Mineralogy and Pollution Status of Columbite-Tin Ore Contaminated Soil

Total Page:16

File Type:pdf, Size:1020Kb

Mineralogy and Pollution Status of Columbite-Tin Ore Contaminated Soil Advanced Journal of Chemistry-Section A, 2019, 2(2), 147-164 Research Article http://ajchem-a.com Mineralogy and Pollution Status of Columbite-Tin Ore Contaminated Soil Adams Udoji Itodo *, Raymond Ahulle Wuana, Bulus Emmanuel Duwongs, Davoe Danbok Bwede A R T I C L E I N F O A B S T R A C T Received: 16 January 2019 Mining activities are one of the numerous ways by which man impacts Revised: 27 January 2019 on his environment. In this study, two non-destructive analytical Accepted: 28 January 2019 techniques (XRF and XRD) were employed in the mineralogical Available online: 9 February 2019 characterization of Columbite-Tin ore and their contaminated soils. This investigates associated unnoticed minerals as well as the impact of mining on vicinity farmland soils on the Yelwa-Mbar mining site, Nigeria. The chemical characterization of Columbite ore using electron dispersive XRF revealed that most of the Columbite mineral deposits in the Plateau mining sites contain Niobium mineral in various K E Y W O R D S proportions and vary from deposit to deposit depending on the geochemical composition of the minerals that formed the parent rock. Pollution Index Tin content as determined by ED-XRF impart that the ore can be utilized Geo-Accumulation directly in the furnace because of its high cassiterite content (85.43%). Mineral The percentage elemental composition of soil around the mining Soil Columbite vicinity unveiled the presence of Radionuclides K-40, Rubidium and Tin Thorium in the soil. This is of great concern. The XRD mineralogical Plateau investigation of Columbite shows the presence of associated braunite, cassiterite, ilmenite, quartz, and zircon while the phase pattern for Tin ore confirmed the availability of cassiterite, magnetite and litharge. Pollution status based on contamination factor and geo-accumulation indices gave both radionuclides and heavy metal concentrations that depicts moderate to extreme contaminations. G R A P H I C A L A B S T R A C T * Corresponding author's E-mail address: [email protected], Tel.: +02348039503463 Department of Chemistry, Federal University of Agriculture, PMB 2373 Makurdi, Nigeria. Mineralogy and Pollution Status of Columbite-Tin Ore … Introduction unregulated mining activities poses threats to the environment and human. This One of the ways by which man impacts on research focus on the mineral his environment (both natural and built) is characterization of Tin-Columbite through mining activities [1]. Mining in contaminated soil. The study also Nigeria started as far back as the eighteenth investigates dearth information on the century. Over 500 occurrences and deposits classes of contaminants and the compounds of over different minerals are known so far that are unearthed as a result of mining to exist within the country with the activities. exploration of some of them being on a small scale [2]. The mining industry generates Sample Location and Site Description wastes which contain high concentrations of Yelwa-Mbar (Figure 1) is in Bokkos local metals and metalloids which contaminates government of Plateau State Nigeria. Plateau agricultural soils, air and water. These state (latitudes 9̊ 51’30’N; 10̊ 02’00’’N and pollutants can be mobilized, resulting in longitudes 8̊ 48’00’’E; 9̊ 59’00’’E) is located leaching into ground and surface water. in Nigeria’s middle belt, with an area of Most of these heavy metals are highly toxic 30,913 km2 (11,936 sq m). and are not biodegradable [3]. The state has an estimated population of In Jos, Plateau State, Tin and allied metals about three million people. Named after the mining started about 1902. Within this span picturesque