Signatures of Positive Selection in Genes Associated with Human Skin Pigmentation As Revealed from Analyses of Single Nucleotide Polymorphisms ∗ O

Total Page:16

File Type:pdf, Size:1020Kb

Signatures of Positive Selection in Genes Associated with Human Skin Pigmentation As Revealed from Analyses of Single Nucleotide Polymorphisms ∗ O doi: 10.1111/j.1469-1809.2006.00341.x Signatures of Positive Selection in Genes Associated with Human Skin Pigmentation as Revealed from Analyses of Single Nucleotide Polymorphisms ∗ O. Lao1,2, J. M. de Gruijter1,2, K. van Duijn1,2, A. Navarro3 and M. Kayser1 1Department of Forensic Molecular Biology, Erasmus University Medical Centre Rotterdam, The Netherlands 2Departments of Biology, Netherlands Forensic Institute, The Hague, The Netherlands 3Institucio Catalana de Reserca i Estudis Avancats (ICREA), and Unitat de Biologia Evolutiva, Departament de Ciencies de la vida i de la salut, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain Summary Phenotypic variation between human populations in skin pigmentation correlates with latitude at the continental level. A large number of hypotheses involving genetic adaptation have been proposed to explain human variation in skin colour, but only limited genetic evidence for positive selection has been presented. To shed light on the evolutionary genetic history of human variation in skin colour we inspected 118 genes associated with skin pigmentation in the Perlegen dataset, studying single nucleotide polymorphisms (SNPs), and analyzed 55 genes in detail. We identified eight genes that are associated with the melanin pathway (SLC45A2, OCA2, TYRP1, DCT, KITLG, EGFR, DRD2 and PPARD) and presented significant differences in genetic variation between Europeans, Africans and Asians. In six of these genes we detected, by means of the EHH test, variability patterns that are compatible with the hypothesis of local positive selection in Europeans (OCA2, TYRP1 and KITLG) and in Asians (OCA2, DCT, KITLG, EGFR and DRD2), whereas signals were scarce in Africans (DCT, EGFR and DRD2). Furthermore, a statistically significant correlation between genotypic variation in four pigmentation candidate genes and phenotypic variation of skin colour in 51 worldwide human populations was revealed. Overall, our data also suggest that light skin colour is the derived state and is of independent origin in Europeans and Asians, whereas dark skin color seems of unique origin, reflecting the ancestral state in humans. Keywords: human pigmentation, skin color, positive selection, genetic adaptation, Perlegen database, SNP, EHH test Introduction protecting against the harmful effects of UVB radiation, is determined both by the interaction of genetic factors The skin is the largest organ in the human body and including pigmentation genes and hormones, as well as serves as a barrier between the organism and the envi- by environmental factors such as the individual’s age, ronment (Jablonski, 2004). It is involved in a wide range the region of skin (Jablonski, 2004) and the amount of of critical roles in maintaining body integrity, including UV exposure (Tadokoro et al. 2005). The pattern of defense against pathogens, homeostasis, thermoregula- melanosome distribution within the epidermis and the tion, and protection against harmful effects of UVB ra- quantity, as well as the type, of melanin comprise the diation. Skin pigmentation, which is the key factor for primary determinants of colour (Thong et al. 2003). Differences in skin pigmentation are observed within ∗ Address for correspondence and reprints: Prof. Dr. Manfred and between human populations (Jablonski, 2004). The Kayser, Department of Forensic Molecular Biology, Erasmus MC geographic distribution of phenotypic variation in skin - University Medical Centre Rotterdam, Medical-Genetic Clus- ter, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands, pigmentation tends to show sharp gradients between E-mail: [email protected] populations of different continents (Parra et al. 2004). 354 Annals of Human Genetics (2007) 71,354–369 C 2007 The Authors Journal compilation C 2007 University College London Signatures of Positive Selection at Human Pigmentation Genes Almost 85% of the total variance of skin colour is ex- Sforza & Feldman, 2003). On the other hand, it plained when human populations are grouped at the could be imagined that light skin had already arisen continental level (Relethford, 2002). Therefore, skin in Africa, for instance in the Khoisan who appear colour has been traditionally used to classify human in- in the most basal branch of a tree of worldwide dividuals into groups (Romualdi et al. 2002), despite Y chromosome diversity (Underhill et al. 2000), and the fact that the evolutionary and functional mechanism who have somewhat lighter skin colour than other shaping pigmentation differences are not sufficiently un- African groups (Jablonski & Chaplin, 2000). What also derstood. remains unclear is whether light skin pigmentation arose A large number of hypotheses involving genetic adap- independently and more than once in different popu- tation have been suggested to explain the phenotypic lations (i.e. Europeans and Asians), as well as whether variation of human skin pigmentation, including pro- some dark skinned populations (e.g. New Guineans) tection against the harmful effects of UVB radiation, derived secondarily from already lightly pigmented pop- heat load, concealment, resistance against pathogens and ulations and acquired dark pigmentation as a secondary resistance against cold injury (for a review see Robins, trait (Diamond, 2005). 