Comparison of the Ticks and Tick-Borne Bacteria of Small Mammals in Western Canada

Total Page:16

File Type:pdf, Size:1020Kb

Comparison of the Ticks and Tick-Borne Bacteria of Small Mammals in Western Canada COMPARISON OF THE TICKS AND TICK-BORNE BACTERIA OF SMALL MAMMALS IN WESTERN CANADA A Thesis Submitted to the College of Graduate Studies and Research In Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy In the Department of Biology University of Saskatchewan Saskatoon By Clare Alayne Anstead July, 2013 © Copyright Clare Alayne Anstead, July 2013. All rights reserved. Permission to Use In presenting this thesis/dissertation in partial fulfillment of the requirements for a Postgraduate degree from the University of Saskatchewan, I agree that the Libraries of this University may make it freely available for inspection. I further agree that permission for copying of this thesis/dissertation in any manner, in whole or in part, for scholarly purposes may be granted by the professor or professors who supervised my thesis/dissertation work or, in their absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is understood that any copying or publication or use of this thesis/dissertation or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis/dissertation. Disclaimer Reference in this thesis/dissertation to any specific commercial products, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement, recommendation, or favouring by the University of Saskatchewan. The views and opinions of the author expressed herein do not state or reflect those of the University of Saskatchewan, and shall not be used for advertising or product endorsement purposes. Requests for permission to copy or to make other uses of materials in this thesis/dissertation in whole or part should be addressed to: Head of the Department of Biology !112 Science Place, University of Saskatchewan !Saskatoon, Saskatchewan S7N 5E2 Canada ! i! Abstract ! ! Ticks are important vectors of pathogenic agents that cause disease in humans, domestic animals, and wildlife. They are also hosts for a variety of bacterial endosymbionts. However, little is known about the microbial diversity of many tick species, particularly those species that parasitize small mammals in western Canada. In this thesis, I used a combined morphological and molecular approach to identify, to the species-level, ticks that parasitized small mammals from three localities in Saskatchewan and British Columbia. The genetic diversity and phylogenetic relationships of these tick species was also examined. Comparisons were also made of the composition and diversity of bacteria within individuals of each tick species. Questions relating to the biology, systematics, and vector ecology of the vole tick (Ixodes angustus), the rotund tick (Ixodes kingi), the sculptured tick (Ixodes sculptus) and the Rocky Mountain wood tick (Dermacentor andersoni) were also addressed. The results of my thesis work revealed that I. kingi and I. sculptus were the most encountered tick species on northern pocket gophers (Thomomys talpoides) and Richardson’s ground squirrels (Spermophilus richardsonii), respectively, in Saskatchewan, while I. angustus was the most abundant tick on red-backed voles (Clethrionomys gapperi) in Kootenay National Park (British Columbia). At least 40 genera of bacteria were detected in the four tick species; however, there were significant differences in the composition of the bacteria among tick species. Two novel species of Rickettsia and three putative new species of Rickettsiella were also discovered. The findings of this thesis make an important contribution to our understanding of the evolution and ecology of ticks and tick-borne bacteria. ! ii! Acknowledgements The first person I want to thank is my supervisor, Dr. Neil Chilton, for providing the opportunity for me to pursue a postgraduate degree. Without your support and encouragement, I would not be where I am today, or who I am today. You have had a profound positive influence on my personal and academic development, and have been an ideal mentor and role model. Thank you for giving me a chance. I would also like to thank my wonderful committee members, Dr. Yeen-Ten Hwang, Dr. Dick Neal, and Dr. Hugo Cota-Sánchez, for their valuable input and advice. I could not have asked for a better committee. Thank you Dr. Chris Todd for your pocket gopher trapping advice, your valuable proofreading, and for always taking the time to help and reassure. Thank you Dr. Vipen Sawhney for finding the time in your busy schedule (and while on sabbatical) to chair my thesis defense. It is much appreciated. To my present and former labmates (James Armstrong, Shaun Dergousoff, Veronica Duran, Ray Ko, Chantel Krakowetz, Cyndi Laduke, Tyler Little, Anish Mann, Ian Patterson, James Paul, Katie Sim, Alison Sproat and Scott Wallace): thank you for your help, encouragement, and for making the Chilton lab a fun place to conduct research. A special thank you to Dr. Shaun Dergousoff, my lab “big brother”, for your patience in training me in the beginning, and for your continued support and friendship today. Thank you to all the people who let me trap on their land (Dr. Chris Todd, Dr. Cedric Gillott, the Bothner family) and to those that provided me with samples (Dr. Yeen-Ten Hwang, Dr. Chris Todd, Winston Bothner, Wayne Lerch). Thank you Dr. Wilson, Dr. Carvalho and Kunal Baxi for the use of your laboratory equipment, and thank you Dr. Guosheng Liu and Marlynn Mierau for your help with SEM and photoshop, respectively. Thank you Joan Virgl, Deidre Wasyliw and Bonita Wong for always being there for a chat and for helping me keep all my ducks in a row. Thank you to my friends (Kristin Bielefeld, Brandon Demuth, Alan