Evaluation, Productivity and Competition of Brachiaria Decumbens, Centrosema Pubescens and Clitoria Ternatea As Sole and Mixed

Total Page:16

File Type:pdf, Size:1020Kb

Evaluation, Productivity and Competition of Brachiaria Decumbens, Centrosema Pubescens and Clitoria Ternatea As Sole and Mixed Ali et al. Evaluation, productivity and competition of Brachiaria decumbens, Centrosema pubescens and Clitoria ternatea as sole and mixed Evaluation, Productivity and Competition of Brachiaria decumbens, Centrosema pubescens and Clitoria ternatea as Sole and Mixed Cropping Pattern in Peatland Ali A1,4, Abdullah L2, Karti PDMH2, Chozin MA3, Astuti DA2 1Graduate Student of Bogor Agricultural University, Indonesia 2Faculty of Animal Science, Bogor Agricultural University, Indonesia 3Faculty of Agricultural, Bogor Agricultural University, Indonesia 4Faculty of Agriculture and Animal Science, UIN Suska Riau, Indonesia E-mail: [email protected] (Diterima 27 Maret 2014 ; disetujui 6 Juni 2014) ABSTRAK Ali A, Abdullah L, Karti PDMH, Chozin MA, Astuti DA. 2014. Evaluasi, produktivitas dan daya saing dari Brachiaria decumbens, Centrosema pubescens dan Clitoria ternatea sebagai tanaman tunggal dan campuran pola pemotongan di lahan gambut. JITV 19(2): 81-90. DOI: http://dx.doi.org/10.14334/jitv.v19i2.1036 Penelitian ini dilakukan untuk mengetahui produktivitas, indeks kompetisi dan kandungan nutrisi dari Brachiaria decumbens (rumput), Centrosema pubescens dan Clitoria ternatea (leguminosa) pada sistem pertanaman tunggal dan campuran di lahan gambut Pekanbaru, Indonesia dari bulan Oktober 2011 sampai dengan November 2012. Penelitian ini menggunakan rancangan acak kelompok dengan 5 perlakuan dan 3 kelompok sebagai ulangan. Lima perlakuan yang dibandingkan adalah:B. decumbens pertanaman tunggal (Bd), C. pubescens pertanaman tunggal (Cp), C. ternatea pertanaman tunggal (Ct), B..decumbens dan C. pubescen pertanaman campuran (Bd+Cp) dan B. decumbens dan C. ternatea pertanaman campuran (Bd+Ct). Produksi bahan kering. B..decumbens adalah nyata meningkat (P<0,05) sebesar 147,9% pada pertanaman campuran dengan C. pubescens dan 74,1% pada pertanaman campuran dengan C..ternatea dibandingkan pertanaman B. decumbens tunggal. Nilai land equivalent ratio (LER) berkisar antara 1,04 (Bd+Ct) sampai dengan 1,58 (Bd+Cp). Nilai crowding coefficient (K) dari B..decumbens pada kedua pertanaman campuran adalah lebih tinggi dari nilai K C..pubescens dan C..ternatea. Sementara itu, nilai K total Bd+Cp lebih tinggi dari Bd+Ct. Nilai competition ratio (CR) B. decumbens pada pertanaman campuran dengan C..pubescens dan C. ternatea adalah >1. Nilai agresivitas (A) B. decumbens pada kedua pertanaman campuran adalah positif. Kandungan protein kasar B..decumbens adalah tidak meningkat dengan pertanaman campuran dengan leguminosa. Pertanaman campuran dengan B. decumbens nyata menurunkan (P<0,05) kandungan protein kasar C. ternatea. Sementara itu, pertanaman campuran dengan C.pubescens dan C. ternatea tidak menurunkan kandungan neutral detergent fibre (NDF) dan acid detergent fibre (ADF) B. decumbens. Dapat disimpulkan bahwa, pertanaman campuran dengan C. pubescens dan C. ternatea di lahan gambut dapat meningkatkan produksi bahan kering B. decumbens. Dan sebaliknya, pertanaman campuran dengan B..decumbens tidak mempengaruhi produksi bahan kering C..pubescens dan menurunkan produksi bahan kering C. ternatea. Pertanaman campuran B. decumbens dengan C. pubescens dan B. decumbens dengan C. ternatea di lahan gambut tidak meningkatkan total produksi bahan kering per satuan luas lahan dan kandungan nutrisi hijauan. B. decumbens lebih kompetitif dan dominant dibandingkan C. pubescens dan C. ternatea di lahan gambut. Kata Kunci: Sistem Penanaman, Hijauan, Produksi, Kandungan Nutrisi, Lahan Gambut ABSTRACT Ali A, Abdullah L, Karti PDMH, Chozin MA, Astuti DA. 2014. Evaluation, productivity and competition of Brachiaria decumbens, Centrosema