Exploring the Icy Ocean World Europa

Total Page:16

File Type:pdf, Size:1020Kb

Exploring the Icy Ocean World Europa Exploring the Icy Ocean World Europa Krista M. Soderlund 19 August 2020 Outline 1) Introduction to Icy Ocean Worlds • Follow the water to subsurface oceans in the outer solar system 2) Europa - potential abode for life • What do we know (and don’t know) • Implications for habitability 3) Europa Clipper • Flagship-class mission to explore Europa’s habitability 4) Future Exploration Outline 1) Introduction to Icy Ocean Worlds • Follow the water to subsurface oceans in the outer solar system 2) Europa - potential abode for life • What do we know (and don’t know) • Implications for habitability 3) Europa Clipper • Flagship-class mission to explore Europa’s habitability 4) Future Exploration What makes a world habitable? • Traditionally, a world is considered habitable if it can support liquid water on its surface. Philosophy of "follow the water" guides Mars habitability investigations What makes a world habitable? • Traditionally, a world is considered habitable if it can support liquid water on its surface. Philosophy of "follow the water" guides Mars habitability investigations In the outer solar system, liquid water exists in subsurface oceans hidden by an outer shell of ice Credit: NASA Icy Ocean Worlds Credit: NASA/JPL/K. P. Hand Icy Ocean Worlds Ceres Credit: NASA/JPL/K. P. Hand Icy Ocean Worlds Ceres Credit: NASA/JPL/K. P. Hand Icy Ocean Worlds Mimas Ceres Credit: NASA/JPL/K. P. Hand Icy Ocean Worlds Mimas Ceres Credit: NASA/JPL/K. P. Hand Icy Ocean Worlds Mimas Ceres Credit: NASA/JPL/K. P. Hand Outline 1) Introduction to Icy Ocean Worlds • Follow the water to subsurface oceans in the outer solar system 2) Europa - potential abode for life • What do we know (and don’t know) • Implications for habitability 3) Europa Clipper • Flagship-class mission to explore Europa’s habitability 4) Future Exploration History of Exploration • Discovered by Galileo in 1610 G I/E C G I E C G/E G C E G I I - Io E - Europa GIC E G - Ganymede C - Callisto History of Exploration • Discovered by Galileo in 1610 G I/E C G I E C G/E G C E G I I - Io E - Europa GIC E G - Ganymede C - Callisto Credit: Saint John Astronomy Club Pioneer 10 flyby, 1973 Pioneer 11 flyby, 1974 History of Exploration • Discovered by Galileo in 1610 • Pioneer 10 flyby in 1973, Pioneer 11 flyby in 1974 Credit: NASA Pioneer 10 flyby, 1973 Pioneer 11 flyby, 1974 Voyager 1 flyby, 1979 Voyager 2 flyby, 1979 History of Exploration • Discovered by Galileo in 1610 • Pioneer 10 flyby in 1973, Pioneer 11 flyby in 1974 • Voyager 1 flyby in 1979, Voyager 2 flyby in 1979 Credit: NASA Pioneer 10 flyby, 1973 Pioneer 11 flyby, 1974 Voyager 1 flyby, 1979 Voyager 2 flyby, 1979 Galileo, 1995-2003 History of Exploration • Discovered by Galileo in 1610 • Pioneer 10 flyby in 1973, Pioneer 11 flyby in 1974 • Voyager 1 flyby in 1979, Voyager 2 flyby in 1979 • Galileo spacecraft toured the Jovian system for 8 yrs Credit: NASA/NOAO/DLR Pioneer 10 flyby, 1973 Pioneer 11 flyby, 1974 Voyager 1 flyby, 1979 Voyager 2 flyby, 1979 Galileo, 1995-2003 History of Exploration New Horizons flyby, 2007 • Discovered by Galileo in 1610 • Pioneer 10 flyby in 1973, Pioneer 11 flyby in 1974 • Voyager 1 flyby in 1979, Voyager 2 flyby in 1979 • Galileo spacecraft toured the Jovian system for 8 yrs • New Horizons flyby in 2007 Credit: NASA Pioneer 10 flyby, 1973 Pioneer 11 flyby, 1974 Voyager 1 flyby, 1979 Voyager 2 flyby, 1979 Galileo, 1995-2003 History of Exploration New Horizons flyby, 2007 Juno, 2016- • Discovered by Galileo in 1610 • Pioneer 10 flyby in 1973, Pioneer 11 flyby in 1974 • Voyager 1 flyby in 1979, Voyager 2 flyby in 1979 • Galileo spacecraft toured the Jovian system for 8 yrs • New Horizons flyby in 2007 • Juno in orbit around Jupiter Credit: NASA Europa • Fundamental propertiesEUROPA Europa Earth Unit