1991). In addition, sexual selection has been proposed to To shed light on the evolutionary genetic history of explain the lighter constitutive pigmentation of females human skin pigmentation we performed a survey of relative to males (Aoki, 2002). Many genes were previ- genes putatively associated with pigmentation in hu- ously suggested as candidates for human skin pigmenta- mans to search for evidence of positive selection. We tion due to their involvement in human pigmentation inspected a set of 118 putative pigmentation genes in disorders such as oculocutaneous albinism (OCA), or the Perlegen SNP dataset (Hinds et al. 2005), com- in the pigmentation of model organisms, such as the prising Europeans, Africans and Asians, from which OCA2/‘p’ gene, KITLG and SLC45A2 (for a review 55 genes contained suitable SNP information for see Slominski et al. 2004). However, only in a few cases detailed analysis. have the patterns of genetic variation in genes associated with skin pigmentation been correlated with changes in melanin content (i.e. Akey et al. 2001; Shriver et al. Material and Methods 2003) and, to the best of our knowledge, only a few Gene Ascertainment genes associated with human skin pigmentation [MC1R (Rana et al. 1999; Harding et al. 2000), SLC45A2 We ascertained putative mammalian genes involved in (Soejima et al. 2006) and SLC24A5 (Lamason et al. the skin pigmentation pathway from the literature prior 2005)] have been specifically tested for evidence of posi- to June 2005 (Slominski et al. 2004; Imokawa, 2004) tive selection. A recent study based on a full genome scan and from gene expression databases (Hill et al. 2004; for signatures of positive selection using the database of UniGene Build #188), while focusing on genes re- the International HapMap project database found ev- lated to skin pathologies with a modifying effect on idence for only four genes being associated with skin skin pigmentation. The recently described SLC24A5 pigmentation OCA2, MYO5A, DTNBP1 and TYRP1 gene (Lamason et al. 2005) was not included, since the (Voight et al. 2006). gene ascertainment was carried out prior to Lamason Limited knowledge is available on the evolution- et al’s publication. We then used the Perlegen database ary history of human skin pigmentation. Dark skin (Hinds et al. 2005), comprising Africans, Europeans, and pigmentation has been suggested as the ancestral trait Asians, to study the genetic variability of SNPs within in humans (Jablonski & Chaplin, 2000). If this is each gene, as well as in the respective surrounding re- true, light skin pigmented populations could have gions of the human genome. This database was chosen arisen after humans spread from Africa into the rest over the HapMap database as the SNP ascertainment of the world, according to the “Out of Africa” hy- bias is higher in the HapMap dataset than in the Perlegen pothesis about 100,000-150,000 years ago (Cavalli- dataset (Clark et al. 2005). C 2007 The Authors Annals of Human Genetics (2007) 71,354–369 355 Journal compilation C 2007 University College London O. Lao et al. lent to Fst when this statistic is computed between pairs Testing for Interpopulation Differentiation of populations (Rosenberg et al. 2003). The mean I n We applied a sliding window approach in order to de- was computed considering all SNPs within each win- tect regions of unusual patterns of genetic variation dow, and this value was compared with an empirical between populations within the putative skin pigmen- distribution of mean I n obtained in windows of the tation genes. same size and with the same number of markers from This approach is based on comparing the observed 10,145 genes (>10 SNPs) from the entire genome and value of a particular statistic in one of the windows with described in the Perlegen database (genes on the X chro- the observed value in windows of the same size in the rest mosome were excluded because of the different effective of the genome. Regions showing an excess of statistically population size for this chromosome (Schaffner, 2004)). significant empirical p values suggest interesting candi- We computed how often the number of statistically dates for further statistical analyses (Marques-Bonet et al. significant sliding windows found for the candidate 2005). Since the average SNP density in the Perlegen genes could be found for other genes in the Perlegen dataset is one SNP in each two kb (Hinds et al. 2005), database. This allowed us to obtain estimates of the sta- each window was centered on each SNP with 2.5 kb tistical significance of the number of significant sliding on both sides of the SNP, thus including (on average) windows for gene. We defined two stringent cutoffs three SNPs per window. An alternative approach, based for considering a sliding window statistically significant: on the number of markers within the window, was not α = 0.02 and α = 0.01.
