” The constitution says that there is hereby created a trunk highway fund which shall be used solely for the purposes of constructing, improving and maintaining a trunk highway system as public highways by the state. MnDOT interprets this to mean that costs paid by the Trunk Highway fund must be reasonably associated with constructing, improving, and maintaining trunk highways. The constitution does not further define “constructed, improved and maintained as public highways,” however guidance on the definition can be taken from case law and related statutes. B. “In consultation with representatives of local units of government.” MnDOT interpreted this to mean that it should engage local agencies in the development of the new policy, asking for their input, and seeking their support. MnDOT’s Commissioner retains final authority on what to include in the new policy however. C. “Cost participation for cooperative construction projects and maintenance responsibilities.” MnDOT interpreted this to mean that the policy should consider the total cost of ownership of infrastructure, including both construction costs and ongoing maintenance costs. This may also include costs for right-of- way and project delivery. D. “Minimize the share of cooperative project costs to be funded by the local units of government.” MnDOT interpreted this to mean that the policy must minimize total costs passed on to the local agency as explained above. Minimizing costs was viewed through the lens of the constitutional direction on the use of Trunk Highway funds to "construct, improve, and maintain the TH system". Minimize does not mean eliminate unless the constitution would so indicate. It also means that division of costs need not be done equally on construction and maintenance. It may be done unequally, in other words one agency pay more for construction and the other pay more for maintenance. 6 E. “The policy should provide and include sufficient flexibility for unique projects and locations if doing so results in a lower total project cost.” MnDOT interpreted this to mean that poor economic decisions should not be made for the sake of policy compliance. It means that both MnDOT and local agencies should seek to minimize costs for the taxpayer, which may not always minimize the cost for the local agency or MnDOT. Policy Principles Based upon input from the local agencies involved in the process and the Steering Team, the following principles were agreed upon to guide the decisions about how to determine a minimized local cost share. 1. The cost participation policy incorporates the intention of Complete Streets law and policy, which is to plan, scope, design, implement, operate, and maintain Trunk Highways in consideration of the needs of motorists, pedestrians, transit users and vehicles, bicyclists, and commercial and emergency vehicles moving along and across Trunk Highways. Even so, the policy must always follow the constitution. 2. Trunk Highways serve different purposes in different settings (urban, rural, etc.) and what is needed to construct, improve, and maintain a trunk highway may differ also. 3. Costs for local agencies should be minimized through clearly understood and uniformly applied methods based in law or engineering principles. 4. “Minimize” does not mean “eliminate”. Some shared infrastructure elements produce shared benefits and justly have shared costs. 5. Retaining some local cost share helps to control the demand from local agencies for added features and it facilitates equitable funds distribution by ascribing costs with mostly local community benefits to the local taxpayers. 6. Costs should be viewed as total life cycle costs, allowing the option for MnDOT to pay more for construction in exchange for or to reduce maintenance costs. 7. MnDOT needs to have the ability to direct its spending of Trunk Highway dollars to its publicly adopted investment priorities. Everything eligible cannot be afforded. 8. Maintenance costs should be reviewed for each infrastructure element. A one-size fits-all policy of delegating maintenance responsibilities to local agencies is not reasonable. 9. The goal should be to do what is most efficient and achieves the lowest life cycle cost for taxpayers. 7 Consulting Representatives of Local Units of Government MnDOT employed the following methods to consult with the local units of government with whom it cooperates with on trunk highway construction projects. 1. Cost Participation Policy Steering Team. MnDOT asked for participation from representatives of its local agency transportation partners. Team members assisted with addressing comments and developing policy recommendations. 2. Local Agency Survey. MnDOT solicited opinions from local agency partners through a survey. The survey was widely distributed using MnDOT’s State Aid distribution list to reach county and state-aid city engineers. The League of Minnesota Cities and
Recommended publications
  • TCEP I-10-County Line Interchange
    CALIFORNIA TRANSPORTATION COMMISSION SB 1 Program Application Transmittal Sheet Project Name: I-10/County Line Road Interchange Project Nominating Agency/Agencies: City of Calimesa and City of Yucaipa Implementing Agency/Agencies: City of Calimesa and City of Yucaipa Total Project Cost: $8,800,000 Requesting Cost: $6,160,000 Project Location: Interstate 10 and County Line Road City/Cities: City of Calimesa and City of Yucaipa County/Counties: County of Riverside and County of San Bernardino Post Miles: SBD R38.949 to RIV R0.239 Legislative Districts: Assembly Districts: 42nd District Senate Districts: 23rd District Program(s) Applying for: Local Partnership Program ([email protected]) Solutions to Congested Corridors Program ([email protected]) X Trade Corridor Enhancement Program ([email protected]) For Agencies with Multiple Project Submissions: Priority # 1 of 1 projects CALIFORNIA TRANSPORTATION COMMISSION 2018 TRADE CORRIDOR ENHANCEMENT PROGRAM (TCEP) Interstate 10 and County Line Road Interchange I-10/County Line Road Interchange Project TCEP APPLICATION Section B. Government Code Section 14525.3 The Interstate 10 (I-10) and County Line Road Interchange Project is not a new bulk coal terminal project and will not be used to handle, store, or transport coal in bulk. As such, the Project will not have significant environmental impacts related to bulk coal handling. Section C. Street and Highway Code Section 100.15 The I-10/County Line Road Interchange Project is an interchange improvement project in the Cities of Calimesa and Yucaipa, and in the Counties of Riverside and San Bernardino, but reversible lanes are not a viable solution for this project.