Distance from Jupiter 0.67106 km Rotation period 3.55 1 days Radius 1561 6371 km Density 3013 5515 kg.m-3 The outer ice shell hides a global liquid water ocean Gravity 1.31 9.80 m.s-2 that contains more water than the Earth’s oceans Facts Global subsurface ocean Credit: NASA Englacial lakes Potential plume activity Unique and varied geology Habitability Candidate Europa • Evidence for a global subsurface ocean of salty water Bands and Ridges Geology: Young/smooth surface, Crater relaxation, Endogenic salts, Englacial water? Chaos Terrain Impact Craters Credit: NASA/JPL/DLR Europa • Evidence for a global subsurface ocean of salty water Geology: Young/smooth surface, Gravity: Crater relaxation, Differentiated, Mostly rock, Endogenic salts, Outer water layer(s?) Englacial water? Credit: NASA Europa • Evidence for a global subsurface ocean of salty water Geology: Young/smooth surface, Gravity: Crater relaxation, Differentiated, Mostly rock, Endogenic salts, Outer water layer(s?) Englacial water? Magnetometer: Induced magnetic field near the surface Credit: NASA Europa • Evidence for a global subsurface ocean of salty water Geology: Young/smooth surface, Gravity: Crater relaxation, Differentiated, Mostly rock, Plumes: Endogenic salts, Outer water layer(s?) Liquid water Englacial water? beneath the surface Magnetometer: Induced magnetic field near the surface Credit: NASA Europa • Tidal heating maintains the ocean for billions of years Credit: NASA Outstanding Questions • How are Europa’s unique geologic features formed? Do pockets of liquid water exist within the ice shell? Credit: NASA Outstanding Questions • How thick are the ice shell and ocean? Credit: NASA/JPL/Michael Carroll Outstanding Questions • What are the non-ice components of the ice shell? What is the ocean composition and its salinity? More NaCl Less NaCl Credit: NASA/Trumbo et al. 2019 Outstanding Questions • Is the rocky mantle hot? Credit: ROV KIEL 6000/GEOMAR/GNS Outstanding Questions • How are heat and material exchanged between the surface, ice shell, ocean and seafloor? Ice Shell Spreading Center Ocean Convection Credit: NASA/JPL/Howell & Pappalardo 2018/Soderlund et al. 2013 Outstanding Questions • How active is Europa today? Voyager 2 (1979) Galileo (1998) Lack of change at ~2 km/pixel scale over 20 yrs <1 km2/yr resurfacing rate >30 Myr age Credit: NASA/Roth et al. 2014 Is Europa habitable? Energy Water Chemical energy to Solvent supporting sustain metabolic biochemical reactions activity Water Time Chemistry Energy Chemistry Building blocks for life to grow and reproduce (CHNOPS) Is Europa habitable? • Conditions along the ice-ocean interface are similar to those below Antarctic ice shelves Credit: NASA/Planet Observer/Universal Images Group/N. Wolfenbarger/C. Yakiwchuck, E. van Wijk, R. Coleman Is Europa habitable? • Conditions along the ice-ocean interface are similar to those below Antarctic ice shelves Credit: Frank Rack, Andrill Science Management Office, University of Nebraska -Lincoln 10 cm Edwardsiella andrillae anemones living in the base of the Ross Ice Shelf Credit: NASA/Planet Observer/Universal Images Group/N. Wolfenbarger/C. Yakiwchuck, E. van Wijk, R. Coleman Is Europa habitable? • Pressure at the seafloor would be 130-260 MPa, corresponding to 13-26 km depth of a theoretical Earth's ocean Credit: NASA/K.P. Hand/NOAA Is Europa habitable? • Pressure at the seafloor would be 130-260 MPa, corresponding to 13-26 km depth of a theoretical Earth's ocean Credit: NASA/K.P. Hand/NOAA Is Europa habitable? Credit: K. P. Hand/JPL/NASA Outline 1) Introduction to Icy Ocean Worlds • Follow the water to subsurface oceans in the outer solar system 2) Europa - potential abode for life • What do we know (and don’t know) • Implications for habitability 3) Europa Clipper • Flagship-class mission to explore Europa’s habitability 4) Future Exploration NASA’s Europa Clipper Mission • Goal: Explore Europa to investigate its habitability - Ice Shell & Ocean: Characterize the ice shell and any subsurface water, including their heterogeneity, ocean properties, and the nature of surface-ice-ocean exchange - Composition: Understand the habitability of Europa’s ocean through composition and chemistry - Geology: Understand the formation of surface features, including sites of recent or current activity, and characterize high science interest localities - Current Activity: Search for and characterize any current activity, notably plumes and thermal anomalies Europa Clipper Science MASPEX ECM Magnetometer Mass Spectrometer sniffing atmospheric SUDA sensing ocean PIMS composition Dust Analyzer properties Faraday Cups surface & plume plasma environment composition Europa-UVS E-THEMIS REASON UV Spectrograph Thermal Imager Ice-Pentrating Radar surface & plume/ searching for hot spots plumbing the ice shell atmosphere composition EIS Narrow-angle Camera + MISE Wide-angle Camera IR Spectrometer mapping alien landscape in surface chemical 3D & color fingerprints In Situ Remote Sensing Gravity internal structure Europa Clipper Synergistic Science Copyright 2018 California Institute of Technology. Government sponsorship acknowledged Europa Clipper Synergistic Science Gravity Copyright 2018 California Institute of Technology. Government sponsorship acknowledged Europa Clipper Synergistic Science Gravity Magnetometry + Plasma Copyright 2018 California Institute of Technology. Government sponsorship acknowledged Europa Clipper Synergistic Science Gravity Magnetometry + Plasma Imaging Copyright 2018 California Institute of Technology. Government sponsorship acknowledged Europa Clipper Synergistic Science Gravity Magnetometry + Plasma Imaging Infrared Copyright 2018 California Institute of Technology. Government sponsorship acknowledged Europa Clipper Synergistic Science Gravity Magnetometry + Plasma Imaging
Recommended publications
  • Mission to Jupiter
    This book attempts to convey the creativity, Project A History of the Galileo Jupiter: To Mission The Galileo mission to Jupiter explored leadership, and vision that were necessary for the an exciting new frontier, had a major impact mission’s success. It is a book about dedicated people on planetary science, and provided invaluable and their scientific and engineering achievements. lessons for the design of spacecraft. This The Galileo mission faced many significant problems. mission amassed so many scientific firsts and Some of the most brilliant accomplishments and key discoveries that it can truly be called one of “work-arounds” of the Galileo staff occurred the most impressive feats of exploration of the precisely when these challenges arose. Throughout 20th century. In the words of John Casani, the the mission, engineers and scientists found ways to original project manager of the mission, “Galileo keep the spacecraft operational from a distance of was a way of demonstrating . just what U.S. nearly half a billion miles, enabling one of the most technology was capable of doing.” An engineer impressive voyages of scientific discovery. on the Galileo team expressed more personal * * * * * sentiments when she said, “I had never been a Michael Meltzer is an environmental part of something with such great scope . To scientist who has been writing about science know that the whole world was watching and and technology for nearly 30 years. His books hoping with us that this would work. We were and articles have investigated topics that include doing something for all mankind.” designing solar houses, preventing pollution in When Galileo lifted off from Kennedy electroplating shops, catching salmon with sonar and Space Center on 18 October 1989, it began an radar, and developing a sensor for examining Space interplanetary voyage that took it to Venus, to Michael Meltzer Michael Shuttle engines.