pubescens and Clitoria ternatea as sole dan mixed cropping pattern in peatland. JITV 19(2): 81-90. DOI: http://dx.doi.org/10.14334/jitv.v19i2.1036 This study was carried out to determine the productivity, competition indices and nutrient content of Brachiaria decumbens (grass), Centrosema pubescens and Clitoria ternatea (legumes) as sole and mixed cropping system in peatland in Pekanbaru, Indonesia from October 2011 to November 2012. The experiment was set up in randomized complete block design with five treatments and three blocks as replication. Five treatments compared: B. decumbens sole cropping (Bd), C. pubescens sole cropping (Cp), C. ternatea sole cropping (Ct), B..decumbens and C. pubescens mixed cropping (Bd+Cp) and B. decumbens and C..ternatea mixed cropping (Bd+Ct). The dry matter (DM) yield of B. decumbens was significantly (P<0.05) increased by mixed cropping. B. decumbens DM yield in C. pubescens intercrop increased by 147.9% and in C. ternatea intercrop increased by 74.1% compare to sole B. decumbens. Land equivalent ratio (LER) value range from 1.04 (Bd+Ct) to 1.58 (Bd+Cp). The crowding coefficient (K) value of B. decumbens in both mixed croping system was higher than K value of C. pubescens and C. ternatea. The total K value for Bd+Cp was higher than Bd+Ct. The competition ratio (CR) value of B. decumbens mixed cropping with C. pubescens and C. ternatea were.>1. The aggressivity (A) value of B. decumbens in both mixed cropping was 81 JITV Vol. 19 No 2 Th. 2014: 81-90 positive. The crude protein (CP) content of B.decumbens did not significantly (P>0.05) increased by mixed cropping with legumes. Intercropping with B. decumbens significantly (P<0.05) decreased CP content of C. ternatea. Meanwhile neutral detergent fibre (NDF) and acid detergent fibre (ADF) content of B. decumbens did not decrease by intercropping with C.pubescens and C. ternatea. In conclusion, mixed cropping with C. pubescens and C. ternatea in peatland increased DM yield of B. decumbens. Mixed cropping with B. decumbens did not influence DM yield of C. pubescens and decreased DM yield and CP content of C..ternatea. Mixed cropping of B. decumbens with C. pubescens and B. decumbens with C..ternatea in peatland did not increase total DM yield of forage per unit area of land and nutrition contents of forage. B. decumbens was more competitive and dominant than C..pubescens and C. ternatea in peatland. Key Words: Cropping System, Forage, Nutrient Contents, Yield, Peatland peatland approximately 20.6 million ha (Wahyunto et INTRODUCTION al. 2005), and it has not been used for the development of grasses, legumes and fodder tree. This study was Productivity of forage is influenced by species of conducted to determine the productivity, competition forage, environmental and soil condition (Jayanegara & indices and nutritive value of B. decumbens, C. Sofyan 2008). The quality of pasture can be improved pubescens and C. ternatea as sole and mixed cropping by improving pasture plant diversity (Whitehead 2000), patterns in peatland. intercropping pattern (Whitehead & Isaac 2012) and using the forage species that can grow well in dry season. Brachiaria decumbens is a high in production MATERIALS AND METHODS of dry matter when planted in areas with low rainfall (Mutimura & Everson 2012). B. decumbens will grow Experimental site better if planted in a mixture with creeping legumes. Centrosema pubescens and Clitoria ternatea are This study was conducted during rainy season i.e. creeping legume that are widely grown as animal feed from October 2011 to November 2012, at research farm and they can grows well in dry season (Nworgu & of Faculty of Agriculture and Animal Science of UIN Ajayi 2005). Fresh production of C..pubescens reached Suska Riau Pekanbaru, which is located 101° 4´- 40 t/ha/yr and it is very rich in crude protein (19.6%) 101°34´ East longitude and 0°25´- 0°45´ North latitude, (Nworgu