    [Show full text]
  • Alameda County
    County Summaries Alameda County Overview Located at the heart of the nine-county San Francisco Bay Area, Alameda County is the second-largest county in the Bay Area, with a population of over 1.66 million. The extensive transportation network of roads, rails, buses, trails and pathways carries roughly 1.2 million commute trips daily to, from, within and through the county, supporting economic growth in the Bay Area, California and the rest of the nation. The county’s transportation system is multimodal, with non-auto trips growing more quickly than auto trips: between 2010 and 2018, for every new solo driver, four people began using transit, walking, biking, or telecommuting. Roads and Highways Alameda County roadways move people and goods within the county and beyond and support multiple transportation modes. As regional economic and population growth increase demand for goods and services, a variety of modes, including cars, transit, bikes and trucks, are competing to access the same facilities. The majority of Alameda County’s 3,978 road miles are highways, arterials and major local roads that provide access to housing, jobs, education and transit. Forty percent of daily trips in Alameda County are carried on arterials and major roads. Currently, five of the Bay Area’s top 10 most-congested freeway segments are in Alameda County, and average freeway delays are growing. The congestion in Alameda County is compounded by the large amount of vehicle, rail and Travelers have made over 14.5 million trips on the I-580 freight travel through Alameda Express Lanes since opening in February 2016.
    [Show full text]
  • TM 27 – NJ-29 Interchange Roundabout Evaluation Study
    Prepared for: I-95/Scudder Falls Bridge Improvement Project TM 27 – NJ-29 Interchange Roundabout Evaluation Study Contract C-393A, Capital Project No. CP0301A, Account No. 7161-06-012 Prepared by: Philadelphia, PA In association with: Kittelson & Associates, Inc March 2006 TM 29 – NJ-29 Interchange Roundabout Evaluation Study Contract C-393A, Capital Project No. CP0301A, Account No. 7161-06-012 I-95/Scudder Falls Bridge Improvement Project TABLE OF CONTENTS Table of Contents ................................................................. i Introduction ........................................................................ 1 Project Background .............................................................. 1 The KAI Assessment Scope ................................................... 3 Development of Additional Alternative Interchange Options4 Option 1A Modified: DMJM Folded Diamond w/Roundabout ........ 4 Option 1C Modified: NJDOT Roundabout Modified ..................... 5 Operational Assessment...................................................... 6 Assessment Tool Selection .................................................... 6 Assessment Results.............................................................. 6 I-95 Northbound Ramps/NJ-29 (Southern Intersection)............. 7 Intersection Levels of Service (LOS) ......................................................................... 7 Volume to Capacity Ratio (V/C) ............................................................................... 9 Intersection Delay ..............................................................................................
