Brain – Introduction
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Transcription of SCO-Spondin in the Subcommissural Organ: Evidence for Down-Regulation Mediated by Serotonin
Molecular Brain Research 129 (2004) 151–162 www.elsevier.com/locate/molbrainres Research report Transcription of SCO-spondin in the subcommissural organ: evidence for down-regulation mediated by serotonin Hans G. Richtera,*, Marı´a M. Tome´b, Carlos R. Yulisa, Karin J. Vı´oa, Antonio J. Jime´nezb, Jose´M.Pe´rez-Fı´garesb, Esteban M. Rodrı´gueza aInstituto de Histologı´a y Patologı´a, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile bDepartamento de Biologı´a Celular y Gene´tica, Facultad de Ciencias, Universidad de Ma´laga, Spain Accepted 7 July 2004 Available online 13 August 2004 Abstract The subcommissural organ (SCO) is a brain gland located in the roof of the third ventricle that releases glycoproteins into the cerebrospinal fluid, where they form a structure known as Reissner’s fiber (RF). On the basis of SCO-spondin sequence (the major RF glycoprotein) and experimental findings, the SCO has been implicated in central nervous system development; however, its function(s) after birth remain unclear. There is evidence suggesting that SCO activity in adult animals may be regulated by serotonin (5HT). The use of an anti-5HT serum showed that the bovine SCO is heterogeneously innervated with most part being poorly innervated, whereas the rat SCO is richly innervated throughout. Antibodies against serotonin receptor subtype 2A rendered a strong immunoreaction at the ventricular cell pole of the bovine SCO cells and revealed the expected polypeptides in blots of fresh and organ-cultured bovine SCO. Analyses of organ-cultured bovine SCO treated with 5HT revealed a twofold decrease of both SCO-spondin mRNA level and immunoreactive RF glycoproteins, whereas no effect on release of RF glycoproteins into the culture medium was detected. -
Post-Stroke Movement Disorders: Report of 56 Patients F Alarco´N, J C M Zijlmans, G Duen˜As, N Cevallos
1568 J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.2003.011874 on 15 October 2004. Downloaded from PAPER Post-stroke movement disorders: report of 56 patients F Alarco´n, J C M Zijlmans, G Duen˜as, N Cevallos ............................................................................................................................... J Neurol Neurosurg Psychiatry 2004;75:1568–1574. doi: 10.1136/jnnp.2003.011874 Background: Although movement disorders that occur following a stroke have long been recognised in short series of patients, their frequency and clinical and imaging features have not been reported in large series of patients with stroke. Methods: We reviewed consecutive patients with involuntary abnormal movements (IAMs) following a stroke who were included in the Eugenio Espejo Hospital Stroke Registry and they were followed up for at least one year after the onset of the IAM. We determined the clinical features, topographical correlations, See end of article for authors’ affiliations and pathophysiological implications of the IAMs. ....................... Results: Of 1500 patients with stroke 56 developed movement disorders up to one year after the stroke. Patients with chorea were older and the patients with dystonia were younger than the patients with other Correspondence to: Dr. F Alarco´n, Department IAMs. In patients with isolated vascular lesions without IAMs, surface lesions prevailed but patients with of Neurology, Eugenio deep vascular lesions showed a higher probability of developing abnormal movements. One year after Espejo Hospital, P.O. Box onset of the IAMs, 12 patients (21.4%) completely improved their abnormal movements, 38 patients 17-07-9515, Quito, Ecuador, South America; (67.8%) partially improved, four did not improve (7.1%), and two patients with chorea died. -
Magnetic Resonance Imaging of Multiple Sclerosis: a Study of Pulse-Technique Efficacy