Hiebert, Carly Lindenbach, Adam McMurtry, Amy Noakes, Brittani Olson, Emily Pickett, Jodi Souter, Molly Thomas) and family (including the Rothenburgers) for always being there. Thank you to my mom, Sylvia and to my dad, Keith, for always knowing the right thing to say or do. I cannot express how valued your support and patience has been. Most importantly, thank you Chase for being so understanding when I spent too much time in the lab or in front of a computer. Thank you for your support and for not breaking up with me during the high-stress times. You’re the perfect partner. Funding for this research was provided to Neil Chilton by the National Sciences and Engineering Research Council (NSERC) and the Canadian Foundation for Innovation. Personal financial support was received from the Margaret MacKay Scholarship, the University of Saskatchewan and the R. Jan F. Smith Memorial Scholarship. ! iii! Table of Contents Permission to Use ........................................................................................................................... i Disclaimer ....................................................................................................................................... i Abstract .......................................................................................................................................... ii Acknowledgements.......................................................................................................................iii List of Tables ............................................................................................................................... vii List of Figures ................................................................................................................................ x Chapter 1. General Introduction ............................................................................................... 1 1.1 Background .................................................................................................................................. 1 1.2 Research objectives .................................................................................................................... 13 1.3 Anticipated significance of research .......................................................................................... 16 1.4 References Cited ........................................................................................................................ 17 Chapter 2. Ticks feeding on northern pocket gophers (Thomomys talpoides) in central Saskatchewan, and the unexpected detection of Ixodes scapularis larvae ............................. 39 2.1 Abstract ...................................................................................................................................... 39 2.2 Introduction ................................................................................................................................ 40 2.3 Materials and Methods ............................................................................................................... 41 2.4 Results ........................................................................................................................................ 43 2.5 Discussion .................................................................................................................................. 48 2.6 References Cited ........................................................................................................................ 53 Chapter 3. Ticks (Acari: Ixodidae) on Richardson’s ground squirrels (Spermophilus richardsonii) in southern Saskatchewan,
Recommended publications
  • Community Analysis of Microbial Sharing and Specialization in A
    Downloaded from http://rspb.royalsocietypublishing.org/ on March 15, 2017 Community analysis of microbial sharing rspb.royalsocietypublishing.org and specialization in a Costa Rican ant–plant–hemipteran symbiosis Elizabeth G. Pringle1,2 and Corrie S. Moreau3 Research 1Department of Biology, Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Cite this article: Pringle EG, Moreau CS. 2017 Reno, NV 89557, USA 2Michigan Society of Fellows, University of Michigan, Ann Arbor, MI 48109, USA Community analysis of microbial sharing and 3Department of Science and Education, Field Museum of Natural History, 1400 South Lake Shore Drive, specialization in a Costa Rican ant–plant– Chicago, IL 60605, USA hemipteran symbiosis. Proc. R. Soc. B 284: EGP, 0000-0002-4398-9272 20162770. http://dx.doi.org/10.1098/rspb.2016.2770 Ants have long been renowned for their intimate mutualisms with tropho- bionts and plants and more recently appreciated for their widespread and diverse interactions with microbes. An open question in symbiosis research is the extent to which environmental influence, including the exchange of Received: 14 December 2016 microbes between interacting macroorganisms, affects the composition and Accepted: 17 January 2017 function of symbiotic microbial communities. Here we approached this ques- tion by investigating symbiosis within symbiosis. Ant–plant–hemipteran symbioses are hallmarks of tropical ecosystems that produce persistent close contact among the macroorganism partners, which then have substantial opportunity to exchange symbiotic microbes. We used metabarcoding and Subject Category: quantitative PCR to examine community structure of both bacteria and Ecology fungi in a Neotropical ant–plant–scale-insect symbiosis. Both phloem-feed- ing scale insects and honeydew-feeding ants make use of microbial Subject Areas: symbionts to subsist on phloem-derived diets of suboptimal nutritional qual- ecology, evolution, microbiology ity.