    [Show full text]
  • Mars Marathon Frozen Formula Pixel Puzzler Hear
    π IN THE SKY 2 Pi is back in our skies, helping mathematical sleuths like yourself solve stellar problems. Find the dizzying number of times a Mars rover’s wheels have rotated in 11 years. Learn how many images it takes to map a new world. Estimate the volume of an alien ocean. And discover just how powerful -- or faint -- our most distant spacecraft’s voice can be. Pi leads the way. MARS MARATHON The Mars Exploration Rover Opportunity has been driving on the Red Planet for more than 11 years -- not bad for a mission only planned to last for three months! Opportunity has already beat the off-Earth driving distance record of 39 kilometers and is approaching a marathon distance: 42.195 kilometers. When Opportunity reaches the marathon mark, how many times will its 25-centimeter diameter wheels have rotated? LEARN MORE ABOUT THE MISSION mars.nasa.gov/mer 25 cm PIXEL PUZZLER The Dawn spacecraft is orbiting Ceres -- a nearly spherical dwarf planet with an average radius of 475 kilometers -- in a perfectly circular polar orbit. While in orbit, Dawn will snap images of Ceres’ surface to piece together a global map. From its lowest altitude orbit of 370 kilometers, Dawn’s camera can see a patch of Ceres about 26 kilometers on a side. Assuming no overlap in the images, how many photographs would Dawn have to take to fully map the surface of Ceres? LEARN MORE ABOUT THE MISSION dawn.jpl.nasa.gov FROZEN FORMULA 2 km - 30 km Scientists have good reason to believe that Jupiter’s moon Europa has a liquid ocean wedged between its ice 3.5 km - 100 km shell and a rocky sea floor.
    [Show full text]
  • An Impacting Descent Probe for Europa and the Other Galilean Moons of Jupiter
    An Impacting Descent Probe for Europa and the other Galilean Moons of Jupiter P. Wurz1,*, D. Lasi1, N. Thomas1, D. Piazza1, A. Galli1, M. Jutzi1, S. Barabash2, M. Wieser2, W. Magnes3, H. Lammer3, U. Auster4, L.I. Gurvits5,6, and W. Hajdas7 1) Physikalisches Institut, University of Bern, Bern, Switzerland, 2) Swedish Institute of Space Physics, Kiruna, Sweden, 3) Space Research Institute, Austrian Academy of Sciences, Graz, Austria, 4) Institut f. Geophysik u. Extraterrestrische Physik, Technische Universität, Braunschweig, Germany, 5) Joint Institute for VLBI ERIC, Dwingelo, The Netherlands, 6) Department of Astrodynamics and Space Missions, Delft University of Technology, The Netherlands 7) Paul Scherrer Institute, Villigen, Switzerland. *) Corresponding author, [email protected], Tel.: +41 31 631 44 26, FAX: +41 31 631 44 05 1 Abstract We present a study of an impacting descent probe that increases the science return of spacecraft orbiting or passing an atmosphere-less planetary bodies of the solar system, such as the Galilean moons of Jupiter. The descent probe is a carry-on small spacecraft (< 100 kg), to be deployed by the mother spacecraft, that brings itself onto a collisional trajectory with the targeted planetary body in a simple manner. A possible science payload includes instruments for surface imaging, characterisation of the neutral exosphere, and magnetic field and plasma measurement near the target body down to very low-altitudes (~1 km), during the probe’s fast (~km/s) descent to the surface until impact. The science goals and the concept of operation are discussed with particular reference to Europa, including options for flying through water plumes and after-impact retrieval of very-low altitude science data.