    [Show full text]
  • Potential Improvements Have Been Identified for Consideration with the Goals of Improving Corridor Mobility for All Modes of Transportation
    Potential improvements have been identified for consideration with the goals of improving corridor mobility for all modes of transportation. Information from existing transportation conditions, environmental screening, public input, and stakeholder meetings was used to identify several potential improvements for consideration and evaluation. The recommended potential improvements are categorized as Highway Improvements; Interchanges and Auxiliary Lane Improvements; Local Street Improvements; and Noise Abatement Improvements to address the needs of the corridor. The categories of potential improvements to address these key operational issues are listed in Table 5. Within each category, the list of viable potential projects is listed in a table and shown on the corridor map. Exhibits illustrating the potential improvements are included in Attachment 1. Study Goals Need/Deficiency Potential Improvements Improve travel time reliability; Improve operations and reduce Highway Improvements Preserve and enhance the travel time delay along highway ▪ HOV Lanes environment corridor ▪ EL ▪ Mainline Metering (system interchanges) Improve mainline and Address highway bottlenecks and Interchanges Improvements interchange operations improve weaving conditions ▪ HOV/EL direct connectors ▪ HOV by-pass lanes on ramps ▪ Interchange reconfigurations Promote multiple modes of Promote and develop alternative Local Street Improvements travel; Promote transit modes of transportation ▪ Add Bicycle Lanes alternatives; Improve bicycle ▪ Add or improve sidewalks
    [Show full text]
  • Maintenance of Traffic for Innovative Geometric Design Work Zones
    Maintenance of Traffic for Innovative Geometric Design Work Zones Final Report December 2015 Sponsored by Smart Work Zone Deployment Initiative Federal Highway Administration (TPF-5(081)) About SWZDI Iowa, Kansas, Missouri, and Nebraska created the Midwest States Smart Work Zone Deployment Initiative (SWZDI) in 1999 and Wisconsin joined in 2001. Through this pooled-fund study, researchers investigate better ways of controlling traffic through work zones. Their goal is to improve the safety and efficiency of traffic operations and highway work. ISU Non-Discrimination Statement Iowa State University does not discriminate on the basis of race, color, age, ethnicity, religion, national origin, pregnancy, sexual orientation, gender identity, genetic information, sex, marital status, disability, or status as a U.S. veteran. Inquiries regarding non-discrimination policies may be directed to Office of Equal Opportunity, Title IX/ADA Coordinator, and Affirmative Action Officer, 3350 Beardshear Hall, Ames, Iowa 50011, 515-294-7612, email [email protected]. Notice The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the information presented herein. The opinions, findings and conclusions expressed in this publication are those of the authors and not necessarily those of the sponsors. This document is disseminated under the sponsorship of the U.S. DOT in the interest of information exchange. The sponsors assume no liability for the contents or use of the information contained in this document. This report does not constitute a standard, specification, or regulation. The sponsors do not endorse products or manufacturers. Trademarks or manufacturers’ names appear in this report only because they are considered essential to the objective of the document.
    [Show full text]
  • Critical Corridors and Subareas Page 79 PART 5: CRITICAL CORRIDORS and SUBAREAS
    5 PREFACE page 1 PART 1: Community Profile page 11 PART 2: Comprehensive Plan Essence page 15 PART 3: Land Classification Plan page 27 PART 4: Transportation Plan page 47 PART 5: Critical Corridors and Subareas page 79 PART 5: CRITICAL CORRIDORS AND SUBAREAS CRITICAL CORRIDORS AND SUBAREAS Plan Map: Each critical corridor or subarea has a full-page illustration of the area within its boundaries. The map is INTRODUCTION included to support the “Strategy” and “Design Guidelines” sections and to illustrate additional information not included in the written text. In many of the maps, the Bicycle and Part 5: Critical Corridors and Subareas has been Pedestrian Plan Map information and Thoroughfare Plan established to provide a summary of several planning studies Map information is integrated. and small area plans. The following sections represent In some critical corridor and subarea sections, a “Detailed” the essence of those studies and plans, and add greater Plan Map is included. The inclusion of such a map is refinement to transportation and growth management goals indication that those critical corridors or subareas have had and objectives. more extensive study and planning. The purpose of this Part is to emphasize that there are certain areas and corridors in the City that require a greater degree of planning. They also require a greater level of review when development proposals are being considered. The following critical corridors and subareas are included in this Part: 1. Keystone Parkway Corridor ............................. pg 82 2. U.S. 31 Corridor ............................................... pg 84 3. 96th Street Corridor ......................................... pg 86 4. City Center/Old Town Subarea .......................