Jos, Plateau is a mountainous of time the tin fields have been subjected to area in the north central of the state with a process of unregulated mining activity, captivating rock formations. Bare rocks are thereby devastate and depleted agricultural scattered across the grasslands, which cover lands by intensive and extensive the Plateau. The altitude ranges from around mechanized mining activities [4]. The early 1,200 meters (about 400 feet) to a peak of tin miners often overlooked the minerals of 1,829 meters above sea level in the Shere Niobium and Tantalum or had a great Hills range near Jos the state capital. It was difficulty in separating them from the tin. noted [5] that plutonic and volcanic rocks Consequently, all cassiterite concentrates predominate in the Jos Plateau, with some were contaminated with columbite-tantalite alluvium and other unconsolidated deposits. [4]. Years of tin mining have also left the area The contamination of agricultural soils and strewn with deep gorges and lakes. depletion of the environment as a result of 148 Adv J Chem A 2019, 2(2), 147-164| http://ajchem-a.com Itodo et al. Figure 1. GPS map showing sample collection sites as thick dark spots Materials and methods Employed for this work are Energy identified at the National Metallurgical Dispersive X-ray fluorescence spectrometer Development Center (NMDC) Jos, plateau (MiniPAL4 ED-XRF), Scanning Electron state. Microscope (MVE016477830 SEM), X-Ray Physicochemical parameters of soil Diffraction (Empyrean XRD), and Fourier Physiochemical parameters of the soil Transform Infra-red Spectrophotometer samples, including pH, conductivity and bulk (Agilent tech. Cary 360 FTIR). density were carried out using documented Sampling standard laboratory procedures [7]. Following documented protocol [6], 3 kg of Ore characterization the mineral ore samples were collected from SEM Analysis: SEM Phenomenon Prix model 3 different pits and locations of the Yelwa MVE016477830 was used for this analysis. Nono-Mbar, Bokkos mining sites of Plateau Columbite and Tin samples were prepared State. Samples were pretreated through using epoxy resins, polished and made washing, drying and grinding to particle size conductive by carbon coating in a Dentom of 2 mm to distinguish between small and vacuum, DV-502A. The morphology of the large particles. Agricultural soil samples Columbite and Tin ores were analyzed at an were collected from mineral deposit vicinity accelerating voltage of 20 KVA, real time of (10-100 m) while samples for control 21-36 and lifetime of 60 seconds. Images experiment was collected from neighboring were made using the back scattering, locations (300 – 500 m), from non-mine electron detectors. sites. The mineral and soil samples were 149 Adv J Chem A 2019, 2(2), 147-164| http://ajchem-a.com Mineralogy and Pollution Status of Columbite-Tin Ore … FTIR Analysis: The functional groups Soil pollution indices present in the Columbite and Tin ore Levels of pollution and degree of samples were investigated using the furrier contamination was investigated using the transform infra-red spectrometer. The Geo accumulation index and the mineral samples were ground and sieved contamination factor respectively. From employing a US standard test sieve with an eqn. 1, Bn is the average geochemical ASTM E-11 speciation. Fourier Transform background values for each metal in Infra-red Spectrometer (Agilent columbite and tin samples, Cm is the technologies Cary 360) was used for this percentage element in the oxide (measured analysis. total concentration of metals in soils) for Energy Dispersive X-Ray Fluorescence agricultural soil samples around mining site Analysis: The EDXRF characterization and 1.5 is the background matrix correction methods based on the instruction manual factor due to lithogenic effects [8]. The geo- and practiced by the National Metallurgical accumulation index (Igeo) is used to Development Centre NMDC was adopted. determine the level of soil contamination Optimum Efficiency Dry High-Intensity (Table 1). The Igeo for heavy metal is Magnetic Separator (Three Disc Rapid calculated from base 2 logarithm of the Magnetic Separator; 4-3-15 OG) was used in measured total concentration of the metal Beneficiating the Columbite and Tin ores over its background concentration as Eqn. respectively. 