    [Show full text]
  • Two New Species of Oripodoidea (Acari: Oribatida) from Vietnam S.G
    Two new species of Oripodoidea (Acari: Oribatida) from Vietnam S.G. Ermilov, A.E. Anichkin To cite this version: S.G. Ermilov, A.E. Anichkin. Two new species of Oripodoidea (Acari: Oribatida) from Vietnam. Acarologia, Acarologia, 2011, 51 (2), pp.143-154. 10.1051/acarologia/20111998. hal-01599977 HAL Id: hal-01599977 https://hal.archives-ouvertes.fr/hal-01599977 Submitted on 2 Oct 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives| 4.0 International License ACAROLOGIA A quarterly journal of acarology, since 1959 Publishing on all aspects of the Acari All information: http://www1.montpellier.inra.fr/CBGP/acarologia/ [email protected] Acarologia is proudly non-profit, with no page charges and free open access Please help us maintain this system by encouraging your institutes to subscribe to the print version of the journal and by sending us your high quality research on the Acari. Subscriptions: Year 2017 (Volume 57): 380 € http://www1.montpellier.inra.fr/CBGP/acarologia/subscribe.php
    [Show full text]
  • (Chiroptera: Vespertilionidae) and the Bat Soft Tick Argas Vespe
    Zhao et al. Parasites Vectors (2020) 13:10 https://doi.org/10.1186/s13071-020-3885-x Parasites & Vectors SHORT REPORT Open Access Rickettsiae in the common pipistrelle Pipistrellus pipistrellus (Chiroptera: Vespertilionidae) and the bat soft tick Argas vespertilionis (Ixodida: Argasidae) Shuo Zhao1†, Meihua Yang2†, Gang Liu1†, Sándor Hornok3, Shanshan Zhao1, Chunli Sang1, Wenbo Tan1 and Yuanzhi Wang1* Abstract Background: Increasing molecular evidence supports that bats and/or their ectoparasites may harbor vector-borne bacteria, such as bartonellae and borreliae. However, the simultaneous occurrence of rickettsiae in bats and bat ticks has been poorly studied. Methods: In this study, 54 bat carcasses and their infesting soft ticks (n 67) were collected in Shihezi City, north- western China. The heart, liver, spleen, lung, kidney, small intestine and large= intestine of bats were dissected, followed by DNA extraction. Soft ticks were identifed both morphologically and molecularly. All samples were examined for the presence of rickettsiae by amplifying four genetic markers (17-kDa, gltA, ompA and ompB). Results: All bats were identifed as Pipistrellus pipistrellus, and their ticks as Argas vespertilionis. Molecular analyses showed that DNA of Rickettsia parkeri, R. lusitaniae, R. slovaca and R. raoultii was present in bat organs/tissues. In addition, nine of the 67 bat soft ticks (13.43%) were positive for R. raoultii (n 5) and R. rickettsii (n 4). In the phylo- genetic analysis, these bat-associated rickettsiae clustered together with conspecifc= sequences reported= from other host and tick species, confrming the above results. Conclusions: To the best of our knowledge, DNA of R. parkeri, R. slovaca and R.