et al. 2001). Meanwhile, C. ternatea (butterfly with the altitude ranges from 5-50 meters. Average pea) can grow on poor soils and contains high crude monthly rainfall, air temperature and relative humidity protein as well (19%) (Cook et al. 2005). during experimental period is shown in Figure 1. Legumes in forage intercrops can provide a more During the study, maximium temperature ranged 31.2- available N in soil for crops through biological N 33.7oC and minimum temperature ranged 22.3-23.6oC. fixation (Crews & People 2004). Non-legume and The highest temperature (33.7oC) was on June 2012 and legumes mixed cropping are mostly applied to develop the lowest temperature (22.3oC) was on May 2012. sustainable pasture and supply high quality feed Maximum humidity between 94.3-97.5%. Minimum through the years (Javanmard et al. 2009). Grass- humidity between 56.2-68.9%. Monthly average rainfall legume mixtures tend to provide a superior nutrient was 227.1 mm and total rainfall per year was 2660 mm. balance and produces higher forage yield (Albayrak et The lowest (66.7 mm) and the highest (341.2 mm) al. 2011). However, grass-legume intercroping are more rainfall were on January 2012 and December 2011, difficult to manage than monoculture pasture because of respectively. competition for light, water and nutrients (Albayrak & Ekiz 2005), or allelopathic that occur between mixed Experimental design crops (Lithourgidis et al. 2011; Santalla et al. 2001). The extent of competition induced yield loss of the The forages studied were B. decumbens (grass), C. main crop in intercropping is likely depends upon crop pubescens and C. ternatea (legumes). The experiment compatibility and establishment timing (Hirpa 2013). was set up in randomized block design with five In Indonesia, grasses and legumes are mostly treatments and three blocks as replication. Five cultivated on mineral soil. Cultivation of forage crops in treatments compared were: B..decumbens sole cropping mixed cropping system in peatland
Recommended publications
  • (Centrosema Pubescens Benth.) on Ferraliti
    HOUNDJO et al., AJAR, 2017; 2:11 Research Article AJAR (2017), 2:11 American Journal of Agricultural Research (ISSN:2475-2002) Influence of cow manure and row spacing on growth, flowering and seed yield of Centro (Centrosema pubescens Benth.) on ferralitic soils of Benin (West Africa) Daniel Bignon Maxime HOUNDJO1, Sébastien ADJOLOHOUN1*, Léonard AHOTON2, Basile GBENOU1, Aliou SAIDOU2, Marcel HOUINATO1, Brice Augustin SINSIN3 1Département de Production Animale, Faculté des Sciences Agronomiques, Université d’Abom- ey-Calavi, 03 BP 2819 Jéricho, Cotonou, Benin. 2Département de Production Végétale, Faculté des Sciences Agronomiques, Université d’Abomey-Calavi, 03 BP 2819 Jéricho, Cotonou, Benin. 3Département de l’Aménagement et Gestion des Ressources Naturelles, Faculté des Sciences Agronomiques, Université d’Abomey-Calavi, 03 BP 2819 Jéricho, Cotonou, Benin. ABSTRACT Centrosema pubescens (Benth) is identified as a tropical forage *Correspondence to Author: legume of considerable promise which can improve pasture in ADJOLOHOUN Sébastien West Africa. A study on the influence of rates of cattle manure BP: 03-2819 Jéricho Cotonou in combination with plant row spacing on the growth, phenology (Bénin) Faculté des Sciences and seed yield of Centro (Centrosema pubescens) was conduct- Agronomiques, Université d’Abom- ed at the Teaching and Research Farm of the Faculty of Agrono- ey-Calavi, BENIN. Tél (229) 97 89 my Science of University of Abomey-Calavi in South Benin. The 88 51 ; E-mail : s.adjolohoun @ ya- site is located at latitude 6° 30’ N and longitude 2° 40’ E with hoo. fr elevation of 50 m above sea level. The area is characterized by ferralitic soils with low fertility, rainfall range of 1200 mm with rel- How to cite this article: ative humidity from 40 to 95 % and means annual temperature HOUNDJO et al.,.