20.00 g of the ore samples was (1): finely ground (beneficiated) to pass through Igeo= log2 (Cm/1.5Bn) (1) a 200-250 mesh sieve. Depending on the Analytical results were subjected to nature of the sample, it was dried in an oven prescribed pollution indices. Contamination at 105̊C for at least 1h and allowed to cool. factor (CF) is channeled towards deriving a The sample was intimately mixed with a realistic estimate of the amount of binder in the ratio of 5.0 g sample(s) to 1.0 g contamination that impacts on the soil [10]. cellulose flakes binder and palletized at a Modified degree of contamination (mCd) is pressure of 10-15 tons/inch2 in a pelletizing used to calculate the degree of machine. At this stage the palletized contamination of metals in soils [11]. It is sample(s) was stored in a desiccator for given as Eqn. (2). analysis. The ED-XRF (MiniPAL 4) was used 1 N to investigate the chemical composition of mC CF d N i the soil, columbite and tin ore sample. i1 (2) 150 Adv J Chem A 2019, 2(2), 147-164| http://ajchem-a.com Itodo et al. Table 1. Muller classification for geo-accumulation index [9] Igeo Class Pollution status >5 6 Extremely contaminated 4-5 5 Heavy to extremely contaminated 3-4 4 Heavily contaminated 2-3 3 Moderately to heavily contaminated 1-2 2 Moderately polluted 0-1 1 Uncontaminated to moderately contaminated 0 0 Practically uncontaminated Where N is the number of elements to be x- ray patterns with enough intensities so as analyzed and CF is the contamination factor to produce lines to identify minerals at the calculated as shown in Eqn. (3). angles (50 – 1000). The scanning rate was C Sample 0.750 per minute. Minerals were identified CF m C Background using the JCPDFWIN software. Peak analysis m was also carried out using the Gaussian (3) curve fitting.
Recommended publications
  • Xrd and Tem Studies on Nanophase Manganese
    Clays and Clay Minerals, Vol. 64, No. 5, 488–501, 2016. 1 1 2 2 3 XRD AND TEM STUDIES ON NANOPHASE MANGANESE OXIDES IN 3 4 FRESHWATER FERROMANGANESE NODULES FROM GREEN BAY, 4 5 5 6 LAKE MICHIGAN 6 7 7 8 8 S EUNGYEOL L EE AND H UIFANG X U* 9 9 NASA Astrobiology Institute, Department of Geoscience, University of Wisconsin Madison, Madison, 10 À 10 1215 West Dayton Street, A352 Weeks Hall, Wisconsin 53706 11 11 12 12 13 Abstract—Freshwater ferromanganese nodules (FFN) from Green Bay, Lake Michigan have been 13 14 investigated by X-ray powder diffraction (XRD), micro X-ray fluorescence (XRF), scanning electron 14 microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and scanning 15 transmission electron microscopy (STEM). The samples can be divided into three types: Mn-rich 15 16 nodules, Fe-Mn nodules, and Fe-rich nodules. The manganese-bearing phases are todorokite, birnessite, 16 17 and buserite. The iron-bearing phases are feroxyhyte, goethite, 2-line ferrihydrite, and proto-goethite 17 18 (intermediate phase between feroxyhyte and goethite). The XRD patterns from a nodule cross section 18 19 suggest the transformation of birnessite to todorokite. The TEM-EDS spectra show that todorokite is 19 associated with Ba, Co, Ni, and Zn; birnessite is associated with Ca and Na; and buserite is associated with 20 2+ +2 3+ 20 Ca. The todorokite has an average chemical formula of Ba0.28(Zn0.14Co0.05 21 2+ 4+ 3+ 3+ 3+ 2+ 21 Ni0.02)(Mn4.99Mn0.82Fe0.12Co0.05Ni0.02)O12·nH2O.