    [Show full text]
  • New Species of Fossil Oribatid Mites (Acariformes, Oribatida), from the Lower Cretaceous Amber of Spain
    Cretaceous Research 63 (2016) 68e76 Contents lists available at ScienceDirect Cretaceous Research journal homepage: www.elsevier.com/locate/CretRes New species of fossil oribatid mites (Acariformes, Oribatida), from the Lower Cretaceous amber of Spain * Antonio Arillo a, , Luis S. Subías a, Alba Sanchez-García b a Departamento de Zoología y Antropología Física, Facultad de Biología, Universidad Complutense, E-28040 Madrid, Spain b Departament de Dinamica de la Terra i de l'Ocea and Institut de Recerca de la Biodiversitat (IRBio), Facultat de Geologia, Universitat de Barcelona, E- 08028 Barcelona, Spain article info abstract Article history: Mites are relatively common and diverse in fossiliferous ambers, but remain essentially unstudied. Here, Received 12 November 2015 we report on five new oribatid fossil species from Lower Cretaceous Spanish amber, including repre- Received in revised form sentatives of three superfamilies, and five families of the Oribatida. Hypovertex hispanicus sp. nov. and 8 February 2016 Tenuelamellarea estefaniae sp. nov. are described from amber pieces discovered in the San Just outcrop Accepted in revised form 22 February 2016 (Teruel Province). This is the first time fossil oribatid mites have been discovered in the El Soplao outcrop Available online 3 March 2016 (Cantabria Province) and, here, we describe the following new species: Afronothrus ornosae sp. nov., Nothrus vazquezae sp. nov., and Platyliodes sellnicki sp. nov. The taxa are discussed in relation to other Keywords: Lamellareidae fossil lineages of Oribatida as well as in relation to their modern counterparts. Some of the inclusions Neoliodidae were imaged using confocal laser scanning microscopy, demonstrating the potential of this technique for Nothridae studying fossil mites in amber.
    [Show full text]
  • Intraspecies Comparative Genomics of Rickettsia
    AIX ͲMARSEILLE UNIVERSITÉ FACULTÉ DE MÉDECINE DE MARSEILLE ÉCOLE DOCTORALE DES SCIENCES DE LA VIE ET DE LA SANTÉ T H È S E Présentée et publiquement soutenue devant LA FACULTÉ DE MÉDECINE DE MARSEILLE Le 13 décembre 2013 Par M. Erwin SENTAUSA Né le 16 décembre 1979 àMalang, Indonésie INTRASPECIES COMPARATIVE GENOMICS OF RICKETTSIA Pour obtenir le grade de DOCTORAT d’AIX ͲMARSEILLE UNIVERSITÉ SPÉCIALITÉ :PATHOLOGIE HUMAINE Ͳ MALADIES INFECTIEUSES Membres du Jury de la Thèse : Dr. Patricia RENESTO Rapporteur Pr. Max MAURIN Rapporteur Dr. Florence FENOLLAR Membre du Jury Pr. Pierre ͲEdouard FOURNIER Directeur de thèse Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes UM63, CNRS 7278, IRD 198, Inserm 1095 Avant Propos Le format de présentation de cette thèse correspond à une recommandation de la spécialité Maladies Infectieuses et Microbiologie, à l’intérieur du Master de Sciences de la Vie et de la Santé qui dépend de l’Ecole Doctorale des Sciences de la Vie de Marseille. Le candidat est amené àrespecter des règles qui lui sont imposées et qui comportent un format de thèse utilisé dans le Nord de l’Europe permettant un meilleur rangement que les thèses traditionnelles. Par ailleurs, la partie introduction et bibliographie est remplacée par une revue envoyée dans un journal afin de permettre une évaluation extérieure de la qualité de la revue et de permettre àl’étudiant de le commencer le plus tôt possible une bibliographie exhaustive sur le domaine de cette thèse. Par ailleurs, la thèse est présentée sur article publié, accepté ou soumis associé d’un bref commentaire donnant le sens général du travail.