Recommended publications
  • Gene Section Short Communication
    Atlas of Genetics and Cytogenetics in Oncology and Haematology OPEN ACCESS JOURNAL INIST-CNRS Gene Section Short Communication TYRP1 (tyrosinase-related protein 1) Kunal Ray, Mainak Sengupta, Sampurna Ghosh Academy of Scientific and Innovative Research (AcSIR), Campus at CSIR - Central Road Research Institute, Mathura Road, New Delhi - 110 025, [email protected] (KR); University of Calcutta, Department of Genetics, 35, Ballygunge Circular Road, Kolkata - 700 019, [email protected]); [email protected] (MS, SG) India. Published in Atlas Database: April 2016 Online updated version : http://AtlasGeneticsOncology.org/Genes/TYRP1ID46370ch9p23.html Printable original version : http://documents.irevues.inist.fr/bitstream/handle/2042/68125/04-2016-TYRP1ID46370ch9p23.pdf DOI: 10.4267/2042/68125 This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence. © 2016 Atlas of Genetics and Cytogenetics in Oncology and Haematology Abstract Location: 9p23 TYRP1 gene, having a chromosomal location of 9p23, encodes a melanosomal enzyme belonging to DNA/RNA the tyrosinase family. TYRP1 catalyses oxidation of 5,6-dihydroxyindole-2-carboxylic acid (DHICA) Description into indole-5,6-quinone-2-carboxylic acid. TYRP1 In Chromosome 9, the 24,852 bases long gene starts is also thought to play a role in stabilizing tyrosinase from12,685,439 bp from pter and ends at 12,710,290 and modulates its catalytic activity, in maintenance bp from pter; Orientation: Plus strand. The gene of melanosome structure, affecting melanocyte contains 8 exons and spans ~24.8 kb of the genome. proliferation and melanocyte cell death. Defects in this gene cause oculocutaneous albinism type III; Transcription OCA III (also known as rufous oculocutaneous The gene encodes a 2876 bp mRNA.
    [Show full text]
  • Dog Coat Colour Genetics: a Review Date Published Online: 31/08/2020; 1,2 1 1 3 Rashid Saif *, Ali Iftekhar , Fatima Asif , Mohammad Suliman Alghanem
    www.als-journal.com/ ISSN 2310-5380/ August 2020 Review Article Advancements in Life Sciences – International Quarterly Journal of Biological Sciences ARTICLE INFO Open Access Date Received: 02/05/2020; Date Revised: 20/08/2020; Dog Coat Colour Genetics: A Review Date Published Online: 31/08/2020; 1,2 1 1 3 Rashid Saif *, Ali Iftekhar , Fatima Asif , Mohammad Suliman Alghanem Authors’ Affiliation: 1. Institute of Abstract Biotechnology, Gulab Devi Educational anis lupus familiaris is one of the most beloved pet species with hundreds of world-wide recognized Complex, Lahore - Pakistan breeds, which can be differentiated from each other by specific morphological, behavioral and adoptive 2. Decode Genomics, traits. Morphological characteristics of dog breeds get more attention which can be defined mostly by 323-D, Town II, coat color and its texture, and considered to be incredibly lucrative traits in this valued species. Although Punjab University C Employees Housing the genetic foundation of coat color has been well stated in the literature, but still very little is known about the Scheme, Lahore - growth pattern, hair length and curly coat trait genes. Skin pigmentation is determined by eumelanin and Pakistan 3. Department of pheomelanin switching phenomenon which is under the control of Melanocortin 1 Receptor and Agouti Signaling Biology, Tabuk Protein genes. Genetic variations in the genes involved in pigmentation pathway provide basic understanding of University - Kingdom melanocortin physiology and evolutionary adaptation of this trait. So in this review, we highlighted, gathered and of Saudi Arabia comprehend the genetic mutations, associated and likely to be associated variants in the genes involved in the coat color and texture trait along with their phenotypes.