    [Show full text]
  • Metamorphism of Sedimentary Manganese Deposits
    Acta Mineralogica-Petrographica, Szeged, XX/2, 325—336, 1972. METAMORPHISM OF SEDIMENTARY MANGANESE DEPOSITS SUPRIYA ROY ABSTRACT: Metamorphosed sedimentary deposits of manganese occur extensively in India, Brazil, U. S. A., Australia, New Zealand, U. S. S. R., West and South West Africa, Madagascar and Japan. Different mineral-assemblages have been recorded from these deposits which may be classi- fied into oxide, carbonate, silicate and silicate-carbonate formations. The oxide formations are represented by lower oxides (braunite, bixbyite, hollandite, hausmannite, jacobsite, vredenburgite •etc.), the carbonate formations by rhodochrosite, kutnahorite, manganoan calcite etc., the silicate formations by spessartite, rhodonite, manganiferous amphiboles and pyroxenes, manganophyllite, piedmontite etc. and the silicate-carbonate formations by rhodochrosite, rhodonite, tephroite, spessartite etc. Pétrographie and phase-equilibia data indicate that the original bulk composition in the sediments, the reactions during metamorphism (contact and regional and the variations and effect of 02, C02, etc. with rise of temperature, control the mineralogy of the metamorphosed manga- nese formations. The general trend of formation and transformation of mineral phases in oxide, carbonate, silicate and silicate-carbonate formations during regional and contact metamorphism has, thus, been established. Sedimentary manganese formations, later modified by regional or contact metamorphism, have been reported from different parts of the world. The most important among such deposits occur in India, Brazil, U.S.A., U.S.S.R., Ghana, South and South West Africa, Madagascar, Australia, New Zealand, Great Britain, Japan etc. An attempt will be made to summarize the pertinent data on these metamorphosed sedimentary formations so as to establish the role of original bulk composition of the sediments, transformation and reaction of phases at ele- vated temperature and varying oxygen and carbon dioxide fugacities in determin- ing the mineral assemblages in these deposits.
    [Show full text]
  • Washington State Minerals Checklist
    Division of Geology and Earth Resources MS 47007; Olympia, WA 98504-7007 Washington State 360-902-1450; 360-902-1785 fax E-mail: [email protected] Website: http://www.dnr.wa.gov/geology Minerals Checklist Note: Mineral names in parentheses are the preferred species names. Compiled by Raymond Lasmanis o Acanthite o Arsenopalladinite o Bustamite o Clinohumite o Enstatite o Harmotome o Actinolite o Arsenopyrite o Bytownite o Clinoptilolite o Epidesmine (Stilbite) o Hastingsite o Adularia o Arsenosulvanite (Plagioclase) o Clinozoisite o Epidote o Hausmannite (Orthoclase) o Arsenpolybasite o Cairngorm (Quartz) o Cobaltite o Epistilbite o Hedenbergite o Aegirine o Astrophyllite o Calamine o Cochromite o Epsomite o Hedleyite o Aenigmatite o Atacamite (Hemimorphite) o Coffinite o Erionite o Hematite o Aeschynite o Atokite o Calaverite o Columbite o Erythrite o Hemimorphite o Agardite-Y o Augite o Calciohilairite (Ferrocolumbite) o Euchroite o Hercynite o Agate (Quartz) o Aurostibite o Calcite, see also o Conichalcite o Euxenite o Hessite o Aguilarite o Austinite Manganocalcite o Connellite o Euxenite-Y o Heulandite o Aktashite o Onyx o Copiapite o o Autunite o Fairchildite Hexahydrite o Alabandite o Caledonite o Copper o o Awaruite o Famatinite Hibschite o Albite o Cancrinite o Copper-zinc o o Axinite group o Fayalite Hillebrandite o Algodonite o Carnelian (Quartz) o Coquandite o o Azurite o Feldspar group Hisingerite o Allanite o Cassiterite o Cordierite o o Barite o Ferberite Hongshiite o Allanite-Ce o Catapleiite o Corrensite o o Bastnäsite
    [Show full text]