    [Show full text]
  • A Synopsis of Phaseoleae (Leguminosae, Papilionoideae) James Andrew Lackey Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1977 A synopsis of Phaseoleae (Leguminosae, Papilionoideae) James Andrew Lackey Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Botany Commons Recommended Citation Lackey, James Andrew, "A synopsis of Phaseoleae (Leguminosae, Papilionoideae) " (1977). Retrospective Theses and Dissertations. 5832. https://lib.dr.iastate.edu/rtd/5832 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1.The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image.
    [Show full text]
  • A Prespective Study of Clitoria Ternatia and Its Pharmacological Importance
    High Technology Letters ISSN NO : 1006-6748 A PRESPECTIVE STUDY OF CLITORIA TERNATIA AND ITS PHARMACOLOGICAL IMPORTANCE S. GEJALAKSHMI *1, N. HARIKRISHNAN FACULTY OF PHARMACY, DR.M.G.R. EDUCATIONAL AND RESEARCH INSTITUTE, VELAPPANCHAVADI, CHENNAI-77 Abstract: Medicinal herbs and aromatic plants have been extensively used for the past few decades due to its potency and minimal side effects. By observing the medicinal importance of the climbing herb Clitoria ternatea (CT)of Fabeacea family and commonly known as Butterfly pea and Shankpushpi has been taken up due to its high medicinal value due to its wide range of use over decade as memory enhancer,antidepressant,anticonvulsant,transquilizers and sedative agent.A series of secondary metabolite including triterpenoids,flavone glycosides,anthocyanins and i steroids has been isolated from CT extracts.CT plant has wide range of pharmacological activity such as antimicrobial,antipyretic,diuretic,local anaesthetic.CT has been used for several diseases due to availability of several active constituents like alkaloids,flavanoids,saponins,tannins,carbohydrates .This review is an platform to explore the phytochemical investigation and pharmacological importance of CT,which have been practiced in traditional system of medicine and its future potential prespectives in view of innumerable therapeutic importance on this well-known twinning climber. Key words: Shankpushpi,phytochemical,antibacterial,anti- fungal, anti-cancer Introduction: Herbal drugs has an impact for curing disorders. The medicinal herbs are rich in various phytochemical constituents which has been found for traditional system of medicines. In the present reveiw focused on the traditional importance of clitoria ternatea. (CT).It is perennial twinning herb. It is a member of fabiaecea family and it has various synonym like blue pea.