    [Show full text]
  • Far Infrared Radiation Exposure
    INTERNATIONAL COMMISSION ON NON‐IONIZING RADIATION PROTECTION ICNIRP STATEMENT ON FAR INFRARED RADIATION EXPOSURE PUBLISHED IN: HEALTH PHYSICS 91(6):630‐645; 2006 ICNIRP PUBLICATION – 2006 ICNIRP Statement ICNIRP STATEMENT ON FAR INFRARED RADIATION EXPOSURE The International Commission on Non-Ionizing Radiation Protection* INTRODUCTION the health hazards associated with these hot environ- ments. Heat strain and discomfort (thermal pain) nor- THE INTERNATIONAL Commission on Non Ionizing Radia- mally limit skin exposure to infrared radiation levels tion Protection (ICNIRP) currently provides guidelines below the threshold for skin-thermal injury, and this is to limit human exposure to intense, broadband infrared particularly true for sources that emit largely IR-C. radiation (ICNIRP 1997). The guidelines that pertained Furthermore, limits for lengthy infrared exposures would to infrared radiation (IR) were developed initially with an have to consider ambient temperatures. For example, an aim to provide guidance for protecting against hazards infrared irradiance of 1 kW mϪ2 (100 mW cmϪ2)atan from high-intensity artificial sources and to protect work- ambient temperature of 5°C can be comfortably warm- ers in hot industries. Detailed guidance for exposure to ing, but at an ambient temperature of 30°C this irradiance longer far-infrared wavelengths (referred to as IR-C would be painful and produce severe heat strain. There- radiation) was not provided because the energy at longer fore, ICNIRP provided guidelines to limit skin exposure wavelengths from most lamps and industrial infrared to pulsed sources and very brief exposures where thermal sources of concern actually contribute only a small injury could take place faster than the pain response time fraction of the total radiant heat energy and did not and where environmental temperature and the irradiated require measurement.
    [Show full text]
  • Review of the Current State of Genetic Testing - a Living Resource
    Review of the Current State of Genetic Testing - A Living Resource Prepared by Liza Gershony, DVM, PhD and Anita Oberbauer, PhD of the University of California, Davis Editorial input by Leigh Anne Clark, PhD of Clemson University July, 2020 Contents Introduction .................................................................................................................................................. 1 I. The Basics ......................................................................................................................................... 2 II. Modes of Inheritance ....................................................................................................................... 7 a. Mendelian Inheritance and Punnett Squares ................................................................................. 7 b. Non-Mendelian Inheritance ........................................................................................................... 10 III. Genetic Selection and Populations ................................................................................................ 13 IV. Dog Breeds as Populations ............................................................................................................. 15 V. Canine Genetic Tests ...................................................................................................................... 16 a. Direct and Indirect Tests ................................................................................................................ 17 b. Single
    [Show full text]
  • Skin and Hair Pigmentation Variation in Island Melanesia
    AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 000:000–000 (2006) Skin and Hair Pigmentation Variation in Island Melanesia Heather L. Norton,1 Jonathan S. Friedlaender,2 D. Andrew Merriwether,3 George Koki,4 Charles S. Mgone,4 and Mark D. Shriver1* 1Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania 16802 2Department of Anthropology, Temple University, Philadelphia, Pennsylvania 19122 3Department of Anthropology, State University of New York at Binghamton, Binghamton, New York 13901 4Papua New Guinea Institute for Medical Research, Goroka, Eastern Highlands Province 441, Papua New Guinea KEY WORDS skin pigmentation; M index; Island Melanesia; natural selection ABSTRACT Skin and hair pigmentation are two of tation was significantly darker than females in 5 of 6 the most easily visible examples of human phenotypic islands examined. Hair pigmentation showed a negative, variation. Selection-based explanations for pigmentation but weak, correlation with age, while skin pigmentation variation in humans have focused on the relationship be- showed a positive, but also weak, correlation with age. tween melanin and ultraviolet radiation, which is largely Skin and hair pigmentation varied significantly between dependent on latitude. In this study, skin and hair pig- islands as well as between neighborhoods within those mentation were measured as the melanin (M) index, us- islands. Bougainvilleans showed significantly darker skin ing narrow-band reflectance spectroscopy for 1,135 indi- than individuals from any other island considered, and viduals from Island Melanesia. Overall, the results show are darker than a previously described African-American remarkable pigmentation variation, given the small geo- population. These findings are discussed in relation to graphic region surveyed.