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • Sugilite in Manganese Silicate Rocks from the Hoskins Mine and Woods Mine, New South Wales, Australia
    Sugilite in manganese silicate rocks from the Hoskins mine and Woods mine, New South Wales, Australia Y. KAWACHI Geology Department, University of Otago, P.O.Box 56, Dunedin, New Zealand P. M. ASHLEY Department of Geology and Geophysics, University of New England, Armidale, NSW 2351, Australia D. VINCE 1A Ramsay Street, Essendon, Victoria 3040, Australia AND M. GOODWIN P.O.Bo• 314, Lightning Ridge, NSW 2834, Australia Abstract Sugilite relatively rich in manganese has been found at two new localities, the Hoskins and Woods mines in New South Wales, Australia. The occurrences are in manganese-rich silicate rocks of middle to upper greenschist facies (Hoskins mine) and hornblende hornfels facies (Woods mine). Coexisting minerals are members of the namansilite-aegirine and pectolite-serandite series, Mn-rich alkali amphiboles, alkali feldspar, braunite, rhodonite, tephroite, albite, microcline, norrishite, witherite, manganoan calcite, quartz, and several unidentified minerals. Woods mine sugilite is colour-zoned with pale mauve cores and colourless rims, whereas Hoskins mine sugilite is only weakly colour-zoned and pink to mauve. Within single samples, the chemical compositions of sugilite from both localities show wide ranges in A1 contents and less variable ranges of Fe and Mn, similar to trends in sugilite from other localities. The refractive indices and cell dimensions tend to show systematic increases progressing from Al-rich to Fe- Mn-rich. The formation of the sugilite is controlled by the high alkali (especially Li) and manganese contents of the country rock, reflected in the occurrences of coexisting high alkali- and manganese- bearing minerals, and by high fo2 conditions. KEYWORDS: sugilite, manganese silicate rocks, milarite group, New South Wales, Australia Introduction Na2K(Fe 3 +,Mn 3 +,Al)2Li3Sit2030.
    [Show full text]
  • THE MICROHARDNESS of OPAQUE MINERALS VOL.I THESIS Submitted by B.B. YOUNG, B.Sc., A.R.S.M. Degree of Doctor of Philosophy In
    THE MICROHARDNESS OF OPAQUE MINERALS VOL.I THESIS Submitted by B.B. YOUNG, B.Sc., A.R.S.M. Degree of Doctor of Philosophy in the Faculty of Science UNIVERSITY OF LONDON April, 1961 Department of Mining Geology, Imperial College, London. I CONTENTS VOL. 1 Page No. Abstracts 1 Acknowledgements 4 Introduction 5 Chapter I. THEORY OF HARDNESS 9 A. General 9 B. Nature of the bonding forces 10 C. Hardness in relation to polishing 14 D. Assessement of hardness 16 E. Microhardness testing instruments 22 Chapter II. EXPERIMENTAL PROCEDURE 25 A. Methods of mounting sections 25 B. Relative merits of the mounting media used 30 C. Grinding and polishing techniques 32 D. Orientation of sections 36 E. Measurement of microhardness 44 F. Routine procedure 42 G. Accuracy and renroducibility of results 45 11 Page No. Chapter III. VARIATION OF MICROHARDNESS WITH LOAD 53 A. Variation of microhardness values with load 53 (a)General 53 (b)Results 60 (c)Discussion of the results 69 (d)Conclusions 77 B. The relation between load and grain size 78 (a)General 78 (b)Discussion 80 C. Variation of the deformation characteristics with load 88 Chapter IV. VARIATION OF MICROHATNESS WITH ORIENTATION 90 A. General 90 B. Microhardness values determined from randomly oriented sections 91 C. The relation, during indentation, between deformation processes and orientation 104 D. Microhardness values obtained on oriented sections of mineral 110 (a)General 110 (b)Discussion of the results 111 (i) Isometric minerals 111 (ii) Tetragonal minerals 130 (iii)Hexagonal mineral 139 iii Page No. (iv) Orthorhombic minerals 150 (v) Monoclinic minerals 163 (vi) Triclinic mineral E.