    [Show full text]
  • Europa Clipper Mission
    Europa Clipper Mission Send a highly capable, radiation-tolerant spacecraft in a long, looping orbit around Jupiter to perform repeated close flybys of the icy moon. This document has been reviewed and determined not to contain export controlled technical data. 1 Exploring Europa’s Habitability: ! Ingredients for Life" Mission Goal: Explore Europa to Investigate its Habitability e-, O+, S+, … Water: • Probable saltwater ocean, implied by surface geology and magnetic field radiation-produced oxidants: • Possible lakes within the ice shell, produced by local melting O2, H2O2, CH2O ~ 100 K Chemistry: • Ocean in direct contact with mantle rock, promoting chemical leaching • Dark red surface materials contain salts, probably from the ocean Energy: • Chemical energy might sustain life • Surface irradiation creates oxidants • Mantle rock-water reactions could create reductants (hydrothermal or serpentinization) ? Habitability Activity: • Geological activity “stirs the pot” hydrothermally produced reductants: H S, H , CH , Fe • Activity could be cyclical, as tied to Io 2 2 4 ? This document has been reviewed and determined not to contain export controlled technical data. 2 Workshop Overview" Project manager, Barry Goldstein, and Planetary Protection Officer, Lisa Pratt, collaborated on setting objectives for the three-day workshop: • Validate the modeling framework for Europa Clipper Planetary Protection. • Agree on model input values, or on a plan to derive/ identify appropriate model inputs. • Develop workshop concurrence regarding future research plans and their priority. Spoiler Alert The three objectives were accomplished. This document has been reviewed and determined not to contain export controlled technical data. 3 Outside Subject-Matter Experts" A panel of multidisciplinary experts were assembled to provide consultation and guidance at the workshop." This document has been reviewed and determined not to contain export controlled technical data.
    [Show full text]
  • OPAG Update to the Planetary Science Advisory Committee (PAC)
    OPAG Update to the Planetary Science Advisory Committee (PAC) ? Linda Spilker OPAG Vice-Chair, JPL PAC Meeting September 24, 2019 Large KBOs: Outer Planets Assessment Group (OPAG) Charter https://www.lpi.usra.edu/opag/ • NASA's community-based forum to provide science input for planning and prioritizing outer planet exploration activities for the next several decades • Evaluates outer solar system exploration goals, objectives, investigations and required measurements on the basis of the widest possible community outreach • Meets twice per year, summer and winter – Next meeting: Feb. 3-4, 2020, LPI, Houston, TX • OPAG documents are inputs to the Decadal Surveys • OPAG and Small Bodies Assessment Group (SBAG) have Joint custody of Pluto system and other planets among Kuiper Belt Objects KBO planets OPAG Steering Committee Jeff Moore Linda Spilker OPAG Chair OPAG Vice-Chair * =New Member Ames Research Center Jet Propulsion Lab Alfred McEwen Lynnae Quick* Kathleen Mandt* University of Arizona NASA Goddard Applied Physics Laboratory OPAG Steering Committee Scott Edgington Amanda Hendrix Mark Hofstadter Jet Propulsion Lab Planetary Science Institute Jet Propulsion Lab Terry Hurford Carol Paty Goddard Space Flight Center Georgia Institute of Technology OPAG Steering Committee Morgan Cable* Britney Schmidt Kunio Sayanagi Jet Propulsion Lab Georgia Institute of Technology Hampton University * =New Member Tom Spilker* Abigail Rymer* Consultant Applied Physics Lab Recent and Upcoming OPAG-related Meetings • OPAG Subsurface Needs for Ocean Worlds
    [Show full text]
  • Europa Clipper Mission: Preliminary Design Report
    Europa Clipper Mission: Preliminary Design Report Todd Bayer, Molly Bittner, Brent Buffington, Karen Kirby, Nori Laslo Gregory Dubos, Eric Ferguson, Ian Harris, Johns Hopkins University Applied Physics Maddalena Jackson, Gene Lee, Kari Lewis, Jason Laboratory 11100 Johns Hopkins Road Laurel, Kastner, Ron Morillo, Ramiro Perez, Mana MD 20723-6099 Salami, Joel Signorelli, Oleg Sindiy, Brett Smith, [email protected] Melissa Soriano Jet Propulsion Laboratory California Institute of Technology 4800 Oak Grove Dr. Pasadena, CA 91109 818-354-4605 [email protected] Abstract—Europa, the fourth largest moon of Jupiter, is 1. INTRODUCTION believed to be one of the best places in the solar system to look for extant life beyond Earth. Exploring Europa to investigate its Europa’s subsurface ocean is a particularly intriguing target habitability is the goal of the Europa Clipper mission. for scientific exploration and the hunt for life beyond Earth. The 2011 Planetary Decadal Survey, Vision and Voyages, The Europa Clipper mission envisions sending a flight system, states: “Because of this ocean’s potential suitability for life, consisting of a spacecraft equipped with a payload of NASA- Europa is one of the most important targets in all of planetary selected scientific instruments, to execute numerous flybys of Europa while in Jupiter orbit. A key challenge is that the flight science” [1]. Investigation of Europa’s habitability is system must survive and operate in the intense Jovian radiation intimately tied to understanding the three “ingredients” for environment, which is especially harsh at Europa. life: liquid water, chemistry, and energy. The Europa Clipper mission would investigate these ingredients by The spacecraft is planned for launch no earlier than June 2023, comprehensively exploring Europa’s ice shell and liquid from Kennedy Space Center, Florida, USA, on a NASA supplied ocean interface, surface geology and surface composition to launch vehicle.