    [Show full text]
  • Safety Evaluation of Roundabouts
    SAFETY EVALUATION OF ROUNDABOUTS AT FREEWAY RAMP TERMINALS AND HSM CALIBRATION _______________________________________ A Thesis presented to the Faculty of the Graduate School at the University of Missouri-Columbia _______________________________________________________ In Partial Fulfillment of the Requirements for the Degree Master of Science _____________________________________________________ by JACOB A. BERRY Dr. Carlos Sun, Thesis Supervisor MAY 2017 The undersigned, appointed by the dean of the Graduate School, have examined the thesis entitled SAFETY EVALUATION OF ROUNDABOUTS AT FREEWAY RAMP TERMINALS AND HSM CALIBRATION presented by Jacob Berry, a candidate for the degree of or master of science, and hereby certify that, in their opinion, it is worthy of acceptance. Professor Carlos Sun Professor Praveen Edara Professor Tim Matisziw Dedication I would like to dedicate this to the unwavering support of my family and friends. Thank you to my parents, Jim and Rita, for challenging me to be my best and for the continual love and support that they show in so many ways. To my brother, Alex, for showing a good example. To my girlfriend, Kate, for being patient and strong. I would also like to thank my friends, contemporaries, prior students, and mentors for helping in the completion of all my work, both directly and indirectly. Acknowledgments The author is thankful for the assistance provided by John Miller, Myrna Tucker, Darrel Knierim, and others from the Missouri Department of Transportation. The author also recognizes the contributions of Boris Claros and Xiang Yu who worked in close cooperation throughout the entirety of these projects. The author also would like to acknowledge the help of undergraduate assistants Jeremy Metz, John Perlik, and Eunice Wang.
    [Show full text]
  • Performance of Alternative Diamond Interchange Forms Volume 1 Research Report
    JOINT TRANSPORTATION RESEARCH PROGRAM INDIANA DEPARTMENT OF TRANSPORTATION AND PURDUE UNIVERSITY Performance of Alternative Diamond Interchange Forms Volume 1 Research Report Andrew P. Tarko, Mario A. Romero, Afi a Sultana SPR-3866 • Report Number: FHWA/IN/JTRP-2017/01 • DOI: 10.5703/1288284316385 RECOMMENDED CITATION Tarko, A. P., Romero, M. A., & Sultana, A. (2017). Performance of alternative diamond interchange forms: Volume 1— Research report (Joint Transpor tation Research Program Publication No. FHWA/IN/JTRP-2017/01). West Lafayette, IN: Purdue University. https://doi.org /10.5703/1288284316385 AUTHORS Andrew P. Tarko, PhD Professor of Civil Engineering Lyles School of Civil Engineering Purdue University (765) 494-5027 [email protected] Corresponding Author Mario A. Romero Research Scientist Lyles School of Civil Engineering Purdue University Afia Sultana Graduate Research Assistant Lyles School of Civil Engineering Purdue University ACKNOWLEDGMENTS The completion of this study would not have been possible without the help and support of a number of people. The authors appreciate the valuable assistance throughout this study provided by Brad Steckler, Karl Leet, Shuo Li, Hillary Lowther, Dan McCoy, Michael Holowaty, and Ed Cox of INDOT, and Joiner Lagpacan and Rick Drumm of FHWA. JOINT TRANSPORTATION RESEARCH PROGRAM The Joint Transportation Research Program serves as a vehicle for INDOT collaboration with higher education institutions and industry in Indiana to facilitate innovation that results in continuous improvement in the planning, https://engineering.purdue.edu/JTRP/index_html design, construction, operation, management and economic efficiency of the Indiana transportation infrastructure. Published reports of the Joint Transportation Research Program are available at http://docs.lib.purdue.edu/jtrp/.
    [Show full text]
  • Interstate 91 Viaduct Study: Chapter Iv
    Springfield, Massachusetts INTERSTATE 91 VIADUCT STUDY CHAPTER IV ALTERNATIVES ANALYSIS August 2018 MMI #3869-16-6 INTERSTATE 91 VIADUCT STUDY CHAPTER IV SPRINGFIELD, MASSACHUSETTS TC-i TABLE OF CONTENTS 4.1 Introduction ............................................................................................................................................................. 1 4.2 Evaluation Criteria ................................................................................................................................................... 2 4.2.1 EVALUATION CRITERIA DEVELOPMENT ................................................................................................ 2 4.2.2 EVALUATION CRITERIA DESCRIPTIONS ................................................................................................. 3 4.2.3 EVALUATION MATRIX: INTERPRETATION AND DEFINITIONS ........................................................ 18 4.3 Evaluation Methodologies ..................................................................................................................................... 25 4.3.1 METHODOLOGICAL OVERVIEW ............................................................................................................. 25 4.3.2 DESIGN OVERVIEW AND CONSIDERATIONS ...................................................................................... 26 4.3.3 DEVELOPMENT SCENARIOS AND SOCIOECONOMIC IMPACTS ...................................................... 60 4.3.4 TRAFFIC MODELING AND SIMULATION .............................................................................................