    [Show full text]
  • ~Owíf ~40~!J ((Ecclon' Historfca .-O
    ~Owíf ~40~!J ((ECClON' HISTORfCA .-o OF CENTROSEMA~ D Jillian M. Lenn6. Ph.D. Tropical Pastures Program Centro Internacional de Agricultura Tropical (CIAT) Apartado Aéreo 6713, Cali, Colombia Ronald M. Sonoda. Ph.D. .', University of Florida , Agricultural Research Center . -, P. O. Box 248, Fort Pierce, Florida, U.S.A • v Stephen L. tapointe. Ph.D. Tropical Pastures Program Centro Internacional de Agricultura Tropical (CIAT) Apartado A6reo 67l3. Cali. Colombia ~ISEASES ANO PESTS OF CENTROSEMA~ o 1 O 2 Q 3 Jillian M. Lenné , Ronald M. Sonoda and Stephen L. Lapointe Summary ~firuses and .!Iix genera of nematodes Jlave been recorded on Centrosema. Potential arthropod pests include thrips, aphids, leafhoppers, leaf beetles, caterpillars, podborers, leafrollers, flies and mites. The relative importance of each disease and pest varies among Centrosema species and locations. • Rhizoctonia foliar blight is the most important disease of Centrosems in CS" tropical Latin America. f. brasilianum is the mast susceptible species, but ¡¡¡ significant damage has recently been observed on some accessions of C. acutifolium. At least three species of Rhizoctonia are implicated, and iso lates vary in virulence, making studies of host resistance complicated and time-consuming. Research on methods of screening for resistance to Rhizoctonia, on isolate variability, on natural biological control agents, on epidemiology and on the eHect of gradng on foliar blight incidence and severity is in progress and is given a very high priority. 1/ Plant Pathologist and 3/ Entomologist, Tropical Pastures Program, CIAT, A.A. 6713, Cali, Colombia, snd 2/ Plsnt Pathologist snd Professor, University of Florida, Agricultural- Research Center, Fort Pierce, ~; Florida, U.S.A.
    [Show full text]
  • “Growth and Production of Rubber”
    biblio.ugent.be The UGent Institutional Repository is the electronic archiving and dissemination platform for all UGent research publications. Ghent University has implemented a mandate stipulating that all academic publications of UGent researchers should be deposited and archived in this repository. Except for items where current copyright restrictions apply, these papers are available in Open Access. This item is the archived peer-reviewed author-version of: Growth and production of rubber Verheye, W. In: Verheye, W. (ed.), Land Use, Land Cover and Soil Sciences. Encyclopedia of Life Support Systems (EOLSS), UNESCO-EOLSS Publishers, Oxford, UK. http://www.eolss.net To refer to or to cite this work, please use the citation to the published version: Verheye, W. (2010). Growth and Production of Rubber . In: Verheye, W. (ed.), Land Use, Land Cover and Soil Sciences . Encyclopedia of Life Support Systems (EOLSS), UNESCO-EOLSS Publishers, Oxford, UK . http://www.eolss.net GROWTH AND PRODUCTION OF RUBBER Willy Verheye, National Science Foundation Flanders and Geography Department, University of Gent, Belgium Keywords : Agro-chemicals, estate, Hevea, industrial plantations, land clearing, land management, latex, rubber. Contents 1. Introduction 2. Origin and distribution 3 Botany 3.1 Cultivars and Classification 3.2 Structure 3.3 Pollination and Propagation 4. Ecology and Growing Conditions 4.1 Climate Requirements 4.2 Soil Requirements 5. Land and Crop Husbandry 5.1 Planting and Land Management 5.2 Plantation Maintenance 6. Tapping and Processing 6.1 Tapping 6.2 Collection of Tapped Latex 6.3 Processing 7. Utilization and Use 8. Production and Trade 9. Environmental and Social Constraints of Plantation Crops 9.1 Land Tenure 9.2 Land Clearing 9.3 Use of Agrochemicals 9.4 Social and Rural Development 9.5 Biodiversity Glossary Bibliography Biographical Sketch Summary Rubber is a tropical tree crop which is mainly grown for the industrial production of latex.