    [Show full text]
  • ICEE-2) Program Mitch Schulte, Discipline ScienSt Planetary Science Division NASA Headquarters Europa Lander SDT – Science Trace Matrix
    Instrument Concepts for Europa Exploraon (ICEE-2) Program Mitch Schulte, Discipline Scien3st Planetary Science Division NASA Headquarters Europa Lander SDT – Science Trace Matrix Instrument classes: organic compound analysis (oca), microscope for life detection (mld), vibrational spectrometer (vs), context remote sensing imager (crsi), geophysical sounding system (gss), lander infrastructure sensors for science (liss). LISS not called in ICEE-2. Note: Goal 1 has been rescoped to focus on searching for biosignatures. Europa Lander SDT – Model payload ICEE-2 Program NRA* released: 17 May 2018 Step 1 Proposals due: 22 June 2018 Change in POC: 18 July 2018 Step 2 Proposals due: 24 August 2018 Submitted Proposals: 44 Step 2 Proposals were submitted, 43 of which were compliant and reviewed Government Shutdown: 22 December 2018-25 January 2019 Awards announced: 8 February 2019 *Reminder: This was an NRA, not an AO. ICEE-2 Program • The Instrument Concepts for Europa Exploration (ICEE) 2 program supports the development of instruments and sample transfer mechanism(s) for Europa surface exploration. The goal of the program is to advance both the technical readiness and spacecraft accommodation of instruments and the sampling system for a potential future Europa lander mission. • All awardees required to collaborate with the pre-project NASA-JPL spacecraft team and potentially other awardees. • The ICEE 2 program also seeks to mature the accommodation of instruments on the lander, especially regarding the sampling system. • While specific technology readiness levels (TRL) are not prescribed for the ICEE 2 program, instrument concepts must be at TRL 6 in the 2021/2022 timeframe. ICEE-2 Program • Proposal Information Package (PIP) and Environmental Requirements Document (ERD) provided by JPL team.
    [Show full text]
  • Outer Planets Assessment Group (OPAG) View of Decadal Survey
    Outer Solar System: Many Worlds to Explore Outer Planets Assessment Group (OPAG) View of Decadal Survey Progress May 2017 Alfred McEwen, OPAG Chair LPL, University of Arizona This presentation will address (relevant to OPAG): • 1. Most important new discoveries 2011-2017 – (V&V writing was completed in late 2010) • 2. Progress made in implementing Decadal advice – Flight investigations • Flagship Missions • New Frontiers – R&A and infrastructure – Technology • 3. Other issues relevant to the committee’s statement of task – Smallsats for Outer Planet Exploration – How to make the Discovery Program useful for Outer Planets – Europa Lander – Coordination with ESA JUICE mission – Adding Ocean Worlds to New Frontiers 4 – Future mission studies to prepare for next Decadal • 4. Summary grade recommendations on Decadal progress • 5. OPAG top recommendations to mid-term review 1. Most Important New Discoveries 2011-present • Jupiter system: – Europa plate tectonics (Prockter et al., 2014) – Europa cryovolcanism (Quick et al., 2017; Prockter et al., 2017) – Europa plumes (Roth et al., 2014; Sparks et al., 2017) – Confirmation of subsurface ocean in Ganymede (Saur et al., 2015) – Evidence for extensive melt in Io’s mantle (Khurana et al., 2011; Tyler et al., 2015) – Fabulous results from Juno (papers submitted) • Saturn System: – MUCH from Cassini—see upcoming slides • Uranus and Neptune systems: – Standard interior models do not fit observations; Uranus and Neptune may be quite different (Nettelmann et al. 2013) – Intense auroras seen at Uranus (Lamy et al., 2012, 2017) – Weather on Uranus and Neptune confined to a “thin” layer (<1,000 km) (Kaspi et al. 2013) – Ice Giant growing around nearby TW Hydra (Rapson et al., 2015) – Triton’s tidal heating and possible subsurface ocean (Gaeman et al., 2012; Nimmo and Spencer, 2015) • Pluto system—lots of results from New Horizons – The Pluto system is complex in the variety of its landscapes, activity, and range of surface ages.