    [Show full text]
  • Download the Scanned
    American Mineralogist, Volume 77, pages 670475, 1992 NEW MINERAL NAMES* JonN L. J,Annson CANMET, 555 Booth Street,Ottawa, Ontario KIA OGl' Canada Abswurmbachite* rutile, hollandite, and manganoan cuprian clinochlore. The new name is for Irmgard Abs-Wurmbach, in recog- T. Reinecke,E. Tillmanns, H.-J. Bernhardt (1991)Abs- her contribution to the crystal chemistry, sta- wurmbachite, Cu'?*Mnl*[O8/SiOo],a new mineral of nition of physical properties ofbraunite. Type the braunite group: Natural occurrence,synthesis, and bility relations, and crystal structure.Neues Jahrb. Mineral. Abh., 163,ll7- material is in the Smithsonian Institution, Washington, r43. DC, and in the Institut fiir Mineralogie, Ruhr-Universitlit Bochum, Germany. J.L.J. The new mineral and cuprian braunit€ occur in brown- ish red piemontite-sursassitequartzites at Mount Ochi, near Karystos, Evvia, Greece, and in similar quartzites on the Vasilikon mountains near Apikia, Andros Island, Barstowite* Greece.An electron microprobe analysis (Andros mate- C.J. Stanley,G.C. Jones,A.D. Hart (1991) Barstowite, gave SiO, 9.8, TiO, rial; one of six for both localities) 3PbClr'PbCOr'HrO, a new mineral from BoundsClifl 0.61,Al,O3 0.60, Fe'O, 3.0,MnrO. 71.3,MgO 0.04,CuO St. Endellion,Cornwall. Mineral. Mag., 55, l2l-125. 12.5, sum 97.85 wto/o,corresponding to (CuStrMn3tu- Electron microprobe and CHN analysis gavePb75.47, Mgoo,)", oo(Mn3jrFe|jrAlo orTif.[nCuStr)", nrSi' o, for eight (calc.)6.03, sum 101.46wto/o, cations,ideally CuMnuSiO'r, the Cu analogueof braunite. Cl 18.67,C l.Iz,H 0.18,O to Pb.orClrrrCr.or- The range of Cu2* substitution for Mn2' is 0-42 molo/oin which for 17 atoms corresponds The min- cuprian braunite and 52-93 molo/oin abswurmbachite.
    [Show full text]
  • Petrology of Mn Carbonate–Silicate Rocks from the Gangpur Group, India
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by eprints@NML Journal of Asian Earth Sciences 25 (2005) 773–780 www.elsevier.com/locate/jaes Petrology of Mn carbonate–silicate rocks from the Gangpur Group, India B.K. Mohapatraa,*, B. Nayakb aRegional Research Laboratory (CSIR), Bhubaneswar 751 013, India bNational Metallurgical Laboratory (CSIR), Jamshedpur 831 007, India Received 11 April 2003; revised 6 February 2004; accepted 21 July 2004 Abstract Metamorphosed Mn carbonate–silicate rocks with or without oxides (assemblage I) and Mn silicate–oxide rocks with minor Mn carbonate (assemblage II) occur as conformable lenses within metapelites and metacherts of the Precambrian Gangpur Group, India. The petrology of the carbonate minerals: rhodochrosite, kutnahorite, and calcite that occur in these two assemblages is reported. Early stabilisation of spessartine, aegirine, quartz, and carbonates (in a wide solid solution range) was followed by pyroxmangite, tephroite, rhodonite through decarbonation reactions. Subsequently, jacobsite, hematite, braunite, hollandite and hausmannite have formed by decarbonation–oxidation processes during prograde metamorphism. Textural characteristics and chemical composition of constituent phases suggest that the mineral assemblages reflect a complex ! w relationship between protolithic composition, variation of XCO2 ( 0.2 to 0.3) and oxygen fugacity. A variation of XCO2 and fO2 would imply internal buffering of pore fluids through mineral reactions that produced diverse assemblages in the carbonate bearing manganiferous rocks. A minor change in temperature (from around 400 to 450 8C) does not appear to have had any major influence on the formation of different mineral associations. q 2004 Elsevier Ltd.