    [Show full text]
  • Butterfly Pea (Clitoria Ternatea) | Feedipedia
    Butterfly pea (Clitoria ternatea) | Feedipedia Animal feed resources Feedipedia information system Home About Feedipedia Team Partners Get involved Contact us Butterfly pea (Clitoria ternatea) Automatic translation Description Nutritional aspects Nutritional tables References Sélectionner une langue ​▼ Click on the "Nutritional aspects" tab for recommendations for ruminants, pigs, poultry, rabbits, horses, fish and crustaceans Feed categories All feeds Forage plants Cereal and grass forages Legume forages Forage trees Aquatic plants Common names Other forage plants Plant products/by-products Butterfly pea, blue pea, kordofan pea, cordofan pea, Asian pigeonwings [English]; pois bleu [French]; clitoria azul, azulejo, Cereal grains and by-products papito, zapatico de la reina, zapotillo, conchita azul, campanilla, bandera, choroque, lupita, pito de parra, bejuco de conchitas Legume seeds and by-products [Spanish]; cunhã, Fula criqua [Portuguese]; kittelbloem [Dutch]; Blaue Klitorie [German]; tembang telang [Indonesian]; Bunga Oil plants and by-products telang [Malay]; Mavi Kelebek Sarmaşığı [Turkish]; Chi Đậu biếc [Vietnamese]; [Bengali]; 蝶豆 [Chinese]; Fruits and by-products [Hindi]; [Malayalam]; [Marathi]; [Tamul]; [Telugu]; Roots, tubers and by-products ดอกอญชั นั [Thai] Sugar processing by-products Plant oils and fats Species Other plant by-products Feeds of animal origin Clitoria ternatea L. [Fabaceae] Animal by-products Dairy products/by-products Synonyms Animal fats and oils Insects Clitoria albiflora Mattei; Clitoria bracteata Poir.; Clitoria mearnsii De Wild.; Clitoria tanganicensis Micheli; Clitoria zanzibarensis Other feeds Vatke Minerals Other products Feed categories Legume forages Legume seeds and by-products Forage plants Latin names Plant and animal families Related feed(s) Plant and animal species Description Resources The butterfly pea (Clitoria ternatea L.) is a vigorous, trailing, scrambling or climbing tropical legume.
    [Show full text]
  • Evolvulus Alsinoides (Convolvulaceae): an American Herb in the Old World Daniel F
    This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Available online at www.sciencedirect.com Journal of Ethnopharmacology 117 (2008) 185–198 Review Evolvulus alsinoides (Convolvulaceae): An American herb in the Old World Daniel F. Austin Arizona-Sonora Desert Museum, 2021 North Kinney Road, Tucson, AZ 85743, USA Received 23 October 2007; received in revised form 28 January 2008; accepted 29 January 2008 Available online 12 February 2008 Abstract People in the Indian region often apply shankhapushpi and vishnukranti, two Sanskrit-based common names, to Evolvulus alsinoides. These are pre-European names that are applied to a medicinal American species transported into the area. The period of introduction is uncertain, but probably took place in the 1500s or 1600s. Examination of relationships of Evolvulus alsinoides, geographic distribution, its names in Asia, medical uses, and chemical and laboratory analysis indicates that the alien plant was adopted, given an ancient Indian name, and incorporated into some Old World pharmacopoeias. The herb apparently was included in medicines because it not only reminded people of certain aspects of their gods and goddesses, but also because the chemicals it contained were useful against some maladies.
    [Show full text]
  • Autographa Gamma
    1 Table of Contents Table of Contents Authors, Reviewers, Draft Log 4 Introduction to the Reference 6 Soybean Background 11 Arthropods 14 Primary Pests of Soybean (Full Pest Datasheet) 14 Adoretus sinicus ............................................................................................................. 14 Autographa gamma ....................................................................................................... 26 Chrysodeixis chalcites ................................................................................................... 36 Cydia fabivora ................................................................................................................. 49 Diabrotica speciosa ........................................................................................................ 55 Helicoverpa armigera..................................................................................................... 65 Leguminivora glycinivorella .......................................................................................... 80 Mamestra brassicae....................................................................................................... 85 Spodoptera littoralis ....................................................................................................... 94 Spodoptera litura .......................................................................................................... 106 Secondary Pests of Soybean (Truncated Pest Datasheet) 118 Adoxophyes orana ......................................................................................................