    [Show full text]
  • Trans-Canada Highway and Mccallum Road Interchange Upgrade
    Trans-Canada Highway and McCallum Road Interchange Upgrade A Value Added Project Prepared by: Cory Clark, P.Eng. Project Engineer ISL Engineering and Land Services Suite 301, 20338 - 65 th Avenue Langley, BC V2Y 0B2 Paper prepared for presentation at the “Innovative Design through Value Engineering” Session of the 2012 Conference of the Transportation Association of Canada Fredericton, New Brunswick ABSTRACT Trans-Canada Highway and McCallum Road Interchange Upgrade: A Value Added Project The City of Abbotsford indicated that the McCallum Road interchange along Highway 1 represents one of their most significant transportation issues within the City (1). The existing interchange dates back to the early 1960’s and had only a 2-lane bridge crossing the Trans- Canada Highway (TCH). Combined with inefficiencies in the surrounding road network and poor safety performance at the interchange, this meant congestion and access in and out of the city were a problem. The project budget was $25-million and was cost-shared by the City of Abbotsford, the Province of British Columbia, and the Federal Government. The later was part of the Infrastructure Stimulus Program which originally required the project to be completed by March 31, 2011. This dictated a tight project schedule that required the design to be completed by early spring to take advantage of the 2010 construction season. In August 2009, the City of Abbotsford retained ISL Engineering and Land Services (ISL) to provide preliminary and detailed design services. The design was to be based on the City’s business case that selected a conceptual interchange configuration (Option 4) for implementation (1).
    [Show full text]
  • Infrastructure Improvements to Reduce Motorcycle Casualties Infrastructure Improvements to Reduce Motorcycle Casualties
    Research Report AP-R515-16 Infrastructure Improvements to Reduce Motorcycle Casualties Infrastructure Improvements to Reduce Motorcycle Casualties Prepared by Publisher David Milling, Dr Joseph Affum, Lydia Chong and Samantha Taylor Austroads Ltd. Level 9, 287 Elizabeth Street Sydney NSW 2000 Australia Project Manager Phone: +61 2 8265 3300 [email protected] Melvin Eveleigh www.austroads.com.au Abstract About Austroads This report presents the technical findings of a two-year study which Austroads is the peak organisation of Australasian road sought to identify effective infrastructure improvements to reduce transport and traffic agencies. motorcycle crash risk and crash severity, based on how riders perceive, respond and react to infrastructure they encounter. Austroads’ purpose is to support our member organisations to deliver an improved Australasian road transport network. To The project commenced with a literature review of national and succeed in this task, we undertake leading-edge road and international guides, publications and research papers, which also transport research which underpins our input to policy enabled the identification of knowledge gaps and areas where further development and published guidance on the design, detail was required. A crash analysis was undertaken to demonstrate construction and management of the road network and its the relationship between motorcycle crashes, travel period, vehicle associated infrastructure. configuration (i.e. motorcycle only and multiple vehicle crashes involving a motorcycle), road geometry, road layout (e.g. intersection Austroads provides a collective approach that delivers value type) and crash types. For comparative purposes, vehicle crashes at for money, encourages shared knowledge and drives the same location were also analysed.
    [Show full text]
  • Roundabouts and Roundabout Interchanges
    Roundabouts and Roundabout Interchanges Overview There are an estimated 300,000 signalized intersections in the United States. About one-third of all intersection fatalities occur at these locations, resulting in roughly 2,300 people killed each year. Furthermore, about 700 people are killed annually in red-light running collisions. Although traffic signals can work well for alternately assigning the right-of-way to different user movements across an intersection, roundabouts have demonstrated substantial safety and operational benefits compared to most other intersection forms and controls, with especially significant reductions in fatal and injury crashes. The Highway Safety Manual (HSM) indicates that: By converting from a two-way stop control mechanism to a roundabout, a location can experience an 82 percent reduction in severe (injury/fatal) crashes and a 44 percent reduction in overall crashes. By converting from a signalized intersection to a roundabout, a location can experience a 78 percent reduction in severe (injury/fatal) crashes and a 48 percent reduction in overall crashes. The benefits have been shown to occur in urban and rural areas under a wide range of traffic conditions, and ongoing research has expanded our collective knowledge on safety performance for specific scenarios. Although the safety performance of all-way stop control is comparable to roundabouts (per the HSM), roundabouts provide far greater operational advantages. Roundabouts result in significantly lower delay than signalized intersections. Roundabouts also can be an effective tool for managing speed and creating a transition area that moves traffic from a high-speed to a low-speed environment. However, proper site selection, channelization, and design features are essential for making roundabouts accessible to all users.
    [Show full text]