    [Show full text]
  • Minerals Found in Michigan Listed by County
    Michigan Minerals Listed by Mineral Name Based on MI DEQ GSD Bulletin 6 “Mineralogy of Michigan” Actinolite, Dickinson, Gogebic, Gratiot, and Anthonyite, Houghton County Marquette counties Anthophyllite, Dickinson, and Marquette counties Aegirinaugite, Marquette County Antigorite, Dickinson, and Marquette counties Aegirine, Marquette County Apatite, Baraga, Dickinson, Houghton, Iron, Albite, Dickinson, Gratiot, Houghton, Keweenaw, Kalkaska, Keweenaw, Marquette, and Monroe and Marquette counties counties Algodonite, Baraga, Houghton, Keweenaw, and Aphrosiderite, Gogebic, Iron, and Marquette Ontonagon counties counties Allanite, Gogebic, Iron, and Marquette counties Apophyllite, Houghton, and Keweenaw counties Almandite, Dickinson, Keweenaw, and Marquette Aragonite, Gogebic, Iron, Jackson, Marquette, and counties Monroe counties Alunite, Iron County Arsenopyrite, Marquette, and Menominee counties Analcite, Houghton, Keweenaw, and Ontonagon counties Atacamite, Houghton, Keweenaw, and Ontonagon counties Anatase, Gratiot, Houghton, Keweenaw, Marquette, and Ontonagon counties Augite, Dickinson, Genesee, Gratiot, Houghton, Iron, Keweenaw, Marquette, and Ontonagon counties Andalusite, Iron, and Marquette counties Awarurite, Marquette County Andesine, Keweenaw County Axinite, Gogebic, and Marquette counties Andradite, Dickinson County Azurite, Dickinson, Keweenaw, Marquette, and Anglesite, Marquette County Ontonagon counties Anhydrite, Bay, Berrien, Gratiot, Houghton, Babingtonite, Keweenaw County Isabella, Kalamazoo, Kent, Keweenaw, Macomb, Manistee,
    [Show full text]
  • A Specific Gravity Index for Minerats
    A SPECIFICGRAVITY INDEX FOR MINERATS c. A. MURSKyI ern R. M. THOMPSON, Un'fuersityof Bri.ti,sh Col,umb,in,Voncouver, Canad,a This work was undertaken in order to provide a practical, and as far as possible,a complete list of specific gravities of minerals. An accurate speciflc cravity determination can usually be made quickly and this information when combined with other physical properties commonly leads to rapid mineral identification. Early complete but now outdated specific gravity lists are those of Miers given in his mineralogy textbook (1902),and Spencer(M,i,n. Mag.,2!, pp. 382-865,I}ZZ). A more recent list by Hurlbut (Dana's Manuatr of M,i,neral,ogy,LgE2) is incomplete and others are limited to rock forming minerals,Trdger (Tabel,l,enntr-optischen Best'i,mmungd,er geste,i,nsb.ildend,en M,ineral,e, 1952) and Morey (Encycto- ped,iaof Cherni,cal,Technol,ogy, Vol. 12, 19b4). In his mineral identification tables, smith (rd,entifi,cati,onand. qual,itatioe cherai,cal,anal,ys'i,s of mineral,s,second edition, New york, 19bB) groups minerals on the basis of specificgravity but in each of the twelve groups the minerals are listed in order of decreasinghardness. The present work should not be regarded as an index of all known minerals as the specificgravities of many minerals are unknown or known only approximately and are omitted from the current list. The list, in order of increasing specific gravity, includes all minerals without regard to other physical properties or to chemical composition. The designation I or II after the name indicates that the mineral falls in the classesof minerals describedin Dana Systemof M'ineralogyEdition 7, volume I (Native elements, sulphides, oxides, etc.) or II (Halides, carbonates, etc.) (L944 and 1951).