    [Show full text]
  • Unlocking the Mystery Ofskincolor
    Thienna_INT_6x8_102507 3/26/08 5:10 PM Page 1 UNLOCKING THE MYSTERY OFSKINCOLOR The Strictly Natural Way to dramatically lighten your skin color through diet and lifestyle. Scientific Nutritionist Thiênna Ho, Ph.D. Thienna_INT_6x8_102507 3/26/08 5:10 PM Page 2 Unlocking the Mystery of Skin Color: The Strictly Natural Way to Dramatically Lighten Your Skin Color through Diet and Lifestyle. Copyright © 2007 by Thiênna Ho, Ph.D., and THIÊNNA, Inc. All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from the author. Contact Address: THIÊNNA, Inc. 236 West Portal Ave. #511 San Francisco, CA 94127 www.thienna.com This book is not intended to replace medical advice or be a substitute for a physician. Any application of the information set forth in the following pages is at the reader’s discretion. The author expressly disclaims responsibility for any adverse effects arising from the following advice given in this book without appropriate medical supervision. The reader should consult with his or her physician before making any use of the information in this book. ISBN 978-0-9792103-0-3 1. Nutrition 2. Health Book design by www.KareenRoss.com Photo credit for Thiênna after photo and Thiênna & Jimmy after photo goes to Sophia Field. Thienna_INT_6x8_102507 3/26/08 5:10 PM Page 25 CHAPTER 1 The Mysterious Variety of Human Skin Color nchantingly beautiful in every one of its shades from palest albino toE deepest ebony, human skin color is mysterious in its variety.
    [Show full text]
  • Vitamin D and Cancer
    WORLD HEALTH ORGANIZATION INTERNATIONAL AGENCY FOR RESEARCH ON CANCER Vitamin D and Cancer IARC 2008 WORLD HEALTH ORGANIZATION INTERNATIONAL AGENCY FOR RESEARCH ON CANCER IARC Working Group Reports Volume 5 Vitamin D and Cancer - i - Vitamin D and Cancer Published by the International Agency for Research on Cancer, 150 Cours Albert Thomas, 69372 Lyon Cedex 08, France © International Agency for Research on Cancer, 2008-11-24 Distributed by WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel: +41 22 791 3264; fax: +41 22 791 4857; email: [email protected]) Publications of the World Health Organization enjoy copyright protection in accordance with the provisions of Protocol 2 of the Universal Copyright Convention. All rights reserved. The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the World Health Organization concerning the legal status of any country, territory, city, or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or of certain manufacturer’s products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters. The authors alone are responsible for the views expressed in this publication. The International Agency for Research on Cancer welcomes requests for permission to reproduce or translate its publications, in part or in full.