    [Show full text]
  • Centrosema Pubescens Benth
    REPORT Vol. 20, 2019 REPORT ARTICLE ISSN 2319–5746 EISSN 2319–5754 Species Growth performance of Vigna radiata (L.) R. Wilczek in petrol contaminated soil amended with Centrosema pubescens benth Iduemre KK, Eremrena PO, Ochekwu EB Department of Plant Science and Biotechnology, Faculty of Science, University of Port Harcourt, P.M.B.5323, Choba, Port Harcourt, Rivers State, Nigeria. Corresponding author Department of Plant Science and Biotechnology, Faculty of Science, University of Port Harcourt, P.M.B.5323, Choba, Port Harcourt, Rivers State, Nigeria Email: [email protected] Article History Received: 02 August 2019 Accepted: 08 September 2019 Published: September 2019 Citation Iduemre KK, Eremrena PO, Ochekwu EB. Growth performance of Vigna radiata (L.) R. Wilczek in petrol contaminated soil amended with Centrosema pubescens benth. Species, 2019, 20, 128-134 Publication License This work is licensed under a Creative Commons Attribution 4.0 International License. General Note Article is recommended to print as color digital version in recycled paper. ABSTRACT This study was carried out at the University of Port Harcourt, Green House to investigate the growth performance of Vigna radiata in petrol contaminated soil amended with Centrosema pubescens. The contamination levels of 2%, 4% and 8% v/w were used to contaminate 20kg of loamy soil amended with 5kg of Centrosema pubescens at various levels of petrol contaminations, alongside a control. The growth parameters (plant height, leaf area, and number of leaves) and plant biomass (fresh weight and dry weight) were 128 examined and the data was subjected to analysis of variance (ANOVA). Based on the result, the growth parameters and plant Page biomass reduced with increased levels of contaminations, however control significantly (P<0.05) had greatest growth performance in © 2019 Discovery Publication.
    [Show full text]
  • Healthy Food Traditions of Asia: Exploratory Case Studies From
    Harmayani et al. Journal of Ethnic Foods (2019) 6:1 Journal of Ethnic Foods https://doi.org/10.1186/s42779-019-0002-x ORIGINALARTICLE Open Access Healthy food traditions of Asia: exploratory case studies from Indonesia, Thailand, Malaysia, and Nepal Eni Harmayani1, Anil Kumar Anal2, Santad Wichienchot3, Rajeev Bhat4, Murdijati Gardjito1, Umar Santoso1, Sunisa Siripongvutikorn5, Jindaporn Puripaatanavong6 and Unnikrishnan Payyappallimana7* Abstract Asia represents rich traditional dietary diversity. The rapid diet transition in the region is leading to a high prevalence of non-communicable diseases. The aim of this exploratory study was to document traditional foods and beverages and associated traditional knowledge that have potential positive health impacts, from selected countries in the region. The study also focused on identifying their importance in the prevention and management of lifestyle-related diseases and nutritional deficiencies as well as for the improvement of the overall health and wellbeing. This was conducted in selected locations in Indonesia, Thailand, Malaysia and Nepal through a qualitative method with a pre-tested documentation format. Through a detailed documentation of their health benefits, the study tries to highlight the significance of traditional foods in public health as well as their relevance to local market economies towards sustainable production and consumption and sustainable community livelihoods. Keywords: Traditional foods, Ethnic recipes, Asian health food traditions, Cultural dietary diversity, Indonesia, Thailand, Malaysia and Nepal Introduction Due to the dynamic adaptations to local biocultural con- Asia represents vast geographic, socioeconomic, bio- texts and refinement over generations through empirical logical, and cultural diversity. This is also reflected in the observations, they assume to have positive health impacts dietary diversity of traditional foods.