691 Magnetic Resonance Imaging of Multiple Sclerosis: A Study of Pulse-Technique Efficacy Val M. Runge1 Forty-two patients with the clinical diagnosis of multiple sclerosis were examined by Ann C. Price1 proton magnetic resonance imaging (MRI) at 0.5 T. An extensive protocol was used to Howard S. Kirshner2 facilitate a comparison of the efficacy of different pulse techniques. Results were also Joseph H. Allen 1 compared in 39 cases with high-resolution x-ray computed tomography (CT). MRI revealed characteristic abnormalities in each case, whereas CT was positive in only 15 C. Leon Partain 1 of 33 patients. Milder grades 1 and 2 disease were usually undetected by CT, and in all A. Everette James, Jr.1 cases, the abnormalities noted on MRI were much more extensive than on CT. Cerebral abnormalities were best shown with the T2-weighted spin-echo sequence (TE/TR = 120/1000); brainstem lesions were best defined on the inversion-recovery sequence (TE/TI/TR =30/400/1250). Increasing TE to 120 msec and TR to 2000 msec heightened the contrast between normal and abnormal white matter. However, the signal intensity of cerebrospinal fluid with this pulse technique obscured some abnormalities. The diagnosis of multiple sclerosis continues to be a clinical challenge [1,2). The lack of an objective means of assessment further complicates the evaluation of treatment regimens. Evoked potentials, cerebrospinal fluid (CSF) analysis , and computed tomography (CT) are currently used for diagnosis, but all lack sensitivity and/or specificity. Furthermore, postmortem examinations demonstrate many more lesions than those suggested by clinical means [3). -
University of Florida Thesis Or Dissertation Formatting
THE NEURAL CIRCUITRY OF RESTRICTED REPETITIVE BEHAVIOR By BRADLEY JAMES WILKES A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2018 © 2018 Bradley James Wilkes To my father, Wade Wilkes, for his lifelong support, love, and encouragement ACKNOWLEDGMENTS This research was supported by funding from the Dissertation Research Award from the American Psychological Assocation, the Pilot Project Award (Non-Patient Oriented Clinical/Translational Research) from the Clinical and Translational Science Institute at the University of Florida, the Robert A. and Phyllis Levitt Award, the Gerber Behavioral and Cognitive Neuroscience Psychology Research Award, and the Jacquelin Goldman Scholarship in Developmental Psychology. I would especially like to thank Drs. Mark Lewis, Marcelo Febo, David Vaillancourt, Luis Colon-Perez, Darragh Devine, Timothy Vollmer, and Michael King for their support and guidance. 4 TABLE OF CONTENTS page ACKNOWLEDGMENTS .................................................................................................. 4 LIST OF TABLES ............................................................................................................ 7 LIST OF FIGURES .......................................................................................................... 8 LIST OF ABBREVIATIONS ........................................................................................... 10 ABSTRACT .................................................................................................................. -
Patients with Stroke Confined to Basal Ganglia Have Diminished Response to Rehabilitation Efforts
Patients with stroke confined to basal ganglia have diminished response to rehabilitation efforts Ichiro Miyai, MD, PhD; Alan D. Blau, PhD; Michael J. Reding, MD; and Bruce T. Volpe, MD Article abstract-Prediction of the functional outcome for patients with stroke has depended on the severity of impair- ment, location of brain injury, age, and general medical condition. This study compared admission and discharge func- tional outcome (Functional Independence Measure, FIM) and deficit severity (Fugl-Meyer, F-M) scores in a retrospective study of patients with similar neurologic impairments: homonymous hemianopia, hemisensory loss, and hemiparesis. CT-verified stroke location was the independent variable: cortical (n = ll),basal ganglia and internal capsule (normal cortex and thalamus, n = 131, or combined (cortical, basal ganglia, and internal capsule, n = 22). By 3 months on average after stroke, all groups demonstrated significantly improved motor function as measured by F-M scores. Patients with cortical lesions had the least CT-imaged damage and the best outcome. Patients with combined lesions and more extensive brain injury had significantly higher FIM scores (p< 0.05) than patients with injury restricted to the basal ganglid internal capsule. Patients with basal ganglidinternal capsule injury were more likely to have hypotonia, flaccid paralysis, and persistently impaired balance and ambulation performance. While all patients had a comparable rehabilitation experience, these results suggest that patients with stroke confined to the basal ganglia and internal capsule benefited less from therapy. Isolated basal ganglia stroke may cause persistent corticothalamic-basal ganglia interactions that are dysfunctional and impede recovery. NEUROLOGY 1997;48:95-101 In several studies rehabilitative intervention has im- matter, but not the basal ganglia, corona radiata, or inter- proved the functional outcome of patients with nal capsule. -