    [Show full text]
  • Ethnicity and Skin Autofluorescence-Based Risk-Engines for Cardiovascular Disease and Diabetes Mellitus
    RESEARCH ARTICLE Ethnicity and skin autofluorescence-based risk-engines for cardiovascular disease and diabetes mellitus Muhammad Saeed Ahmad1,2☯*, Torben Kimhofer2☯*, Sultan Ahmad1, Mohammed Nabil AlAma3, Hala Hisham Mosli4, Salwa Ibrahim Hindawi5, Dennis O. Mook-Kanamori6, KatarõÂna SÏ ebekova 7, Zoheir Abdullah Damanhouri1,8, Elaine Holmes1,2 1 Drug Metabolism Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia, 2 Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College a1111111111 London, South Kensington, London, United Kingdom, 3 Cardiology Unit, Department of Medicine, King a1111111111 Abdulaziz University Hospital, Jeddah, Saudi Arabia, 4 Department of Medicine, Faculty of Medicine, King a1111111111 Abdulaziz University, Jeddah, Saudi Arabia, 5 Department of Haematology, Faculty of Medicine, King a1111111111 Abdulaziz University, Jeddah, Saudi Arabia, 6 Department of Primary Care/Public Health and Clinical a1111111111 Epidemiology, Leiden University Medical Center, Leiden, The Netherlands, 7 Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia, 8 Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia ☯ These authors contributed equally to this work. * [email protected] (MSA); [email protected] (TK) OPEN ACCESS Citation: Ahmad MS, Kimhofer T, Ahmad S, AlAma MN, Mosli HH, Hindawi SI, et al. (2017) Ethnicity Abstract and skin autofluorescence-based risk-engines for cardiovascular disease and diabetes mellitus. PLoS Skin auto fluorescence (SAF) is used as a proxy for the accumulation of advanced glycation ONE 12(9): e0185175. https://doi.org/10.1371/ end products (AGEs) and has been proposed to stratify patients into cardiovascular disease journal.pone.0185175 (CVD) and diabetes mellitus (DM) risk groups.
    [Show full text]
  • Differences in Human Pigmentation: Measurement, Geographic Variation, and Causes* G
    Vol. 60. o. 6 TilE J OU RNA L OF I NVESTIGATIVE DEilMATOLOGY Printed in U.S.A. Copyri ght© 1973 by The Williams & Wilkins Co. DIFFERENCES IN HUMAN PIGMENTATION: MEASUREMENT, GEOGRAPHIC VARIATION, AND CAUSES* G. AINS WORTH HARRISON, PH.D. INTRODUCTION affected b y o nly a s ingle pair of ge nes. Since most of the genetic studies of population differences in T he racial differences in pi gmentation t hat have pigmentation relate to skin color, I shall , for the been studied by ant hropolog ists are t he readily most part, confine my d isc ussion to it. observable o nes t hat occur in skin, ha ir, a nd t he eye. T he co lor of t hese structures is due to a THE MEASUREM ENT OF SKIN CO LOR number of factors, but variation in them, espe­ For a long time, t he study o f skin co lor variation cia lly as it occurs between popu l at i m~s, ~p pe ~ r s to. in fi eld sit uations was beset with difficult problem be largely due to the amount and dtstn butwn of of m easurement. At first, measurements involved t he pigment melanin. This was first _most firml y_ visual co mpari son with sets of co lor standards such established fo r skin in t he now classtcal work of as the Va n Luschan t iles or the colored papers used Edwards and Duntley (1939) and has subsequently by Gates ( 1949) . These were hi ghly unsatisfactory been demonstrated fo r hair and the iris diaphragm not onl y because of the subjectivity of visual of the eye.
    [Show full text]
  • Genomic Anatomy of the Tyrp1 (Brown) Deletion Complex
    Genomic anatomy of the Tyrp1 (brown) deletion complex Ian M. Smyth*, Laurens Wilming†, Angela W. Lee*, Martin S. Taylor*, Phillipe Gautier*, Karen Barlow†, Justine Wallis†, Sancha Martin†, Rebecca Glithero†, Ben Phillimore†, Sarah Pelan†, Rob Andrew†, Karen Holt†, Ruth Taylor†, Stuart McLaren†, John Burton†, Jonathon Bailey†, Sarah Sims†, Jan Squares†, Bob Plumb†, Ann Joy†, Richard Gibson†, James Gilbert†, Elizabeth Hart†, Gavin Laird†, Jane Loveland†, Jonathan Mudge†, Charlie Steward†, David Swarbreck†, Jennifer Harrow†, Philip North‡, Nicholas Leaves‡, John Greystrong‡, Maria Coppola‡, Shilpa Manjunath‡, Mark Campbell‡, Mark Smith‡, Gregory Strachan‡, Calli Tofts‡, Esther Boal‡, Victoria Cobley‡, Giselle Hunter‡, Christopher Kimberley‡, Daniel Thomas‡, Lee Cave-Berry‡, Paul Weston‡, Marc R. M. Botcherby‡, Sharon White*, Ruth Edgar*, Sally H. Cross*, Marjan Irvani¶, Holger Hummerich¶, Eleanor H. Simpson*, Dabney Johnson§, Patricia R. Hunsicker§, Peter F. R. Little¶, Tim Hubbard†, R. Duncan Campbell‡, Jane Rogers†, and Ian J. Jackson*ʈ *Medical Research Council Human Genetics Unit, Edinburgh EH4 2XU, United Kingdom; †Wellcome Trust Sanger Institute, and ‡Medical Research Council Rosalind Franklin Centre for Genome Research, Hinxton CB10 1SA, United Kingdom; §Life Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831; and ¶Department of Biochemistry, Imperial College, London SW7 2AZ, United Kingdom Communicated by Liane B. Russell, Oak Ridge National Laboratory, Oak Ridge, TN, January 9, 2006 (received for review September 15, 2005) Chromosome deletions in the mouse have proven invaluable in the deletions also provided the means to produce physical maps of dissection of gene function. The brown deletion complex com- genetic markers. Studies of this kind have been published for prises >28 independent genome rearrangements, which have several loci, including albino (Tyr), piebald (Ednrb), pink-eyed been used to identify several functional loci on chromosome 4 dilution (p), and the brown deletion complex (2–6).