    [Show full text]
  • Preliminary Study of the Mite Community Structure in Different Black Truffle Producing Soils M
    Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) Forest Systems 2014 23(2): 339-348 Available online at www.inia.es/forestsystems ISSN: 2171-5068 http://dx.doi.org/10.5424/fs/2014232-04906 eISSN: 2171-9845 Preliminary study of the mite community structure in different black truffle producing soils M. Queralt*, M. L. Moraza and A. M. de Miguel Departamento de Biología Ambiental. Facultad de Ciencias. Universidad de Navarra. C/ Irunlarrea, s/n. 31008 Pamplona (Navarra), Spain Abstract Aims of the study: The goals of this paper are to provide preliminary data on the composition of the mite community in truffle-producing soils (both wild and plantations), and to elucidate those species which may interact with the black truffle life cycle. Area of study: The study was carried out in two black truffle productive zones in Navarra (Spain), in four different plantations and five wild production areas. Material and methods: Fauna was extracted using Berlese Tullgren funnels. Animals were separated into taxonomic groups, and mites were identified. To analyse the composition and community structure of the different habitats, parameters such as abundance, species richness, and Shanon Weiner diversity index (H’) were calculated. Main results: A total of 305 mites were recognized, belonging to 58 species representing the three major taxonomic groups (Oribatida, Prostigmata, Mesostigmata). Research highlights: The results show a possible trend towards wild areas having greater diversity and species richness than plantations. Furthermore, community analysis shows differences in species compositions among different study areas, and oribatid mites always exhibit the highest relative abundance and species richness.
    [Show full text]
  • A Case with Neurological Abnormalities Caused by Rickettsia
    Dong et al. BMC Infectious Diseases (2019) 19:796 https://doi.org/10.1186/s12879-019-4414-4 CASE REPORT Open Access A case with neurological abnormalities caused by Rickettsia raoultii in northwestern China Zhihui Dong1†, Yicheng Yang1†, Qian Wang2†, Songsong Xie3, Shanshan Zhao1, Wenbo Tan1, Wumei Yuan1 and Yuanzhi Wang1* Abstract Background: The number of new rickettsial species are rapidly increasing, and increasing numbers of Rickettsia raoultii (R. raoultii) infection cases have been detected in humans. However, neurological abnormalities caused by R. raoultii are rarely reported, especially in northwestern China. Case presentation: A 36-year-old Kazakh shepherd with an attached tick on part temporalis, presented with right eyelid droop, lethargy, fever, headache, fever (38.0–41.0 °C) and erythematous rash. The examination of 6 cerebrospinal fluid (CSF) showed cerebrospinal pressure of 200 mm H2O, leukocyte count of 300.0 × 10 /L, adenosine deaminase of 2.15 U/L, and total protein concentration of 0.93 g/L. The diagnosis of R. raoultii infection was confirmed by six genetic markers, and semi-quantified by enzyme-linked immunosorbent assay for rickettsial antigen. The patient gradually recovered after treatment with doxycycline and ceftriaxone. R. raoultii DNA was found both in a tick detached from this patient and in 0.18% (2/1107) of blood samples collected from local shepherds. Conclusions: This is the first reported case with neurological abnormalities caused by R. raoultii in northwestern China. It is vital to detect rickettsial agents both in blood and CSF for tick bite patients with neurological abnormalities. Public health workers and physicians should pay attention to neurological abnormalities caused by Rickettsia.
    [Show full text]
  • “Epidemiology of Rickettsial Infections”
    6/19/2019 I have got 45 min…… First 15 min… •A travel medicine physician… •Evolution of epidemiology of rickettsial diseases in brief “Epidemiology of rickettsial •Expanded knowledge of rickettsioses vs travel medicine infections” •Determinants of Current epidemiology of Rickettsialinfections •Role of returning traveller in rickettsial diseaseepidemiology Ranjan Premaratna •Current epidemiology vs travel health physician Faculty of Medicine, University of Kelaniya Next 30 min… SRI LANKA •Clinical cases 12 Human Travel & People travel… Human activity Regionally and internationally Increased risk of contact between Bugs travel humans and bugs Deforestation Regionally and internationally Habitat fragmentation Echo tourism 34 This man.. a returning traveler.. down Change in global epidemiology with fever.. What can this be??? • This is the greatest challenge faced by an infectious disease / travel medicine physician • compared to a physician attending to a well streamlined management plan of a non-communicable disease……... 56 1 6/19/2019 Rickettsial diseases • A travel medicine physician… • Represent some of the oldest and most recently recognizedinfectious • Evolution of epidemiology of rickettsial diseases in brief diseases • Expanded knowledge of rickettsioses vs travel medicine • Determinants of Current epidemiology of Rickettsialinfections • Athens plague described during 5th century BC……? Epidemic typhus • Role of returning traveller in rickettsial diseaseepidemiology • Current epidemiology vs travel health physician • Clinical cases 78 In 1916.......... By 1970s-1980s four endemic rickettsioses; a single agent unique to a given geography !!! • R. prowazekii was identified as the etiological agent of epidemic typhus • Rocky Mountain spotted fever • Mediterranean spotted fever • North Asian tick typhus • Queensland tick typhus Walker DH, Fishbein DB. Epidemiology of rickettsial diseases. Eur J Epidemiol 1991 910 Family Rickettsiaceae Transitional group between SFG and TG Genera Rickettsia • R.