Distribution of Gb3 Immunoreactivity in the Mouse Central Nervous System
Toxins 2010, 2, 1997-2006; doi:10.3390/toxins2081997 OPEN ACCESS toxins ISSN 2072-6651 www.mdpi.com/journal/toxins Article Distribution of Gb3 Immunoreactivity in the Mouse Central Nervous System Fumiko Obata * and Tom Obrig Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore St. HSFI suite 380, Baltimore, MD 21201, USA; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-410-706-6916; Fax: +1-410-706-2129. Received: 25 June 2010 / Accepted: 1 August 2010 / Published: 4 August 2010 Abstract: We have shown previously that neurons in the mouse spinal cord express Gb3. We show in this article that distribution of anti-Gb3-Ab reactivity occurs in many different types of neurons of different areas of the central nervous system (CNS). The immunoreactive neurons are in olfactory bulbs, cerebral cortex, hippocampus, striatum, amygdala, thalamus, hypothalamus, cerebellum, and medulla oblongata. In several different circumventricular organs where vessels do not have the blood-brain-barrier (BBB) structure, anti-Gb3-Ab is not positive for vessel structures, while neurons at these regions are positive. Also, within the ventricular area, ependymal cells in the third ventricle express Gb3, as revealed by anti-Gb3-Ab staining and intensity analysis. Keywords: globotriaosylceramide (Gb3); neuron; circumventricular organs (CVO); ependymal cells 1. Introduction In Shiga-toxin producing Escherichia coli (STEC) infections, a broad spectrum of central nervous system (CNS) symptoms occurs (abbreviations used in this article are listed in Table 1). Those symptoms include cortical blindness, poor fine-motor coordination, seizures and coma [1–13]. -
Telencephalic Connections in the Pacific Hagfish (Eptatretus Stouti)
THE JOURNAL OF COMPARATIVE NEUROLOGY 395:245–260 (1998) Telencephalic Connections in the Pacific Hagfish (Eptatretus stouti), With Special Reference to the Thalamopallial System HELMUT WICHT1* AND R. GLENN NORTHCUTT2 1Klinikum der Johann Wolfgang Goethe-Universita¨t, Dr. Senckenbergische Anatomie, Institut fu¨ r Anatomie II (Experimentelle Neurobiologie), Theodor-Stern-Kai 7, 60590 Frankfurt, Federal Republic of Germany 2Neurobiology Unit, Scripps Institution of Oceanography and Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, California 9203-0201 ABSTRACT The pallium of hagfishes (myxinoids) is unique: It consists of a superficial ‘‘cortical’’ mantle of gray matter which is subdivided into several layers and fields, but it is not clear whether or how these subdivisions can be compared to those of other craniates, i.e., lampreys and gnathostomes. The pallium of hagfishes receives extensive secondary olfactory projec- tions (Wicht and Northcutt [1993] J. Comp. Neurol. 337:529–542), but there are no experimental data on its nonolfactory connections. We therefore investigated the pallial and dorsal thalamic connections of the Pacific hagfish. Injections of tracers into the pallium labeled many cells bilaterally in the olfactory bulbs. Other pallial afferents arise from the contralateral pallium, the dorsal thalamic nuclei, the preoptic region, and the posterior tubercular nuclei. Descending pallial efferents reach the preoptic region, the dorsal thalamus, and the mesencephalic tectum but not the motor or premotor centers of the brainstem. Injections of tracers into the dorsal thalamus confirmed the presence of reciprocal thalamopal- lial connections. In addition, these injections revealed that there is no ‘‘preferred’’ pallial target for the ascending thalamic fibers; instead, ascending thalamic and secondary olfactory projections overlap throughout the pallium. -
Differential Expression of Five Prosomatostatin Genes in the Central Nervous System of the Catshark Scyliorhinus Canicula