    [Show full text]
  • The Genetics of Human Skin and Hair Pigmentation
    GG20CH03_Pavan ARjats.cls July 31, 2019 17:4 Annual Review of Genomics and Human Genetics The Genetics of Human Skin and Hair Pigmentation William J. Pavan1 and Richard A. Sturm2 1Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA; email: [email protected] 2Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Queensland 4102, Australia; email: [email protected] Annu. Rev. Genom. Hum. Genet. 2019. 20:41–72 Keywords First published as a Review in Advance on melanocyte, melanogenesis, melanin pigmentation, skin color, hair color, May 17, 2019 genome-wide association study, GWAS The Annual Review of Genomics and Human Genetics is online at genom.annualreviews.org Abstract https://doi.org/10.1146/annurev-genom-083118- Human skin and hair color are visible traits that can vary dramatically Access provided by University of Washington on 09/02/19. For personal use only. 015230 within and across ethnic populations. The genetic makeup of these traits— Annu. Rev. Genom. Hum. Genet. 2019.20:41-72. Downloaded from www.annualreviews.org Copyright © 2019 by Annual Reviews. including polymorphisms in the enzymes and signaling proteins involved in All rights reserved melanogenesis, and the vital role of ion transport mechanisms operating dur- ing the maturation and distribution of the melanosome—has provided new insights into the regulation of pigmentation. A large number of novel loci involved in the process have been recently discovered through four large- scale genome-wide association studies in Europeans, two large genetic stud- ies of skin color in Africans, one study in Latin Americans, and functional testing in animal models.
    [Show full text]
  • Complex Interactions of Tyrp1 in the Eye
    Molecular Vision 2011; 17:2455-2468 <http://www.molvis.org/molvis/v17/a266> © 2011 Molecular Vision Received 13 July 2011 | Accepted 12 September 2011 | Published 22 September 2011 Complex interactions of Tyrp1 in the eye Hong Lu,1,2 Liyuan Li,1 Edmond R. Watson,1 Robert W. Williams,3 Eldon E. Geisert,1,3 Monica M. Jablonski,1,3 Lu Lu3,4 1Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN; 2Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, China; 3Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN; 4Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China Purpose: To use a systems genetics approach to construct and analyze co-expression networks that are causally linked to mutations in a key pigementation gene, tyrosinase-related protein 1 (Tyrp1), that is associated both with oculocutaneous albinism type 3 (OCA3) in humans and with glaucoma in mice. Methods: Gene expression patterns were measured in whole eyes of a large family of BXD recombinant inbred (RI) mice derived from parental lines that encode for wildtype (C57BL/6J) and mutant (DBA/2J) Tyrp1. Protein levels of Tyrp1 were measured in whole eyes and isolated irides. Bioinformatics analyses were performed on the expression data along with our archived sequence data. Separate data sets were generated which were comprised of strains that harbor either wildtype or mutant Tyrp1 and each was mined individually to identify gene networks that covary significantly with each isoform of Tyrp1. Ontology trees and network graphs were generated to probe essential function and statistical significance of covariation.
    [Show full text]