    [Show full text]
  • Space Sector Brochure
    SPACE SPACE REVOLUTIONIZING THE WAY TO SPACE SPACECRAFT TECHNOLOGIES PROPULSION Moog provides components and subsystems for cold gas, chemical, and electric Moog is a proven leader in components, subsystems, and systems propulsion and designs, develops, and manufactures complete chemical propulsion for spacecraft of all sizes, from smallsats to GEO spacecraft. systems, including tanks, to accelerate the spacecraft for orbit-insertion, station Moog has been successfully providing spacecraft controls, in- keeping, or attitude control. Moog makes thrusters from <1N to 500N to support the space propulsion, and major subsystems for science, military, propulsion requirements for small to large spacecraft. and commercial operations for more than 60 years. AVIONICS Moog is a proven provider of high performance and reliable space-rated avionics hardware and software for command and data handling, power distribution, payload processing, memory, GPS receivers, motor controllers, and onboard computing. POWER SYSTEMS Moog leverages its proven spacecraft avionics and high-power control systems to supply hardware for telemetry, as well as solar array and battery power management and switching. Applications include bus line power to valves, motors, torque rods, and other end effectors. Moog has developed products for Power Management and Distribution (PMAD) Systems, such as high power DC converters, switching, and power stabilization. MECHANISMS Moog has produced spacecraft motion control products for more than 50 years, dating back to the historic Apollo and Pioneer programs. Today, we offer rotary, linear, and specialized mechanisms for spacecraft motion control needs. Moog is a world-class manufacturer of solar array drives, propulsion positioning gimbals, electric propulsion gimbals, antenna positioner mechanisms, docking and release mechanisms, and specialty payload positioners.
    [Show full text]
  • Stone Aerospace Saves 12 Weeks in Cabling Design by Implementing a Digital Design Process
    SUCCESS STORY ® Zuken’s software solution for electrical wiring, control systems and fluid engineering. Stone Aerospace saves 12 weeks in cabling design by implementing a digital design process “We achieved substantial productivity gains because engineers had a very clear picture of what one another were doing, and because of the automated checks performed by the software.“ John Harman, Electrical Engineer, Stone Aerospace ZUKEN - The Partner for Success SUCCESS STORY Stone Aerospace saves 12 weeks in cabling design by implementing a digital design process Stone Aerospace faced the pressure of a tight schedule in designing Results a one-of-a-kind underwater autonomous vehicle (AUV) capable • Elimination of $20,000 in cable of traveling 15km under the Antarctic ice shelf. The AUV acts as a rework and expedited delivery costs testing ground to validate an aircraft-mounted radar system that • Design cycle reduction by 12 weeks will be used in a space mission. The time needed to design the wiring • Ability to view the electrical and harness for the AUV was reduced by around 12 weeks and $20,000 physical design of the entire craft in was saved by using E3.series to automate many aspects of the design a single hierarchical view process, while integrating the logical and physical design on a single • E ective design team collaboration platform. created common nomenclature improving quality and cutting errors The search for life in space aspects such as temperature, depth and water current velocities, and to identify • Automated checks ensured correct Scientists believe that underneath the microbiological communities. connector selections. icy surface of Europa, one of Jupiter’s moons, is a vast ocean thought to be the Cable design challenges most likely location for finding life in our solar system.