bioRxiv preprint doi: https://doi.org/10.1101/823187; this version posted October 30, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Differential expression of five prosomatostatin genes in the central nervous system of the catshark Scyliorhinus canicula Daniel Sobrido-Cameán1, Herve Tostivint2, Sylvie Mazan3, María Celina Rodicio1, Isabel Rodríguez-Moldes1, Eva Candal1, Ramón Anadón1,*, Antón Barreiro-Iglesias1,* 1Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain 2Molecular Physiology and Adaptation. CNRS UMR7221, Muséum National d’Histoire Naturelle, Paris, France 3CNRS, Sorbonne Université, Biologie intégrative des organismes marins (UMR7232- BIOM), Observatoire Océanologique, Banyuls sur Mer, France *Should be considered joint senior authors. Corresponding author: Dr. Antón Barreiro-Iglesias, Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain email: [email protected] Running title: Somatostatin transcripts in the catshark CNS. Acknowledgements: Grant sponsors: Spanish Ministry of Economy and Competitiveness and the European Regional Development Fund 2007-2013 (Grant number: BFU-2017-87079-P to MCR). Agence Nationale de la Recherche (ANR) grant NEMO no ANR-14-CE02-0020-01 (to HT). 1 bioRxiv preprint doi: https://doi.org/10.1101/823187; this version posted October 30, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. ABSTRACT Five prosomatostatin genes (PSST1, PSST2, PSST3, PSST5 and PSST6) have been recently identified in elasmobranchs (Tostivint, Gaillard, Mazan, & Pézeron, 2019). -
Neural Input and Neural Control of the Subcommissural Organ
MICROSCOPY RESEARCH AND TECHNIQUE 52:520–533 (2001) Neural Input and Neural Control of the Subcommissural Organ 1 2 1 ANTONIO J. JIME´ NEZ, * PEDRO FERNA´ NDEZ-LLEBREZ, AND JOSE MANUEL PE´ REZ-FI´GARES 1Departamento de Biologı´a Celular y Gene´tica, Facultad de Ciencias, Universidad de Ma´laga, Ma´laga, Spain 2Departamento de Biologı´a Animal, Facultad de Ciencias, Universidad de Ma´laga, Ma´laga, Spain KEY WORDS serotonin; GABA; monoamines; pineal organ ABSTRACT The neural control of the subcommissural organ (SCO) has been partially character- ized. The best known input is an important serotonergic innervation in the SCO of several mammals. In the rat, this innervation comes from raphe nuclei and appears to exert an inhibitory effect on the SCO activity. A GABAergic innervation has also been shown in the SCO of the rat and frog Rana perezi. In the rat, GABA and the enzyme glutamate decarboxylase are involved in the SCO innervation. GABA is taken up by some secretory ependymocytes and nerve terminals, coexisting with serotonin in a population of synaptic terminals. Dopamine, noradrenaline, and different neuropeptides such as LH- RH, vasopressin, vasotocin, oxytocin, mesotocin, substance P, ␣-neoendorphin, and galanin are also involved in SCO innervation. In the bovine SCO, an important number of fibers containing tyrosine hydroxylase are present, indicating that in this species dopamine and/or noradrenaline-containing fibers are an important neural input. In Rana perezi, a GABAergic innervation of pineal origin could explain the influence of light on the SCO secretory activity in frogs. A general conclusion is that the SCO cells receive neural inputs from different neurotransmitter systems. -
Journal of Anatomy
JOURNAL OF ANATOMY A CONTRIBUTION TO THE MORPHOLOGY OF THE CORPUS STRIATUM BY RAYMOND A. DART, Demonstrator of Anatomy, University College, London INTRODUCTION Fou a recapitulation of the essential features in the divergent conclusions of investigators who have studied this problem, we are indebted to the recent paper by Elliot Smith ('20) in which he pointed out the nature of the corpus striatum in Sphenodon, and indicated the morphological relationships of its several parts. For some time past I have been studying a series of sections of the brain of the highly specialised Marsupial Mole, Notoryctes typhlops, which was very kindly placed at my disposal by Prof. Elliot Smith. As might be anticipated, in this creature devoid of any visual apparatus, the olfactory and closely associated striatal areas play a dominant role in its cerebral constitution-features already described by Elliot Smith in his communication to the Royal Society of South Australia ('95). In attempting to elucidate the significance of these structures I have investigated