    [Show full text]
  • Rickettsia Slovaca Ples (Serum, Skin Biopsy, Or Ticks Harvested from the Scalp) Were Received at Our Laboratory from January 2002 Through and R
    bite on the scalp without any symptoms from whom sam- Rickettsia slovaca ples (serum, skin biopsy, or ticks harvested from the scalp) were received at our laboratory from January 2002 through and R. raoultii December 2007. Epidemiologic and clinical data were col- lected retrospectively. The study was approved by the eth- in Tick-borne ics committee of the Medicine School of Marseille under Rickettsioses reference 08-008. Immunoglobulin (Ig) G and IgM titers against rickett- Philippe Parola, Clarisse Rovery, sial antigens were estimated by microimmunofluorescent Jean Marc Rolain, Philippe Brouqui, assay; results were verified by Western blot and cross- Bernard Davoust, and Didier Raoult absorption studies (3). Ticks found on persons and skin biopsy specimens were cultured on human embryonic Tick-borne lymphadenopathy (TIBOLA), also called Dermacentor-borne necrosis erythema and lymphadenopa- thy (DEBONEL), is defined as the association of a tick bite, an inoculation eschar on the scalp, and cervical adenopa- thies. We identified the etiologic agent for 65% of 86 patients with TIBOLA/DEBONEL as either Rickettsia slovaca (49/86, 57%) or R. raoultii (7/86, 8%). n 1968, Rickettsia slovaca, a spotted fever group (SFG) Irickettsia, was isolated from Dermacentor marginatus ticks in the former Czechoslovakia before being detected in D. marginatus or D. reticulatus ticks throughout Europe (Figure 1) (1). In 1997, R. slovaca was described as a human pathogen and an agent of tick-borne lymphadenopathy (TI- BOLA) (2). This syndrome, also called Dermacentor-borne necrosis erythema and lymphadenopathy (DEBONEL), is defined as the association of a tick bite, an inoculation eschar on the scalp, and cervical lymphadenopathies (3).
    [Show full text]
  • Exploration of Tick-Borne Pathogens and Microbiota of Dog Ticks Collected at Potchefstroom Animal Welfare Society
    Exploration of tick-borne pathogens and microbiota of dog ticks collected at Potchefstroom Animal Welfare Society C Van Wyk orcid.org 0000-0002-5971-4396 Dissertation submitted in fulfilment of the requirements for the degree Master of Science in Environmental Sciences at the North-West University Supervisor: Prof MMO Thekisoe Co-supervisor: Ms K Mtshali Graduation May 2019 24263524 DEDICATION This thesis is dedicated to the late Nettie Coetzee. For her inspiration and lessons to overcome any obstacle that life may present. God called home another angel we all love and miss you. “We are the scientists, trying to make sense of the stars inside us.” -Christopher Poindexter i ACKNOWLEDGEMENTS My sincerest appreciation goes out to my supervisor, Prof. Oriel M.M. Thekisoe, for his support, motivation, guidance, and insightfulness during the duration of this project and been there every step of the way. I would also like to thank my co-supervisor, Ms. Khethiwe Mtshali, for her patience and insightfulness towards the corrections of this thesis. I would like to thank Dr. Stalone Terera and the staff members at PAWS for their aid towards the collection of tick specimens. For the sequencing on the Illumina MiSeq platform and metagenomic data analysis I would like to thank Dr. Moeti O. Taioe, Dr. Charlotte M.S. Mienie, Dr. Danie C. La Grange, and Dr. Marlin J. Mert. I would like to thank the National Research Foundation (NRF) for their financial support by awarding me the S&F- Innovation Masters Scholarship and the North-West University (NWU) for the use of their laboratories.