    [Show full text]
  • And Rhodonite (Mnsi03)
    -..- American Mineralogist, Volume 80, pages 560-575, 1995 Heat capacities and thermodynamic properties of braunite (Mn7Si012) and rhodonite (MnSi03) RICHARD A. ROBIE, J. STEPHEN HUEBNER, BRUCE S. HEMINGWAY U.S. Geological Survey, 959 National Center, Reston, Virginia 22092, U.S.A. ABSTRACT The heat capacities, C~, of synthetic rhodonite (MnSi03) and braunite (Mn7Si012) have been measured by adiabatic calorimetry from 6 to -350 K. The heat capacity of braunite was also measured to -900 K by differential scanning calorimetry. Braunite exhibits a X-peak (paramagnetic to antiferromagnetic transition) in C~ in the temperature region 93.4-94.2 K. Rhodonite did not show the expected peak in C~ characteristic of the co- operative ordering of the Mn2+ spins at temperatures above 6 K. At 298.15 K the standard molar entropy of rhodonite is 100.5 :t 1.0 and that of braunite is 416.4 :t 0.8 J/(mol. K). For rhodonite, .:lrHO(MnSi03, 298.15 K) is -1321.6 :t 2.0 kJ/ mol. For braunite, the value for .:lrHO(Mn7Si012' 298.15 K), -4260 :t 3.0 kJ/mol, was obtained by considering both calorimetric and phase-equilibrium data. Our heat capacity and entropy values were combined with existing thermodynamic data for MnCO" C02' Si02, MnO, and Mn304 in a "third-law" analysis of several phase equilibrium studies and yielded .:lrGO(MnSi03, 298.15 K) = -1244.7 :t 2.0 kJ/mol and .:lrGO(Mn7SiO'2' 298.15 K) = - 3944.7 :t 3.8 kJ/mol from the elements. A revised petrogenetic grid for the system Mn-Si-O-C at 2000 bars is presented and is consistent with both thermochemical values and occurrence of natural assemblages.
    [Show full text]
  • An X-Ray Study of Manganese Minerals
    332 An X-ray study of manganese minerals. By BIBnVTI MVK~ERJEE, M.Sc., D.Phil. Geological Survey of India, Calcutta, India. [Communicated by the Editor; taken as read 5 November 1959.] Summary. t~hodonite, rhodochrosite, spandite, psilomelane, beldongrite, braunite, sitaparite, and vredenburgite from a collection hy Fermor have been studied by the X-ray powder diffraction method. The cell dimensions of all forms of eryptomelane--massive, horny, botryoidal, reniform, mamillated, and stalac- titic-are a = 9.82 A., c = 2.86 ~., whereas the cell dimensions of shiny pitch- like beldongrite are a = 9.85 A., c ~ 2.87 A. The amorphous admixture associated with cryptomelane is revealed by a broad halo, 4.60 A. to 3"90 ~., in the powder pattern. Aminoff's crysSal data for braunite are discussed with a different orienta- tion, and a new space group, I 4/mmm (D~), is assigned after indexing the powder pattern. Fermor's sitaparite (bixbyite) is assigned a new space group I m3 (T~), different from that proposed by Pauling ctal., on the basis of a fresh indexing of the powder pattern. Manganese-garnet from the gondite series has a cell-size of the order of spessartine, whereas the cell-size of manganese-garnet from the kodurite series varies from 11-72 to I1.95 ~. Fermor's spandite from the kodurite series is a mixture of spessartine, grossular, and andradite garnet-molecules with almandine and pyrope as minor components. Ramsdellite and ~,-MnO2 or fi-MnO2 are found in a number of samples of manganese ores. ERMOR (1909) classified manganese-ore deposits in India into F three main groups : deposits interbedded with the Archeans, includ- ing the gondites ; deposits associated with the kodurites ; and lateritoid deposits or surface enrichments of a ]ateritie nature.
    [Show full text]