more primitive forms in the biological series; and I have to acknowledge the generosity of Professors A. Dendy of King's College and J. P. Hill of University College for the free access to their important collections, which has made possible an extensive comparative study. It is primarily for the purpose of abbreviating the account of the brain of Notoryctes that this preliminary note upon the striatal region is submitted; but the problem of the evolution of the corpus striatum is sufficiently important to call for this separate treatment. - If a transverse section of the brain of Notoryctes be studied in the region of the anterior commissure and foramen of Monro (e.g. -
INTERNAL CAPSULE • Projection Fibres- Internal Capsule
INTERNAL CAPSULE • Projection fibres- Internal capsule r ~OnQih..!1c:lll i~J ~asd · I.JS OOi 1n1ssur DEFINITION Rostrum ol co,pi.c:; • Projection fibres c.allosum (white matter) between nucleus • caudate nucleus and /---~.__~---- :r~~l thalamus medially capS,Jle Pos1enu1 1111-0 of 1mema1 • lentiform nucleus capsule Thalamus laterally Actf'CNeflocular part of internal capsule 10.24 Horizontal sec11u11 01 lilt cerebral hemisphere st10win9 the Ooc1pr1~• p<Jlt!' - nl lhti rnla o-n~I r~n-e-11l it • Internal Capsule- A compact bundle of fibres through which the large collections of fibres pass, including- • Thalamocortical fibres • Corticothalamic fibres • Corticopontine fibres • Corticobulbar fibres • Corticospinal fibres • The fibres project from the cerebral cortex to the various nuclei of the extrapyramidal system (e.g., the putamen and caudate nucleus). • It is a continuous sheet of fibres that forms the medial boundary of the lenticular nucleus. • It continues around posteriorly and inferiorly to partially envelop this nucleus. • Inferiorly, many of the fibres of the internal capsule funnel into the cerebral peduncles. • Superiorly, the fibres fan out into the corona radiata. • Here, they travel in the cerebral white matter to reach their cortical origins or destinations. The internal capsule is divided into 5 regions: • The anterior limb is the portion between the lenticular nucleus and the head of the caudate nucleus; • The posterior limb is the portion between the lenticular nucleus and the thalamus; • The genu is the portion at the junction of the above 2 parts and is adjacent to the interventricular foramen; • The retrolenticular part is the portion posterior to the lenticular nucleus; • The sublenticular part is the portion inferior to the lenticular nucleus. -
White Matter Anatomy: What the Radiologist Needs to Know
White Matter Anatomy What the Radiologist Needs to Know Victor Wycoco, MBBS, FRANZCRa, Manohar Shroff, MD, DABR, FRCPCa,*, Sniya Sudhakar, MBBS, DNB, MDb, Wayne Lee, MSca KEYWORDS Diffusion tensor imaging (DTI) White matter tracts Projection fibers Association Fibers Commissural fibers KEY POINTS Diffusion tensor imaging (DTI) has emerged as an excellent tool for in vivo demonstration of white matter microstructure and has revolutionized our understanding of the same. Information on normal connectivity and relations of different white matter networks and their role in different disease conditions is still evolving. Evidence is mounting on causal relations of abnormal white matter microstructure and connectivity in a wide range of pediatric neurocognitive and white matter diseases. Hence there is a pressing need for every neuroradiologist to acquire a strong basic knowledge of white matter anatomy and to make an effort to apply this knowledge in routine reporting. INTRODUCTION (Fig. 1). However, the use of specific DTI sequences provides far more detailed and clini- DTI has allowed in vivo demonstration of axonal cally useful information. architecture and connectivity. This technique has set the stage for numerous studies on normal and abnormal connectivity and their role in devel- DIFFUSION TENSOR IMAGING: THE BASICS opmental and acquired disorders. Referencing established white matter anatomy, DTI atlases, Using appropriate magnetic field gradients, and neuroanatomical descriptions, this article diffusion-weighted sequences can be used to summarizes the major white matter anatomy and detect the motion of the water molecules to and related structures relevant to the clinical neurora- from cells. This free movement of the water mole- diologist in daily practice.