    [Show full text]
  • Paradoxical Evolution of Rickettsial Genomes
    Ticks and Tick-borne Diseases 10 (2019) 462–469 Contents lists available at ScienceDirect Ticks and Tick-borne Diseases journal homepage: www.elsevier.com/locate/ttbdis Paradoxical evolution of rickettsial genomes T ⁎ Awa Diopa, Didier Raoultb, Pierre-Edouard Fourniera, a UMR VITROME, Aix-Marseille University, IRD, Service de Santé des Armées, Assistance Publique-Hôpitaux de Marseille, Institut Hospitalo-Uuniversitaire Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France b UMR MEPHI, Aix-Marseille University, IRD, Assistance Publique-Hôpitaux de Marseille, Institut Hospitalo-Uuniversitaire Méditerranée Infection, Marseille, France ARTICLE INFO ABSTRACT Keywords: Rickettsia species are strictly intracellular bacteria that evolved approximately 150 million years ago from a Rickettsia presumably free-living common ancestor from the order Rickettsiales that followed a transition to an obligate Genomics intracellular lifestyle. Rickettsiae are best known as human pathogens vectored by various arthropods causing a Evolution range of mild to severe human diseases. As part of their obligate intracellular lifestyle, rickettsial genomes have Virulence undergone a convergent evolution that includes a strong genomic reduction resulting from progressive gene Genome rearrangement degradation, genomic rearrangements as well as a paradoxical expansion of various genetic elements, notably Non-coding DNA Gene loss small RNAs and short palindromic elements whose role remains unknown. This reductive evolutionary process is DNA repeats not unique to members of the Rickettsia genus but is common to several human pathogenic bacteria. Gene loss, gene duplication, DNA repeat duplication and horizontal gene transfer all have shaped rickettsial genome evolution. Gene loss mostly involved amino-acid, ATP, LPS and cell wall component biosynthesis and tran- scriptional regulators, but with a high preservation of toxin-antitoxin (TA) modules, recombination and DNA repair proteins.
    [Show full text]
  • Communities of Oribatida Associated with Litter Input in Western Red Cedar
    Communities of Oribatida associated with litter input in western red cedar tree crowns: Are moss mats ‘magic carpets’ for oribatid mite dispersal? Zoë Lindo Department of Biology, University of Victoria, PO Box 3020, Victoria, British Columbia, V8W 3N5, Canada. Present address: Department of Biology, McGill University, 1205 Docteur Penfield, Montreal, Quebec, H3A 1B1, Canada. E-mail: [email protected] Oribatid mite abundance, species richness, and community composition in annual litter fall were compared between the high canopy of an ancient temperate rainforest and the forest floor to evaluate whether litterfall, including moss debris, is a dispersal vector for these organisms. Oribatid mites were extracted from litterfall collected from canopy (30 m) and ground (1 m) litter traps associated with six western red cedar trees in the Walbran Valley on the south- west coast of Vancouver Island, Canada, over 3, 6, and 12 months. Total annual litter input was not significantly dif- ferent between canopy and ground traps, as high amounts of litter were associated with both habitats. Litter compo- sition differed between the two habitats and cumulative input over larger spatial scales may prove to be appreciably different. Fifty-seven species of oribatid mites were associated with total litterfall collected in canopy and ground traps over 12 months. Species richness over the entire sampling period was similar between canopy and ground habitats, but oribatid mite species composition differed significantly, and is most likely related to litter composition and the ini- tial source of litter. Oribatid mite abundance (number of individuals per gram dry weight) associated with litterfall was low compared to suspended soil habitats, and not significantly different between litter accumulation in ground and canopy traps.
    [Show full text]