    [Show full text]
  • Taking Plant Pharmaceuticals from Research to Production
    From Farm to Pharm: Taking plant pharmaceuticals from research to production Benjamin Doffek BSc, MSc (Hons) 0000-0001-7583-426X A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2020 Institute for Molecular Bioscience Abstract Abstract Affordable production of pharmaceuticals with high potency and low side effects is a major challenge of the 21st century. Peptides are an emerging class of therapeutics that have the potential to marry the specificity and efficacy of protein drugs with the stability and membrane permeability of small molecule drugs. Although many peptides are amenable to chemical synthesis, their cost of production is high, as is the generation of waste products. Peptide production in plants has the potential to be a scalable, cost effective, and a less environmentally taxing alternative. Cyclotides, first discovered in Oldenlandia affinis, are a unique class of backbone cyclic peptides containing three stabilising disulfide bridges that form a knot-like structure. Their stability, and for some variants, the ability to traverse cellular membranes make them ideal candidates for pharmaceutical and agricultural applications. Even though highly constrained sterically, cyclotides are amenable to engineering by replacing native sequences with bioactive epitopes. In this thesis, cyclotide production strategies in plant cell suspensions are examined with a special focus placed on O. affinis as an archetypical cyclotide producer. Additional species investigated are Clitoria ternatea, Hybanthus enneaspermus, Nicotiana benthamiana, and Petunia hybrida. Insights into how cyclotides and their biosynthetic processing machinery are regulated in suspension plant cells are reported and provide first steps towards an affordable and environmentally friendly peptide production system in plants.
    [Show full text]
  • 1978 Report This Publication Is a Reprint of the Beef Program Section, 1978 CIAT Annual Report
    02E1 G-78 April 1979 Beef Program 1978 Report This publication is a reprint of the Beef Program section, 1978 CIAT Annual Report Centro Intemacional de Agriciultura Tropical (CIAT) Apartado A6reo 6713 Cali, Colombia S.A. PERSONNEL OF THE BEEF PROGRAM Office of Director General LuL Alfredo Le6n, PhD, Soil Chemist (IFDC Phosphorus Project) Senior staff C. Patrick Moore, PhD, Animal Scientist John L. Nickel, PhD, Director General (st3tioned in Brasilia, Brazil) Alexander Grobman, PhD, Associt., Gustavo A. Nores, PhD, Economist Director General, International Coceration Osvaldo Puladines, PhD, Animal Scientist, *Kenneth 0. Rachie, PhD, Associate Director Nutrition General, Research Jos6 G. Salinas, PhD, Soil-Plant Nutritionist *Kenneth D. Sayre, PhD, Legume Breeder Otherprofessional :taff RainerSchultze-Kraft, DAgr, Legume Agronomist Cecilia Acosta, Administrative Assistant James M. Spain, PhD, Soil Scientist, Pasture Development (stationed in Carimagua, Colombia) Luis E. Tergas, PhD, Agronomist, Training/ Regional Trials Beef Program Derrick Thomas, PhD, Forage Agronomist (stationed in Brasilia, Brazil) Senior stall Visiting scientists Pedro A. Sinchez, PhD, Soil Scientist Thomas T. Cochrane, PhD, Land Resources (Coordinator) Specialist Eduardo R. Aycardl, PhD, Animal Health E. Mark Hutton, DAgrSc, Breeder Specialist Nobuyoshl Maeno, DAgr, Legume Agronnmist Walter Couto, PhD, Soil Scientist, Pasture Development (stationed in Brasilia, Brazil) Postdoctorallellows William E. Fenster, PhD, Soil Fertility Mario Caldcr6n, PhD, Entomology (IFDC Phosphorus Project) Jillian M. Lennk, PhD, Plant Pathology John E. Ferguson, PhD, Agronomist, 2,ugetia de Rublnstein, PhD, Economics Seed Production "Bela Grof, PhD, Forage Agronomist Visi.ing specialists (stationed in Carimagua, Colombia) Rolf M inhoist, MS, Animal Management Jeke Halliday, PhD, Soil Microbiologist (stationed in Brasilia, Bres,l) C.
    [Show full text]