    [Show full text]
  • Valuing Life Detection Missions Edwin S
    Valuing life detection missions Edwin S. Kite* (University of Chicago), Eric Gaidos (University of Hawaii), Tullis C. Onstott (Princeton University). * [email protected] Recent discoveries imply that Early Mars was habitable for life-as-we-know-it (Grotzinger et al. 2014); that Enceladus might be habitable (Waite et al. 2017); and that many stars have Earth- sized exoplanets whose insolation favors surface liquid water (Dressing & Charbonneau 2013, Gaidos 2013). These exciting discoveries make it more likely that spacecraft now under construction – Mars 2020, ExoMars rover, JWST, Europa Clipper – will find habitable, or formerly habitable, environments. Did these environments see life? Given finite resources ($10bn/decade for the US1), how could we best test the hypothesis of a second origin of life? Here, we first state the case for and against flying life detection missions soon. Next, we assume that life detection missions will happen soon, and propose a framework (Fig. 1) for comparing the value of different life detection missions: Scientific value = (Reach × grasp × certainty × payoff) / $ (1) After discussing each term in this framework, we conclude that scientific value is maximized if life detection missions are flown as hypothesis tests. With hypothesis testing, even a nondetection is scientifically valuable. Should the US fly more life detection missions? Once a habitable environment has been found and characterized, life detection missions are a logical next step. Are we ready to do this? The case for emphasizing habitable environments, not life detection: Our one attempt to detect life, Viking, is viewed in hindsight as premature or at best uncertain. In-space life detection experiments are expensive.
    [Show full text]
  • SNOW Decadal White Paper Final
    Dive, Dive, Dive: Accessing the Subsurface of Ocean Worlds A Paper Submitted to the Planetary Science Decadal Survey On Behalf of the Subsurface Needs for Ocean Worlds Working Group of OPAG Submitted by: SNOW Organizers Britney Schmidt, OPAG, VERNE Kate Craft, Europa STI Georgia Tech, [email protected] JHU APL, [email protected] SESAME PIs & Teams (Co-Authors) Thomas Cwik, JPL Georgia Tech VERNE: Kris Zacny, Honeybee Robotics Frances Bryson, Chase Chivers, Sara Miles Smith, JPL Pierson, Justin Lawrence, Taylor Plattner, Vishaal Singh, Europa STI, Elizabeth Spiers, Andrew Mullen, Jacob Arizona State University Buffo, Nathan Daniel, Ashley Hanna, Glenn Bill Stone, Stone Aerospace Lightsey, Matt Meister, Mohamed Nassif, Daniel Dichek, Anthony Spears Endorsers: Europa Signals Through the Ice: Morgan Cable, JPL; Christine McCarthy, Christine McCarthy, Lamont Doherty Earth LDEO; Andrew Dombard, U Illinois, Observatory; G. Wesley Patterson, Ralph D. Chicago; Ganna Portayinka, LASP; Karyn Lorenz, JHU Applied Physics Laboratory; Rogers, RPI; Shane Byrne, U Az; Evan Christopher R. German, Michael V. Jakuba, Eschelman, Impossible Sensing; Robert Woods Hole Oceanographic Institution, Dziak, NOAA; Bryanna Henderson, JPL; Matthew Silvia, Woods Hole Oceanographic Dale Winebrenner, U Washington; Alison Institution; Alyssa R. Rhoden, Southwest Murray, DRI; Brent Christner, U Florida; Research Institute; Matthew E. Walker, U. Carol Paty, U Oregon; Connor Nixon, Southern Maine NASA Goddard; Michael Malaska, JPL; Erin Leonard, Jet Propulsion Laboratory, Community Endorsers: Kalind Carpenter, JPL/Caltech; Krista Jeff Moore, NASA Ames; Linda Spilker, Soderlund, University of Texas at Austin; JPL/Caltech; Marc Neveu, UMD/NASA Zach Ulibarri, Center for Integrated Plasma Goddard; Patricia Beauchamp, Studies, University of Colorado; Heather JPL/Caltech; Matthew Siegfried, CO Mines; Graham, Catholic University of Sam Howell, JPL; Cynthia Phillips, JPL; America/NASA GSFC Flyby.
    [Show full text]